
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 1

ATOM: Efficient Tracking, Monitoring, and
Orchestration of Cloud Resources

Min Du, Student Member, IEEE, and Feifei Li, Member, IEEE

Abstract—The emergence of Infrastructure as a Service framework brings new opportunities, which also accompanies with new
challenges in auto scaling, resource allocation, and security. A fundamental challenge underpinning these problems is the continuous
tracking and monitoring of resource usage in the system. In this paper, we present ATOM, an efficient and effective framework to
automatically track, monitor, and orchestrate resource usage in an Infrastructure as a Service (IaaS) system that is widely used in
cloud infrastructure. We use novel tracking method to continuously track important system usage metrics with low overhead, and
develop a Principal Component Analysis (PCA) based approach to continuously monitor and automatically find anomalies based on
the approximated tracking results. We show how to dynamically set the tracking threshold based on the detection results, and further,
how to adjust tracking algorithm to ensure its optimality under dynamic workloads. We demonstrate the extensibility of ATOM through
virtual machine (VM) clustering. Lastly, when potential anomalies are identified, we use introspection tools to perform memory
forensics on VMs guided by analyzed results from tracking and monitoring to identify malicious behavior inside a VM. We evaluate the
performance of our framework in an open source IaaS system.

Index Terms—Infrastructure as a Service, cloud, tracking, monitoring, anomaly detection, virtual machine introspection

F

1 INTRODUCTION

T HE Infrastructure as a Service (IaaS) framework is a popular
model in realizing cloud computing services. In this model, a

cloud provider manages and outsources her computing resources
through an IaaS system. For example, Amazon offers cloud service
with its Elastic Compute Cloud (EC2) platform [1], which is an
IaaS system. While IaaS is an attractive model, since it enables
cloud providers to outsource their computing resources and cloud
users to cut their cost on a pay-per-use basis, it has raised new
challenges in auto scaling, resource allocation, and security.

For example, auto scaling in the IaaS framework is the process
to automatically add and remove computing resources based upon
the actual resource usage. Cloud users want to pay for more
resources only when they need them, and to make the best use
of their (paid) resources by evenly distributing their workloads.
Auto scaling and load balancing, two critical services provided
by Amazon Web Service (AWS) [1] and other IaaS platforms, are
designed to address these issues. A critical module in achieving
auto-scaling and load balancing is the ability to monitor resource
usage from many virtual machines (VMs) running on top of
EC2. In Amazon cloud, resource usage information needs to be
collected and reported back to a cloud controller, not only for the
cloud controller to make various administrative decisions, but also
for cloud users to query.

Security is another paramount issue while using an IaaS
system. For example, it was reported in late July 2014, adver-
saries attacked Amazon cloud by installing distributed denial-of-
service (DDoS) bots on user VMs by exploiting a vulnerability
in Elasticsearch [2]. Resource usage data could provide critical
insights to address security concerns. Thus, a cloud provider needs
to constantly monitor resource usage and utilize these statistics
not only for resource allocation, but also for anomaly detection

• M. Du and F. Li are with School of Computing, University of Utah, Salt
Lake City, UT, 84112.
E-mail: mind@cs.utah.edu, lifeifei@cs.utah.edu

in the system. Until now, the best practices for mitigating DDoS
and other attacks in AWS include using CloudWatch to create
simple threshold alarms on monitored metrics and alert users for
potential attacks [3]. In our work we show how to detect the
anomalies automatically while saving users the trouble on setting
magic threshold values.

These observations illustrate that a fundamental challenge
underpinning several important problems in an IaaS system is
the continuous tracking and monitoring of resource usage in the
system. Furthermore, several applications (e.g., security) also need
intelligent and automated orchestration of system resources, by
going beyond passive tracking and monitoring, and introducing
auto-detection of abnormal behavior in the system, and active
introspection and correction once anomaly has been identified
and confirmed. This motivates us to design and implement
ATOM, an efficient and effective framework to automatically
track, orchestrate, and monitor resource usage in an IaaS system.

Cloud Controller
(CLC)

Cluster Controller
(CC)

Cluster Controller
(CC)

Node Controller
(NC)

VMVM VM

Node Controller
(NC)

VMVM VM

Node Controller
(NC)

VMVM VM

Fig. 2. A simplified architecture of Eucalyptus.

A motivating example. Eucalyptus [4], [5] is an open source
cloud software that provides AWS-compatible environment and
interface. A simplified architecture of Eucalyptus, similar to other
IaaS systems, is shown in figure 2. Cloud users interact with
the cloud controller (CLC) to issue requests such as to allocate
resources and query resource usage. CLC handles incoming user

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 2

requests, collects information of the entire cloud, makes high-level
decisions and controls other components such as cluster controller
(CC) and node controller (NC). A CC forwards requests from the
CLC to an NC, gathers status data on each NC, and reports back
to the CLC. An NC controls the VMs running on it. One CLC
controls several CCs and each CC could in turn control several
NCs, on which multiple user VMs could be running. Note that
only one CLC exists on each cloud.

Eucalyptus provides an AWS-like service called CloudWatch.
CloudWatch is able to monitor resource usage of each VM. To
reduce overhead, such data are only collected from each VM at
every minute, and then reported to the CLC through a CC. Clearly,
gathering resource usage in real time introduces overhead in the
system (e.g., communication overhead from an NC to the CLC).
When there are plenty of VMs to monitor, the problem becomes
even worse and will bring significant overhead to the system.
CloudWatch addresses this problem by collecting measurements
only once every minute, but this provides only a discrete, sampled
view of the system status and is not sufficient to providing
continuous understanding and protection of the system.

Another limitation in existing approaches like CloudWatch is
that they only do passive monitoring. No active online resource
orchestration is in place towards detecting system anomalies,
potential threats and attacks. We observe that, e.g., in the afore-
mentioned DDoS attack to Amazon cloud, alarming signals can
be learned from resource usage data. Active online resource mon-
itoring and orchestration is very useful in achieving a more secure
and reliable system. Active online resource monitoring gives us
the opportunities to trigger VM introspection to debug the system
and figure out what has possibly gone wrong. The introspection
into VMs then allows to orchestrate resource usage and allocation
in the IaaS system to achieve a more secure system and/or better
performance. Note that VM introspection is expensive. Without
continuous tracking and online monitoring and orchestration, it
is almost impossible to figure out when to do VM introspection
and what specific target to introspect in a host VM. Our goal is
to automate this process and trigger VM introspection only when
needed. We refer to this process as resource orchestration.
Our contribution. Motivated by these discussions, we present
the ATOM framework. ATOM is an end-to-end framework that
could be easily plugged into an IaaS system, to provide automated
tracking, orchestration, and monitoring of resource usage for a
potentially large number of VMs running on an IaaS cloud, in an
online fashion.

ATOM introduces an online tracking module that runs at NC
and continuously tracks various performance metrics and resource
usage values of all VMs. The CLC is denoted as the tracker,
and the NCs are denoted as the observers. The goal is to replace
the sampled view at the CLC with a continuous understanding of
system status, with minimum overhead.

ATOM then uses an automated monitoring module that con-
tinuously monitors the resource usage data reported by the online
tracking module. The goal is to detect anomaly by mining the
resource usage data. This is especially helpful for detecting attacks
that could cause changes in resource usage, for example, one
VM consumes all available resources and starves all other VMs
running on the same physical computer [6]. The baseline for
online monitoring is to simply define a threshold value for any
metric of interest. Clearly, this approach is not very effective
against dynamic and complex attacks and anomalies. ATOM uses
a dynamic online monitoring method that is developed based on

PCA. We design a PCA-based method that continuously analyzes
the dominant subspace defined by the measurements from the
tracking module, and automatically raises an alarm whenever a
shift in the dominant subspace has been detected. Even though
PCA-based methods have been used for anomaly detection in
various contexts, a new challenge in our setting is to cope with ap-
proximate measurements produced by online tracking, and design
methods that are able to automatically adapting to and adjusting
the tracking errors.

Lastly, virtual machine introspection (VMI) is used to detect
and identify malicious behavior inside a VM. VMI techniques
such as analyzing VM memory space tends to be of great cost. If
we don’t know where and when an attack might have happened,
we will need to go through the entire memory constantly, which
is clearly expensive, especially if VMs to be analyzed are so
many. ATOM provides two options here. The first option is to
set a threshold for each resource usage measure (the baseline as
discussed above), and we consider there may be an anomaly if the
reported value is beyond (or below) the threshold for that measure
and trigger a VMI. This is the method that existing systems like
AWS and Eucalyptus have adopted for auto scaling tasks. The
second option is to use the online monitoring method in the
monitoring module to automatically detect anomaly and trigger
a VMI, as well as guiding the introspection to specific regions in
the VM memory space based on the data from online monitoring
and tracking. We denote the second method as orchestration.
Comparison with UBL. UBL [7] stands for Unsupervised Behav-
ior Learning which is designed for monitoring virtualized cloud
systems. It collects resource usage data from each VM, and trains
Self-Organizing Maps (SOM) using normal data to predict future
performance anomalies. UBL shows that SOM is an effective
learning method for VM statistics and has better prediction ac-
curacy compared with PCA/KNN in some experiments [7].

That said, note that ATOM is an end-to-end framework that
integrates online tracking, online monitoring, and orchestration
(for VM introspection) into one framework, whereas UBL focuses
on anomaly detection in performance data without the integration
of tracking and orchestration. Hence, UBL is “equivalent ” to the
monitoring component in ATOM.

More specifically, UBL can be plugged/integrated into
ATOM’s monitoring component as an alternative anomaly de-
tection method to be more effective in capturing different types
of anomaly. Note that PCA-based approach has the advantage
of enabling us to analyze the theoretical bounds, when there
are bounded tracking errors present in the continuously tracked
measurements returned by the tracking component. UBL is more
an empirical method which may perform really well on some
instances, but it remains as an open problem to theoretically
study its performance especially with approximate measurements
when being used together with ATOM’s tracking module. PCA-
based approach also allows us to adjust the tracking threshold
automatically in an online fashion by only adjusting the false
alarm rate, as later shown in Section 5 where we have established
the theoretical connection between the false alarm rate and the
tracking threshold.

Lastly, SOM requires an explicit training stage and needs to
be trained by normal data, while PCA identifies what is normal
automatically and is able to adapt to the dynamic change from the
underlying data. In contrast, SOM needs to be re-trained when the
characteristics of the underlying workload has changed.
Paper organization. The rest of this paper is organized as follows.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 3

CLC

MONITORING
(ANOMALY DETECTION)

CC

NC

VMVM VM

TRACKING
INTROSPECTION

& ORCHESTRATION

Fig. 3. The ATOM framework.

Section 2 gives an overview on the design of ATOM, and the
threat model it considers. Sections 3 and 4 describe the online
tracking and the online monitoring modules in ATOM. We further
demonstrates the interaction between tracking component and
monitoring component in section 5. Section 6 introduces the
orchestration module. Section 7 shows an extension on VM clus-
tering using the ATOM framework. Section 8 evaluates ATOM
using Eucalyptus cloud and shows its effectiveness. Lastly, section
9 reviews the related work, and section 10 concludes the paper.

2 THE ATOM FRAMEWORK

Figure 3 shows the ATOM framework. For simplicity, only one
CC and one NC are shown in this example. ATOM adds three
components to an IaaS system like AWS and Eucalyptus:

(1) Tracking component: ATOM adapts the optimal online
tracking algorithm for one-dimension online tracking inside the
monitoring service on NCs. This dramatically reduces the over-
head used to monitor cloud resources and enables continuous
measurements to CC and CLC;

(2) Monitoring component (anomaly detection): ATOM adds
this component in CLC to analyze tracking results by the tracking
component, which provides continuous resource usage data in real
time. It uses a modified PCA method to continuously track the
divided subspace, as defined by the multi-dimensional values from
the tracking results, and automatically detect anomaly by identi-
fying notable shift in the interesting subspace. It also generates
anomaly information for further analysis by the orchestration com-
ponent when this happens. The monitoring component also adjusts
the tracking threshold from the tracking component dynamically
online based on the data trends and a desired false alarm rate.

(3) Orchestration component (introspection and debugging):
when a potential anomaly is identified by the monitoring compo-
nent, an INTROSPECT request along with anomaly information
is sent to the orchestration component on NC, in which VMI tools
(such as LibVMI [8]) and VM debugging tools (such as StackDB
[9]) are used to identify the anomalous behavior inside a VM and
raise an alarm to cloud users for further analysis.

In the following sections we investigate each component in
further detail. Table 1 lists some frequently-used notations.

2.1 Threat Model
ATOM provides realtime tracking and monitoring on the usage
of cloud resource in an IaaS system. It further goes out to detect
and prevent attacks that could cause a notable change in resource
usage from its typical subspace.

To that end, we need to formalize a threat model. We assume
cloud users to be trustworthy, but they might accidentally run
some malicious software out of ignorance. Also, despite various
security rules and policies that are in place, it’s still possible that

Symbol Definition
∆ tracking threshold
γ finest resolution for floating point values
t number of time instances in a sliding window
n number of monitored VMs
d′ number of metrics for each VM
d d′ ·n
M data matrix (t×d) of the most recent monitored data

avg j mean of the j-th column in M
std j standard deviation of the j-th column in M
Y standardized M, each value yi, j = (mi, j− avg j)/std j

tnow current time-stamp
A consecutively abnormal data from tnow− t to tnow
B standardized A
z the metric vector monitored at tnow (with d dimensions)
x standardized z
vi the i-th eigen vector output by PCA
λi the i-th eigen value output by PCA
k number of principal components output by PCA
α input false alarm rate in PCA anomaly detection

Qα PCA anomaly detection threshold
µ false alarm rate deviation, to control tracking threshold

TABLE 1
Frequently used notations.

a smart attacker could bypass them and perform malicious tasks.
The malicious behavior could very likely cause some change in
resource usage. Note that, however, this is not necessarily always
accompanied with more resource consumption! Some attacks
could actually lead to less resource usage, or simply different
ways of using the same amount of resources on average. All these
attacks are targeted by the ATOM framework. The possibility of
incorporating other types of attacks into ATOM is discussed in
section 10.

3 TRACKING COMPONENT

This section introduces the tracking component in ATOM. Con-
sider Eucalyptus CloudWatch as an example, which is an AWS
CloudWatch compatible monitoring service that enables cloud
users to monitor their cloud resources and make operational deci-
sions based on the statistics. CloudWatch is capable of collecting,
aggregating and dispensing data from resources such as VMs
and storage. Cloud users can specify what they would like to
monitor, and then query the history data for up to two weeks
through the interface in the CLC. They can also set an alarm
(essentially, a threshold) for a specific measure, and be notified
or let it trigger some predefined action if the alarm conditions are
met. Clearly, collecting such statistics continuously is expensive.
Thus, the default in Eucalyptus and AWS is to ask an NC to only
send measurements to the CLC at some predefined interval, e.g.,
once every minute in Eucalyptus.

A user VM in Eucalyptus is called an instance. In the follow-
ing we will use the term “instance” and “VM” interchangeably.
There are various variables that can be monitored overtime on
each instance, each of which is called a metric. The measurement
for each metric, for example, Percent for CPUUtilization, Count
for DiskReadOps and DiskWriteOps, Bytes for DiskReadBytes,
DiskWriteBytes, NetworkIn and NetworkOut, is called Unit and
is numerical.

A continuous understanding of these values is much more
useful than a periodic, discrete sampled view that are only
available, say, every minute. But doing so is expensive; an NC
needs to constantly sending data to the CLC. A key observation
is that, for most purposes, cloud users may not be interested
in the exact value at every time instance. Thus, a continuous
understanding of these values within some predefined error range

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 4

is an appealing alternative. For example, it’s acceptable to learn
that CPUUtilization is guaranteed to be within ±3% of its exact
value at any time instance.

This way NC only sends a value whenever the newest one is
more than ∆ away from last sent value on a measurement, where ∆

is a user-specified, maximum allowed error on this measurement.
CLC could use the last received value as an acceptable approx-
imation for all values in-between. In practice, often time certain
metrics on a VM do not change much over a long period. Thus
far fewer values need to be sent to the CLC. Not only can we save
the communication overhead from NC to the CLC, but also the
database space on CLC used to store every value reported by NC
(so that the history data could be kept for much longer than two
weeks). Furthermore, instead of having only a sampled view at
every minute, user now could query values at any time instance in
the entire history that is available.

But unfortunately, this seemingly natural idea may perform
very badly in practice. In fact, in the worst case, its asymptotic
cost is infinite in terms of competitive ratio over the optimal
offline algorithm that knows the entire data series in advance.
For example, suppose the first value NC observes is 0 and then
it oscillates between 0 and ∆ + 1. Then NC continues to send
0 and ∆ + 1 to the CLC. While the optimal offline algorithm
who knows the entire f (t) at the beginning could send only one
message to the CLC - the value ∆

2 . Formally, this is known as
the online tracking problem, which is formalized and studied in
[10]. In online tracking, an observer observes a function f (t) in an
online fashion, which means she sees f (t) for any time t before
the current time (including the current time). A tracker would like
to keep track of the current function value within some predefined
error. The observer needs to decide when and what value she needs
to send to the tracker so that the communication cost is minimized.

Suppose function f :Z+→Z is the function observer observes
overtime. g(t) stands for the value she chooses to send to the
tracker at time t. The predefined error is ∆, which means at any
time tnow, if the observer does not send a new value g(tnow) to the
tracker, then it must satisfy

∥∥ f (tnow)−g(tlast)
∥∥≤ ∆, where g(tlast)

is the last value the tracker receives from the observer. This is an
online tracking over a one dimension positive integer function.

Instead of the naive algorithm that’s shown above, Yi and
Zhang provide an online algorithm that is proved to be optimal
with a competitive ratio of only O(log∆); that means in the worst
case, its communication cost is only O(log∆) times worse than
the cost of the offline optimal algorithm that knows the function
f (t) for entire time domain [10]. But unfortunately, the algorithm
works only for integer values.

We observe that in reality, especially in our setting, real values
(e.g., “double” for CPUUtilization) need to be tracked instead. To
that end, we adapt the algorithm from [10], and design Algorithm
1 to track real values continuously in an online fashion. The
algorithm performs in rounds. A round ends when S becomes an
empty set, and a new round starts.

The central idea of our algorithm is to always send the
median value from the range of possible valid values, denoted
by S, whenever f (tnow) has changed more than ∆ (could be non-
integer) from g(tlast). The next key observation is that any real
domain in a system must have a finite precision. Suppose γ is
the finest resolution for the floating point values being tracked in
the algorithm. Then at the beginning of each round, the number
of possible values within S is 2∆/γ , and since S is a finite set, it
always becomes an empty set at some step following the above

Algorithm 1 One round of online tracking for real values
let S = [f (tnow)−∆, f (tnow)+∆];
while Supper bound−Slower bound > γ do

g(tnow) = (Supper bound−Slower bound)/2;
send g(tnow) to tracker;
wait until

∥∥ f (tnow)−g(tlast)
∥∥> ∆;

Supper bound = min(Supper bound , f (tnow)+∆);
Slower bound = max(Slower bound , f (tnow)−∆);

end while /* this algorithm is run by observer */

algorithm. As long as S contains a finite number of elements in
Algorithm 1, we can show its correctness and optimality with a
competitive ratio of only O(log(∆/γ)) for online tracking of real
values.

Theorem 1. Algorithm 1 is correct and optimal for tracking
double values, and has a competitive ratio of log(∆/γ), where γ is
the finest precision for floating point values.
Proof. Since γ is the finest resolution for the floating point values
being tracked in the algorithm, then by multiplying every possible
value in region S with integer 1/γ , all the values become integers.
Therefore S becomes a region of integers, and all values we could
choose to send to the tracker are integers. Now we could adapt the
proof for tracking integers to prove the correctness and optimality
of algorithm 1, and compute its competitive ratio. We denote the
online algorithm as ASOL and the offline algorithm as AOPT .

Correctness. The correctness is obvious since Alice sends a
value to Bob whenever the observation exceeds threshold ∆, and
the value sent is within ∆ of the observed value.

Competitive Ratio. The competitive ratio follows by two facts:
In each round, i) ASOL sends at most log(∆/γ) messages. This is
because the cardinality of S decreases by half each time, and the
initial range of S is 2∆/γ . ii) AOPT sends at least one message. S is
maintained as ∩t [f (t)−∆, f (t)+∆] for up to tnow in current round.
If no value has been sent in this round, then the value (call it y)
sent at the end of last round is within ∆ range of all observations
in current round, which makes y still lie in range S, a contradiction
to the fact that S becomes empty in the end.

Optimality. The optimality holds because any online algorithm
needs to send at least log(∆/γ) messages in an extreme case.
Suppose an adversary Carole operates function f . Whenever Alice
sends some value to Bob, if the value is above the median of S,
Carole decreases f until Alice sends a new value; otherwise Carole
increases f until Alice sends a new one. This way the cardinality
of S decreases at most half, so any online algorithm needs to send
at least log(∆/γ) messages. Whereas AOPT only needs to send out
one value at the beginning of each round that’s within the final
S until the current round ends. In this case the lower bound of
competitive ratio is log(∆/γ). Hence the optimality of Algorithm
1 is proved.

The competitive ratio for algorithm 1 thus becomes
O(log(∆/γ)), which is optimal among all online tracking functions
for floating point values.

In an IaaS system, an NC obtains the values for a metric of
interest and acts as an observer for these values, and then chooses
what to send to CLC by following Algorithm 1. The CLC, as the
tracker, simply stores the values into its local database, whenever
a value is reported from an NC. This is how ATOM’s tracking
module is able to save the network communication overhead
from NC to CLC, and the storage overhead in CLC. Note that

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 5

the tracking algorithm is applied independently per dimension,
meaning that the more VMs being tracked/monitored, the more
savings ATOM will lead to, as evaluated in Section 8.4.

4 MONITORING COMPONENT

With the continuous tracked values of various metrics, compared
with having only discrete, sampled views on these metrics, ATOM
is able to do a much better job in monitoring system health and
detecting anomalies.

To find anomalies in real-time, a naive method is to use the
threshold approach. For example, Eucalyptus and AWS Cloud-
Watch allow users to set an alarm along with an alarm action that
can be triggered if the alarm condition is met. The alarm action
is optional, which could be some predefined auto scaling policy
such as changing disk capacity. The alarm condition consists of
a threshold value T on a metric E of interest. The condition is
met when the value vτ from the metric E has exceeded T (or
gone below T) at any time instance τ . However, in practice, it is
very hard for cloud users to set a magic value as the threshold
for a metric that will be effective in a dynamic environment like
that in an IaaS system. Besides, it’s inconvenient to change the
threshold for each metric every time a user does some different
tasks (which may invalidate the old threshold value). Thus an
automated monitoring method would be very useful.

4.1 An overview of PCA method

Given a data matrix in Rd , some dimensions in which are possibly
correlated, the PCA method could transform this matrix into a
new coordinate system, where each dimension is orthogonal. By
mapping the original matrix onto the new coordinate system, we
get a set of principal components. The first principal component
points to the direction with the largest variance, and the following
principal components each points to the largest variance direction
that is orthogonal to all the previous ones. The intuition to use
PCA as an anomaly detection method, is that the abnormal data
points most likely do not fit into the correlation between each
dimension in the original space. Thus by transforming the data
matrix onto a new space using PCA, the original anomaly point
would have a large projection length on the axes supposed to
have very small variance (or so-called “residual subspace” in
our following analysis). This way anomaly can be detected by
analyzing the projection length onto these axes. A simple example
when d = 2 is shown in Figure 4. PCA rotates the original
coordinates into a new space, where the first axis points to the
direction having the largest data variance while the remaining axis
forms the residual subspace. The abnormal point is detected by
comparing its projection length onto the residual subspace (second
axis) against a threshold (detailed in Section 4.3.3). Using PCA
for anomaly detection has been widely studied in the context of
network traffic analysis and monitoring, e.g., [11], [12].

A

projection
length >

threshold

abnormal
point

principal
component

residual
subspace

anomaly
detection
threshold

Fig. 4. An example of PCA anomaly detection in 2-dimensional space.

To the best of our knowledge, there is no prior work in adapt-
ing PCA for online monitoring and anomaly detection over VMs
in an IaaS system. That said, there are three new challenges that
we need to address: 1) unlike most existing work that use PCA for
anomaly detection in an offline batch setting [12], ATOM needs to
do online monitoring; 2) once anomaly is identified, ATOM needs
to figure out which metrics from which VM instance(s) might
have caused the anomaly; 3) the input data to ATOM’s online
monitoring module are approximate results from the tracking
module, which have an error that is bounded by ∆. We need to
take into account such tracking errors into the analysis. Next we
will explain our method in detail.

4.2 The data matrix

Given d′ metrics reported by the tracking module for each VM
and t is the length of a time-based sliding window, PCA could be
performed on these data which form a t×d′ matrix.

A more general and more interesting case is to perform online
monitoring over a data matrix composed of multiple VMs’ data,
e.g., d = d′ ·n dimensions. For VMs hosted on the same physical
node, or even the same cloud, it’s quite possible that one VM
may attack another [13], or some VMs are attacked by the same
process simultaneously. Detecting anomaly on a d-dimensional
space makes it easier to discover such correlations. It also provides
better detection accuracy. Performing PCA on multiple VMs’
statistics yields a higher residual dimension space, leading to more
accurate anomaly detection.

Recall that ATOM’s tracking module ensures that at any time
point τ , for each metric E, CLC can obtain a value v′τ that is within
vτ ±∆, where vτ is the exact value of this metric at time τ from
a VM instance of interest. Next we will show how to design an
online PCA method to detect anomaly using a t × d matrix M.
Each data value in this matrix is guaranteed to be within ∆ of the
true exact value for the same metric at that same time instance.

4.3 Our approach

The following matrices are used in our construction: M, Y, A, B,
whose definitions could be found in Table 1.

At first, a standard, offline batch PCA analysis [12] is applied
to the data using the newest t time instances to find potential
anomalies. If anomalies are found, we eliminate data correspond-
ing to those time instances, and use the rest as the initial data
matrix M to find the residual subspace S̃ through a regular PCA
analysis. Afterwards, for each z at tnow, we use the latest residual
subspace S̃ to perform anomaly detection.

In summary, our monitoring method has 5 steps: (1) process
data from M to form Y; (2) build the PCA model based on Y;
(3) find the residual subspace of the PCA model; (4) do anomaly
detection for data at each new time instance using the latest PCA
model; and if the newest time instance data z is normal, move it
to M and update the PCA model; otherwise move it to A in case it
doesn’t agree with the residual subspace; (5) if z is abnormal, do
metrics identification to find which metrics of which VM instances
might have caused the anomaly. Step 1 is trivial by the definition
of Y. The details of steps (2) to (5) are as follows.

4.3.1 Building the PCA model
To build the PCA model, we perform eigenvalue decomposition
on the covariance matrix of Y, and get a set of eigen vectors V =
(v1,v2, ...,vd) sorted by their eigen values. These eigen vectors
form the new axes in the transformed coordinate system, with

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 6

the first principal axis v1 pointing to the direction that has the
largest variance in Y and the following principal axes each points
to the largest variance direction orthogonal to previous ones. The
corresponding eigen values are λ1 ≥ λ2 ≥ ...≥ λd ≥ 0.

4.3.2 Find the residual subspace
We define the principal subspace and the residual subspace as
follows. The principal subspace S stands for the space spanned
by the first several principal axes in V, while residual subspace S̃
stands for the space spanned by the rest. The number of significant
principal components in the principal subspace is denoted as k.
Hence, the first k eigen vectors form the principal subspace, and
the rest (d−k) eigen vectors form the residual subspace that could
be used to detect anomalies. Of numerous methods to determine k,
we choose cumulative percent variance (CPV) method [14] for its
ease of computation and good performance in practice as shown
by previous work. For the first ` principal components, CPV (`) =
∑
`
i=1 λi

∑
d
i=1 λi
·100%, and we choose k to be: k = argmin

`
(CPV (`)> 90%).

4.3.3 Anomaly detection
Unlike previous methods, e.g., [12], that perform offline, batched
backbone network anomaly detection, we are not required to detect
anomalies for every row in M. Instead, we only need to check the
newest vector z at tnow. That’s because we have classified data
into the (normal) data matrix M and the abnormal matrix A, and
the real-time detection of ongoing anomalies is based on the PCA
model built from M.

To do this, we first standardize z using the mean and standard
deviation of each column in M. We use x to denote the standard-
ized vector.

Given the normal subspace S : P1 = [v1, ...,vk], and the residual
subspace S̃ : P2 = [vk+1, ...,vd], x is divided into two parts by being
projected on these two subspaces:

x = x̂+ x̃ = P1P1
T x+P2P2

T x.

If z is normal, it should fit the distribution (e.g. mean and
variance) of the normal data. Moreover, the values of x̃, which are
the projection onto P2 by x, are supposed to be small. Specifically,
we define the squared prediction error (SPE) to quantify this:

SPE(x) =‖x̃‖2 =
∥∥∥P2P2

T x
∥∥∥2

=
∥∥∥(I−P1P1

T)x
∥∥∥2

.

Let Q = ‖x̃‖2, a classic result for the PCA model is that
the following variable c approximately follows a standard normal
distribution with zero mean and unit variance [15]:

c =
θ1[(Q/θ1)

h
0−1−θ2h0(h0−1)/θ 2

1]√
2θ2h2

0

, (1)

where θi = ∑
d
j=k+1 λ i

j, i = 1,2,3; h0 = 1− 2θ1θ3
3θ 2

2
.

And we consider x to be abnormal if SPE(x)> Qα , where the
threshold Qα is derived from the distribution c:

Qα = θ1[
cα

√
2θ2h2

0

θ1
+1+

θ2h0(h0−1)
θ 2

1
]

1
h0 ,

and cα is the (1−α) percentile in a standard normal distribution,
with α being the false alarm rate.

Finally, if z is normal, we add it to M and delete the oldest
data in M, and update the PCA model accordingly. Otherwise it
is added to A, and the corresponding standardized x is moved to

matrix B. Matrices A and B need to contain time-consecutive data
only (so that we detect anomaly corresponding to a continuous
event), thus, they are cleared if its last vector is not consecutive in
time with the new incoming vector.

4.3.4 Metrics identification
When an anomaly is detected, we need to do further analysis
to identify which metrics on which VM instance(s) from the
d = d′ · n dimensions might have caused the anomaly, to assist
the orchestration module. Our identification method consists of
three steps. It compares the abnormal data matrix A (and the
corresponding standardized matrix B), and normal matrix M (and
Y). Suppose there are m vectors in A (B) and t vectors in M (Y).

Step 1. Since the anomaly is detected by ‖x̃‖2, it is natural
to compare the residual data between B and Y. Suppose yi is
the transpose of the i-th row vector in Y, and ỹi = P2PT

2 yi is its
residual traffic, then

(ỹ1, ỹ2, ..., ỹt)
T = (P2PT

2 (y1,y2, ...,yt))
T = YP2PT

2

forms a residual matrix of Y , denoted as Yr. Similarly, Ar =
AP2PT

2 . For each dimension j ∈ [1,d], let

a j =
1
m

∥∥∥(Ar) j

∥∥∥2
and y j =

1
t

∥∥∥(Yr) j

∥∥∥2
,

where (Ar) j is the j-th column in Ar and (Yr) j the j-th column
in Yr. Then rd j = (a j− y j)/y j.

Step 2. If for some dimension j, rd j ≥ b1 for some constant
b1, we measure the change in A and M. In particular, for each
such dimension j, we calculate how much the abnormal data in A
are away from the standard normal deviation of the normal data
along that dimension in M. Specifically, we calculate stddev j =
1
m ∑

m
i=1 |ai j−avg j |/std j. A dimension j is considered abnormal if

stddev j ≥ b2 for some constant b2. In practice, we find that setting
b1 and b2 to small positive integers works well, say b1 = 2 and
b2 = 3.

Step 3. For a dimension j that’s been considered abnormal in
Step 2, we measure the difference between the mean of abnormal
and normal data. Specifically, we want to measure meandiff j =
(1

m ∑
m
i=1 ai j− avg j)/avg j.

Step 1 reveals which dimension has a larger projection on
residual subspace than the normal data, however it is hard to map
such change back to the original data. Furthermore, as shown in
Section 8, this measure is not highly reliable and could be omitted
to save some computation cost. Step 2 is a useful measure to show
which dimension has a significant different pattern compared to
the normal data. However, it does not tell us whether some metric
usage goes up or down. Thus we use step 3 at last to find this
pattern. Step 3 itself is not good enough to indicate a pattern,
because the oscillation of metric usage statistics might make the
mean of some dimension in A appear benign. Thus, the output
of steps 2 and 3 are sent together along with an introspection
request, to the orchestration module on the corresponding NC(s),
that administrates the identified VM instance(s). Section 8 shows
how information identified from these three steps could facilitate
the orchestration module to find a “real cause” of what might have
gone wrong and how wrong it is.

4.3.5 Other remarks

Raising alarms to cloud users. Once a data vector is detected
as abnormal, it is moved to the abnormal data matrix, on which
metrics identification is performed. Suppose there are totally m
vectors in the abnormal data matrix A, an alarm will be raised

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 7

with an alarm level m. The alarm level indicates how serious
the detected anomaly is; intuitively, the larger number of data
vectors contained in A, the longer duration of the currently
detected anomaly is. The alarm can be raised either right after
the metrics identification step, or wait until the VMI (virtual
machine inspection) from the orchestration module has finished
(so that more information are gathered). The alarm notifies the
user about the potential abnormal behavior in the IaaS system and
lets user identify whether the ongoing behavior on his/her VM(s)
is normal. If this is because that the tasks on a VM have changed,
the corresponding data vectors in the abnormal matrix should be
moved to the normal data matrix and used to build the PCA
model to accommodate and reflect the new behavior. Abnormal
data matrix is cleared once the anomaly on VM is removed, or is
identified as normal by the cloud user.
Scalability. The computation complexity of monitoring module
is evaluated in Section 8.4 (Figure 12). Although its computation
cost increases with the increasing number of VMs, it remains as
a very small overhead. The average computation cost per sliding
window for the monitoring module is less than 3 milliseconds in
most cases for up to 6 VMs. What’s more, due to the significant
message savings from ATOM’s tracking module, both the PCA-
based computation overhead and the Eucalyptus storage overhead
are reduced significantly. Larger number of VMs could signif-
icantly improve the detection accuracy, meaning smaller false
alarm rates, which is due to the fact that the monitoring component
uses a larger data matrix that helps find normal subspace more
reliably, as also evaluated in Section 8.4 in Figure 12.

5 INTERACTION BETWEEN TRACKING AND MONI-
TORING COMPONENTS

5.1 Deriving the tracking error threshold
As mentioned earlier, the input data to the monitoring module is
produced by the tracking module and each value may contain an
approximate error of at most ∆ (away from the true value at that
time instance for that metric). The approximation error introduced
by the tracking module may degrade the performance quality of
ATOM’s monitoring module. Thus, a formal analysis is needed to
bound the effect of tracking errors and show how to set a proper
value as the error threshold ∆ for each metric in the tracking
module.

As shown in Section 4.3.3, the random variable c follows a
normal distribution, and the SPE threshold Qα is computed after
an α value is specified. However, we do not have c from the exact
data matrix, instead, the approximate data matrix leads to the value
ĉ. The SPE threshold is computed using a user-specified α value.
However, the threshold calculated by the approximated matrix
does not represent confident limit 1−α anymore, instead it leads
to a corresponding approximation 1− α̂ . We want to understand
the relationship between α̂ and α . Formally, the cloud user
specifies α and a maximally allowed deviation rate µ such that our
tracking and monitoring methods guarantee that |α̂−α| ≤ µ (even
though c is unknown). Thus, we need to establish the relationship
between µ and the tracking error threshold ∆ for each metric
dimension used by the tracking module.

We achieve this objective via two steps: 1) given µ , find an
approximate error bound ε on the average eigen values produced
by PCA; 2) once having the error bound ε on eigen values,
calculate the tracking threshold ∆ based on ε .

Step 1. We could approximate µ according to ε from Equation
1, yet the reverse could not be done with a closed-form formula.

We made the observation that µ monotonically increases with ε .
Hence the idea is to use a binary search to approximate ε: we
first guess a value ε ′, then calculate a µ ′ and compare it with the
user-input µ , and finally adjust the value of ε ′ and compute µ ′

again. We repeat this process until the difference between µ ′ and
µ is within a desired precision. Then we could treat ε ′ as ε , the
input for the next step. The way to calculate µ using ε could be
derived as follows. Given that c approximately follows a normal
distribution, then µ = Pr[cα−ηc <U < cα +ηc], where ηc = |ĉ−
c|, and U is a random variable following the normal distribution
N(0,1). ηc could be approximated from ε using the Monte Carlo
sampling technique according to equation 1. For each loop, we
generate a random value λ̂ in the range of [λ − ε,λ + ε] and then
compute ĉ based on equation 1, and compute the difference with c
which is calculated by λ . This loop is repeated a constant number
of times and the largest difference is assigned to ηc, which could
be then used to calculate µ .

Step 2. Once having the eigen-error ε , using stochastic matrix
perturbation method we could get the relation between eigen-error
ε and the variance σ2

i along each dimension:

2

√√√√ λ̄

t
·

d

∑
i=1

σ2
i +

√√√√(
1
t
+

1
d
)

d

∑
i=1

σ4
i = ε,

where λ̄ is the average of eigen values, t is the number of points
used to build the PCA model, and d is the number of dimensions.
Then the estimation of tracking error ∆ is based on the following
assumptions:

1) the errors between the approximated values sent to the
tracker (the CLC) and the true values observed by the observer
(an NC) are independently and uniformly distributed within the
threshold, according to which the tracking threshold for the i-th
dimension is δi =

√
3σi.

2) we use homogeneous slack allocation, which is to assume a
uniform distribution of tracking error δ on each dimension.

Applying these two assumptions, we get a tracking threshold:

δ =

√
3λ̄n+3ε

√
m2 +mn−

√
3λ̄n√

m+n
. (2)

Note we cannot send this threshold directly to observers since the
data matrix used to build the PCA model has been standardized.
Recall stdi is the standard deviation along the i-th dimension of
matrix M, then the original variance is Σi = (stdi ·σi)

2. Thus,
the tracking threshold for the i-th dimension is calculated as
∆i =

√
3Σi =

√
3(stdi ·σi)2 = stdi ·δi. The CLC calculates the

results for each metric dimension whenever there is a PCA update,
and then send the new tracking threshold to corresponding NCs
(observers), which use the updated thresholds to adjust its tracking
algorithm. A possible improvement is to allocate the tracking slack
for each metric dimension according to the frequency of message
passing sent to the CLC. By giving the dimensions being sent more
frequently larger tracking error thresholds, and other dimensions
smaller tracking error thresholds, the tracking overhead could be
potentially further reduced.

5.2 Accommodating dynamic tracking thresholds
In the monitoring component (CLC), each time a new set of
tracking thresholds are calculated, they are sent back to the
tracking component (NC). This means that the tracking threshold
on each metric dimension may change from time to time. On
the tracking component, we use a buffer B to store the newest

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 8

tracking threshold for each metric, and adjust the tracking method
in Algorithm 1 accordingly, as shown in Algorithm 2. Here ∆new
is the current tracking threshold in buffer B for the metric being
tracked.
Algorithm 2 One round of online tracking for real values

let S = [f (tnow)−∆, f (tnow)+∆];
while Supper bound−Slower bound > γ do

g(tnow) = (Supper bound−Slower bound)/2;
send g(tnow) to tracker;
while

∥∥ f (tnow)−g(tlast)
∥∥≤ ∆ do

wait until f (tnow) is updated;
∆ = ∆new;

end while
Supper bound = min(Supper bound , f (tnow)+∆);
Slower bound = max(Slower bound , f (tnow)−∆);

end while /* this algorithm is run by observer */

We can show that doing this style of “lazy update of the
tracking threshold value” could ensure that the competitive ratio
is the max of log∆ for all possible ∆ (or log(∆/γ) where γ is the
finest precision for “double” values) in a tracking period; and it is
optimal. It also guarantees that on the monitoring component, the
PCA detection result calculated by the approximated tracking val-
ues has a false alarm rate α̂ that is within user-specified deviation
value µ of the true false alarm rate α (i.e., α̂ ∈ [α−µ,α +µ]).

Claim 2. When the tracking threshold ∆ changes at NC, by
simply changing the ∆ value in Algorithm 1 during a round, the
correctness and optimality of the tracking algorithm still hold. The
competitive ratio with dynamically changing values of ∆ becomes
the log of the maximum ∆ value for integers, and log of the
maximum ∆/γ value for floating point values, where γ is the finest
precision.
Proof. Here we prove for the case to track integer values. The
extension to real values is straightforward following the proof for
Claim 1. We use the same notation as in Section 3. Recall that a
range S is initialized as [f (t0)−∆, f (t0)+∆], where f (t0) is the
value observed at first, and updated as the intersection of [f (t)−
∆, f (t)+∆] up to tnow. A round is from the initialization of S until
S becomes empty.

Correctness. When the tracking error bound changes from ∆1
to ∆2, Alice sends Bob a new value whenever the newest value
observed is beyond ∆2 range of last sent one.

Competitive Ratio. Note that in Algorithm 1, ASOL uses binary
search, to guess what value AOPT might have sent in each round.
The range S contains all the possible values that AOPT might
have sent, and it decreases at least half upon the sending of each
message (median of S). So that in each round, AOPT sends out only
one value while ASOL sends out at most log∆. Even if ∆ changes
in the middle, as shown in figure 5, it won’t affect the fact that S
decreases at least half upon each message sent. When the tracking
error bound changes from ∆1 to ∆2, use S1 to denote the region of
S at that time, and S2 to denote [y−∆2,y+∆2]. x is the median of
S1, the last sent value, and y is the first value observed that exceeds
∆2 of x after ∆ changes. According to our “lazy update” method,
the new S is the intersection of S1 and S2. Because y−∆2 > x,
so |new S| = S1(upper bound)− (y−∆2) < |S1|/2. Hence no matter
∆2 is bigger or smaller than ∆1, S1 decreases at least half when
this change happens. If S1 and S2 do not intersect, then a new
round starts and ∆2 becomes the initial threshold of the new round.
Therefore, the competitive ratio for each round ONLY matters
with the initial size of S. If the initial threshold of a round is ∆, then

the competitive ratio for that round is thus log∆. Throughout the
whole period, the competitive ratio becomes the log of maximum
threshold values that ever appear.

Fig. 5. Intersection with dynamically changing values of ∆.

Optimality. Suppose the last value sent by an online algorithm
ASOL before the change from ∆1 to ∆2 is x. An adversary Carole
operates the value of f here. If x is greater than the median of S,
Carole decreases f until it exceeds ∆2 threshold of x, otherwise
increases f until ASOL has to send out a new value. This way the
cardinally of S decreases at most half during the change of ∆1
to ∆2. So the optimality of algorithm 1 still holds even with the
tracking error bound changing.

6 ORCHESTRATION COMPONENT

The monitoring component in Section 4 detects the abnormal state
and identifies which measurement on which VM might be respon-
sible. In this section, we describe how orchestration component
is able to automatically mitigate the malicious behavior after an
anomaly is detected.

Modern IaaS cloud vendors offer services mostly in the form
of VMs, which makes it critical to ensure VM security in order to
attract more customers. VMI technique has been widely studied
to introspect VM for security purpose. There are also several
popular open source general-purpose VMI tools such as LibVMI
[8], Volatility [16], and StackDB [9], for researchers to explore
and develop more sophisticated applications. LibVMI has many
basic APIs that support memory read and write on live memory.
Volatility itself supports memory forensics on a VM memory
snapshot file, and it has many Linux plugins that are ready to
use. StackDB is designed to be a multi-level debugger, while also
serves well as a memory-forensics tool. Other more sophisticated
techniques developed for special-purpose VMI anomaly detection
are generally based on these tools. Blacksheep [17], for instance,
utilizes Volatility and specifically developed plug-ins to imple-
ment a distributed system for detecting anomalies inside VMs
among groups of similar machines. However, as most other VMI
strategies to secure VMs, it needs to dump the whole memory
space of the target VM, and then analyze each piece, typically by
comparing with what’s defined a “normal” state. Thus to protect
VMs in real time, the whole memory space needs to be analyzed
constantly, introducing much overhead into the production system.

ATOM implements its orchestration component based on
Volatility (with LibVMI plug-in for live introspection) and
StackDB. A crucial difference with other systems is that, ATOM
only introspects the VM when an anomaly happens, and only on
the relevant memory space of the suspicious VMs. The monitoring
component in ATOM serves as a trigger to inform VMI tools
when and where to do introspection. The anomalies are found by
analyzing previously monitored resource usage data, in monitoring
component, which is much more lightweight than analyzing the
whole memory space. Then the metrics identification process in
monitoring component could locate which dimensions are suspi-
cious, indicating the relevant metrics on some particular VMs.
This information is sent to orchestration component along with

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 9

a VMI request, which then only introspects the relevant memory
space, reducing the overhead dramatically. For example, if it is
detected and identified that the network usages on VM-2 and VM-
3 are unusual, as shown in Figure 6, then ATOM could only
introspects the network connections using Volatility network plug-
ins on VM-2 and VM-3, in contrast to other VMI-based detection
strategies which typically need to walk over the whole process list,
opened network sockets, opened files, etc..

Physical Node Memory

VM-3

RELEVANT MEMORY SPACE

VM-2VM-1

......

Fig. 6. Memory space introspected by ATOM.
After the orchestration component identifies potential abnor-

mal processes, an alarm is raised with associated information
identified by VMI tools. The alarm and such information are
provided to the VM user. If user confirms this as an abnormal
behavior, ATOM is able to terminate the malicious processes
inside a VM instance by using tools like StackDB [9]. StackDB
could be used to debug, inspect, modify, and analyze the behavior
of running programs inside a VM instance. To kill a process, it
first finds the task_struct object of the running process using
process name or id, and then passes in SIGKILL signal. Next
time the process is being scheduled, it is killed immediately.

Although the anomalies that could be detected by ATOM is
limited compared with other systems which analyze the whole
memory space, we argue the framework of ATOM could be easily
extended to detect more complex attacks. First, more metrics could
be easily added to monitor for each VM. Also, many other auto-
debugging tools could be developed, which are useful to find
various kinds of attacks and perform different desirable actions.

Note that killing the identified, potentially malicious process is
just one possible choice provided by ATOM, which is performed
only if user agrees to (ATOM is certainly able to automate this
as well if desired). Alternatives could be to terminate the network
connections or to close file handles. A more sophisticated way is to
study a rich dataset of known attacks (e.g., Exploits Database) and
design rule-based approaches to mitigate attacks based on different
patterns. We refer these active actions, together with introspection,
as ATOM’s orchestration module. Orchestration in ATOM can be
greatly customized to suite the needs for different tasks, such as
identification of different attacks, and dynamic resource allocation
in an IaaS system.

7 VM CLUSTERING

ATOM enables a continuous understanding of the VMs in an
IaaS system. In addition to anomaly detection, this framework
is also useful for many other decision making and analytics
applications. Hence, in addition to using a PCA-based approach in
the monitoring component, we will demonstrate that it is possible
to design and implement a VM clustering module to be used in
the monitoring component.

The objective of VM clustering is to cluster a set of VMs into
different clusters so that VMs with similar workload characteris-
tics end up in the same group. This operation assists making load
balancing decisions, as well as developing customized, fine-tuned

monitoring modules for each cluster. For instance, a cloud provider
may want to evenly distribute the VMs having similar resource
usage patterns to different physical nodes, in order to make sure
the physical resources are fully utilized and fewer VMs may suffer
from resource starvation. In another example, we may want to
use different anomaly detection techniques for VMs running a
database server workload than those running a web server.

The basic idea of our proposed approach is as follows. The
monitoring component in ATOM, using its PCA-based approach,
transforms the original coordinates to a new coordinate system
where the principal components (PCs) are ordered by the amount
of variations on each direction (as explained in Figure 4). Thus,
if two VMs share similar workloads, the directions of the corre-
sponding PCs between the two should also be similar. That said,

Step 1. On CLC, a data matrix for each VM is maintained,
where the columns are metric types and rows are time instances
(i.e., a t×d′ matrix for each VM with a sliding window of t), and
is updated over time.

Step 2. ATOM performs a PCA on each VM data matrix
without standardization; since for clustering purposes, not only
the variations on each direction is important, but also the average
usage on each dimension. For example, a VM having a disk usage
that oscillates between 10,000 and 20,000 bytes is obviously not
the same as one having oscillation between 100 and 200 bytes on
the same dimension; whereas a standardization procedure which
first performs mean-center and then normalization will make the
two oscillations look similar.

This step yields a set of PCs for each VM. The direction of
each PC is denoted by the corresponding eigen vector while the
variation is shown by the associated eigen value.

Step 3. Suppose VM1 has eigen vectors (v11,v12, ...)
and corresponding eigen values (λ11,λ12, ...), while VM2 has
(v21,v22, ...) and (λ21,λ22, ...). We measure the distance be-
tween two directions using cosine distance; defined as (1−
cosine similarity). Intuitively, the bigger the angle between two
directions (the less similar they are), the smaller their cosine
similarity is, hence the larger the cosine distance becomes.
Finally, the distance between the two VMs is defined as:
VMdist(VM1, VM2) = |λ11−λ21|(1− v11·v21

|v11|·v21
)+ |λ12−λ22|(1−

v12·v22
|v12|·v22

)+ · · · . Note that it is simply the sum of the cosine distance
of each corresponding pair of eigen vectors from VM1 and VM2,
weighted by the difference of the corresponding eigen values to
ensure that the variations do not differ a lot.

Step 4. Using VMdist as the distance measure between any
two VMs, we use DBSCAN [18] to cluster similar VMs together.
DBSCAN is a threshold-based (aka density based) clustering
algorithm which requires two parameters: ε which is the density
threshold, and minPts which is the number of minimum points
to form a cluster. DBSCAN expands a cluster from an un-
visited data point towards all its neighboring points provided the
distance is within ε , and then recursively expands from each of the
neighboring point. Points are marked as an outlier if the number of
points in their cluster is fewer than minPts. Compared with other
popular clustering methods like k-means, density-based clustering
algorithm does not require the prior-knowledge on the number of
clusters, neither does it need to iteratively compute an explicit
“centroid” and re-cluster at every iteration.

By default, ATOM sets minPts=10, and computes the thresh-
old value ε using a sampling based approach. More specifi-
cally, we randomly select n pairs of VMs and compute their
VMdist. We sort the n VMdist values, and set ε = VMdisti if

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 10

VMdisti+1 > 5×VMdisti. The intuition is that for any point the
distance to a point in a different cluster is much longer than the
distance to a point in the same cluster, and we want to find a large
enough “inner cluster” distance and use it as the threshold value ε

to determine whether two points belong to the same cluster.

8 EVALUATION

We implemented ATOM using Eucalyptus as the underlying IaaS
system. The virtual machine hypervisor running on each NC
is the default KVM hypervisor. Each VM has an m1.medium
type on Eucalyptus. ATOM tracks 7 metrics from each VM
instance: CPUUtilization, NetworkIn, NetworkOut, DiskReadOps,
DiskWriteOps, DiskReadBytes, DiskWriteBytes. All experiments
are executed on a linux machine with an 8-core Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz computer.

8.1 Online tracking
In the evaluation the data collection time interval is set to 10
seconds, i.e., raw values for different metrics are collected every
10 seconds on a NC (observer), which produces 360 values for
each metric per hour. Instead of sending every value to CLC (the
tracker), the modified CloudWatch with ATOM’s online tracking
component selectively sends certain values based on Algorithm
1, from NC to CLC. Figure 7 shows the number of values sent
for each metric over 2 hours, with different workloads (e.g., TPC-
C benchmark over MySQL) and different ∆ values. Among the
7 metrics for each VM, only the first 5 ones are shown in each
sub-figure, as DiskReadBytes/DiskWriteBytes follow the same
patterns with DiskReadOps/DiskWriteOps in all experiments.

Figure 7(a) shows the result when VM is idle, using ∆ = 0.
This is the base case with no error allowed for any metric.
The result shows that our tracking component has still achieved
significant savings even when no error is allowed. In Figure
7(b), VM is also idle, while ∆ is set to 10% of the average
value (calculated from exact values collected) in 2 hours for each
metric. Note that this is a very small error threshold. For example,
metric CPUUtilization is always between 0 and 0.2% when VM
is idle, so ∆ value for this metric is only (roughly) 0.01%. This
figure shows that even when allowing a very small error, tracking
component already leads to significant savings. Figure 7(c) shows
the results when VM is running TPC-C benchmark on a MySQL
database, which involves large disk reads and writes. ∆ is set as
the average of the exact values in 2 hours when VM is idle. This
is reasonable even for users who do not allow any error, because
∆ is merely the average of the amount consumed by an idle VM.
Note that in this figure, NetworkIn and NetworkOut only have 2
values sent to CLC in 2 hours with the tracking component. This
figure tells us that even if VM is intensively used and almost no
error is allowed, the tracking component is still highly effective.
Figure 7(d) demonstrates the result when VM is running the same
workload, while ∆ value for each metric is now set as 10% of the
average value when the VM has been running the same workload
for 2 hours, i.e., larger errors are allowed. Clearly, the tracking
component becomes even more effective.

Figure 8 explains how the online tracking component works. It
shows both values sent by standard CloudWatch (without tracking)
and values sent by modified CloudWatch with ATOM tracking,
with a time interval of 1000 seconds for the NetworkOut metric
from Figure 7(b). This clearly illustrates that at each time instance,
with online tracking, the current (exact) value is not sent if it is
within ∆ threshold of the last sent value; and at each time point,

the last value sent to CLC is always within ∆ of the newest value
observed on NC. The values sent by the tracking method closely
approximate those exact values, with much smaller overhead.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

V
al

ue
 /

by
te

s

Time / seconds

Without Tracking
With Tracking

Fig. 8. A comparison on NetworkOut values sent by NC.

8.2 Automated online monitoring and orchestration
We design three experiments to illustrate the effectiveness of
ATOM’s monitoring module. For each experiment, we use a false
alarm rate α = 0.2% and its deviation µ = 1% (to set the tracking
error bound). Meanwhile the Qα threshold with α = 0.5% is
also calculated to compare against. The online tracking error ∆

is calculated dynamically according to the equations in Section
5.1 at the CLC, and set using the algorithm in Section 5.2 on
each NC. Three VMs with a type of m1.medium co-located in
one Eucalyptus physical node are monitored for each experiment,
which form a t×21 data matrix. Dimensions 1-7 belong to VM 1,
8-14 are for VM 2, whereas VM 3 owns the rest.

We use two types of normal workloads and two kinds of at-
tacks in all three experiments. The two types of normal workloads
include network and disk workloads. For the network workload,
an Apache web server is installed and constantly responding
WebBench network requests. The disk workload is TPC-C bench-
mark against MySQL database [19]. The two types of attacks are
DDoS attack and resource-freeing attack [13]. In our experiment,
DDoS attack treats the affected VM as a compromised zombie and
sends malicious traffic to the target IP address. Resource-freeing
attack is launched by VM 3 targeting the web server on VM 2
to gain more cache usage. Note that there is a 4-th VM running
WebBench and a 5-th VM running Apache web server as the target
of DDoS bots. The first two hours are used to build PCA model
for each experiment, while the anomaly happens at the third hour.
The settings for each experiment is shown in Table 2.

Experiment Workload Attack
1 VM 1, 3 idle; VM 2 net-

work workload
DDoS attack inside
VM 2

2 VM 1 idle; VM 2, 3 net-
work workload

DDoS attack inside
VM 2, 3

3 VM 1 idle; VM 2 net-
work workload; VM 3
disk workload

Resource-freeing
attack from VM 3 to
VM 2

TABLE 2
Online monitoring experiment setup.

In the first experiment, VM 2 runs an Apache web server
while the other 2 VMs are idle. A DDoS attack turns VM 2
to be a zombie at the third hour, using it to generate traffic
towards the target IP (the 5th VM in our experiment). Note
that this attack is hard to detect using the simple threshold
approach in existing IaaS systems. The normal workload on VM
2 is a network workload, which already has a large amount of
NetworkIn/NetworkOut usage, sending out malicious traffic only
changes roughly 10%− 30% to the mean of normal statistics.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 11

0

200

400

600

800

1000

0 1 2 3 4

M
es

sa
g
e

C
o
u
n
t

Metric Id

Without Tracking
With Tracking

(a) VM: idle; ∆: 0

0

200

400

600

800

1000

0 1 2 3 4

M
es

sa
g

e
C

o
u

n
t

Metric Id

Without Tracking
With Tracking

(b) VM: idle; ∆: 10% of the average
value in 2 hours when VM is idle

0

200

400

600

800

1000

0 1 2 3 4

M
es

sa
g

e
C

o
u

n
t

Metric Id

Without Tracking
With Tracking

(c) VM: TPC-C on MySQL; ∆: average
value in 2 hours when VM is idle

0

200

400

600

800

1000

0 1 2 3 4

M
es

sa
g
e

C
o
u
n
t

Metric Id

Without Tracking
With Tracking

(d) VM: TPC-C on MySQL; ∆: 10% of
average running same workload

Fig. 7. A comparison on number of values sent by NC for each metric.

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500 4000

S
P

E
 i

n
 r

es
id

u
al

 s
u
b
sp

ac
e

Time / seconds

SPE
Threshold (α=0.2%)
Threshold (α=0.5%)

(a) Experiment 1: SPE and thresholds

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

S
P

E
 i

n
 r

es
id

u
al

 s
u
b
sp

ac
e

Time / seconds

SPE
Threshold (α=0.2%)
Threshold (α=0.5%)

(b) Experiment 2: SPE and thresholds

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000

S
P

E
 i

n
 r

es
id

u
al

 s
u
b
sp

ac
e

Time / seconds

SPE
Threshold (α=0.2%)
Threshold (α=0.5%)

(c) Experiment 3: SPE and thresholds

Fig. 9. Time series plots of SPE against thresholds Qα with α = 0.2% and 0.5%.
Dim (j) vm1-d1 vm1-d2 vm1-d3 vm1-d4 vm1-d5 vm1-d6 vm1-d7 vm2-d1 vm2-d2 vm2-d3 vm2-d4
rd j 1.87 36.62 27.17 13.39 -0.56 0.08 8.55 32.63 7.31 35.82 0.00

Experiment 1 stddev j 0.50 0.32 0.72 0.00 0.76 0.00 0.90 48.68 3.82 6.74 0.08
Metrics meandiff j 0.11 -0.12 -0.21
Identification Dim (j) vm2-d5 vm2-d6 vm2-d7 vm3-d1 vm3-d2 vm3-d3 vm3-d4 vm3-d5 vm3-d6 vm3-d7
Results rd j 0.00 0.00 0.00 2.94 -0.50 -0.41 18.45 18.00 1.22 1.88

stddev j 0.90 0.08 0.41 0.72 0.31 1.06 0.00 0.18 0.00 0.66
meandiff j

Dim (j) vm1-d1 vm1-d2 vm1-d3 vm1-d4 vm1-d5 vm1-d6 vm1-d7 vm2-d1 vm2-d2 vm2-d3 vm2-d4
rd j 23.70 -0.98 -0.98 -0.55 -0.57 4.27 3.76 9.14 64.18 65.05 3.50

Experiment 2 stddev j 0.78 0.42 0.58 0.00 0.67 0.00 0.71 3.17 8.01 8.30 0.00
Metrics meandiff j 0.16 -0.26 -0.28
Identification Dim (j) vm2-d5 vm2-d6 vm2-d7 vm3-d1 vm3-d2 vm3-d3 vm3-d4 vm3-d5 vm3-d6 vm3-d7
Results rd j -0.51 -0.82 4.23 9.04 60.56 61.16 1.45 -0.56 1.89 -0.51

stddev j 0.31 0.00 0.35 7.23 6.06 6.98 0.17 3.39 0.12 3.65
meandiff j 0.39 -0.23 -0.31
Dim (j) vm1-d1 vm1-d2 vm1-d3 vm1-d4 vm1-d5 vm1-d6 vm1-d7 vm2-d1 vm2-d2 vm2-d3 vm2-d4
rd j 2.58 -0.65 -0.93 -0.65 28.23 -0.98 -0.15 6.90 7.94 7.27 -0.76

Experiment 2 stddev j 0.24 0.42 0.63 0.95 0.43 0.98 0.86 7.36 4.52 4.74 0.21
Metrics meandiff j -0.91 -0.85 -0.89
Identification Dim (j) vm2-d5 vm2-d6 vm2-d7 vm3-d1 vm3-d2 vm3-d3 vm3-d4 vm3-d5 vm3-d6 vm3-d7
Results rd j 0.30 -0.99 -0.44 10.70 1282.80 1401.34 1363.47 -0.70 1544.73 -0.53

stddev j 1.41 0.17 1.43 1.86 13.05 12.79 13.42 1.72 13.60 1.78
meandiff j 101.81 110.97 187.16 196.30

TABLE 3
Metrics Identification Results

Hence it is difficult to set an effective threshold value even for
an experienced user due to the fact that the underlying normal
traffic might oscillate within a range. Yet ATOM’s monitoring
module successfully finds the underlying pattern, and detects time
instances that are abnormal (when attacks are ongoing). Figure
9(a) shows the online monitoring and detection process. The
dashed line corresponds to threshold Qα for α = 0.2%, and the
solid line shows Qα for α = 0.5%. SPE of the approximate data
matrix projected onto the residual subspace is plotted, where
the black dots indicates the time instances when DDoS attack
happens. Clearly, ATOM has successfully identified all abnormal
time instances correctly.

Once a time instance is considered abnormal, ATOM imme-
diately runs metrics identification procedure to find the affected
VMs and metrics. As described in Section 4.3.4, ATOM firstly
finds out potential abnormal dimension(s) by analyzing the aver-
age change portion rd j between abnormal data points and normal

data points projected onto residual subspace. Then for dimensions
that have significant changes, ATOM computes stddev j as sug-
gested in Section 4.3.4, and also calculates the average change
meandiff j if stddev j is above a threshold. Recall m is the number
of consecutive abnormal time instances until tnow. The results
when m = 5 are shown in the first table of Table 3. Note that only
for the dimensions having large enough residual portion (rd j) does
ATOM computes the standard deviation error (stddev j). Among
the 3 VM instances being tracked and monitored, ATOM correctly
identifies an anomaly happening on VM 2, and more specifically,
it discovers that the anomaly is from its first three dimensions
(CPUUtilization, NetworkIn, NetworkOut), indicated by the bold
values. Note that NetworkIn and NetworkOut actually go down
because of DDoS attack. Our guess is that WebBench tends to
saturate the bandwidth available for the VM, while the DDoS
attack we use launches many network connections but not sending
as much traffic. The CPUUtilization, however, goes up due to the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 12

attack. Nevertheless, ATOM is able to identify all three abnormal
metric dimensions.

After abnormal metrics are identified, a VMI request is sent
to the corresponding NC for introspection. ATOM’s orchestra-
tion module first identifies this as a possible network problem,
and then calls volatility to analyze the network connections
(linux_netstat plugin) on that VM, which then finds out
the numerous network connections targeting at one IP address,
a typical pattern of DDoS attacks. Volatility is then used to find
out related processes and their parent process (pslist plugin)
of these network connections. At this time ATOM raises an alarm
with alarm level m notifying user about the findings, and asks user
to check whether those processes are normal or malicious. The
alarm level is useful; for example, m = 1 could be treated as a
mild warning. If user identifies them to be malicious, he/she could
either investigate the VM in further details, or use ATOM’s mon-
itoring module to do auto-debugging and kill malicious processes
automatically through StackDB [20]. Figure 9(a) shows that SPE
goes back to normal after the attack is mitigated on the affected
VM through ATOM’s orchestration module.

In the second experiment, both VM 2 and VM 3 are running
the network workload, and the same DDoS attack turns both VMs
to be zombie VMs simultaneously. Not only ATOM is able to
detect an anomaly happened as shown in Figure 9(b), but also
it finds similar patterns on the correct metrics from both VM 2
and VM 3 as illustrated in the second table of Table 3, which
shows the metrics identification results when m = 5. By sending
this information to the orchestration component, the introspection
overhead could be saved by first introspecting one VM, and then
checking if another one has the same malicious behavior going on.

The third experiment illustrates ATOM’s ability to detect a
different type of attack, the resource-freeing attack [13], a subtle
attack where the goal is to improve a VM’s performance by forcing
a competing VM to saturate some bottleneck and shift its usage
on the target resource (often times with legitimate behavior). This
kind of attacks is known to be very hard to catch except for using
strong isolation on physical node. In this experiment, VM 2 runs
an Apache web server constantly handling network requests. VM 3
runs TPC-C benchmark on MySQL database. According to [13], if
VM 3 wants more cache usage, it could make network resource to
be a bottleneck for VM 2, and shift its usage on cache (VM 2 and
VM 3 are running on the same physical node). In this experiment
VM 3 launches GoldenEye attack, which achieves a denial-of-
service attack on the HTTP server running on VM 2 by consuming
all available sockets, and is paired with cache control. We show
that ATOM successfully finds the two VMs, and by its metrics
identification procedure, it suggests the possibility of an resource-
freeing attack and provides useful data to its orchestration module
in assisting the VMI procedure on VMs 2 and 3.

Figure 9(c) plots the monitoring and the detection process. The
black dots indicate the time instances when abnormal behavior
happens. This figure, as before, only shows that an anomaly has
happened. While the second table in Table 3 analyzes where
the anomaly has originated. The stddev j values show what the
abnormal dimensions are, on VM 2: CPUUtilization (vm2-1),
NetworkIn (vm2-2), NetworkOut (vm2-3); on VM 3: NetworkIn
(vm3-2), NetworkOut (vm3-3), DiskReadOps (vm3-4), DiskRead-
Bytes (vm3-6).

Further analysis on meandiff j finds out NetworkIn and Net-
workOut statistics on VM 2 decrease nearly by an order, while
VM 3 sees significant increase in NetworkIn, NetworkOut and

Exp1 Exp2 Exp3

Experiment id

20

30

40

50

60

70

80

N
e
tw

o
rk

b
a
n
d
w

id
th

 s
a
v
in

g
(×

0.
01

,
p
e
rc

e
n
ta

g
e
)

VM1 VM2 VM3 Total

Fig. 10. Network bandwidth saving in each experiment in Figure 9.

especially its disk read statistics (DiskReadOps and DiskRead-
Bytes). This is a typical resource freeing attack as described in
[13], where network resource has become the bottleneck of a
target VM, and the beneficiary VM gains much of the shared cache
usage by showing a significant increase in disk read statistics. The
sudden increase in NetworkIn/NetworkOut in VM 3 also suggests
that VM 3 might be the attacker of VM 2 by sending malicious
traffic to it.

Further analysis by VMI in ATOM’s orchestration module
shows that most of VM 2’s sockets are occupied by connecting
to VM 3, thus the anomaly could be mitigated by closing such
connections and limiting future ones. Of course, VM 3 could use
a helper to establish such malicious connections with VM 2 as
suggested in paper [13], yet ATOM is still able to raise an alarm
to end user and suggest a possible ongoing resource-freeing attack.

Users should be aware that the larger an alarm level m is, the
more accurate the metrics identification process is, and the more
likely a bigger damage an attack has caused.

Lastly, Figure 10 shows the communication overhead saving
achieved by ATOM in these three experiments. For the first hour
in each experiment, each VM should have sent 7 · 360 = 2520
values to CLC. However, by using online tracking and set-
ting the tracking error ∆ dynamically, the number of values
sent are significantly reduced. Since each message is of the
same size, we calculate the network bandwidth saving as (1 -

number of messages sent with tracking module
number of messages sent without tracking module); the results are shown in
Figure 10. Note here the deviation is a very small value µ = 1%,
which could be a much bigger value in practice because as shown
in Figure 9, the anomalies tend to have a much bigger SPE
value. A larger µ leads to a bigger threshold ∆, leading to even
more savings than what is shown in Figure 10. What’s more, the
monitoring overhead is also saved because PCA only needs to be
computed when new data arrives. With less data reported, PCA
could be computed less frequently.

8.3 Sensitivity analysis

There are only two parameters to set up for ATOM: the desired
false alarm rate α which is used to calculate the anomaly detection
threshold Qα in Section 4.3.3, and the maximally allowed false
alarm deviation rate µ as defined in Section 5 which is used to
bound and adjust the tracking threshold ∆.

We design two experiments to analyze the sensitivity of α and
µ respectively. We use the same dataset for these experiments to
clearly demonstrate the impacts of having different values for α

and µ . The first experiment varies the values of α and counts the
actual number of false alarms. The second experiment gradually
increases the values of µ , and measures the actual number of false
alarms and the network savings achieved by the tracking module
(when its tracking threshold ∆ is dynamically adjusted by ATOM).

The result of the first experiment is shown in Figure 11(a),
which shows how the actual false alarm rate changes with the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 13

0 1 2 3 4 5 6
Input false alarm rate α (× 0.01)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
A

ct
u
a
l
fa

ls
e
 a

la
rm

 r

a
te

 (
×

 0
.0

1
)

(a) Actual false alarm rate increases
with, and is much smaller than, the
input theoretical false alarm rate α .

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Actual false alarm rate (×0. 01)

66

68

70

72

74

76

N
e
tw

o
rk

b
a
n
d
w

id
th

 s
a
v
in

g
(×

0
.0

1
,

p
e
rc

e
n
ta

g
e
)

1.82.0
2.2

2.42.6

0.2-0.8
1.0

1.2-1.6

Input deviation
 rate µ (× 0.01)

(b) With the increase of µ (annotated
in the figure), both actual false alarm
rate and communication saving go up.

Fig. 11. Sensitivity analysis.

increase of values of α . When α increases from 0.1% (confidence
level 99.9%) to 5%, the actual false alarm rate also increases.
But the actual false alarm rate is always much smaller, ranging
from just 0.006% to 0.05%. The common practice is to choose
α < 0.5%, and far fewer actual false alarms (less than 0.5 per 100
data points) will be produced.

Figure 11(b) shows the results of the second experiment. We
vary the false alarm deviation rate µ from 0 to 2.6%, with a step
size of 0.2%. For each value of µ , we run the experiments for 10
times, where α value ranges from 0.1% to 0.5%, with a step size
of 0.1%. Finally the average results are computed with respect
to each µ . We are interested in network bandwidth saving in
percentage (y axis) and the actual false alarm rate (x axis). Larger
µ means a bigger ∆ threshold is used by ATOM, and thus leads
to more savings in network bandwidth. However the growth of µ

is also accompanied with an increase in the number of actual false
alarms, which suggests a trade-off between using more network
bandwidth and having fewer false alarms.

But generally speaking, a small value for µ is sufficient to
provide enough communication savings. Note that all attacks were
still detected in all experiments, achieving false negative rate of
0%. As shown in Figure 9, using both α = 0.2% and α = 0.5%,
ATOM could easily identify the attacks. A higher α value leads
to a lower threshold value for attack detection, meaning attacks
are more easily to be detected though it may lead to more false
alarms. ATOM allows users to control the false alarm rate and the
tracking threshold by adjusting α and µ .

In our analysis, a wide range of thresholds suffice to detect
denial of service attacks or resource starving attacks while achiev-
ing large communication saving. However in production systems,
it is important to provide users feedback about the effects of
their error setting. ApproxHadoop [21] and Social Trove [22]
use statistical models from extreme value theory to estimate the
effects of delta. In our models, statistical models can help over
short periods, but over long periods we would expect malicious
attackers to adapt their attacks to reduce their chances of being
caught. In this situation, it is important to use offline benchmarking
to assess the effect of the error threshold as shown in [23], in which
the authors provide techniques to overlap online executions with
different delta settings, allowing us to understand the effects of
delta empirically without degrading throughput.

8.4 ATOM scalability evaluation
To evaluate the scalability of ATOM, we evaluated the key
performance metrics of ATOM with an increasing number of VMs
(from 2 to 6). In each configuration, we perform online monitoring
using the adapted PCA-based anomaly detection using a sliding
window of size 100 (time instances), combined with either online
tracking or no tracking (i.e., send everything). We report the

average for the false alarm rate, the average PCA running time,
and the total number of messages sent from NC to the CLC, per
sliding window. The results are shown in Figure 12.

Larger number of VMs leads to higher communication cost
in ATOM. However, the tracking component of ATOM becomes
more effective with more VMs, as shown in Figure 12(a). This is
because there are more opportunities for communication savings
when there is a higher probability of temporal locality on one of
the many VMs’ performance metrics.

The computation cost in ATOM is linear to the number of
VMs, as shown in Figure 12(b), which is as expected. Neverthe-
less, the overall computation overhead of ATOM is still fairly
small (in just a few milliseconds per sliding window).

The measured false alarm rate actually decreases initially with
more VMs. But when the number of VMs keeps increasing, the
measured false alarm rate will eventually start to increase, as
indicated in Figure 12(c). Initially, when presented with more data,
the PCA-based approach becomes more effective in “learning” the
normal subspace, hence results in a reduced false alarm rate. But
as number of VMs continues to increase, the dimensionality of the
data matrix becomes larger, eventually making it less effective to
detect abnormal subspace after dimensionality reduction. Never-
theless, ATOM remains very effective in all cases; the false alarm
rates are smaller than 1% in nearly all test cases.

2 3 4 5 6
(a) number of VMs

5

10

15

20

25

30

35

40

45

M
e
ss

a
g
e
 c

o
u
n
t

(×
1
00

)

2 3 4 5 6
(b) number of VMs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
C

A
 r

u
n
n
in

g
 t

im
e
 (

m
s)

2 3 4 5 6
(c) number of VMs

0.2

0.4

0.6

0.8

1.0

1.2

Fa
ls

e
 a

la
rm

 r
a
te

 (
×0
.0

1)

Without Tracking With Tracking

Fig. 12. Impacts to ATOM’s performance with respect to the increasing
number of VMs.

8.5 ATOM vs. classic offline PCA anomaly detection
In this section we show what happens if we simply apply the
classic offline PCA method (offlinePCA) that has been widely
used for anomaly detection in previous literature [12].

Specifically, to use offlinePCA, each time we delete the oldest
time instance and add the newest one in the sliding window, and
then use the data matrix inside this sliding window to do PCA.
Each time only the newest time instance data need to be verified.
After transforming the original data to the rotated PCA space, we
measure each dimension at the newest time instance, use the first
dimension that exceeds 3 times of standard deviation along that
axis as the starting dimension of the residual subspace, and if no
such dimension exists, SPE need not be calculated and checked
against the anomaly threshold.

To compare the performance of this method with our approach,
we run another experiment with the same setting as that in
experiment 1 shown in Table 2 and apply the above method.
Figure 13 shows the result of anomaly detection using this method.
Note that SPE is not calculated for all time points as explained
above. The blue dots indicate SPE of certain time instances and
red crosses show the threshold Qα to compare against at the same
time instances. Anomaly happens at the end of first hour (3600 on
the time dimension in Figure 13), and it continues ever since. So
we would expect at the second hour there should be blue dots and
red crosses at every time point, and all blue dots should be above
the red crosses. However as shown in Figure 13, it only takes less

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 14

than 4 minutes (only the first 20 time instances after 3600 have
been detected being abnormal) for the attack to escape from the
monitoring and detection, and make itself be identified as normal
behavior. Note that towards the end the SPE values in Figure 13
here is different from that in Figure 9 where SPE values are normal
again in the end which is because the attacks were mitigated in the
experiment behind Figure 9 by ATOM’s orchestration module.
The key difference causing this is that ATOM’s online method
based on PCA ensures only normal data points are used for
anomaly detection, while the abnormal data points may skew the
PCA model built by the naive offline method.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Sq
ua

re
d

Pr
ed

ic
tio

n
E

rr
or

 (
SP

E
)

Time / seconds

SPE
Threshold (α=0.2%)

Fig. 13. offlinePCA using the settings in Experiment 1 from Table 2 (SPE
is computed as in Section 4.3.3).

8.6 VM clustering evaluation
To evaluate the accuracy and robustness of our VM clustering
method, we run an experiment using 102 VM data vectors (each
VM data vector is a 7-dimension vector with 7 performance
metrics, collected from a VM running a particular workload at
the time of data collection). Among the 102 VM data vectors,
34 were idle, another 34 were running a TPCC benchmark on
MySQL database and the rest 34 were running an Apache web
server. We run the VM clustering for 10 times and calculate the
average results. The experiment result shows that our method is
able to precisely identify the 3 clusters, with a few points marked
as outliers each time. The average clustering precision is 96.08%,
the average clustering recall is 95.10%, and the average clustering
F-measure is 95.59%.

Since we used a density-based clustering algorithm which
groups nearby VM data vectors together, to test its robustness,
for each VM data vector we measured its distance to the closet
neighbor inside the same cluster (denoted as “inner cluster dis-
tance”) and the closest distance to a VM data vector in a different
cluster (denoted as “inter cluster distance”). A histogram of the
two measures for all 102 VM data vectors are shown in Figure 14.
We can see that there is a large gap between the two distances,
which shows the robustness of our clustering method and it is
fairly robust and insensitive to a wide range of threshold ε values.

100 101 102 103 104 105 106 107 108

inter cluster and inner cluster distances

0

5

10

15

20

25

30

35

n
u
m

b
e
r

o
f

V
M

s

max inner cluster
distance: 1243.99

min inter
cluster
distance:
918886.77

inner cluster distance

inter cluster distance

Fig. 14. Histogram of clustering distances.
8.7 Discussion

The choice of ∆. Larger ∆ values lead to more savings, but with

less accurate data matrix. However cloud users don’t have to worry
about setting ∆ values; ATOM only needs the user to specify a
tolerable deviation rate µ on the detection threshold. ATOM is
then able to adjust ∆ values dynamically online.
Possible false alarms. Resource usage pattern may simply change
due to normal changes in user activities, in which case ATOM
may raise false alarms. Nevertheless, ATOM is able to raise
alarms and let users decide the right course of actions to take by
assisting users with its orchestration module. ATOM also uses the
new workload chracteristics to adjust its monitoring component
to adapt to a new workload dynamically and automatically in an
online fashion.
Overhead. The tracking module, by simply apply algorithm 1
before sending out each value, introduces only O(1) overhead.
The monitoring module could leverage a recursive update proce-
dure, so that it is possible to use the current PCA model to do
incremental update instead of computing from scratch, e.g., [14],
[24]. Depending on the PCA algorithm used, it is polynomial to
the sliding window size and number of dimensions. In contrast, the
overhead saved by ATOM is significant. Not only a major fraction
of network traffic could be saved from CC to CLC, but also the
effort to apply VMI. The orchestration module orchestrates and
introspects only the affected VMs and metrics, and only when
needed, hence, leads to much smaller overhead than full-scale VM
introspection that are typically required.
Other attacks. Our experiments use the same set of metrics that
are monitored by CloudWatch and demonstrate two different types
of attacks. But ATOM can easily add any additional metric with-
out much overhead. This means that it can be easily extended when
necessary with additional metrics for monitoring and detecting
different kinds of attacks.

9 RELATED WORK

To the best of our knowledge, none of existing IaaS platforms is
able to provide continuous tracking, monitoring, and orchestration
of system resource usage. Furthermore, none of them is able to do
intelligent, automated monitoring for a large number of VMs and
carry out orchestration inside a VM.
Cloud data monitoring. Most existing IaaS systems follow the
general, hierarchical architecture as shown in figure 2. Inside
these systems, there are imperative needs for the controller to
continuously collect resource usage data and monitor system
health. AWS [1] and Eucalyptus [4], [5] use CloudWatch [25]
service to monitor VMs and other components in some fixed
intervals, e.g., every minute. This provides cloud users a system-
wide visibility into resource utilization, and allows users to set
some simple threshold based alarms to monitor and ensure system
health. OpenStack [26] is developing a project called Ceilome-
ter [27], to collect resources utilization measurements. However,
these approaches only provide a discrete, sampled view of the
system. Several emerging startup companies such as DATADOG
[28] and librato [29] could monitor in a more fine-grained granu-
larity, provided the required softwares are installed. However, this
inevitably introduces more network overhead to the cloud, which
becomes worse when the monitored infrastructure scales up. On
the contrary, ATOM significantly reduces the network overhead
by utilizing the optimal online tracking algorithm, while providing
just about the same amount of information. Furthermore, all
these cloud monitoring services offer very limited capability in
monitoring and ensuring system health. Astrolabe [30] is a mon-
itoring service for distributed resources, to perform user-defined

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 15

aggregation (e.g. number of nodes that satisfy certain property)
on-the-fly for the host hierarchy. It is intended as a “summarizing
mechanism”. Similar to Astrolabe, SDIMS [31] is another system
that aggregates information about large-scale networked systems
with better scalability, flexibility, and administrative isolation.
Ganglia [32] is a general-purpose scalable distributed monitoring
system for high performance computing systems which also has
a hierarchical design to monitor and aggregate all the nodes and
has been used in many clusters. These efforts are similar to the
CloudWatch module currently used in AWS/Eucalyptus, and they
reduce monitoring overhead by simple aggregations. While the
purpose of ATOM’s tracking module is to reduce data transfer,
but it does so using online tracking instead of simply aggregating
which delivers much more fine-grained information.

STAR [33] is a hierarchical algorithm for scalable aggregation
that reduces communication overhead by carefully distributing
the allowed error budgets. It suites systems like SDIMS [31]
well. InfoEye [34] is a model-based information management
system for large-scale service overlay networks through a set
of monitoring sensors deployed on different overlay nodes with
reduced overhead achieved by ad-hoc conditions filters. InfoTrack
[35] is a monitoring system that is similar to ATOM’s tracking
module, in that it tries to minimize continuous monitoring cost
with most information precision preserved, by leveraging temporal
and spatial correlation of monitored attributes, while ATOM uti-
lizes an optimal online tracking algorithm that is proved to achieve
the best saving in network cost without any prior knowledge on
the data. MELA [36] is a monitoring framework for cloud service
which collects different dimensions of data tailored for analyzing
cloud elasticity purpose (e.g. scale up and scale down). ATOM
may use MELA to collect, track, and monitor different types of
metrics than those already available through CloudWatch.
Cloud security. IaaS system also brings us a new set of secu-
rity problems. Leading cloud providers have developed advanced
mechanism to ensure the security of their IaaS systems. AWS [37]
has many built-in security features such as firewalls, encrypted
storage and security logs. OpenStack use a security component
called Keystone [38] to do authentication and authorization. It
also has security rules for network communication in its network
component Neutron [39]. Other IaaS platforms have similar se-
curity solutions, which are mainly firewalls and security groups.
Nevertheless, it is still possible that hackers could bypass known
security policies, or cloud users may accidentally run some mali-
cious software. It is thus critical to be able to detect such anomaly
in near real-time to avoid leaving hackers plenty of time to cause
significant damage. Hence we need a monitoring solution that
could actively detect anomaly, and identify potentially malicious
behavior over a large number of VM instances. AWS recently
adopts its CloudWatch service for DDoS attacks [3], but it re-
quires user to check historical data and set a ”magic value” as
the threshold manually, which is unrealistic if user’s underlying
workloads change frequently.

In contrast, ATOM could automatically learn the normal
behavior from previous monitored data, and detect more complex
attacks besides DDoS attacks using PCA. PCA has been widely
used to detect anomaly in network traffic volume in backbone
networks [11], [12], [40], [41], [42], [43]. As we have argued in
Section 4.1, adapting a PCA-based approach to our setting has not
been studied before and presented significant new challenges.

The security challenges in IaaS system were analyzed in [6],
[44], [45], [46]. Virtual machine attacks is considered a major se-

curity threat. UBL [7] uses VM usage data to train Self-Organizing
Maps for anomaly prediction, which serves a similar purpose to
ATOM’s monitoring component, and has been analyzed in details
in Section 1. PerfCompass [47] could identify whether a VM
performance anomaly is caused by internal fault like software
bugs, or from an external source such as co-existing VMs, through
collecting system call traces and checking the execution units
being affected. In contrast, ATOM’s introspection component
leverages existing open source VMI tools such as Stackdb [9]
and Volatility [16] to pinpoint the anomaly to the exact process.

VMI is a well-known method for ensuring VM security [48],
[49], [50], [51]. It has also been studied for IaaS systems [52],
[53], [54]. However, to constantly secure VM using VMI tech-
nique, the entire VM memory needs to be traversed and analyzed
periodically. It may also require the VM to be suspended in
order to gain access to VM memory. Blacksheep [17] is such a
system that detects rootkit by dumping and comparing groups of
similar machines. Though the performance overhead is claimed
to be acceptably low to support real-time monitoring, clearly
user programs will be negatively affected. Another solution was
suggested [55] for cloud users to verify the integrity of their
VMs. However, this is not an “active detection and reaction”
system. In contrast, ATOM enables triggering VMI only when
a potential attack is identified, and it also helps locate the relevant
memory region to analyze and introspect much more effectively
and efficiently using its orchestration component.

10 CONCLUSION

We present the ATOM framework that can be easily integrated
into a standard IaaS system to provide automated, continuous
tracking, monitoring, and orchestration of system resource usage
in nearly real-time. ATOM is extremely useful for anomaly
detection, auto scaling, and dynamic resource allocation and
load balancing in IaaS systems. Interesting future work include
extending ATOM for more sophisticated resource orchestration
and incorporating the defense against even more complex attacks
in ATOM.

ACKNOWLEDGMENTS

Min Du and Feifei Li were supported in part by grants NSF
CNS-1314945 and NSF IIS-1251019. We wish to thank Eric
Eide, Jacobus (Kobus) Van der Merwe, Robert Ricci, and other
members of the TCloud project and the Flux group for helpful
discussion and valuable feedback. The preliminary version of this
paper appeared in IEEE BigData 2015 [56].

REFERENCES

[1] Amazon. http://www.aws.amazon.com/. Accessed Nov. 5, 2016.
[2] ITWORLD. http://www.itworld.com/security/428920/attackers-install-

ddos-bots-amazon-cloud-exploiting-elasticsearch-weakness. Accessed
Nov. 5, 2016.

[3] Amazon. AWS Best Practices for DDoS Resiliency. https://d0.awsstatic.
com/whitepapers/DDoS White Paper June2015.pdf. Accessed Nov. 5,
2016.

[4] Eucalyptus. http://www8.hp.com/us/en/cloud/helion-eucalyptus.html.
Accessed Nov. 5, 2016.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in CCGRID, 2009.

[6] W. Dawoud, I. Takouna, and C. Meinel, “Infrastructure as a service
security: Challenges and solutions,” in INFOS, 2010.

[7] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems,” in
ICAC, 2012.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2652467, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XX 201X 16

[8] LibVMI. http://libvmi.com/. Accessed Nov. 5, 2016.
[9] D. Johnson, M. Hibler, and E. Eide, “Composable multi-level debugging

with Stackdb,” in ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, 2014.

[10] K. Yi and Q. Zhang, “Multi-dimensional online tracking,” in SODA,
2009.

[11] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca
for traffic anomaly detection,” in SIGMETRICS Performance Evaluation
Review, 2007.

[12] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traf-
fic anomalies,” in ACM SIGCOMM Computer Communication Review,
2004.

[13] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: improve your cloud performance (at your
neighbor’s expense),” in CCS, 2012.

[14] W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin, “Recursive pca for
adaptive process monitoring,” Journal of process control, 2000.

[15] J. E. Jackson and G. S. Mudholkar, “Control procedures for residuals
associated with principal component analysis,” Technometrics, 1979.

[16] Volatility. http://www.volatilityfoundation.org/. Accessed Nov. 5, 2016.
[17] A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Blacksheep:

detecting compromised hosts in homogeneous crowds,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
2012.

[18] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in KDD, 1996.

[19] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “OLTP-
Bench: An extensible testbed for benchmarking relational databases,”
PVLDB, 2013.

[20] StackDB. http://www.flux.utah.edu/software/stackdb/doc/all.html#using-
eucalyptus-to-run-qemukvm. Accessed Nov. 5, 2016.

[21] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
hadoop: Bringing approximations to mapreduce frameworks,” in ASP-
LOS, 2015.

[22] M. T. Al Amin, S. Li, M. R. Rahman, P. T. Seetharamu, S. Wang,
T. Abdelzaher, I. Gupta, M. Srivatsa, R. Ganti, R. Ahmed et al., “Social
trove: A self-summarizing storage service for social sensing,” in ICAC,
2015.

[23] J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y. He, and S. Elnikety, “Mea-
suring and managing answer quality for online data-intensive services,”
in ICAC, 2015.

[24] X. Wang, U. Kruger, and G. W. Irwin, “Process monitoring approach
using fast moving window pca,” Industrial & Engineering Chemistry
Research, 2005.

[25] Amazon. Amazon cloudwatch. http://aws.amazon.com/cloudwatch/. Ac-
cessed Nov. 5, 2016.

[26] OpenStack. http://www.openstack.org/. Accessed Nov. 5, 2016.
[27] ——. Openstack ceilometer. https://wiki.openstack.org/wiki/Ceilometer.

Accessed Nov. 5, 2016.
[28] DATADOG. https://www.datadoghq.com/. Accessed Nov. 5, 2016.
[29] librato. https://www.librato.com/. Accessed Nov. 5, 2016.
[30] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and
data mining,” TOCS, 2003.

[31] P. Yalagandula and M. Dahlin, “A scalable distributed information
management system,” in SIGCOMM, 2004.

[32] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, 2004.

[33] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and Y. Zhang,
“Star: Self-tuning aggregation for scalable monitoring,” in VLDB, 2007.

[34] J. Liang, X. Gu, and K. Nahrstedt, “Self-configuring information man-
agement for large-scale service overlays,” in INFOCOM, 2007.

[35] Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M. Wamboldt, “Self-correlating
predictive information tracking for large-scale production systems,” in
ICAC, 2009.

[36] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: Monitoring
and analyzing elasticity of cloud services,” in CloudCom. IEEE, 2013.

[37] Amazon. Aws security center. http://aws.amazon.com/security/. Ac-
cessed Nov. 5, 2016.

[38] OpenStack. OpenStack Keystone. http://docs.openstack.org/developer/
keystone/. Accessed Nov. 5, 2016.

[39] ——. OpenStack Neutron. https://wiki.openstack.org/wiki/Neutron. Ac-
cessed Nov. 5, 2016.

[40] L. Huang, M. I. Jordan, A. Joseph, M. Garofalakis, and N. Taft, “In-
network pca and anomaly detection,” in NIPS, 2006.

[41] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and
A. Lakhina, “Detection and identification of network anomalies using
sketch subspaces,” in SIGCOMM conference on Internet measurement,
2006.

[42] Y. Liu, L. Zhang, and Y. Guan, “Sketch-based streaming pca algorithm
for network-wide traffic anomaly detection,” in ICDCS, 2010.

[43] L. Huang, X. Nguyen, M. Garofalakis, J. M. Hellerstein, M. I. Jordan,
A. D. Joseph, and N. Taft, “Communication-efficient online detection of
network-wide anomalies,” in INFOCOM, 2007.

[44] A. S. Ibrahim, J. H. Hamlyn-harris, and J. Grundy, “Emerging security
challenges of cloud virtual infrastructure,” in APSEC 2010 Cloud Work-
shop, 2010.

[45] L. M. Vaquero, L. Rodero-Merino, and D. Morán, “Locking the sky: a
survey on iaas cloud security,” Computing, 2011.

[46] C. R. Li, D. Abendroth, X. Lin, Y. Guo, H. wook Baek, E. Eide, R. Ricci,
and J. K. V. der Merwe, “Potassium: Penetration testing as a service,” in
SoCC, 2015.

[47] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, “Perfcompass: toward
runtime performance anomaly fault localization for infrastructure-as-a-
service clouds,” in HotCloud, 2014.

[48] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection based
architecture for intrusion detection.” in NDSS, 2003.

[49] J. Pfoh, C. Schneider, and C. Eckert, “A formal model for virtual machine
introspection,” in ACM workshop on Virtual machine security, 2009.

[50] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in IEEE
Symposium on Security and Privacy, 2011.

[51] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data
redirection,” in Security and Privacy (SP), 2012 IEEE Symposium on,
2012.

[52] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, “Cloudsec:
a security monitoring appliance for virtual machines in the iaas cloud
model,” in NSS, 2011.

[53] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011.

[54] H. W. Baek, A. Srivastava, and J. Van der Merwe, “Cloudvmi: Virtual
machine introspection as a cloud service,” in Cloud Engineering (IC2E),
2014 IEEE International Conference on, 2014.

[55] B. Bertholon, S. Varrette, and P. Bouvry, “Certicloud: a novel tpm-based
approach to ensure cloud iaas security,” in IEEE Cloud Computing, 2011.

[56] M. Du and F. Li, “ATOM: automated tracking, orchestration and moni-
toring of resource usage in infrastructure as a service systems,” in IEEE
BigData, 2015.

Min Du received the bachelor’s degree in 2009
and the master’s degree in 2012, both from Bei-
hang University. She is currently working toward
the Ph.D. degree in the School of Computing,
University of Utah. Her research interests in-
clude big data analytics and cloud systems.

Feifei Li received the BS degree in computer en-
gineering from the Nanyang Technological Uni-
versity in 2002 and the PhD degree in computer
science from the Boston University in 2007. He is
currently an associate professor in the School of
Computing, University of Utah. His research in-
terests include database and data management
systems and big data analytics.

