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ABSTRACT
Network usage accountability is critical in helping operators and
customers of multi-tenant data centers deal with concerns such
as capacity planning, resource allocation, hotspot detection, link
failure detection, and troubleshooting. However, the cost of mea-
surements and instrumentation to achieve �ow-level accountability
is non-trivial. We propose Polygravity to determine tenant tra�c
usage via lightweight measurements in multi-tenant data centers.
We adopt a tomogravity model widely used in ISP networks, and
adapt it to a multi-tenant data center environment. By integrat-
ing datacenter-speci�c domain knowledge, sampling-based partial
estimation and gravity-based internal sinks/sources estimation,
Polygravity addresses two key challenges for adapting tomogravity
to a data center environment: sparse tra�c matrices and internal
tra�c sinks/sources. We conducted extensive evaluation of our ap-
proach using realistic data center workloads. Our results show that
Polygravity can determine tenant IP �ow usage with less than 1%
average relative error for tenants with �ne-grained domain knowl-
edge. In addition, for tenants with coarse-grained domain knowl-
edge and with partial host-based sampling, Polygravity reduces the
relative error of sampling-based estimation by 1

3 .
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1 INTRODUCTION
Network tra�c accountability allows network operators to break
down network usage and map it to consumers such as servers,
virtual machines, virtual networks or tenants. Fine-grained network
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accountability, such as determining the bandwidth of each point-
to-point (i.e., host-to-host, or VM-to-VM) �ow is critical to ensure
reliable cloud performance and customer satisfaction. For example,
when a network hotspot appears, operators wish to determine
which consumer utilizes the network more than it should, or which
consumers may su�er performance degradation due to the hotspot.

Network accountability is challenging in multi-tenant data cen-
ters, as today’s network systems cannot provide a line-rate �ow
measurement for datacenter-scale tra�c. Researchers have pro-
posed two classes of solutions to realize datacenter-scale network
monitoring. Fine-grained �ow sampling solutions such as sFlow [27]
or NetFlow [13] can monitor individual IP �ows at network devices,
thereby simplifying network accountability. However, proposed
datacenter-scale �ow sampling relies on intrusive instrumentation
either on network devices [16, 17, 30, 31] or on end hosts [9, 14].
Furthermore, sampling �ows pervasively in a whole data center
with high network coverage is prohibitively expensive, particularly
at aggregation and core switches. More recent approaches make use
of software-de�ned networking to enable �ow-level counters that
can account for bandwidth usages at switches [22]. However, these
approaches also su�er from scalability concerns (due to limitations
in device memory and the number of �ow rules that can be used
for such measurements).

An alternative solution to reveal �ne-grained �ow usage relies
on combining the network routing matrix with coarse-grained
link-level measurements, e.g., SNMP. Initially developed for ISP net-
works, tomogravity [36] was also applied to datacenters [20, 21, 23],
albeit with less accurate results (e.g., best case average relative error
around 15%). The main challenge for accurate tra�c estimation
with tomogravity in a datacenter is that datacenter tra�c, naively
interpreted, might not exhibit the inherent structure needed for
this approach. Speci�cally, tomogravity was designed with two
assumptions, which hold for ISP networks, about the network traf-
�c characteristics: 1) all nodes proportionally contribute to overall
tra�c �ows; 2) the network does not have internal sinks/sources. In
contrast to the �rst assumption, Kandula et al. [23] showed that the
datacenter tra�c matrix is sparse, and all nodes do not contribute
to the tra�c matrix. In addition, contrary to the second assump-
tion, datacenter networks may contain a variety of internal sinks
and sources. For instance, due to software-de�ned �rewalls [3, 5],
host machines or SDN devices may be heavy internal tra�c sinks.
Likewise, due to broadcast-based image distribution [19, 24, 26] and
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port mirroring for Intrusion Detection or Real User Monitoring, the
internal switches may act as heavy tra�c sources.

Our key insights are that, (i) data center administrators have
access to readily available information about the contributing nodes,
e.g., tenant-level virtual topology con�guration or access control
setups, which can be used to deal with fact that data center tra�c
�ow is contributed by a limited number of nodes, and that (ii) noise
due to internal sinks/sources can be e�ectively canceled out by
integrating information about their behavior into the tomogravity
model.

In this paper, we show that utilizing such cloud con�guration
domain knowledge is key to precise tra�c estimation. We propose
a novel method termed Polygravity, derived from the original to-
mogravity algorithm, to account for �ne-grained �ow usage in
multi-tenant datacenters with heterogeneous domain knowledge.
Polygravity performs signi�cantly better than previous methods for
data center network accountability: for tenants with �ne-grained
domain knowledge, Polygravity reduces the average relative error
of estimating �ow usage to less than 1%; for tenants with coarse-
grained domain knowledge, with assistance of host-based partial
sampling, Polygravity consistently reduces the relative error by 1

3
compared to the relative error of the sampling-only solution.

To summarize, our contributions include:
• We identi�ed domain knowledge integration as a key enabler
to apply the gravity model to the sparse tra�c matrix estimation
problem, and systematically adapted tomogravity to the variation of
datacenter infrastructure, making Polygravity generally applicable
to other data centers (§3.2.2).
• We �rst identi�ed the ‘no internal sinks/sources’ assumption of
tomogravity model does not hold in datacenter networks, and de-
vised a Inner Gravity Estimation model for augmenting the domain
of gravity models to internal sink/source nodes (§3.2.1).
• Wedesigned Polygravitymodel to selectively integrate additional
estimation models such as sampling for better estimation, especially
in case the given domain knowledge for a tenant is coarse-grained
(§3.2.3).
• To thoroughly evaluate the performance of Polygravity, we gen-
erate realistic datacenter tra�c by tenant level tra�c emulation
based on previous datacenter tra�c measurement studies [8, 12, 23]
and simulating datacenters with di�erent environmental setups
(§4).

2 BACKGROUND AND RELATEDWORK
Formulating a tra�c matrix to represent resource allocation is a
general approach in network tra�c engineering. The data sources
used to construct such a tra�c matrix often include link counts
from SNMP data, routing information, topology information, and so
forth. In this section, we �rst introduce how we construct a tra�c
matrix to formulate the tra�c usage accountability problem, and
then we explore the related work with respect to solving tra�c
matrices, and the applicability in data centers.
Network Tra�c Matrix Estimation: We formulate the problem
of determining �ow usage as follows:

argmin
t

| |x � A · t| | (1)

Figure 1: A view of gravity model to an example network

where t is the n ⇥ 1 �ow tra�c vector1 representing the tra�c
usage of each �ow (n denotes the number of �ows), A is thenm ⇥n
routing path matrix revealing whether a �ow traverses through
each physical interface (m denotes the total number of physical
links), and x is them ⇥ 1 link count vector.

Given that link counts x and A are commonly available, our
goal is to determine the optimal solution t = to , which is the
true tra�c vector and naturally minimizes the term | |x � A · t| |.
A straightforward approach is using quadratic programming; e.g.,
applying Least Square Method for Equation 1. However, in real-
world data center networks, the number of �ows is signi�cantly
larger than the number of links (i.e., A is a fat matrix asm ⌧ n).
There can be multiple solutions that satisfy Equation 1. Thus, a
particular solution tp yielded by the least square is not necessarily
the optimal solution to .

Network tomography refers to the methodologies that infer this
optimal tra�cmatrix to by using a limited number of measurements
such as link counts x. Vardi [33] adopted a Poissonian model and
employed an iterative approach that uses the EM algorithm [15]
to �nd approximate solutions, which was the �rst to put the idea
of network tomography into practice. Yu et al. [11] investigated
the time-varying nature of the sender-receiver tra�c by �tting the
basic independent and identically distributed (i.i.d.) model locally
using a moving data window.
Tomogravity Model Given that there could be multiple solutions
�tting Equation 1, it is intuitive to augment the tra�c matrix with
more external domain knowledge to constraint the search process
for tp closer towards the optimal solution to .

In large-scale IP networks, Zhang et al [36] solved the network
tra�c matrix estimation problem – determining the tra�c matrix
representing the volume that �ows from every ingress point into the
network and to every egress point out of the network – by propos-
ing tomogravity modeling, which consists of gravity modeling and
quadratic programming for re�nement.

A typical gravity model views a target network as a black-box
surrounded by sites as shown in Figure 1, assuming that the network
tra�c from a site to another site is proportional to both the total
tra�c coming out from the source site and the total tra�c coming
into the destination site:

T (s, t ) / Tin(s) · Tout (t ) (2)

where T (s, t) denotes the tra�c from site s to site t , Tin(s) denotes
the total tra�c going into the network from site s , andTout (t) denotes
total tra�c going out from the network to site t .

Tomogravity uses gravity modeling as a way to obtain the initial
tra�c matrix model for an Autonomous System (AS). Zhang et al
1 The n ⇥ 1 tra�c vector can be converted to

p
n ⇥ pn tra�c matrix where

p
n is

the number of existing terminals. Thus, in this paper, we use tra�c matrix and tra�c
vector interchangeably.
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suggested two variations of the gravity model: - the Simple Grav-
ity Model and the Generalized Gravity Model. The Simple Gravity
Model estimates the tra�c between two sites simply based on the
network’s total incoming or outgoing tra�c. Though the Simple
Gravity Model is helpful to �gure out the overall tra�c exchanges,
this model is based on an assumption that all the sites exchange traf-
�c evenly, which can over-simplify tra�c behaviors of real-world
networks. The Generalized Gravity Model is proposed to overcome
the even-tra�c restriction. They classi�ed the sites - “Access Link”
and “Peer Link” - and customized the gravity model for each com-
bination of source and destination type according to the routing
policy.

Though the gravity model is excellent for capturing overall traf-
�c patterns, the results may not be consistent with the interior
network tra�c, since it does not take interior network tra�c into
account, i.e., the link counts in the network blackbox in Figure 1.
Accordingly, the tomogravity model performs a second-step re�ne-
ment on the initial results t� obtained from gravity modeling by
using the following quadratic programming:

argmin
tw

| |xw � A · tw | | (3)

where xw = x � A · t� , i.e., the link error of the initial model t� .
Since a particular solution tw,p yielded by Least Square method

against Equation 3 has the smallest norm, the �ow vector t =
t� + tw,p becomes: �rst, the solution closest to t� among the solu-
tions minimize the objective function in Equation 1; second, the
solution most consistent with the internal link counts on condition
of Equation 1. After the second-step re�nement, the �nal step of
tomo-gravitymodeling is replacing all negative values of t�+tw,p to
0 and applying Iterative Proportional Fitting (IPF) [11] to minimizes
the link error.

Tomogravity Model in Data Center Networks The tomo-
gravity model works well for large-scale IP networks, but may
not be applicable to modern data center networks. Kandula et al.
investigated tra�c characteristics in data centers, and observed
the datacenter tra�c matrix is sparse in comparison with ISP net-
works. For this reason, tomogravity model leads to a 60% median
estimation error in their data center network. To improve the ac-
curacy, Hu et al. [21] proposed to utilize additional information
such as the ownership of virtual machine (VM) and shared jobs,
achieving around 20% average relative error in the best case. In
[20], the authors suggested to utilize SDN switches to additionally
measure aggregated �ows. However, for a real world deployment,
it is prohibitive to exhaust available SDN rules only for improv-
ing tra�c matrix estimation, considering the �nal improvement it
achieved ( around 15% best case average relative error). In contrast
to these earlier e�orts, Polygravity adopts domain knowledge of
target datacenter in a holistic way, allowing highly �ne-grained
and �exible customization of the estimation model, which leads to
be suitable for heterogeneous datacenter networks. In addition, our
approach uniquely solves the internal sink/source problem which
enables Polygravity to be highly tolerance under heavy internal
sink/source noise.

3 METHODOLOGY
As mentioned in §2, an intuitive attempt to determine tra�c usage
accountability in modern data center networks is to form a tra�c

Figure 2: Polygravity Operation

matrix to represent �ows and solve the matrix using tomogravity
model. However, tra�c properties in multi-tenant data centers
di�er signi�cantly from ISP networks in the following ways:

• There are tenant-isolation and function-virtualization factors in
multi-tenant data center networks, e.g., VLAN, VXLAN, GRE
tunneling, �rewalls, etc. Such factors partition the network in-
frastructure and routing paths are accordingly segmented, which
translates to highly a partitioned tra�c matrix.

• Imbalanced incoming/outgoing tra�c volume happens mainly
due to various network level applications such as software-de�ned
�rewalls, broadcast-based VM image delivery, hot-standby mid-
dleboxes, port mirroring for IDS etc., leading to heavy “source”
and “sink” spots [3, 5, 19, 24, 26].

Broadly speaking, we address these challenges by enhancing
tomogravity model through three phases: augmenting the domain
of gravity model with internal sinks/sources (in §3.2.1), redesign-
ing gravity model to �exibly re�ect network dynamics (in §3.2.2),
and allowing integration of supplementary estimation models into
gravity model (in §3.2.3).

3.1 Overview
We name the full stack of our methodology Polygravity (from its
poly-morphic nature and utilizing gravity model multiple times).
Fig. 2 summarizes the complete steps to conduct Polygravity:

(1) For a given data set within a time window, compute the ingress
and egress tra�c (Tin,Tout ) of interior interfaces by conducting
Inner Gravity Estimation. Then, augment your gravity model’s
domain to include every interior interface that acts as non-
negligible sink or source. (§3.2.1).

(2) Customize gravity model to �t your data center network by
classifying the sites and constructing a �ow graph. Since this
step is mainly about processing the metadata of the target dat-
acenter, automation of this step is feasible through network
management tools. (§3.2.2 Steps 1 and 2).

(3) Apply the customized gravity model to augmented gravity do-
main of current data set and obtain the initial gravity model t�
(§3.2.2 Step 3).

(4) Conduct broadcast noise cancellation on the link matrix to
minimize the impact of broadcast tra�c (§3.3.2)

(5) Apply weighted Least Square Method, replace all negative val-
ues to zero and apply Iterative Proportional Fitting (§3.3.1).
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(a) Notations for Inner Gravity (b) Example Link Tra�c

(c) Inbound Inner
Gravity Result

(d) Outbound Inner
Gravity Result

Figure 3: Example Inner Gravity modeling for an interior
network device acting as a sink
(b) shows the link counters for a device. Note that the device is act-
ing as a sink because the total ingress tra�c is larger than the total
egress tra�c; (c) shows the interface-to-interface tra�c estimation
based on the Inbound Inner Gravity and its resulting link tra�c,
which keeps the consistency of inbound link counters; likewise, (d)
shows the results based on the Outbound Inner Gravity, that keeps
the consistency of outbound link counters.

3.2 Constructing Initial Tra�c Matrix
In this phase of tra�c matrix construction, we propose two ap-
proaches: the Augmenting Gravity Domain and the Network Infras-
tructure Adaptation in accordance with the challenges mentioned
above.

3.2.1 Augmented Gravity Domain. Previous network tomogra-
phy methods [11, 20, 21, 32, 33, 36] assumed the interior network
sinks and sources are negligible. However, multi-tenant data centers
can seriously violate the assumption because these networks deploy
various and complex techniques which make the interior network
have heavy sinks (e.g., distributed �rewall, virtual network host) or
sources (e.g., multicast-based virtual machine image distribution,
port mirroring for IDS). Consequently, the resulting tra�c matrix
elements are either overestimated or underestimated.

To expose the interior sources/sinks out of the black box, we per-
form a two-step approach: 1) estimating the amount of source/sink

tra�c of each interface of interior network devices2 and 2) augment-
ing the classic sink/source domain to integrate the interfaces.

Though it is simple to determine if a network device is a source
or a sink and how much it is (by comparing the total amount of in-
bound and outbound tra�c), an interface-wise assessment is never
easy. Even if we know the amount of inbound tra�c consumed by
a (sink) device, we cannot simply decide how much was consumed
by each individual interface. One may try computing the numbers
by setting a system of linear equations and �nding a solution that
minimize the error, but such a system is under-determined in most
of cases so that it cannot give a single solution – if a device has k
interfaces, then there can be k2 variables but only 2k equations.

As a way to model interior sink/source tra�c, we applied grav-
ity model on each individual device and extract the amount of
sink/source tra�c for each interface of the device, termed Inner
Gravity Estimation (IGE). The underlying assumption of this ap-
proach is that the more tra�c leaves (comes) through an interface
and the less tra�c comes (leaves) through the other interfaces, the
more likely the interface is a source (sink).

Speci�cally, consider the following two simple gravity models:

UI (li , lj ) = Uin(li ) ·
Uout (lj )Õ

lk 2f (� )Uout (lk )
(4)

UO (li , lj ) = Uout (lj ) ·
Uin(li )Õ

lk 2f (� )Uin(lk )
(5)

where li denotes an interface,Uin(li ) (orUout (li )) denotes the amount
of tra�c came into (or left from) the device through the interface
li , and f (� ) means the set of all interfaces of an interior network
device � . If we compute a gravity model for a network device only
using Equation (4), because it divides every inbound tra�c (Uin)
proportionally, the resulting gravity model (UI ) preserves the con-
sistency of the inbound tra�c as Figure 3(c). Likewise, the gravity
model based on equation (5) (UO ) keeps the consistency of out-
bound tra�c (Uout ) as illustrated in Figure 3(d). Let’s call each of
these gravity models inbound and outbound inner gravity model.

Then, IGE for each interior network device � consists of the
following steps:

(1) 8 li 2 f (� ), initialize Tin(li ) = Tout (li ) = 0.
(2) Compute the total amount of incoming tra�c U total

in and outgo-
ing tra�cU total

out :
U total
in =

’
li 2f (� )

Uin(li ), U total
out =

’
li 2f (� )

Uout (li ).

If U total
in > U total

out , the device is a sink; otherwise, if U total
in <

U total
out , source.

(3) If the device is a sink, compute outbound inner gravity models
UO for e . Likewise, if source, compute inbound inner gravity
modelUI .

(4) If sink, for each li 2 f (� ), compute the inconsistency of inbound
tra�c:

U incon
in (li ) = Uin(li ) �

’
lk 2f (� )

UO (li , lk )

If U incon
in (li ) < 0, U incon

in (li ) = 0

2Here, an interior network device means a node that works as an intermediary device
between the source and the destination. Thus, not only network routers and switches
but also physical machines hosting VMs can be treated as interior network devices.
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Likewise, if source, compute:
U incon
out (li ) = Uout (li ) �

’
lk 2f (� )

UI (lk , li )

If U incon
out (li ) < 0, U incon

out (li ) = 0

(5) If sink, for each li 2 f (� ), ifU incon
in (li ) > 0,

the interface li is likely a sink for the network. So, distribute
the total amount of sink tra�c proportionally as:

Tout (li ) = (U total
in �U total

out ) ·
U incon
in (li )Õ

lk 2f (� )U
incon
in (lk )

Likewise, if source, distribute the total amount of source tra�c
proportionally as:

Tin(li ) = (U total
out �U total

in ) ·
U incon
out (lj )Õ

lk 2f (� )U
incon
out (lk )

A more intuitive explanation of IGE is that, when an interface of
a switch acts as a source, since the inbound inner gravity model on
the switch cannot �nd further inbound tra�c from other interfaces
to supply the outbound tra�c of the interface, it yields a tra�c
estimation that under-utilizes the outbound tra�c of the interface;
likewise, the outbound inner gravity model returns a tra�c estima-
tion that under-utilizes the inbound tra�c of the interfaces acting
as sinks.

Through conducting IGE over every interior network component,
we can obtain a list of interior network sources and sinks as well
as their approximate amount of tra�c. Now, augment the domain
of gravity model L (i.e., L is the set of all external nodes) to include
these additional sources and sinks obtained through IGE:

Laug  L [ {li |max (Tin(li ), Tout (li )) > � ,
li 2 f (� ), 8� 2 � }

where � is the set of every interior network element, and � is a
threshold of negligible sink/source size. We term this newly gen-
erated set Laug ‘Augmented Gravity Domain’. Note that, with Aug-
mented Gravity Domain, the total tra�c comes into and goes out
from the blackbox network become equal.

3.2.2 Network Infrastructure Adaptation. Due to variation of
network infrastructure and diversity of tra�c patterns, without
appropriate tailoring the gravity model, direct application of the to-
mogravity model could yield poor estimation quality in reality [23].
Customizing the gravity model to �t to a speci�c network is a pro-
cess of re�ecting network domain knowledge to the model, so a
single model can hardly �t to heterogeneous networks.

Through our experience of applying gravity model to various
data centers, we have come up with a general approach for cus-
tomizing gravity model for di�erent types of networks. In this
section, we present the general approach with an example cloud
shown in Fig. 4(a).

Step 1: Component Classi�cation.We �rst classify the network
sites in the gravity domain Laug (you can use the non-augmented
domain L if interior sinks and sources are negligible). Classi�cation
of sites can simplify the process of cutting out unlikely existing
�ows from the gravity model in the Step 2. Let C = {c1, c2, . . . , ck }
be the set of all classes you de�ned, so c1 [ c2 [ . . . ck = Laug and
ci \ c j = � if i , j. When classifying, the rule of thumb is that the
more �ne-grained the classi�cation is, the sparser tra�c matrix
you may get. However, if no behavioral di�erence of two classes of
sites is known, it is pointless to di�erentiate them. The six nodes

Algorithm 1 Compute Customized Gravity
1: for each li 2 Laug do . Excluding pre-estimated amount
2: Tin(li ) Tin(li ) �

Õ
lk 2Laug T̂ (li , lk )

3: Tout (li ) Tout (li ) �
Õ
lk 2Laug T̂ (lk , li )

4: Eused  �
5: D  {(c, dir ) | dir 2 {in, out }, c 2 C } . ordered set
6: Sort D by an arbitrary order
7: for each (li , lj ) 2 Laug ⇥ Laug do
8: T (li , lj ) 0
9: for each d = (c, dir ) 2 D do
10: Etemp  �
11: if dir = in then
12: Etemp  {e | e 2 E, e < Eused, e = (c, cx )}
13: Lk  {n | 8(c, c� ) 2 Eused, n 2 c� }
14: Ll  {n | 8(c, cz ) 2 Etemp, n 2 cz }
15: for each e 2 Etemp do
16: cx  e[1] . e = (c, cx )
17: 8 li 2 c, 8 lj 2 cx ,
18: T (li , lj ) 

�
Tin(li ) �

Õ
lk 2Lk T (li , lk )

�
·

Tout (lj )·h(li ,lj )Õ
ll 2Ll (Tout (ll )·h(li ,ll ))

19: if T (li , lj ) < 0 then T (li , lj ) 0
20: else if dir = out then
21: Etemp  {e | e 2 E, e < Eused, e = (cx , c)}
22: Lk  {n | 8(c�, c) 2 Eused, n 2 c� }
23: Ll  {n | 8(cz, c) 2 Etemp, n 2 cz }
24: for each e 2 Etemp do
25: cx  e[0] . e = (cx , c)
26: 8 li 2 cx , 8 lj 2 c ,
27: T (li , lj ) 

�
Tout (lj ) �

Õ
lk 2Lk T (lk , lj )

�
·

Tin(li )·h(li ,lj )Õ
ll 2Ll (Tin(ll )·h(ll ,lj ))

28: if T (li , lj ) < 0 then T (li , lj ) 0
29: Eused  Eused [ Etemp

30: for each (li , lj ) 2 Laug ⇥ Laug do
31: T (li , lj ) T (li , lj ) + T̂ (li , lj )

in Fig. 4(c) show an exemplary classi�cation of the network sites in
the example datacenter.

Step 2: Flow Graph. We build a directed graph G = (C,E) which
describes the tra�c relationships between classes. Here, we add
edges according to our domain knowledge about the target network.
An edge e = (ci , c j ) represents existence of network �ows from sites
in class ci to sites in class c j . An edge e can be either unconditional
or conditional: if unconditional, the edge indicates there exists a
�ow for every pair (lx , l� ), where lx 2 ci , l� 2 c j ; if conditional, it
means there exists a �ow for some pairs. Such condition can be
de�ned using a condition function h(lx , l� ):

h(lx , l� ) =
(
1, if the �ow lx to l� exists
0, otherwise (including lx = l� )

Note that the condition function always returns 0 for the �ows
that do not belong to any edges in the �ow graph. Also, for the
unconditional edges, the condition function always returns 1 except
lx = l� .
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(a) Example Cloud Network (b) Augmented Gravity Domain (c) Customized Gravity Model

Figure 4: An example walk-through of gravity model customization for a cloud network
(a) an example cloud network consists of one controller, two network gateway nodes, and three compute nodes hosting total seven VMs. The
left four VMs and the right three VMs belong di�erent virtual networks; (b) the result of gravity domain augmentation. The administrator
assumed the compute nodes do not directly talk with VMs through network so she excluded compute nodes’ (virtual) interfaces toward VMs
from the augmentation; (c) a �ow graph of a customized gravity model. The solid lines are unconditional edges, and the dotted lines are
conditional edges. The numbers on the edges show the index of the set that each edge belongs to in the ordered set D of Algorithm 1.

Fig. 4(c) shows a �ow graph for the cloud network in Fig. 4(a).
Here, the administrator may de�ne several condition functions for
the conditional edges. For example, since the tra�c between two
VMs can exist only if the two belong to the same virtual network,
the administrator can de�ne the condition function as:

if lx , l� 2 cvm,

h(lx , l� ) =
8>>><
>>>:

1, if lx and l� belong to the same
virtual network and lx , l�

0, otherwise

where cvm denotes a class for VMs.
Step 3: Gravity Model Computation. According to the �ow graph

G, we can systematically compute a custom gravity model as de-
scribed in Algorithm 1. An intuitive explanation is that the algo-
rithm iterates over each class and distributes either Tin or Tout to
the connected edges. T̂ appearing in line 1-3 and 30-31 is a pre-
estimated tra�c model, which is explained in §3.2.3.

Since either Line 18 or Line 27 will be executed at most |Laug |2
times and each line has O(|Laug |) of complexity in worse cast, the
worst case complexity of the algorithm is O(|Laug |3). However, the
actual computation is substantially smaller because the �ows that
do not belong to any edge will be set to 0 without going through
the computation.

After Step 3, we can obtain the gravity model for every network
�ow (i.e. T (li , lj ) 8li 2 Laug , 8lj 2 Laug). We can express the re-
sulting gravity model in a column vector as t� = (t1, t2, . . . , tn0)T
where n0 = |Laug |2.

3.2.3 Reflecting Pre-estimation. The customized gravity model
is based on the assumption that the each network node accesses
a limited number of peers, and such an access model is known to
the datacenter operators. However, operators do not always have
access to such information – e.g., cloud tenants may de�ne a virtual
topology in a very coarse-grained level or a virtual topology itself
is dynamically changing at the application level such as Apache
Hadoop and Storm.

As a remedy to this practical challenge, Polygravity allows oper-
ators to utilize supplementary estimation models to alternatively
make up the limitation of gravity model. For example, a random
n-out-of-N sampling technique [37] �ts well for this purpose – the
random packet sampling technique captures the heavy �ows in a
sparse tra�c matrix well, but it unreliably estimates smaller size
�ows and generally performs bad for dense tra�c matrices, which
exactly counter-balances the cons and pros of gravity model. In
addition, n-out-of-N sampling technique is widely implemented
as an industry standard such as sFlow [27] and NetFlow [13] and
readily deployable in datacenters even without special hardware
supports.

As described in Algorithm 1 line 1-3 and 30-31, Polygravity takes
pre-estimated tra�c into account by �rst assigning the tra�c to
the pre-estimated model and then running the gravity model for
the left-over tra�c. Depending on the quality of the pre-estimation,
however, the naive application of pre-estimated tra�c may not help
or even harm the quality of estimation. Thus, we suggest an adaptive
application of pre-estimated tra�c to Polygravity. Especially for
sampling, we may utilize coe�cient of variation(CV ) of a sampled
�ow as an approximate indicator of its accuracy. Since our purpose
of utilizing sampling is sketching the overall portions of heavy
�ows in the sparse tra�c matrix (which gravity model cannot
capture without domain knowledge), it is reasonable to preserve the
proportion of each �ow in whole. Therefore, rather than adjusting
individual �ow by its CV , we adjust the entire pre-estimated tra�c
according to the mean ofCV s (C̄V ). To be speci�c, we regard C̄V <
0.5 su�ciently precise to take the pre-estimation as a whole, and
C̄V > 1.5 overly imprecise to re�ect, and proportionally decrease
the portion of pre-estimation when C̄V is in between.

Compared to the case of utilizing sampling alone for estimating
the tra�c of an entire datacenter, sampling with Polygravity en-
ables datacenter operators to selectively deploy sampling. This is a
signi�cant bene�t that leads to saving resources from processing
and storing samples throughout the datacenter.
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3.3 Estimation Re�nement
Though our customized gravity model captures the overall tra�c
pattern, it does not take the links in the black-box in Figure 1 into
account. With only the gravity model, the resulting �ow estimation
might show high error rate for interior network links. In this sec-
tion we describe how Polygravity re�nes the initial gravity model
solution.

3.3.1 �adratic Programming. The classic tomogravity method
re�nes the the initial gravity model result through Least Square
Method (LSM) and Iterative Proportional Fitting (IPF) as introduced
in §2. The re�nement step of Polygravity basically identical to
that of tomogravity. I.e., Polygravity �rst applies a weighted Least
Square Method:

argmin
t

| |(t � tg)./w| | (6)

where | |A · t � x| | = 0

where tg is the gravity model solution we got from §3.2, w is a
weighting factor and ./ is an element-wise division operator. Since
A is a fat matrix, there exist multiple solutions that satis�es | |A ·
t � x| | = 0, and the goal is �nding a solution that is closest to the
the gravity model solution. Since the least square solution t can
contain negative values, we �rst change all the negative values to
zeros and apply Iterative Proportional Fitting [11] until the link
error reaches to a certain threshold. For the weighting factor w, we
followed the original tomogravity’s approach that uses the square
root of the gravity model (w =

p
tg).

3.3.2 Broadcast Noise Cancellation. One issue of using Aug-
mented Gravity Domain is that it increases the number of �ows
to consider in quadratic programming, which naturally increases
computation time. It is reasonable to take such interior network
�ows into account if the �ows are important and expected to exist
(such as �ows from compute nodes to Controller in Fig. 4(c) or �l-
tered tra�c by �rewall). However, if some �ows are not worthwhile
to re�ne at the expense of additional computation time, we can
remove them from the re�nement steps.

Interior �ows introduced by broadcasting tra�c can be consid-
ered as such “�ows less worthwhile to re�ne” – in tra�c matrix
use cases such as hotspot detection, link failure detection, resource
allocation, and capacity planning, the main input is point-to-point
tra�c matrix but not precise background noise tra�c. In addition,
the interior switch interfaces (i.e., the interfaces augmented due to
broadcasting) introduce a signi�cant number of �ows compared
with the other sites – a single interior switch interface can intro-
duce nearly |L| additional �ows because the destination of �ows
from a switch can hardly be limited within some sites (e.g., the
interior switch interface class in Fig. 4(c) had edges to all the other
classes in the �ow graph, and the condition function for interior
switch interfaces may merely check if the interface is toward the
peer or not). Therefore, by removing the interior �ows attributed
to broadcast tra�c, we may signi�cantly reduce the computation
cost. Let’s term these �ows as noise �ows.

Since the noise �ows are actually existing, simply excluding them
from the �ow matrix t, will harm the accuracy of the estimation
result. To minimize the impact of noise �ows, we can use the initial
gravity estimation result of noise �ows. In other words, we can

‘cancel out’ the tra�c possibly attributed by noise �ows from the
link matrix x by computing:

xnc = x � A(br) · tg(br) (7)

where A(br) is a routing matrix of the noise �ows, tg(br) is a �ow
vector for the noise �ows, and xnc is the ‘noise-canceled’ link ma-
trix.

4 EVALUATION
To evaluate Polygravity, we derived a synthetic data set based on
measurement results from earlier studies and then used this data to
compare Polygravity against a number of earlier tra�c estimation
approaches: In §4.1, we �rst describe our methodology for realis-
tic synthetic data generation. In §4.2, we use the generated data
sets to validate Polygravity by comparing it with di�erent earlier
approaches. In §4.3, we show the impact of interior source/sink
and validate IGE and the noise cancellation technique. Finally, in
§4.4, we evaluate the scalability of Polygravity by measuring the
changes of accuracy and running time of Polygravity as the target
datacenter scales up.

4.1 Synthetic Data Generation
Our original target through this work is estimating tenant-level
network tra�c of our public multi-tenant datacenters [4, 29]. For
validation of our algorithm against these datacenters, we should
have the complete sets of SNMP data x, routing matricesA and �ow
level data t from the datacenters as well as the domain knowledge.
Similar to [36], though we could collect the SNMP data and the
routing matrices from the target datacenters, the complete �ow
level data collection was not available due to the privacy policy and
the vendor implementation of �ow collection. For the datacenter
[29], we could obtain �ow samples, but the maximum sampling
rate was too low compared to the amount of datacenter tra�c to
apply the same technique as [36] and to generate realistic data sets.

As a solution to this problem, we �rst generated sets of tenant-
level tra�c in Emulab testbed [34] with a realistic setup based on
previous measurement studies [8, 12, 23] and collected complete
sets of �ow data from them. We then synthesized the �ow data
into simulated multi-tenant datacenters, and computed a consistent
SNMP data set from the routing matrix of the simulated datacenter
and the synthesized �ow data. In §4.1.1 and §4.1.2, we describe the
detailed methodology to generate realistic tenant tra�c for web
service style tenants and map-reduce style tenants, the most typical
types of tenants in clouds. In §4.1.3, we describe how we synthesize
the data and simulate datacenter tra�c.

4.1.1 Web Service Tenant. A three-tier architecture [6] is a typi-
cal setup for web services. For a realistic web service tenant tra�c
generation, we �rst deployed a three-tier web application consist-
ing of a front-end load-balancer, 10 Wordpress middle-tier nodes
and a back-end MySQL database. In this setup, the load-balancer
receives requests from clients through a gateway and forwards
each of them to a Wordpress node in a round-robin fashion. The
Wordpress nodes interact with the back-end database to process
the clients’ requests.

Next, we generated workload based on a real-world multi-tenant
datacenter tra�c pattern introduced by Benson et al. [8] – the
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(a) Web Service Tenant (b) Map-Reduce Tenant

Figure 5: Tra�c Matrices of Tenants (a) Each GW, DB, LB and W
stands for Gateway, Database, Load-balancer andWordpress
node. (b) Each M and Smeans Master and Slave.

authors observed the distributions of 1) number of active flows3,
2) flow interarrival times and 3) flow lengths in multi-tenant data-
centers form lognormal distributions. Since these three variables are
dependent, if we control any two to follow lognormal distributions,
the other naturally forms a lognormal distribution. Speci�cally,
we picked the tra�c pattern observed at a speci�c switch in [8]
(named PRV23) where nearly 85% of observed tra�c was HTTP
(i.e., web service tra�c), and implemented a workload generator
which mimics web service clients by randomly generating flows

with flow interarrival times and flow lengths following lognormal
distributions close to the patterns of the PRV23.

We ran the workload generator for around 70 minutes and ob-
tained 14 tra�c matrices at 5 minute interval. Figure 5(a) visualizes
the resulting tra�c matrix over the entire period. As we can see
from the �gure, in this web application, Wordpress nodes do not
communicate with each other. In addition, since the client requests
are load-balanced in a round-robin fashion, the overall tra�c is
evenly distributed over the Wordpress nodes. On average, the total
size of �ows for 5-min interval is 8.2 GBytes (min: 6.1GB, max:
8.5GB).

4.1.2 Map-Reduce Tenant. We deployed a Hadoop cluster con-
sisting of 1 master node and 10 slave nodes for map-reduce style
tenant tra�c generation. For realistic workload generation, we
batch processed 100 jobs with the distribution of per-job input size
close to that of one of CloudEra customer (CC-e) and Facebook
(FB-2010) introduced by Chen et al. [12], which follows lognormal
distribution with logarithmic mean= 16.166 ('10MB). Surprisingly,
this generated a tra�c pattern very similar to that of Microsoft Dat-
acenter [23], which is mainly used for Map-Reduce jobs. Figure 6
shows the resulting distribution of duration of flows in one of the
slave nodes.

It took around 80 minutes to �nish the all jobs, so we could
collect total 16 tra�c matrices at 5 minute interval. Figure 5(b)
visualizes the tra�c matrix of the map-reduce style tenant we
generated. Di�erent from the web service tenant, all map-reduce
nodes exchange tra�c with each other and the sizes of exchanged
tra�c are erratic. On average, the total size of tra�c for 5-min
interval is 3.1 GBytes but the variance was large (min: 0.1GB, max:
14.9GB).

3In [8] and [23], the term flow is used to mean a continuous sequence of packets from a
source to a destination, which di�ers from the term �ow we have used – point-to-point
�ow. For clear distinction, we notate flow only if it means ‘a continuous sequence of
packets having the same �ve tuples’.

Figure 6: Cumulative distribution of flows
The flows are observed at the Slave 0 node while running the Map-
Reduce workload emulating the CloudEra and Facebook jobs [12].
Other slave nodes showed the identical pattern. More than 70% of
the flows last less than ten seconds. Also, 50% of the bytes are in
flows lasting less than 1.3s, which could be shifted to 25s similar
to the Microsoft Datacenter [23] when we changed the lognormal
mean of the job size to 1GBytes.

4.1.3 Synthesis into Datacenter. Now we can simulate any vir-
tual datacenter with multiple tenants each of which may have each
tra�c matrix we measured. For the evaluation of general perfor-
mance of Polygravity (§4.2) and its noise cancellation (§4.3), we
created a virtual datacenter consisting of 60 virtual machines, 20
hosts, 4 edge switches, 2 aggregation switches and 1 core switch
and 1 gateway to the Internet4. For the scalability evaluation (§4.4),
we gradually increase the scale of the data centers as shown in the
Table 3.

In general, cloud providers use speci�c virtual machine place-
ment policies for various purposes. To answer the question ‘Does
virtual machine placement policy in�uence the performance of esti-
mation algorithms?’, we tested two contrasting placement policies:
a�nity policy – ‘placing a VM topologically close to the other VMs
belonging to the same tenant’ – and anti-a�nity policy– ‘placing
a VM in a host that does not host any VMs belonging to the same
tenant’. Simply speaking, a�nity policy is preferable for improving
the network throughput among the VMs, and anti-a�nity policy is
better for failure resistance.

For web service style tenants, we also investigated the in�uence
of tenant-side con�guration of security groups (or virtual topology).
As explained in §4.1.1, the web service uses a three-tier architec-
ture where each node communicates only with speci�c peers. In
a cloud environment, a cloud tenant can setup his virtual topol-
ogy and/or security groups to re�ect such communication pattern
(e.g., for dividing broadcast domains or enhancing security). We
especially tested three possible security group setup – �at, tiered
and point-to-point as illustrated in Figure 7. The �at security group
setup simply allows every possible communication among the VMs
and the external gateway, which makes the system vulnerable to
attack since every single node is reachable from outside as well
as each other. The tiered setup distinguishes VMs by their type,
groups them together and limiting communication by de�ning the
accessible groups for each group. The point-to-point setup strictly
4For the aggregated switches for achieving large bandwidth (e.g., Fat-tree structure
with ECMP), our model regards aggregated group of switches as one switch. Likewise,
any aggregated group of links is regarded as one link.
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(a) Flat Security Group Rules

(b) Tiered Security 
Group Rules

(c) Point-to-Point Security 
Group Rules

Figure 7: Di�erent levels of access control (aka security
group in cloud) setups for web service. Each green, yellow,
blue and red node refers Gateway, Load-balancer,Wordpress
Node and Database.

limits unnecessary communication, which is most robust against
propagation of attacks. Note that, since the cloud provider can
access metadata describing tenants’ virtual topology and security
group setup, the cloud provider can readily re�ect this information
on the condition function h(lx , l� ) of Polygravity.

In the map-reduce environment, since all nodes may commu-
nicate with each other according to the job assignment by the
master node, it is not easy for cloud providers to capture application-
speci�c tra�c patterns without special introspection or support
from the tenants. As an alternative, we applied pre-estimation mod-
els introduced in §3.2.3 exclusively for map-reduce style tenants
using host-based n-out-of-N packet samplingwith various sampling
rates.

4.2 Performance
To evaluate the performance of Polygravity, we conducted eval-
uations with various algorithms against various combinations of
tenant styles and security group setups. The evaluated algorithms
include tomogravity [36] and ATME-PB [21] as well as Polygravity.
Tomogravity is identical to the combination of simple gravity and
LSM/IPF. ATME-PB re�nes the gravity model by excluding traf-
�c across tenants and applies Non-negative Least Square (NNLS)
method after scaling down the initial gravity result as much as
20%. Thus, the initial model of ATME-PB is identical to customized
gravity model of Polygravity with �at security group setup when
we can ignore the internal sink/source tra�c. For a fair comparison,
we additionally tested the NNLS in the way ATME-PB suggests.
For each combination of tenant styles, security group setups and
placement policies, we have generated 10 di�erent data sets.

As metrics to compare the performances of di�erent algorithms,
we reused the Root Mean Square Error (RMSE) and the Root Mean
Square Relative Error (RMSRE) used by [36]. RMSE and RMSRE are
de�ned as below:

RMSE =

vt
1
n

n’
i=1

(x̂i � xi )2 RMSRE(T ) =

vuuut 1
nT

n’
i=1
xi >T

( x̂i � xi
xi

)2

Table 1: Performance of various algorithms
RMSREs are computed on the largest 75% of the entire tra�c. RM-
SEs are in Mbps. The fractions next to algorithm names refer sam-
pling rates.

(a) A datacenter running 5 web service style tenants

Algorithms

Tra�c Matrix Errors

A�nity Anti-A�nity

RMSE RMSRE RMSE RMSRE

Tomogravity 682.93 70.52% 703.83 83.83%

ATME-PB 568.91 44.26% 532.98 45.83%

Polygravity-Flat 485.93 36.06% 480.77 34.77%

Polygravity-Tiered 0.29 0.01% 1.66 0.11%

Polygravity-Point-to-Point 0.24 0.00% 1.24 0.08%

(b) A datacenter running 5 map-reduce style tenants

Algorithms

Tra�c Matrix Errors

A�nity Anti-A�nity

RMSE RMSRE RMSE RMSRE

Tomogravity 143.10 58.64% 181.23 73.28%

ATME-PB 139.33 55.94% 144.08 59.10%

Polygravity 119.09 49.21% 127.46 51.92%

Sampling- 1
1000 89.81 48.39% 93.72 46.62%

Polygravity- 1
1000 58.76 30.14% 64.68 30.42%

Sampling- 1
300 43.35 21.14% 44.09 20.96%

Polygravity- 1
300 36.49 15.93% 37.48 16.46%

Sampling- 1
100 24.36 13.27% 25.44 12.66%

Polygravity- 1
100 19.56 9.90% 21.35 10.13%

where x̂i is the estimation of �ow i , xi is the ground truth and nT
is the number of �ows greater than the threshold T . Especially, we
adjusted T to cover the largest �ows comprising 75% of the entire
tra�c as [36].

General Performance: in Table 1(a), we present the resulting
tra�c matrix errors against datacenters running 5 web service
style tenants with di�erent placement policies. As we can see from
the result, for Polygravity starts to show signi�cant performance
improvement once we applied the domain knowledge about the
‘three-tiered security group setup’. What then resulted in the tipping
point from the ‘�at’ to the ‘tiered’? For an intuitive explanation
consider Fig. 8 which visualizes tra�c matrices. If we compare the
initial estimation results of both (Fig. 8(b) and (d)), we can see the
both of the domain knowledge runs yield similar results except for
the lines along the gateway nodes (the top line and the leftmost
line) and the lines from load balancers to the Wordpresss nodes (the
second bottom lines in each tenant square) in (b). In other words, the
condition function of ‘tiered’ case prevents the gravity model from
distributing tra�c to unlikely existing �ows along the lines but
that of ‘�at’ doesn’t. This may make big di�erence in terms of the
position in the least square’s constraint sub-space (i.e., their closest
solutions on the constraint subspace are far from each other) and
the di�erence can be signi�ed as they go through the re�nement. A
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            (a) Ground Truth                    (b) Gravity w/ Flat                  (c) Polygravity w/ Flat               (d) Gravity w/ Tiered             (e) Polygravity w/ Tiered

Figure 8: Sample tra�c matrices in a datacenter with 5 web service tenants and the a�nity placement policy. (b) and (d) are
the initial tra�c matrices for (c) and (e).

            (a) Ground Truth                    (b) Gravity w/ Flat                  (c) Polygravity w/ Flat               (d) Sampling 1/1000                 (e) Polygravity 1/1000

Figure 9: Sample tra�c matrices in a datacenter with 5 map-reduce tenants and the a�nity placement policy. (b) is the initial
tra�c matrices for (c), and (d) is the pre-estimation model for (e).

similar pattern of performance improvement was observed in the
study of Zhang et al. [36] – they could almost double the accuracy of
tomogravity by applying domain knowledge about access links and
peer links (and, presumably, especially by excluding tra�c among
peer links). We argue that the key for performance improvement of
tra�c estimation is �nding such tipping point domain knowledge.

Finding such domain knowledge is not always obvious, as the
case for map-reduce style tenants. In a map-reduce cluster, every
node communicates with every other node and the tra�c among
them are not necessarily evenly distributed as shown in Fig. 9(a).
Since the domain knowledge we used for the map-reduce style
tenant is ‘�at’ saying ‘every node can communicate each other
and the tra�c is distributed proportional to each of their input
and output tra�c’, Polygravity hardly captures the erratic patterns
of the distribution of the tra�c as Fig. 9(c). However, when an
supplementary model for tra�c matrix estimation (such as sam-
pling) is available, Polygravity could e�ectively integrate it into the
model and improve the estimation result as shown in Fig. 9(d) and
(e). Especially for n-out-of-N sampling, we could observe 25%-35%
reduction of sampling-based estimation’s relative error through
Polygravity. Table 1(b) summarizes the results.

As we can see from the both Table 1(a) and (b), the placement
policy did not show signi�cance in�uence on the performance
of Polygravity though the A�nity policy showed slightly better
performances in general.

Heterogeneous Tenants: in a real-world cloud environment,
the types of tenants are unlikely to be the same over the data center.
Therefore, we can naturally ask if Polygravity can still perform well
if the target datacenter hosts heterogeneous tenants with di�erent
granularity of domain knowledge. To answer to this question, we
have conducted another experiment with a datacenter hosting 2

Table 2: Performance of Polygravity with heterogeneous
types of tenants.
EachMRandWS stands for amap-reduce style tenant and aweb ser-
vice style tenant. RMSEs are in Mbps. RMSREs are computed on the
largest 75% of the tra�c. For the per-tenant performance, RMSEs
and RMSREs are computed based on the tra�c of each tenant.

Tenant

Tra�c Matrix Error

A�nity Anti-A�nity

RMSE RMSRE RMSE RMSRE

Total 113.59 21.19% 127.80 23.39%

MR1 537.36 46.13% 532.92 45.57%

MR2 374.82 58.51% 508.50 52.42%

WS1 3.57 0.16% 7.44 0.15%

WS2 3.81 0.15% 7.75 0.16%

WS3 3.92 0.08% 23.37 0.56%

map-reduce style tenants and 3 web service style tenants with two
di�erent placement policies (for the web service style tenants, we
used ‘tiered’ security group setup). The Table 2 shows the result.

First of all, we can notice that Polygravity still showed good
estimation performance for the tenants who o�er more �ne-grained
domain knowledge. This property of Polygravity has a signi�cant
implication, especially for practical utilization of Polygravity in
multi-tenant environment – the quality of estimation can be iso-
lated for each tenant. Also, if a cloud user wants better quality
of estimation service, she can help the cloud provider by o�ering
more �ne-grained domain knowledge such as carefully set security
groups or application-level metadata.
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Another noticeable feature is that the case with a�nity policy
generally showed better performance for the tenants with �ne-
grained domain knowledge. We can understand the di�erence to
be the result of the LSM – if the �ows from di�erent tenants are
less entangled at the link level, the least square computation does
not need to adjust the �ows of a tenant in a large due to the �ows
of another tenant, so it can minimize the noise from the tenants
with coarse-grained domain knowledge. This can be veri�ed from
the initial gravity results of the two placement policies, where the
di�erence in the error was negligible.

4.3 IGE and Noise Cancellation
To evaluate the performance of the inner gravity estimation (IGE)
and the broadcast noise cancellation (N/C) of Polygravity, we in-
jected various tenant-level multicast tra�c into a datacenter with 5
web service tenants and compared the performance of Polygravity
with and without IGE and noise cancellation. Speci�cally, we var-
ied three di�erent factors of noise tra�c – the total size of interior
source tra�c (SourceSize); the number of destination VMs for each
multicast (NumDsts); and the number of multicast generating tenants
(NumTenants). While varying each factor, we �xed other factors at
their default values (SourceSize=32GB, NumDsts=10, NumTenants=5).
Each experiment was repeated 10 times with di�erent data sets,
both in a datacenter with a�nity policy and in another with anti-
a�nity policy.

SourceSize: Figure 10 (a1) and (b1) show the changes of relative
errors as the size of each multicast �ow exponentially increases,
from 728KB (introducing 32MB of tra�c from interior sources,
and additional link level tra�c as much as 0.03% of the non-noise
tra�c) to 1GB (introducing 32GB of tra�c from interior sources, and
additional link level tra�c as much as 25% of the non-noise tra�c).
As we can see from the �gures, IGE and N/C consistently suppress
the error due to broadcast. Especially when the size of broadcast
tra�c was large (greater than 1% of the non-broadcast tra�c) in
the datacenter with a�nity policy, it consistently decreased the
relative errors of non-noise �ows by 2

3 (the gap between two lines
in Fig. 10(a1)). Interestingly, in the datacenter with anti-a�nity
policy, the vanilla Polygravity (i.e., Polygravity without IGE and
N/C) showed better noise-tolerance, so IGE and N/C could help to
decrease the RMSRE only by 1

2 to 1
3 .

NumDsts: Even if the total size of the interior sources is the same,
the distribution of the interior sources can vary depending on the
form of multicast. For example, though both a 2MB multicast �ow
destined to two nodes and a 1MB multicast �ow destined to three
nodes will introduce 2MB of tra�c from interior sources, the �rst
one actually generates 2MB of tra�c from a single interior source
and the second one introduces 1MB of tra�c from each of two
interior sources. We changed the distribution of interior sources by
changing the number of destinations of each multicast �ow while
keeping the total size of interior source tra�c to be 32GB, and
observed the performance of IGE and N/C. Fig. 10 (a2) and (b2) show
the results. In a nutshell, the more widespread the interior sources
are, the more noise-tolerant Polygravity was, but the performance
improvement by IGE and N/C was consistent regardless of the
distribution: 30%-60% smaller RMSRE with a�nity policy and 10%-
20% smaller with anti-a�nity policy. Similar to the case of varying

Table 3: The counts of datacenter components as the data-
center scales up. Each of EdgeSW and AggSW refers to the num-
ber of edge switches and that of aggregation switches.

Scale Flows Links VMs Hosts EdgeSW AggSW

1 930 44 30 10 2 1
2 3660 87 60 20 4 2
3 8190 130 90 30 6 3
4 14520 173 120 40 8 4
5 22650 216 150 50 10 5
6 32580 259 180 60 12 6
7 44310 302 210 70 14 7
8 57840 345 240 80 16 8
9 73170 388 270 90 18 9
10 90300 431 300 100 20 10

SourceSize, the vanilla Polygravity showed better noise-tolerance
with anti-a�nity policy, which decreased the contribution of IGE
and N/C.

NumTenants: Another way to change the distribution of the in-
terior sources is changing the number of multicast �ows. This time,
we changed the number of multicast �ows by limiting the number
of tenants generating the multicast �ows (the number of destina-
tions and the total size of interior source tra�c are �xed). For the
a�nity case, the result was similar to the case of varying NumDsts.
However, in the anti-a�nity case, the vanilla Polygravity showed
stronger noise-tolerance, even out-performing the Polygravity with
IGE & N/C for some cases (numTenants=1 and 2).

In summary, we could observe that IGE and N/C consistently
improved the performance of Polygravity when there exist widely-
distributed broadcast noises. This can be explained by the nature
of the gravity models in Polygravity, which assumes the interior
sinks/sources are proportionally distributed over the network inter-
faces and the sinks/sources are proportionally mapped with other
network ends. In addition, the vanilla Polygravity showed stronger
noise-tolerance under anti-a�nity policy, though there was still
some room for improvement by IGE and N/C. Presumably, this is
because the noise tra�c could be more evenly scattered across all
�ows in the a�nity case, which decreases the root mean square
value.

4.4 Scalability
To evaluate the scalability of Polygravity, we have gradually scaled
up the target datacenter as shown in Table 3 and measured the
computation time and accuracy for both Polygravity and tomo-
gravity. Figure 11 shows the changes of computation time as the
target datacenter scales up. As we can imagine, the computation
time of LSM was almost identical for both (Polygravity showed
slightly larger due to the augmented gravity domain). For the initial
gravity modeling, Polygravity’s case takes obviously longer than
tomogravity’s simple gravity model. The most dramatic di�erence
between the two algorithms was shown in the IPF step. This is
because tomogravity’s estimation result was generally too far from
the ground truth, which leads excessive number of iteration at
the IPF step. As we can see from the �gure, the main scalability
bottleneck for Polygravity is LSM (Singular Value Decomposition,
to be speci�c), which is essentially the same for tomogravity in
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(a1) varying SourceSize (in log scale) (a2) varying NumDsts (a3) varying NumTenants

(a) Change of RMSRE of non-noise �ows in a datacenter with a�nity placement policy as noise changes

(b1) varying SourceSize (in log scale) (b2) varying NumDsts (b3) varying NumTenants

(b) Change of RMSRE of non-noise �ows in a datacenter with anti-a�nity placement policy as noise changes

Figure 10: RMSRE of Polygravity with and without IGE and broadcast noise cancellation (N/C). Each datapoint is based on 10
di�erent data sets. RMSREs are computed on the largest 75% of the tra�c (Note: both axes of (a1) and (b1) are in log scale).

Figure 11: The computation time of tomogravity and Poly-
gravity as the target datacenter scales up.

ISP network. We may reduce the actual computation time of SVD
through two approaches – �rst, by making use of distributed SVD
algorithms with more computation resources; second, by reducing
the size of matrix (m ⇥ n). As future work, we are exploring an
e�ective way to reduce n by grouping uninteresting �ows without
sacri�cing the accuracy for other �ows.

Regarding the accuracy for the algorithms, regardless of scale,
both of the algorithms showed highly consistent results – 77% to
82% of RMSRE for tomogravity, and 0.12% to 0.14% for Polygravity.

Table 4: Measurement Error Tolerance of Polygravity. RM-
SEs are in Mbps. RMSREs are computed on the largest 75%
of the tra�c.

Noise Level
tra�c matrix errors link errors

RMSE RMSRE RMSE RMSRE

noise free 0.29 0.01% 1.56 0.02%

� = 0.01 18.45 1.72% 186.70 1.62%

� = 0.02 29.98 3.05% 363.02 2.93%

� = 0.04 49.65 5.46% 715.03 4.60%

4.5 Measurement Error Tolerance
Measurement error in SNMP counters is very common, so onemight
have a practical concern regarding the impact of this measurement
error on the performance of Polygravity. Zhang et al. [36] showed
that tomogravity has robust error-tolerance against this type of
measurement error by inducing errors to the tomogravity model.
To see if Polygravity inherits this feature from tomogravity, we
conducted the same experiment.

To be speci�c, we �rst generated an error term � :

� = x ⇤ N (0,� ), (8)
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where ⇤ is an element-wise multiplication operator and N (0,� ) is
a vector with random entries following a normal distribution with
mean 0 and standard deviation � . We then induced the error � to
the link vector:

xerr = x + � (9)

We ensured the non-negativity of xerr by changing negative values
in xerr to 0. Table 4 shows the performance of Polygravity under
di�erent levels of noise. Here, we used a datacenter hosting �ve
web service style tenants with a�nity placement policy, and each
experiment was repeated over 10 di�erent data sets. The result was
identical to that of the tomogravity – the measurement level errors
proportionally degrade the accuracy of Polygravity.

5 DISCUSSION
Polygravity is designed for continuous tra�c matrix monitoring in
a multi-tenant datacenter. In this section, we discuss some practical
concerns for deploying Polygravity.

Sampling and Other Estimation Techniques: Polygravity is
not meant to replace all bene�ts of sampling. For instance, as we
saw in Figure 9(d), sampling alone shows great performance for the
elephant �ow detection. However, to increase its coverage, we must
increase the sampling rate by some orders of magnitude, as we saw
in Table 1(b). An advantage of Polygravity over the sampling-only
approach is that we can selectively apply sampling techniques. For
example, when a cloud administrator wants to estimate the entire
tra�c matrix of the data center with smaller relative error, the
administrator can apply a high sampling rate to just the nodes with
coarse-grained domain knowledge.

This advantage of Polygravity is applicable to other estimation
and/or measurement techniques. For instance, when a cloud ad-
ministrator wants a precise tra�c matrix but domain knowledge
for certain �ows is imprecise, he may set the SDN rules for the
�ows, collect precise �ow counts for them, and simply re�ect the
measurement result as a pre-estimation model of Polygravity. This
feature of Polygravity allows cloud administrators to �exibly deploy
any hybrid solution.

Interior Sinks/Sources: Considering Section 4.3, one might
wonder if there exists such a high volume of tra�c from interior
sinks and sources in a datacenter. As a practical example, in the
CloudLab datacenters [29], the virtual machine and bare metal
images are transferred to the distributed host machines through
Frisbee [19], which internally uses switch level multicast to reduce
the amount of tra�c in the data center. Through our experience
of tra�c analysis on one of the CloudLab clusters, we could ob-
serve large tra�c from interior sources due to Frisbee, especially
when there were many VMs starting o�. Tenant-level multicast is
another source of such interior source tra�c. Unless a VM itself
changes multicast to unicast, a multicast �ow unavoidably induces
a branching of the �ow to multiple destinations, either at switch
devices or at host machines (e.g., OpenStack Neutron ML2 [1]).

Regarding the interior sinks, the most practical example is packet
loss due to a cloud’s security group (distributed �rewalls) [3, 5].
When we estimate VM-to-VM tra�c, host machines work as in-
termediary network devices. However, if a �ow from one VM to
another is dropped by a security group rule, it does not go through

the virtual interface between the destination VM and its host ma-
chine. In this case, the �ow cannot be mapped to the VM-to-VM
�ow, but to a �ow between the source VM and the destination VM’s
host machine. This makes the host machine seem to be both an
intermediary device and an end host, which is an interior sink in
our model. Note that this type of noise �ow does not need to be
noise-canceled, since the number of such �ows is very small in
comparison to the number of possibly existing multicast �ows.

Usability: As mentioned earlier, an accurate end-to-end tra�c
matrix can provide a great deal of help in many di�erent network
problems: tra�c engineering [7], virtual machine scheduling [25],
network design [28], capacity planning and failure detection [18].
However, tra�c matrix estimation may not be suitable for some
other types of problems. For instance, Polygravity can be overkill
for cloud billing, because we do not need to know the size of every
end-to-end �ow but rather the aggregated amount of tra�c (e.g.,
aggregated amount of tra�c in-out/to-from a datacenter for each
tenant in AWS [2]). Likewise, Polygravity may be insu�cient to
problems that requires �ner-grained level of tra�c information (e.g.,
protocol, size and interarrival time of packets for datacenter security
analysis [10, 35]). In addition, if the target problem is sensitive to
the accuracy of the estimation result, the administrator needs to
carefully compare the expected accuracy of the Polygravity model
in the target network and the required accuracy for the problem.
Since precise comparison of these two accuracies is still an open
problem, as future work, we plan to apply Polygravity to some of
aforementioned network problems to answer to the question as
well as to see the impact of our solution.

6 CONCLUSION
In this paper, we present Polygravity, a tra�c matrix estimation
algorithm for a multi-tenant datacenter via coarse-grained link level
measurement data and using di�erent types of domain knowledge.

Through our evaluation, we show Polygravity can estimate traf-
�c matrix with less than 1% average relative error with �ne-grained
domain knowledge. In addition, when provided domain knowledge
is coarse-grained, Polygravity’s estimation has 1

3 smaller relative
error with assistance of sampling than sampling-only approach.
Polygravity is especially suitable for a multi-tenant environment
since it can show relatively clean performance isolation for each
tenant with heterogeneous domain knowledge. Our scalability eval-
uation showed Polygravity consistently performs well regardless
the scale of target data center.
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