DeeplLog: Anomaly Detection and Diagnosis from System Logs
through Deep Learning
Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar

School of Computing, University of Utah
{mind, lifeifei, guineng, svivek@cs.utah.edu

ABSTRACT challenging and many traditional anomaly detection methods based
Anomaly detection is a critical step towards building a secure and N Standard mining methodologies are no longereetive.
trustworthy system.! e primary purpose of a system log is to System logs record system states and sigiaint events at various

record system states and sigiant events at various critical points cfitical points to help debug performance issues and failures, and
to help debug system failures and perform root cause analysis. Such Perform root cause analysis. Such log data is universally available
log data is universally available in nearly all computer systems. in nearly all computer systems and is a valuable resource for un-
Log data is an important and valuable resource for understanding derstanding system status. Furthermore, since system logs record
system status and performance issues; therefore, the various sys-noteworthy eventsas they occur from actively running processes,
tem logs are naturally excellent source of information for online they are an excellent source of information for online monitoring
monitoring and anomaly detection. We propose DeepLog, a deep and anomaly detection.

neural network model utilizing Long Short-Term Memory (LSTM), Existing approaches that leverage system log data for anomaly
to model a system log as a natural language sequehcis. allows detection can be broadly clas®d into three groups: PCA based
DeepLog to automatically learn log grns from normal execution, ~ @Pproaches over log message count&dg[invariant mining based
and detect anomalies when log #arns deviate from the model ~ Methods to capture co-occurrence#garns between dierent log
trained from log data under normal execution. In addition, we Keys [21], and work$ow based methods to identify execution anom-
demonstrate how to incrementally update the DeepLog model in alies in program logicows [42. Even though they are successful in

an online fashion so that it can adapt to new log#erns over time. certain scenarios, none of them i%ective as a universal anomaly
Furthermore, DeepLog constructs waws from the underlying detection method that is able to guard againstrent & acks in
system log so that once an anomaly is detected, users can diagnose@n online fashion.

the detected anomaly and perform root cause analySiecively. !' is work proposes Deeplog, a data-driven approach for anom-

Extensive experimental evaluations over large log data have shown aly detection that leverages the large volumes of system lége.
that DeepLog has outperformed other existing log-based anomaly key intuition behind the design of DeepLog is from natural lan-

detection methods based on traditional data mining methodologies. 9Uage processing: we view log entries as elements of a sequence
that follows certain p#erns and grammar rules. Indeed, a sys-

CCS CONCEPTS tem log is produced by a program that follows a rigorous set of
logic and control$ows, and is very much like a natural language
(though more structured and restricted in vocabulary). To that end,
Deeplog is a deep neural network that models this sequence of log
entries using a Long Short-Term Memory (LSTMY. ! is allows
KEYWORDS DeeplLog to automatically learn a model of log#erns from nor-
mal execution andbag deviations from normal system execution
as anomalies. Furthermore, since it is a learning-driven approach,
it is possible to incrementally update the DeepLog model so that it
1 INTRODUCTION can adapt to new log péerns that emerge over time.

Anomaly detection is an essential task towards building a secure Challenges. Log data are unstructured, and their format and se-
and trustworthy computer system. As systems and applications Mmantics can vary sigriicantly from system to system. It is already
get increasingly more complex than ever before, they are subject challenging to diagnose a problem using unstructured logs even
to more bugs and vulnerabilities that an adversary may exploitto ~ a8&er knowing an error has occurreddd; online anomaly detection
launch atacks. Such#acks are also géing increasingly more from massive log data is even more challenging. Some existing
sophisticated. As a result, anomaly detection has become more methods use rule-based approaches to address this issue, which
requires specic domain knowledge41], e.g., using features like
Permission to r_nake digital_or hard copie_s of all or part of this work for pers_on_al or OIP addressO to parse a Iog. However, this does not work for genera|
classroom use is granted without fee provided that copies are not made or distributed . e . .

for pro" t or commercial advantage and that copies bear this notice and the full citation ~ PUrPOSe anomaly detection where it is almost impossible to know

on the" rst page. Copyrights for components of this work owned by others than ACM @ priori what areinteresting features in di%erent types of logs (and

must be honored. Abstracting with credit is per#hed. To copy otherwise, or republish, to guard against dierent types of #acks)
to post on servers or to redistribute to lists, requires prior specpermission and/or a X . o
fee. Request permissions from permissions@acm.org. Anomaly detection has to be timely in order to be useful so that

CCS’17, Oct. 30-Nov. 3, 2017, Dallas, TX, USA. users can intervene in an ongoingfack or a system performance

©2017 ACM. ISBN 978-1-4503-4946-8/17/$05.00 i isi i i i
DOI: hépilidx.doi.org/10.1145/3133956 3134015 issue [LJ. Decisions are to be made in streaming fashion. As

Mnformation systems ! Online analytical processing; ¥Security
and privacy ! Intrusion/anomaly detection and malware mitiga-
tion;

Anomaly detection; deep learning; log data analysis.

a result, 0 ine methods that need to make several passes over the ability to incrementally update its weights during the detec-

the entire log data are not applicable in our#iag [22 39. We
would also like to be able to deteatnknown types of anomalies,
rather than gearing towards speat types of anomalied. erefore,
previous work (44 that use both normal and abnormal (for spéci
types of anomalies) log data entries to train a binary clédssifor
anomaly detection is not useful in this context.

Another challenge comes from concurrency. Clearly, the or-
der of log messages in a log provides important information for

tion phase by incorporating live user feedback. More speailly,
DeeplLog provides a mechanism for user feedback if a normal log
entry is incorrectly classied as an anomaly. DeepLog can then use
such feedback to adjust its weights dynamically online over time
to adapt itself to new system execution (hence, new log}emns.

2 PRELIMINARIES

diagnosis and analysis (e.g., identify the execution path of a pro- 2.1 Log parser
gram). However, in many system logs, log messages are producedWe " rst parse unstructured, free-text log entries into a structured

by several dierent threads or concurrently running tasks. Such
concurrency makes it hard to apply woflow based anomaly de-
tection methods 42 which use a worléow model for a single task

representation, so that we can learn a sequential model over this
structured data. As shown by several prior worR,[22, 39 42 45,
an &ective methodology is to extract a Olog keyO (also known as

as a generative model to match against a sequence of log messagesDmessage typeO) from each log emtrg log key of a log entrye
Lastly, each log message contains rich information such as a log refers to the string constark from the print statement in the source
key and one or more metric values, as well as its timestamp. A code which printece during the execution of that code. For example,

holistic approach that integrates and utilizes thesé&eient pieces

of information will be more &ective. Most existing method<p,

32 39 41, 42 44 analyze only one spetc part of a log message
(e.g., the log key) which limits the types of anomalies they can
detect.

Our contribution. A Recurrent Neural Network (RNN) is an arti-
" cial neural network that uses a loop to forward the output of last
state to current input, thus keeping track of history for making pre-
dictions. Long Short-Term Memory (LSTM) networks3 18 27]

are an instance of RNNs that have the ability to remember long-term

the log keyk for log entry e =“Took 10 seconds to build instance.” iS

K =Took * seconds to build instance., Which is the string constant from
the print statementprintf{”Took %f seconds to build instance.”, t). Note
that the parameter(s) are abstracted as asterisk(s) in a log'kesse
metric values r&ect the underlying system state and performance
status. Values of certain parameters may serve as idemns for

a particular execution sequence, suchtdsck_id in a HDFS log
andinstance_id in an OpenStack lod. ese identl ers can group
log entries together or untangle log entries produced by concurrent
processes to separate, single-thread sequential sequef2e39]

dependencies over sequences. LSTMs have demonstrated succes®2 49. ! e state-of-the-art log parsing method is represented by

in various tasks such as machine translatid3f], sentiment analy-
sis [8], and medical self-diagnosis [20].

Inspired by the observation that entries in a system log are
sequence of events produced by the execution of structured source
code (and hence can be viewed as a structured language), we design
the DeepLog framework using a LSTM neural network for online

Spell[9], an unsupervised streaming parser that parses incoming
log entries in an online fashion based on the idea of LCS (longest
common subsequence).

Past work on log analysisZ2 39 42 44 have discarded times-
tamp and/or parameter values in a log entry, and only used log keys
to detect anomalies. DeepLog stores parameter values for each log

anomaly detection over system logs. DeeplLog uses not only log entry e, as well as the time elapsed betweeand its predecessor,

keys but also metric values in a log entry for anomaly detection,
hence, it is able to capture @erent types of anomalies. DeepLog

into a vector! ¢. ! is vector is used by DeeplLog in addition to
the log key. An example is given in Table 1, which shows the pars-

only depends on a small training data set that consists of a sequence ing results for a sequence of log entries from multiple rounds of

of Onormal log entriesO.&4r the training phase, DeeplLog can

recognize normal log sequences and can be used for online anomaly

detection over incoming log entries in a streaming fashion.
Intuitively, DeepLog implicitly captures the potentially non-

linear and high dimensional dependencies among log entries from
the training data that correspond to normal system execution paths.

To help users diagnose a problem once an anomaly is idextj
DeepLog also builds wolow models from log entries during its

execution of virtual machine (VM) deletion task in OpenStack.

2.2 Deeplog architecture and overview

I e architecture of DeepLog is shown in Figure 1 with three main
components: the log key anomaly detection model, the parame-
ter value anomaly detection model, and the w&dw model to
diagnose detected anomalies.

training phase. Deeplog separates log entries produced by concur- 17@ining stage. Training data for DeepLog are log entries from

rent tasks or threads into @ierent sequences so that a wdsw
model can be constructed for each separate task.

normal system execution path. Each log entry is parsed to a log key
and a parameter value vectdr. e log key sequence parsed from a

Our evaluation shows that on a large HDFS log dataset explored raining log " le is used by DeepLog to train a log key anomaly de-

by previous work P2 39, trained on only a very small fraction

(less than 1%) of log entries corresponding to normal system exe-

tection model, and to construct system execution wédw models
for diagnosis purposes. For each distinct keyDeepLog also trains

cution, DeeplLog can achieve almost 100% detection accuracy on@nd maintains a model for_detecting sy;tem performance anomalies
the remaining 99% of log entries. Results from a large OpenStack 25 reébected by these metric values, trained by the parameter value
log convey a similar trend. Furthermore, DeepLog also provides VECtor sequence .
Detection stage. A newly arrived log entry is parsed into a log
key and a parameter value vector. Deepliagt uses the log key

log message (log key underlined) log key | parameter value vector
t1 Deletion of! lel complete k1 [t1" to, "lelld]

t2 Took 0.61seconds to deallocate network E ko [t2" t1, 0.61]

t3 VM Stopped (Lifecycle Event) ks [ts" to]

E E E

Table 1: Log entries from OpenStack VM deletion task.

7 each log entry = log key + parameter value vector ﬁ \ A new log entry
) Log Key Log
Train model omaly Detection

» An
Construct workflow model 4 @ U
. .Y : - / log key k;
2 normal execution ki v | NS g key i s
< < 1 S Workfl | No, + Q
= log file tha it [ta2, val orkilows ' L heck =
] i+ s v chec
%] - log entry] Log \: : .| Piagnosis | vector parameter s
§° f: 10§ emr§2 Parser Update value vector | =
= f3 : log entry3 : ({1 model if [tai,vits-.-] %
~§ ty : log entry4] e false positive N
s ts : log entry5 E ST S L P U 1 Yes Og
~ te : log entry6 oo Parameter Value |
...... B ST S L DO Anomaly Detection | @ NO—»@
o k2 model 1
i for each log key
_/—\ kit Vi ki). |
] [N Y __ 7 I

Figure 1: DeepLog architecture.

anomaly detection model to check whether the incoming logkeyis 3 ANOMALY DETECTION
normal. If yes, DeeplLog further checks the parameter value vector 3.1 Execution path anomaly
using the parameter value anomaly detection model for that log key.

I e new entry will be labeled as an anomaly if either its log key or
its parameter value vector is predicted being abnormal. Lastly, if
it is labeled being abnormal, DeepLogOs Work model provides
semantic information for users to diagnose the anomaly. Execution
patterns may change over time or were not included in the original
training data. DeeplLog also provides the option for collecting user
feedback. If the user reports a detected anomaly as false positive,
DeeplLog could use it as a labeled record to incrementally update
its models to incorporate and adapt to the new#grn.

We " rst describe how to detect execution path anomalies using the
log key sequence. Since the total number of distinct print statements
(that print log entries) in a source code is constant, so is the total
number of distinct log keys. Ldt = {k1,kp, ... ,kn} be the set of
distinct log keys from a log-producing system source code.

Once log entries are parsed into log keys, the log key sequence
re$ects an execution path that leads to that particular execution
order of the log print statements. Leb; denote the value of the
key at positioni in a log key sequence. Clearly; may take one of
" then possible keys froniK, and is strongly dependent on the most
2.3 reat model recent keys that appeared prior to; .

Deeplog learns the comprehensive and intricate correlations and ~ We can model anomaly detection in a log key sequence as a multi-
paterns embedded in a sequence of log entries produced by normal class clas$ication problem, where each distinct log key 'tdees
system execution paths. Henceforth, we assume that system logs a class. We train DeeplLog as a multi-class classover recent
themselves areecure and protected, and an adversary cannot@ck context.! einputis a history of recent log keys, and the outputis a
the integrity of a log itself. We also assume that an adversary cannot probability distribution over the n log keys from K, representing the
modify the system source code to change its logging behavior and probability that the next log key in the sequence is a kiey# K.
paterns.! atsaid, broadly speaking, there are two types ékaks Figure 2 summarizes the classation setup. Supposgeis the

that we consider. sequence id of the next log key to appedr. e input for classi-

(1) Atacks that lead to system execution misbehavior and hence " cation is a windoww of the h most recent log keys.! at is,
anomalous p#erns in system logs. For instance, Denial of Service w = {m;-y,,...,m¢"2,m;» 1}, where eachm; is in K and is the log
(DoS) #acks which may cause slow execution and hence perfor- key from the log entryg . Note that the same log key value may
mance anomalies f&cted in the log timestamp éfierences from appear several times iw. ! e output of the training phase is a
the parameter value vector sequencetagks causing repeated model of the conditional probability distributiofPrim; = k; [w] for
server restarts such as Blind Return Oriented Programming (BROP) each ki # K(i = 1,...,n). ! e detection phase uses this model to
attack [5] shown as too many server restart log keys; and any at- make a prediction and compare the predicted output against the
tack that may cause task abortion such that the corresponding log observed log key value that actually appears.
sequence ends early and/or exception log entries appear. Training stage. ! e training stage relies on a small fraction of log

(2) A#acks that could leave a trace in system logs due to the entries produced by normal execution of the underlying system.

logging activities of system monitoring services. An example is gqr each log sequence of lengfthin the training data, DeepLog
suspicious activities logged by an Intrusion Detection System (IDS).

Input: h recent —-Pr(m, = kilw) k, e Ki=1,...,n)

DeepLo
Igg ke;ys upto pLog Output: conditional probability
= % of next log key given the input
recent sequence
w={mep,....m—,m_1}

Figure 2: An overview of log key anomaly detection model.

updates its model for the probability distribution of haviig # K
as the next log key value. For example, suppose a small' leg
resulted from normal execution is parsed into a sequence of log
keys:{ko, ks, k11, ko, k11, kog}. Given a window sizén = 3, the
input sequence and theoutput label pairs to train DeeplLog will be:
{koo, ks, k11! ko},{ks ki1, ko! Kki},{k1i1, ke k11! kog}.
Detection stage. DeepLog performs anomaly detection in an on-
line, streaming s&ing. To test if an incoming log keyn; (parsed
from an incoming log entrye) is to be considered normal or abnor-
mal, we sendv = {m;-p, ...,m¢" 1} to DeeplLog as its inputl e
output is a probability distributionPr{m¢ w] = {k1 : p1, k2 : p2, ...,
kn : pn} describing the probability for each log key fromd to
appear as the next log key value given the history.

In practice, multiple log key values may appearms. For in-
stance, if the system isf@mpting to connect to a host, them;
could either be Waiting for * to respondd or@nnected to *O; both

LSTM

Output of last state block

is forwarded as j
current input state

My
G Rollout /!
=2

Hip H, Hi
LSTM|F —— — — » LSTM LSTM ——>
block | — — — — »| block block —»
Cr—h T Ct—2 T Ct—l
my—p me— mg—1
GStack up
DeepLog ...
N h — .

mp—q Input

Figure 3: A detailed view of log key anomaly detection
model using stacked LSTM.

language model, a LSTM-based one can encode more intricate pat-
terns and maintain long-range state over a sequer@4.[Complex

are normal system behavior. DeepLog must be able to learn such pa#erns and interleaving log entries from concurrent tasks in a sys-

paterns during training. Our strategy is to sort the possible log
keysK based on their probabilitiePrim; |w], and treat a key value
as normal if itOs among the t8andidates. A log key i$agged
as being from an abnormal execution otherwise.

3.1.1 Traditional N-gram language motlek problem of as-
cribing probabilities to sequences of words drawn froni' aed
vocabulary is the classic problem @dnguage modeling, widely
studied by the natural language processing (NLP) commur.[

In our case, each log key can be viewed as a word taken from
the vocabularyK. ! e typical language modeling approach for
assigning probabilities to arbitrarily long sequences is the N-gram
model. ! e intuition is that a particular word in a sequence is
only insuenced by its recent predecessors rather than the entire
history. In our séting, this approximation is equivalent to #eng
Primt = ki|my,...,mt"1) = Prm¢ = ki jm¢» N, - - . Mg 1) where

N denotes the length of the recent history to be considered.

For training, we can calculate this probability using relative fre-
guency counts from a large corpus to give us maximum likelihood
estimates. Given a long sequence of kéys;,mp, ... mt}, we
can estimate the probability of observing th keyk; using the
relative frequency counts ofmi» N, ...,mt 1,my = ki } with re-
spect to the sequendgn;» \, . . .,m¢» 1}. In other words,Prim; =
ki [mg, ... ,m¢+ 1) = count(my» N, . . ., Mg 1, My = ki)/countimg -y,
..,m¢" 1). Note that we will count these frequencies using a sliding
window of sizeN over the entire key sequence.

To apply the N-gram model in our $éng, we simply useN as
the history window size, i.e., we sat= N in our experiments when
the N-gram model is used wheteis the history sliding window
size as depicted in Figure 2. We use this as a baseline method.

3.1.2 TheLSTM approadhrecentyearspeural language mod-
els that use recurrent neural networks have been shown to be highly
e%ective across various NLP task3 P§. Compared to a N-gram

tem log can render a traditional language model le$getive.! us,
DeepLog uses a LSTM neural networkq for anomaly detection
from a log key sequence.

Given a sequence of log keys, a LSTM network is trained to
maximize the probability of havindg; # K as the next log key value
as rebected by the training data sequence. In other words, it learns
a probability distributionPr(m¢ = ki [m¢«p, ..., mgm 2, me» 1) that
maximizes the probability of the training log key sequence.

Figure 3 illustrates our design. e top of the" gure shows a
single LSTM block that r@ects the recurrent nature of LSTM. Each
LSTM block remembers a state for its input as a vector dkad
dimension.! e state of an LSTM block from the previous time
step is also fed into its next input, together with its (external) data
input (m¢~ in this particular example), to compute a new state
and output.! is is how historical information is passed to and
maintained in a single LSTM block.

A series of LSTM blocks form an unrolled version of the recurrent
model in one layer as shown in the center of Figure 3. Each cell
maintains a hidden vectoldi and a cell state vecto€; . Both
are passed to the next block to initialize its state. In our case, we
use one LSTM block for each log key from an input sequend@a
window of h log keys). Hence, a single layer consistshainrolled
LSTM blocks.

Within a single LSTM block, the input (e.gx;~ i) and the previ-
ous output Ht+ i~ 1) are used to decide (1) how much of the previous
cell stateC; j» 1 to retain in stateC; - i, (2) how to use the current
input and the previous output to iiuence the state, and (3) how
to construct the outputH;»i. ! isis accomplished using a set of
gating functions to determine state dynamics by controlling the
amount of information to keep from input and previous output, and
the information $ow going to the next step. Each gating function
is parameterized by a set of weights to be learnkde expressive
capacity of an LSTM block is determined by the number of memory

units (i.e. the dimensionality of the hidden state vectd). Due to
space constraints, we refer the reader to NLP primers (eld]) [
for a formal characterization of LSTMs.

! etraining step entail$ nding proper assignments to the weights
so that the" nal output of the sequence of LSTMs produces the de-
sired label (output) that comes with inputs in the training data set.
During the training process, each input/output pair incrementally
updates these weights, through loss minimization via gradient de-
scent. In DeepLog, an input consists of a windewof h log keys,
and an output is the log key value that comes righterw. We use
the categorical cross-entropy loss for training.

A&er training is done, we can predict the output for an input
W = {m¢+p,...,mtv1}) using a layer oh LSTM blocks. Each log
key inw feeds into a corresponding LSTM block in this layer.

If we stack up multiple layers and use the hidden state of the
previous layer as the input of each corresponding LSTM block in
the next layer, it becomes a deep LSTM neural network, as shown at
the batom of Figure 3. For simplicity, it omits an input layer and an
output layer constructed by standard encoding-decoding schemes.
! einput layer encodes the possible log keys fronK as one-hot
vectors.! atis, a sparse- dlmen5|onal vectoru| is constructed
for the log keyk; # K, such thatu; iil=1 anduj i[i] = O forall
otherj ! i.! e outputlayer translates theénal hidden state into
a probability distribution function using a standard multinomial
logistic function to represent Bm; = k;j |w] for eachk; # K.

I e example at the bibom of Figure 3 shows only two hidden
layers, but more layers can be used.

3.2 Parameter value and performance anomaly

I elog key sequence is useful for detecting execution path anom-
alies. However, some anomalies are not shown as a deviation from
a normal execution path, but as an irregular parameter valueese
parameter value vectors (for the same log key) form a parame-
ter value vector sequence, and these sequences frérdit log
keys form a multi-dimensional feature space that is important for
performance monitoring and anomaly detection.

Baseline approach. A simple approach is to store all parameter

value vector sequences into a matrix, where each column is a pa-

rameter value sequence from a log kky(note that it is possible to

have multiple columns fok depending on the size of its parameter

value vector). Row in this matrix represents a time instande.
Consider the log entries in Table 1 as an exampleere are

3 distinct log key values in this example, and the sizes of their

(PCA) and self-organizing maps (SOM).ey are useful towards
capturing correlation among d¥%erent feature dimensions. How-
ever, a major limitation of this method in the context of log data is
that o&en times the appearance of multiple log keys at a particular
time instance is equally likely. For instance, the orderkafand

ko in Table 1 is arbitrary due to concurrently running taskk. is
phenomena, and the fact that the matrix is sparse, render these tech-
nigues inéective in our séting. Lastly, they are not able to model
auto-correlation that exists in a parameter value vector sequence
(regular paterns over time in a single vector sequence).

Our approach. Deeplog trains a parameter value anomaly detec-
tion model by viewing each parameter value vector sequence (for a
log key) as a separate time series.

Consider the example in Table 1. e time series for the parame-
ter value vector sequence kj is: {[t2" t1,0.61, [t3" t$ 1]}. Hence,
our problem is reduced to anomaly detection from a multi-variate
time series data. It is possible to apply an LSTM-based approach
again. We use a similar LSTM network as shown in Figure 3 to
model a multi-variate time series data, with the following adjust-
ments. Note that a separate LSTM network is built for the parameter
value vector sequence of each distinct log key value.

Input.! e input at each time step is simply the parameter value
vector from that timestamp. We normalize the values in each vector
by the average and the standard deviation of all values from the
same parameter position from the training data.

Output. ! e output is a real value vector as a prediction for the
next parameter value vector, based on a sequence of parameter
value vectors from recent history.

Objective function for training. For the multi-variate time series
data, the training process tries to adjust the weights of its LSTM
model in order to minimize the error between a prediction and an
observed parameter value vectdr.us, mean square loss is used to
minimize the error during the training process.

Anomaly detection. ! e di%erence between a prediction and an
observed parameter value vector is measured by the mean square
error (MSE). Instead of ¢éng a magic error threshold for anomaly
detection purpose in an ad-hoc fashion, we partition the train-
ing data to two sut)'§ets: the model training set and the validation
set. For each vector in the validation set, we apply the model
produced by the training set to calculate the MSE between the pre-
diction ‘usmg the vector sequence from beforein the validation
set) and! . At every time step, the errors between the predicted
vectors and the actual ones in the validation group are modeled as
a Gaussian distribution.

parameter value vectors are 2, 2, and 1 respectively. Hence, row At dep|0yment’ if the error between a prediction and an ob-

1 in this matrix represents time instanda with values {1 " to,
"lelld, null, null, null]. Similarly, row 2 and row 3 are [null, null,
t2" t1, 0.61, null] and [null, null, null, nullf3 " t2] respectively.

We may also ask each row to represent a range of time instances
so that each row corresponds to multiple log messages within that
time range and becomes less sparse. But the matrix will still be very
sparse when there are many log key values and/or exists some large
parameter value vectors. Furthermore, this approach introduces
a delay to the anomaly detection process, and it is aldodilt to
"gure out a good value for the length of each range.

Given this matrix, many well-known data-driven anomaly detec-
tion methods can be applied, such as principal component analysis

served value vector is within a high-level of cbdence interval

of the above Gaussian distribution, the parameter value vector of
the incoming log entry is considered normal, and is considered
abnormal otherwise.

Since parameter values in a log messagew record important
system state metrics, this method is able to detect various types of
performance anomalies. For example, a performance anomaly may
re$ect as a Oslow downO. Recall that DeeplLog stores in each param-
eter value vector the time elapsed between consecutive log entries.
I e above LSTM model, by modeling parameter value vector as a
multi-variate time series, is able to detect unusuakgains in one

or more dimensions in this time series; the elapsed time value is
just one such dimension.

3.3 Online update of anomaly detection models

Clearly, the training data may not cover all possible normal execu-
tion patterns. System behavior may change over time, additionally
depending on workload and data characteristi¢s.erefore, it is
necessary for DeepLog to incrementally update weights in its LSTM
models to incorporate and adapt to new log#arns. To do this,

DeepLog provides a mechanism for the user to provide feedback.

I is allows DeepLog to use a false positive to adjust its weights. For
example, suppose = 3 and the recent history sequencefiks, ko,

ka}, and DeepLog has predicted the next log key tadevith prob-
ability 1, while the next log key value ik2, which will be labeled

as an anomaly. If user reports that this is a false positive, DeepLog
is able to use the following input-output paifks, ko, ka ! ka}

to update the weights of its model to learn this new#earn. So
that next time given history sequendgki, ko, k3}, DeepLog can
output bothkj andky with updated probabilities! e same update
procedure works for the parameter value anomaly detection model.
Note that DeepLog does not need to be re-trained from scratch.
A&er the initial training process, models in DeepLog exist as sev-
eral multi-dimensional weight vectord. e update process feeds in
new training data, and adjusts the weights to minimize the error
between model output and actual observed values from the false
positive cases.

4 WORKFLOW CONSTRUCTION FROM
MULTI-TASKS EXECUTION

Each log key is the execution of a log printing statement in the
source code, while a task likéM creation will produce a sequence

of log entries. Intuitively, the order of log entries produced by a task
represents an execution order of each function for accomplishing
this task. As a result, we can build a waBkw model as 4 nite state
automaton (FSA) to capture the execution path of any taskis
work$ow model can also be used to detect execution path anom-
alies, but it is less %ective compared to DeepLogOs LSTM model
due to its inability to capture inter-task dependencies and non-
deterministic loop iterations. However, the wolow model is very
useful towards enabling users tiagnose what had gone wrong in

the execution of a task when an anomaly has been detected.

the name of the program that created it. Another easy case is when
the process or task id is included in a log entry. Here, we focus on
the case where a user program is executed repeatedly to perform
di%erent, but logically related, tasks within that program. Animpor-
tant observation is that tasks do not overlap in time. However, the
same log key may appear in more than one task, and concurrency
is possible within each task (e.g., multiple threads in one task).

Consider OpenStack administrative logs as an example. For
each VM instance, its life cycle containd creation, VM stop
VM deletion and others! ese tasks do not overlap, i.&M stop
can only start &erVM creation has completed. However, the same
log key may appear in dierent tasks. For example, a log message
“VM Resumed (Lifecycle Event)” may appear ilVM creation, VM start,
VM resumandVM unpauseé ere could be concurrently running
threads inside each task, leading to uncertainty in the ordering
of log messages corresponding to one task. For instance, during
VM creation, the order of two log messag€%ook * seconds to build
instance” and “VM Resumed (Lifecycle Event)”iS uncertain.

Our goal is to separate log entries fordgrent tasks in a log le,
and then build a worsow model for each task based on its log
key sequence. at said, the input of our problem is the entire log
key sequence parsed from a raw |6¢g, and the output is a set of
work$ow models, one for each task idehgd.

4.2 Using DeepLogOs anomaly detection model

4.2.1 Log key separatidRecall that in DeepLogOs model for
anomaly detection from log keys, the input is a sequence of log
keys of lengthh from recent history, and the output is a probability
distribution of all possible log key values. An interesting observa-
tion is that its output actually encodes the underlying wdskw
execution path.

Intuitively, given a log key sequence, our model predicts what
will happen next based on the execution#erns it has observed
during the training stage. If a sequeneeis never followed by a
particular key valuek in the training stage, therPiim; = kjw] =0
Correspondingly, if a sequence is always followed byk, then
Pim; =kJw] = 1. For example, suppose on a sequenceé (329,
the output prediction is {67:1.0p0O, we know that 02554 570 is
from one task. A more complicated case is when a sequenie
to be followed by a log key value from a group ofé@rent keys;

Given a log sequence generated by the repeated executions of a the probabilities of these keys to appeagerw sum to 1.

task, there have been several works exploring the problem of work-
$ow inference B, 21, 47. CloudSeer47 represents the state of the
art in anomaly detection using a woflow model. CloudSeer has
several limitations. Flrstly, the anomalies it can detect are limited

To handle this case, we use an idea that is inspired by small
invariants mining [21].

Consider a log sequence ©5870, and suppose the predicted
probability distribution is ©18: 0.8, 56: G.®, which means that

to log entries having OERRORO logging level and log entries notthe next step could be either ©180 or A5&ambiguity could

appearing. Furthermore, its woflow model construction requires
a log" le with repeated executions of only one single task. Other
previous works §, 21] on work$ow construction from a lod' le
also sWer from this limitation. In practice, a lod le o&en contains
interleaving log entries produced by multiple tasks and potentially
concurrently running threads within a task.

4.1 Log entry separation from multiple tasks

An easy case is when multiple programs concurrently write to the
same log (e.g., UbuntuOs system logerOeach log entry contains

be caused by using an inéicient history sequence length. For
example, if two tasks share the same wédw segment 054570,
the " rst task has a ptiern 018 54 57 180 that is executed 80%
of the time, and the second task has atgan O3l 54 57 560
that is executed 20% of the timé. is will lead to a model that
predicts §18: 0.8, 56: 0:D given the sequence OFEFO.

We can address this issue by training models witl/@rent
history sequence lengths, e.g., using 3 instead oh = 2 in this
case. During worow construction, we use a log sequence length
that leads to a more certain prediction, e.g. in the above example the

2.[18, 54, 57] > {18: 0.8, 56: 0.2}

E g EIEIE

3.

(a) An example of concurrency detection

Figure 4: Examples of using LSTM for task s

sequence 0184 570 will lead to the predictiofil8: 1.0p and
the sequence 03154 570 will lead to the predictiofs6: 1.0p.

If we have ruled out that a small sequence is a shared segment
from di%erent tasks (i.e., increasing the sequence length for training
and prediction doesnOt lead to more certain prediction), the chal-
lenge now is to" nd out whether the multi-key prediction output
is caused byither concurrency in the same tasi the start of a
di%rent task. We call this @ivergence point.

We observe that, as shown in Figure 4a, if the divergence point is
caused by concurrency in the same task, a commotigra is that
keys with the highest probabilities in the prediction output will
appear one &er another, and the certainty (measured by higher
probabilities for less number of keys) for the following predictions
will increase, as keys for some of the concurrent threads have
already appeared. e prediction will eventually become certain
a&er all keys from concurrent threads are included in the history
sequence.

On the other hand, if the divergence point is caused by the start of
a new task, as shown in Figure 4b, the predicted log key candidates
(0240 and 0260 in the example) will not appea&enarmother. If
we incorporate each such log key into the history sequence, the
next prediction is a deterministic prediction of a new log key (e.g.,
024 600, O26370). Ifthis is the case, we stop growing the winw

model of the current task (stop at key O570 in this example), andthe importance of kj to k; .

start constructing worlow models for new tasks. Note that the

two Onew tasksO in Figure 4b could also be an Oif-elseO branch, e,

057 if (24 60 E)else (26 377 E)O. To handle such situations,
we apply a simple heuristic: if the Onew taskO has very few log keys
(e.g., 3) and always appear&ex a particular taskip, we treat it as
part of an Oif-elseO branchlgf otherwise as a new task.

4.2.2 Build a workflow modeéDnce we can distinguish diver-
gence points caused by concurrency (multiple threads) in the same
task and new tasks, we can easily construct wdw models as
illustrated in Figure 4a and Figure 4b. Additional care is needed to
identify loops.! e detection of a loop is actually quite straightfor-
ward. A loop is always shown in the initial worow model as an
unrolled chain; see Figure 4c for an example. While this wiokv
chain is initially 026 37 39 40 39 400, we could identify the
repeated fragments as a loop execution!(340 in this example).

4.3 Using density-based clustering approach

4.3.1 Log key separatiohnother approach is to use a density-
based clustering techniqué. e intuition is that log keys in the

=Pt -

(b) An example of new task detection

[3. H: 39, 40, 39] -> 40: 1.00} \

m - (2.H:[47,39,40]->{39:1.00) \
S |
1w 2637, 39] -4 40: 100})

|
| EREERE]
L < < J /.

(c) An example of loop identi ! cation

[54, 57, 24] -> {60: 1.00}
[54, 57, 26] -> {37: 1.00}

[e+{eof~

eparation and work #ow construction.

Table 2: Co-occurrence matrix within distance d

k1 E ki E [Kn
Ki | pa(L D) Pa (L)
E
- . Tq&i KD
ki Pd(':l) pd('v]): c(‘jgl(kij)
E
kn | pa(n, 1) pa (N, J)

same task always appear together, but log keys frofeent tasks
may not always appear together as the ordering of tasks is not
" xed during multiple executions of &erent tasks! is allows us

to cluster log keys based on co-occurrencéfpans, and separate
keys into dPerent tasks when co-occurrence rate is low.

In a log key sequence, the distand®etween any two log keys is
de' ned as the number of log keys between them plus 1. For example,
given the sequencéky, ko, ko}, d(k1,k2) = [1,2],d(ko, ko) = 1
(note that there are two distance values between the fir k2)).

We build a co-occurrence matrix as shown in Table 2, where each
elementpy (i, j) represents the probability of two log keys andk;
appearing within distance in the input sequence. Spedally, let
f (ki) be the frequency ok; in the input sequence, anty (i, kj)
be the frequency of paitki , kj) appearing together within distance

d in the input sequence. We daepq(i,j) :f‘j,(é"‘(;'i‘i), which shows

For example, whenl = 1,p1(i,j) =252 = 1 means that for

Svery occurrence dfj , there must be &; nexttoit. Note thatin this
dé' nition, f (ki) in the denominator is scaled by because while
counting co-occurrence frequencies withih) a keyk; is counted by
dtimes. Scalind (ki) by a factor ofd ensures that P:l fq@i,j)=1
for anyi. Note that we can build multiple co-occurrence matrices
for di%rent distance values af.

With a co-occurrence matrix for each distance valti¢hat we
have built, our goal is to output a set of taskASK= (T1, T, ...).
I e clustering procedure works as follows. First, fdor= 1, we
check if anyp1(i,) is greater than a thresholé (say# = 0.9), when
it does, we connedt;, kj together to formTy = [ki,kj]. Next, we
recursively check iff1 could be extended from either its head or
tail. For example, if there exists; # K such thatpi(kj,kx) > #,
we further check ifpa(kj,kx) > #, i.e., ifkj andky have a large
co-occurrence probability within distance 2. If yel, = [kx, ki, kj],
otherwise we will addT2 = [kj,kx] to TASK

! is procedure continues until no task in TASKcould be fur-
ther extended. In the general case when a tdsto be extended

has more than 2 log keys, when checkingif could be included
as the new head or tail, we need to checkjf has a co-occurrence
probability greater thart with each log key irT up to distanced®
whered®is the smaller of: i) length oF , and ii) the maximum value
of d that we have built a co-occurrence matrix for. For example,
to check ifT = [k1, ko, k3] should conneck at its tail, we need to
check if min(pa(ks, ka), p2(k2, ka), pa(k1, Ka)) > #.

I e above process connects sequential log keys for each task.
When a taskTy = [ki,kj] cannot be extended to include any sin-
gle key, we check iT1 could be extended by two log keys, i.e., if
there existsky,ki # K, such thatpi(kj,kyx) + p1(ki, ki) > #, or
p1(kj.kx) +p1(kj, ki) > #. Suppose the Ker case is true, the next
thing to check is whetheky andk; are log keys produced by con-
current threads in tasK. If they are py (Kj,kx) always increases
with largerd values, i.ep2(Kj,kx) > p1(kj,kx), which is intuitive
because the appearance ordering of keys from concurrent threads
is not certain. Otherwisdy andk; do not belong tary, thus we
addTz = [kj, kx] andTz = [kj, ki] into TASKinstead.

Finally, for each task in TASK we eliminateT if its sequence
is included as a sub-sequence in another task.

4.3.2 Build workflow modeDnce a log key sequence is sep-
arated out and identied for each task, the wogow model con-
struction for a task follows the same discussion from Section 4.2.2.

4.4 Using the work #ow model

4.4.1 Setparameters for DeepLog mddeection 3.1, weOve
shown that DeepLog requires several input parameters, in particu-
lar, it needs the length of history sequence winddw(for training
and detection), and the number of tdplog keys in the predicted
output probability distribution function to be considered normal.

Séting a proper value foh and" is problem dependent. Gen-
erally speaking, largeh values will increase the prediction accu-
racy because more history information is utilized in LSTM, until
it reaches a point where keys that are far back in history do not
contribute to the prediction of keys to appear. At this point contin-
uing to increaseénh does not hurt the prediction accuracy of LSTM,
because LSTM is able to learn that only the recent history in a long
sequence mgers thus ignore the long tail. However, a larevalue
does have a performance impact. More computations (and layers)
are required for both training and prediction, which slows down
the performance of DeepLod. e value of', on the other hand,
regulates the trade-%between true positives (anomaly detection
rate) and false positives (false alarm rate).

! e work$ow model provides a guidance to set a proper value
for both h and". Intuitively, h needs to be just large enough to
incorporate necessary dependencies for making a good prediction,
so we can seh as the length of the shortest wolow. ! e number
of possible execution paths represents a good valué férence, we
set" as the maximum number of branches at all divergence points
from the work$ows of all tasks.

4.4.2 Using workflow to diagnose detected anom¥¥lesnever
an anomaly is detected by DeepLog, the wdw model can be
used to help diagnose this anomaly and understand how and why
it has happened. Figure 5 shows an example. Using a history
sequence [26, 37, 38], the top prediction from DeepLog is log key
39 (supposé = 1), however the actual log key appeared is 67,
which is an anomaly. With the help of a wolow model for this

. .- Prediction (Correct Path)
: * Terminating instance

37: instance
38: instance:

39: instance:

* Instance destroyed successfully

* Deleting instance files *

: instance: * Deletion of * complete

41: instance: * Took * seconds to destroy the instance on the hypervisor
67: instance: * Error from libvirt during unfilter. Code=* Error=*

Figure 5: Anomaly diagnosis using work #ow.

IN
o

task, users could easily identify the current execution point in
the corresponding worow, and further discover that this error
happened right &er “Instance destroyed successfully” and before
“Deleting instance ! les *”, which means that this error occurred
during cleanup &er destroying a VM.

4.5 Discussion

Previous works f#, 21, 42 focused on constructing wor&ows from
multiple executions of jusbne task.! e basic idea in their approach
follows 3 steps: 1) mine temporal dependencies of each pair of log
keys; 2) construct a basic wogkw from the pairwise invariants
identi" ed in step 1; 3) rene work$ow model using the input log key
sequence. A major limitation is that they are not able to work with

a log sequence that contains multiple tasks or concurrent threads
in one task, which is addressed by our study. Our task separation
methodology also provides useful insights towards the whokv
construction for each task.

5 EVALUATION

DeepLog is implemented using Kerag fvith TensorFlow [2] as the
backend. In this section, we show evaluations of each component
and the overall performance of DeepLog, to show it&etiveness

in " nding anomalies from large system log data.

5.1 Execution path anomaly detection

I is section focuses on evaluating tlieg key anomaly detection
model in DeepLog. WErst compare its &ectiveness on large
system logs with previous methods, and then investigate the impact
of di%rent parameters in DeepLog.

5.1.1 Previous method®revious work on general-purpose log
anomaly detection follows a similar procedure: théyst extract a
log key from each log message, and then perform anomaly detection
on the log key sequence.

! e Principal Component Analysis (PCA) method B9 assumes
that there are d¥erent OsessionsO in a Idg that can be easily
identi" ed by a session id#ached to each log entry. Itrst groups
log keys by session and then counts the number of appearances
of each log key value inside each session. A session vector is of
sizen, representing the number of appearances for each log key
in K in that session. A matrix is formed where each column is
a log key, and each row is one session vector. PCA detects an
abnormal vector (a session) by measuring the projection length
on the residual subspace of transformed coordinate systens
approach is shown to be moréctive than its online counterpart

online PCA B§ especially in reducing false positives, but this is
clearly an 0 ine method and cannot be used for online anomaly
detection.! e implementation is open-sourced by [17].

Invariant Mining (IM)[22 constructs the same matrix as the PCA
approach does. IMrst mines small invariants that could be sdtisd
by the majority of vectors, and then treats those vectors that do
not satisfy these invariants as abnormal execution sessibngs
approach is shown to be moré/ective than an earlier work11]
which utilizes work$ow automata.! e implementation is open-
sourced by [17].

TFIDFis developed in44]. Although its objective is for IT system
failure prediction, which is dierent from anomaly detection as
shown in [39. Nevertheless, we still included this method in our
evaluation as it also uses a LSTM-based appro&chre are several
key di%erences. TFIDF groups log keys by time windows (each time
window is dé' ned by a user parameter), and then models each time

pairs such as OStop-StartO, OPause-UnpauseO and OSuspend-ResumeO
may randomly appear from O to 3 times within a life cycl&NFO

level logs from nova-api, nova-scheduler and nova-compute were
collected and forwarded for analysis using Elastic Sta8§[! ree

types of anomalies were injected atdirent execution points: 1)

neutron timeout during VM creation; 2) libvirt error while destroy-

ing a VM; 3) libvirt error during cleanup &er destroying a VM.

Set up. To execute PCA-based and IM-based methods, we group
log entries into d¥erent sessions by an idefiter " eld, which for
HDFS log iblock_id and for OpenStack log imstance_id . Each
session group is a life cycle of one block or a VM instance respec-
tively. We then parse each log entry into a log key. DeepLog can be
applied directly on log keys to train its weights and subsequently
be used to detect anomalies, while other methods require one more
step.! ey need to count the number of appearances for each dis-
tinct log key within each session, and build a matrix where each

window (called OepochO) using a TF-IDF (term-frequency, inversecolumn is a distinct log key (so there will be columns) and each

document frequency) vectot. e Laplace smoothing procedure it
uses requires the knowledge of the total number of epochs (hence
the entire log" le). TFIDF constructs a LSTM model agiaary
classi! er, which needs botHabeled normal and abnormal data for
training. Not only are anomaly log entries hard to obtain, but also,
new types of anomalies that are not included in training data may
not be detected. In contrast, DeepLog trains its LSTM model to be
a multi-class classi! er, andonly requires normal data to train.

CloudSeer is a method designespeci! cally for multi-user Open-
Stack log [42. It builds a workbow model for each OpenStack VM-
related task and uses the waBkw for anomaly detection! ough it

row represents a session vector, and the value of a\gglin the
matrix represents the count of log kel in thei-th session.

DeeplLog needs a small fraction of normal log entries to train its
model. In the case of HDFS log, only less than 1% of normal sessions
(4,855 sessions parsed from thest 100,000 log entries compared
to a total of 11,197,954) are used for training. Note that DeepLog
can pinpoint which log entry (with its corresponding log key) is
abnormal, but in order to use the same measures to compare with
competing methods, we use OsessionO as the granularity of anomaly
detection, i.e., a sessi@is considered an abnormal session as long
as there exists at least one log key frainbeing detected abnormal.

achieves acceptable performance on OpenStack logs (a precision of - Taple 3 summarizes the two data sets. Note that PCA and IM
83.08% and a recall of 90.00% as reported in the paper), this methodare unsupervised'oine methods that do not require training data,
does not work for other types of logs (e.g., HDFS log) where the \yhereas DeepLog only needs a training data produced by normal

patterns of log keys are much more irregular. For example, Cloud- system execution, and TFIDF requires both normal and abnormal
Seer only models log keys thétppear the same number of times” data to train.

in every session. In HDFS logs, only 3 out of 29 log keys satisfy

this criterion. Furthermore, this method cannot separate log entries o4 Number of sessions n- Number
for di%erent tasks in one log into separate sequences. Itrelies on | dataset [Training data (if needed) Test data of log keys
multiple identi" ers to achieve this, which is not always possible for HDFS 4,855 normal; 553,366 normal;| 29
general-purpose logs. us it is not compared against here. 1,638 abnormal 15,200 abnormal
OpenStack 831 normal; 5,990 normal; 40
5.1.2 Log data sets and set up. 50 abnormal 453 abnormal

HDFS log data set. It is generated through running Hadoop-based
map-reduce jobs on more than 200 AmazonOs EC2 nodes, and la-
beled by Hadoop domain experts. Among, 127 954 log entries In addition to the number of false positives (FP) and false nega-
being collected, about 2.9% are abnormal, including events such tives (FN), we also use standard metrics such as Precision, Recall
as Owrite exceptionO.is was the main data sétrstly used by an and F-measure. Precisio&g%p(TP stands for true positive) shows

o' ine PCA-basedd9 method, and subsequently used by several the percentage of true anomalies among all anomalies detected;
other work including online PCA 8§ and IM-based 22 methods. Recall=tey, measures the percentage of anomalies in the data
Details of this dataset could be found in [38, 39]. set (assume that we know the ground-truth) being detected; and
OpenStack log data set. We deployed an OpenStack experiment F-measuregf;,,%ml'lis the harmonic mean of the two.

(version Mitaka) on CloudLab3(with one control node, one net-

By default, we use the following parameter values for DeeplLog:
work node and eight compute nodes. Among3B5 318 log entries " =9,h =10,L = 2, and$ = 64 and investigate their impacts

collected, about 7% are abnormal. A script was running to con- in our experiments. Recall decides the cutiin the prediction

Table 3: Set up of log data sets (unit: session).

stantly execute VM-related tasks, including VM creation/deletion,

output to be considered normal (i.e., thdog key values with top*

stop/start, pause/unpause and suspend/resume. VM tasks were probabilities to appear next are considered normal), &nd the

scheduled with the p#ern of a regular expressiofTreate (Stop Start)
{03} (Pause Unpause){ 0,3} (Suspend Resume){ 0,3} Delete)+. A VM life

window size used for training and detectiof.and$ denote the
number of layers in DeepLog and the number of memory units in

cycle starts with OVM createO and ends with OVM deleteO, while taskne LSTM block respectively. For all other methods, we explored

PCA | IM TFIDF | N-gram | DeeplLog 11 R 100 ———— .

false positive (FP)| 277 | 2122] 95833 | 1360 | 833 1opss 110 W Deeplog | oo < 09ps | 0opea oomee
false negative (FNJ 5400| 1217| 1256 | 739 619 A oo 40:981

Table 4: Number of FPs and FNs on HDFS log.

0.94,

0.94

0.92

0.90

their parameter space and report their best results. When the N-
gram method is used, we sBt = 1 unless otherwise speoed since ool |
this shows the best performance for the N-gram method. *“Precision Recall Femeaswe /=1 /=3 /=5 /=7 =0 /=11

513 Comparisoﬁ'.able 4 shows the number Of false positives (a) Accura‘cy on HDFS. (l‘:) Cumulative probability of top / predictions.
and false negatives for each method on HDFS data. PCA achieves Figure 6: Evaluation on HDFS log.
the fewest false positives, but at the price of more false negatives.
Figure 6a shows a more in-depth comparison using recall, precision
and F-measure. Note that TFIDFdsi" ed from this" gure because
of limited space and its very poor relative performance.

Clearly, DeeplLog has achieved the best overall performance, with
an F-measure of 96%. Our baseline solution N-gram also achieves
good performance when history length is 1. But, its performance
drops dramatically as history window becomes longer. In contrast,
LSTM-based approach is more stable as shown in Section 5.1.4.

Figure 6b investigates the top-approach used by DeepLogOs
prediction algorithm. LetD; be the set of top- log key values

0.88 0.889

[0 3&3 £ .0 mEm 1 JUDP EEE 'HHS/RJ

HELVISFHF DO)OPHDYV
WHFRXUDF\ RQ 2

VXURBU
2SHQE

predicted by DeeplLog at, andm; be the actual log key value Figure 7: Evaluation on OpenStack log.
appeared in the data dt To see the impact of this strategy, we
study the CDF oPrm; # D¢] for di%erent" values. Among over In general, the performance of DeepLog is fairly stable with respect

11,000,000 |og keys (that are labeled as norma|) to predict, 88.9040 di%erent values, i.e., it is not very sensitive to the adeStment of
of DeepLogOs top prediction matchesexactly; and 96.1%; Os any one or combinations of these parameter valuesis makes

are within DeepLogOs top 2 predictions. WHer: 5, 998% of DeepLog easy to deploy and use in practitee results are fairly

normalmg Bs are withilD; , meanwhile the anoma|y detection rate intuitive to understand as well. For example, Figure 8c shows that

is 99.994% (only one anomalous session was undetected). alarger" value leads to higher precision but lower recall. us,
Figure 7a shows the performance over OpenStack datal set. " could be adjusted to achieve higher true positive rate or lower

PCA approach shows reasonable performance on this data set but false positive rate. Lastly, DeepLogOs prediction cost per log entry
with low precision (only 77%), whereas even though IM has achieved is only around 1 millisecond on our standard workstation, which
a perfect recall in this case, it has very poor precision of only 2% could be further improved by biéer hardware such as using a GPU.
(almost all VM instances are detected as abnormal executions).
I isis because that OpenStack logs were generated randomly as [¥X 3UHFLVLRG SHFDO&A) PHDVXUH
described in Section 5.1.2. Note that how many times that log keys - . .
like (Stop Start) may appear in a life cycle of a VM (Heed by a T B
pair of Create and Delete) is uncertain.! is makes it really hard for
IM to " nd the Ostable small invariantsO for anomaly detection.
To test this hypothesis, we generated a second data set with
a deterministic p&ern like (Create Delete)+, resulting in a total of
5,544 normal VM executions and 170 anomalous ones. We denote
this data set as OpenStack Il and the result is shown in Figure 7b. D1XPEHR @HY U E 1XPEHR PHPRY XQW
IM performs very well on this data set with more regular garns. A 2 -
However the recall for the PCA method drops to only 2% in this
case because the normal#arn in the data is too regular, rendering
PCA method which detects anomalies by variance not working.
On the other hand, DeepLog demonstrates excellent performance
on both OpensStack logs with a F-measure of 98% and 97% respec
tively. Lastly, itis also important to note that PCA and IM ao# ine / T 7 7 7 T
methods, and theyannot be used to perform anomaly detection F 7R5/ SUERAIRYD/QRP O G: FZMH_
per log entry.! ey areonly able to detect anomaly at session level,
but the notion of session may not even exist in many system logs.
5.1.4 Analysis of DeepLdye investigate the performance im-
pact of various parameters in DeepLog includirigh, L, and$. ! e 5.2 Parameter value and performance anomaly
results are shown in Figure 8. In each experiment, we varied the To evaluate the &ectiveness of DeeplLog at detecting parameter
values of one parameter while using the default values for others. value and performance (including elapsed time between log entries)

Figure 8: DeepLog performance with di $erent parameters.

anomalies, we used system logs from the OpenStack VM creation
task.! is data set includes both types of anomalies: performance
anomaly (late arrival of a log entry) and parameter value anomaly
(a log entry with a much longer VM creation time than others).

Experiment setup. As before, we deployed an OpenStack exper-
iment on CloudLab, and wrote a script to simulate that multiple
users are constantly requesting VM creations and deletions. During
OpenStack VM creation, an important procedure is to copy the
required image from controller node to a compute node (where the
VM will be created). To simulate a performance anomaly which
could be possibly caused by a Do&aak, we thratle the network
speed from the controller to compute nodes at twd@@rent points,

to see if these anomalies could be detected by DeepLog.

Anomaly detection. As described in Section 3.2, we separate log
entries into two sets, one set is for model training and the other
set (called the validation set) is to apply the model to generate the 00 LG 00 LG
Gaussian distribution of MSEs (mean square error). In subsequent F 9DOXH YHFWRUV IRU ORG NDOXH YHFWRUYV
online detection phase, for every incoming parameter value vector . o
"1, DeeplLog checks if the MSE betwéénand the predication Figure 9: Anomaly detection for parameter value vectors with dif-
output (a vector as well) from its model is within an acceptable f€"éntcon! dence intervals (Cls).

con' dence interval of the Gaussian distribution of MSEs from the
validation set.

Figure 9 shows the detection results for the parameter value
vectors of d¥erent log keys, where-axis represents the id of the
VM being created (i.e., #&rent VM creation instances), afdaxis
represents the MSE between the parameter value vector and the
prediction output vector from DeepLod. e horizontal lines in each
" gure are the cohdence interval thresholds for the corresponding
MSE Gaussian distributions. Figure 9a and 9b represent two log keys
where their parameter value vectors are normal during the entire
time. Figure 9c and 9d illustrate that the parameter value vectors
for keys 53 and 56 are successfully detected as being abnormal at [T without online training B with online training
exactly the two time instances where we thitted the network 10 1.001.00
speed (i.e., injected anomalies).

For each abnormal parameter value vector detected, we identi-
" ed the value that d¥ers the most with the prediction, to identify 0.6
the abnormal column (feature). We found out that the two abnor- ¢4
mal parameter value vectors for key 53 are due to unusually large
elapsed time values. On the other hand, key 56Tiso * seconds to
build instance.O, and not surprisingly, its two abnormal parameter — *%recision Recall F-measure” Precision Recall F-measure
value vectors were caused by unusually large values (for seconds). (a) First 1% dataset for training. (b) First 10% dataset for training.

entries, of which 348,460 entries are labeled as anomalies. We chose
this data set because of an important characteristic: many log keys
only appeared during a speat time period.! is means that the
training data set may not contain all possible normal log keys, let
alone all possible normal execution farns.

5.3.2 Evaluation resultd/e conducted two experiments, one
uses thée' rst 1% normal log entries as training data and the other
uses the"rst 10% log entries for training. In both #&gs, the
remaining 99% or 90% entries are used for anomaly detection. We
setL=1,%$ =256," =6,h=3.

1.001.00

. L Figure 10: Evaluation on Blue Gene/L log.

5.3 Online update and training of DeeplLog
Section 5.1 has demonstrated that DeeplLog requires a very small
training set (less than 1% of the entire log) and does not require
user feedback during its training phase. But it is possible that a
new system execution path may show up during detection stage,
which is also normal, but is detected as anomalous since it was not
re$ected by the training data. To address this issue, this section
evaluates the ®ectiveness of DeepLogOs online update and training
module as described in Section 3.3. We demonstrate this using
the di%erence in detection results with and without incremental
updates, in terms of both%ectiveness and(eciency.

5.3.1 Log data s€t. e log data set used in this section is Blue
GenelL supercomputer system logswhich contains 4,747,963 log

Figure 10 shows the results for without and with online training
for both experiments. In the case of Owithout online trainingO, we
run DeepLog to test incoming log entries without any incremental
update. While for the case of Owith online trainingO, we assume
there is an end user who reports if a detected anomaly is a false
positive. If so, DeepLog uses that sample (now a labeled record)
to update its model to learn this new gieern. Figure 10 shows
that without online training, with only 1% 06 ine training data,
this results in many false positives (hence very low Precision rate).
I ough increasing its training data to 10% slightly increases the
Precision, its performance is still unsatisfactory. On the other hand,
DeepLog with online training signicantly improves its Precision,
and hence F-measure scores. With a true positive rate of 100%
1CFDR Data, #ips://www.usenix.org/cfdr-data (perfectrecall) in both s#ings, online training reduces false positive

https://www.usenix.org/cfdr-data

rate from 40.1% to 1.7% for 1% training data, and from 38.2%t0 1.1% 5.4.2 BROP ack detectionBlind Return Oriented Program-

for 10% training data, respectively.

Table 5 shows the amortized cost to check each log entry. For
the online training case, we reported time taken for both detection
and online update (if an update is triggered). e results show that
online update and training does increase the amortized cost per log
entry, but only slightly.! is is because many log entries will not
trigger an update. Note that online update and online detection can
be executed in parallel; an update is carried out while the model is
using the current weights to continue performing detection.

Table 5: Amortized cost to check each log entry

training data percentage 1% | 10%
without online training (milliseconds)| 1.06| 1.11
with online training (milliseconds) 3.48| 2.46

5.4 Security log case studies
Anomalies having log keys that never showed up in normal logs

ming (BROP) #ack [5] leverages a fact that many server applica-
tions restart &er a crash to ensure service reliability. is kind

of attack is powerful and practical because th#acker neither
relies on access to source code nor binary. A stackémoveibow
vulnerability, which leads server to crash, is(seient to carry out
this attack. In a BROP exploit, the#facker uses server crash as a
signal to help complete a RORtack which achieves executing a
shellcode. However, the repeated server restarting activities leave
many atypical log messages in kernel log as shown below, which is
easily detected by DeepLog.

nginx[*]: segfault at * ip * sp * error * in nginx[*]

nginx[*]: segfault at * ip * sp * error * in nginx[*]

nginx[*]: segfault at * ip * sp * error * in nginx[*]

5.5 Task separation and work #ow construction

We implemented the proposed methods in Section 4 and evaluated
on a log with various OpenStack VM-related tasks. Both LSTM
approach and density-based clustering approach could successfully

used for training (e.g., OERRORO or OexceptionO log messages) &sparate all taskd. e" rst method requires LSTM; it is a supervised

easy to detect. DeeplLog cafrectively detect much more subtle
cases. For example, in HDFS I0&amenode not updated a$er
deleting block” anomaly is shown as a missing log key in a session;
and “Redundant addStoredBlock” anomaly is shown as an extra log
key.! is means that for any #ack that may cause any change of
system behavior (as fected through logs), it can be detected. In
what follows, we investigate system logs containing re#leeks to
demonstrate the ®ectiveness of DeeplLog.

5.4.1 Network security lojetwork security is of vital impor-
tance. Both' rewall and intrusion detection system (IDS) produce
logs that can be used for online anomaly detection.

To test the performance of DeepLog on network security logs, we
used the VAST Challenge 2011 data set, speadly, Mini Challenge
2 N Computer Networking Operationsl]. ! is challenge is to
manually look for suspicious activities by visualization techniques.
It comes with ground truth for anomalous activities. For all anom-
alies in the ground truth, Table 6 shows the results of Deeplloge
only suspicious activity not being detected is thest appearance
of an undocumented computer IP address.

Table 6: VAST Challenge 2011 network security log detec-
tion

detected?

Yes, log key anomaly in IDS log
Yes, log key anomaly in IDS log
Yes, log key anomaly in IDS log
Day 2: port scan 2 Yes, log key anomaly in IDS log
Day 2: socially engineeredfack | Yes, log key anomaly ifirewall log
Day 3: undocumented IP addressNo

suspicious activity

Day 1: Denial of Service#aack
Day 1: port scan

Day 2: port scan 1

method which requires training data to be provided. e second
method uses clustering on co-occurrences of log keys within a cer-
tain distance threshold, which is an unsupervised method. Hence,
it doesnOt require training, but it does require parameétas the
distance threshold.

Speci cally, for density-based clustering approach, with a suf-
" ciently large threshold valugt # [0.850.95, there is a clear
separation of all tasks. Note that the value#tannot be too large
(e.g., s#ing# = 1), as a background process may produce log en-
tries at random locations that will break log entries from the same
task apart.

Next we use a part of th&’M creation work$ow, to show how it
provides useful diagnosis of the performance anomaly in Section 5.2.
Recall in Section 5.2, parameter value vector anomaly is ideuti
on the time elapsed value of log key 53, and on the parameter
position of log key 56 (which represents how many seconds to build
instance). As shown in Figure 11, once an anomaly is detected by
DeepLog, we know the time taken to build that instance is abnormal,
but we donOt know why. en, since the elapsed time between log
key 53 and its previous log key is too big, by investigating the
work$ow model constructed by DeeplLog, its previous key is 52:
reating imageO, so we know that VM creation took longer time
than usual because the time to create image was too long. Further
investigation following this procedure may reveal that it was caused
by slow network speed from control node to compute node.

6 RELATED WORK

Primarily designed for recording notable events to ease debugging,
system event logs are abundantly informative and exist practically

on every computer system, making them a valuable resource to
track and investigate system status. However, since system logs are

I e only false positive case happened when DeepLog reported a largely composed of diverse, freeform text, analytics is challenging.

log message that repeatedly appeared many times in a short period

as an anomaly! is is due to an event that suddenly became bursty

and printed the same log message many times in a short time range.

I isis notidentl' ed by the VAST Challenge as a suspicious activity.

Numerous log mining tools have been designed fdvetlient sys-
tems. Many use rule-based approach@sl 28 29 31, 32 40 41],
which, though accurate, are limited to spéci application scenar-
ios and also require domain expertise. For example, Beeldige [

a normal one, LogClusterld which clusters and organizes histori-
cal logs to help future problem ideritcation, and Stitch45 that
extracts d¥erent levels of identiers from system logs and builds
a web interface for users to visually monitor the progress of each
))) _ session and locate performance problems. Note that they are for

44: instance: * Attempting claim: memory * disk * vcpus * CPU di . lv has b d d d
51. instance: * Claim successful iagnosis purposes once an anomaly has been detected, and cannot
23: instance: * GET * HTTPV/1.1" status: * len: * time: * be used for anomaly detection itself.
52: instance: * Creating image
53: instance: * VM Started (Lifecycle Event)
32: instance: * VM Paused (Lifecycle Event) 7 CONCLUSION
18: instance: * VM Resumed (Lifecycle Event) X
_______ I is paper presents DeeplLog, a general-purpose framework for
56: instance: * Took * seconds to build instance online log anomaly detection and diagnosis using a deep neural

Figure 11: OpenStack VM Creation work # ow. network based approach. DeepLog learns and encodes entire log
message including timestamp, log key, and parameter values. It
performs anomaly detection at per log entry level, rather than at

|de_nt| efs potential §efcur|ty threats fLom logs by”ur|13up|¢rV|sed|_c|us- per session level as many previous methods are limited to. DeepLog
tering of data-specic features, and then manually labeling outliers. o separate out éierent tasks from a log le and construct a work-

Oprea P§ uses belief propagation to detect early-stage enterprise - g, model for each task using both deep learning (LSTM) and

ll'nfect|on from DNS logs. PerfAuggB_[a IS des_|gned speb_cally to . classic mining (density clustering) approachésis enables &ec-

. nd performance problems by mining service logs using special- g anomaly diagnosis. By incorporating user feedback, DeepLog

ized features such as predicate combinations. DeepLog is a general gy nnorts online updateftraining to its LSTM models, hence is able

approach that does not rely on any domain-specknowledge. to incorporate and adapt to new executionferns. Extensive eval-
Other generic methods that use system logs for anomaly detec- ,44ion on large system logs have clearly demonstrated the superior

tion typically apply a two-step procedure. First, a log parsér 14, evectiveness of DeepLog compared with previous methods.
16,23 36 37 is used to parse log entries to structured forms, which Future work include but are not limited to incorporating other

typically only contain Olog keysO (or Omessage typesO). Paramet@rpes of RNNs (recurrent neural networks) into DeepLog to test
values and timestamps are discarded except for idesns which

. ” their &(ciency, and integrating log data from @erent applications
are used to separate and group log entriesen, anomaly detection and systems to perform more comprehensive system diagnosis (e.g.,

is performed on log key sequences. A typical way is to generate i e of 4 MySQL database may be caused by a disk failure as
a numeric vector for each session or time window, by counting re$ected in a separate system log)

unique log keys or using more sophisticated approaches like TF-IDF.

I e matrix comprising of these vectors is then amenable to matrix-

based unsupervised anomaly detection methods such as Principal 8 ACKNOWLEDGMENT

Component Analysis (PCAB8 39 and invariant mining (IM) 2. I e authors appreciate the valuable comments provided by the

Constructing such a matrix is&en an 6 ine process, and these ~ anonymous reviewers. Authors thank the support from NSF grants

methods are not able to provide log-entry level anomaly detection 1314945 and 1514520. Feifei Li is also supported in part by NSFC

(rather, they can only operate at session level). We refer the reader grant 61729202. We wish to thank all members of the TCloud

to [17] for an overview and comparison on these methods. project and the Flux group for helpful discussion and feedback,
Supervised methodsl[, 44 use normal and abnormal vectorsto especially Cai (Richard) Li, for his valuable input on BRGRek.

train a binary classier that detects future anomalies. A downside of

such methods is that unknown anomalies not in training data may REFERENCES

not be detected. Furthermore, anomalous data are hard to obtain [1] VAST Challenge 2011. 2011. MC2 - Computer Networking Operations.

for training. We have shown in our evaluation that using only a (2011). Kp://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202011/
.g . . 9 y. challenges/MC2%20-%20Computer%20Networking%200perations/ [Online; ac-
small portion of normal data to train, DeepLog can achieve online cessed 08-May-2017].

anomaly detection with b#er performance. Moreover, DeepLog [2] Martdn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Daviseye

: s Dean, M&hieu Devin, Sanjay Ghemawat, Gy Irving, Michael Isard, and
also uses timestamps and parameter values for anomaly detection others. 2016. TensorFlow: A system for large-scale machine learningrotn

which are missing in previous work. USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Work$ow construction has been studied largely using log keys 264D285. _ » ,
tracted f & loa"1 4 11 21 4 It has b h [3] Yoshua Bengio, §ean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
extracted irrom me‘ Og €s [11,21, a ' as been S‘ own neural probabilistic language modejJournal of machine learning research 3, Feb
that work$ow o%ers limited advantage for anomaly detectiohl] (2003), 1137D1155.
42 Instead. a major utiIity of worléows is to aid system diagno- [4] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, and Arvind Krishnamurthy.
o ’ 2014. Inferring models of concurrent systems from logs of their behavior with
SIS [41 2]] However, all pas_t work assumes a Iddﬁ to_ model Only CSight. InProc. International Conference on So$ ware Engineering (ICSE). 468D479.
contains repeated executions ofe single task. In this paper, we [5] Andrea B#au, Adam Belay, Ali Mashtizadeh, David Mags, and Dan Boneh.
propose methods to automatically separatéelient tasks from log 201 Hiacking blind. Iecurity and Privacy (SP), 2014 IEEE Symposium on. IEEE,
"les in order to build worlbow models for d¥erent tasks. [6] Franois Chollet. 2015. keras#ps://github.com/fchollet/keras. (2015). [Online;
Besides workows, other systems that perform anomaly diag- accessed 08-May-2017].

. . . . [7] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. 2013. Event logs
nosis using system IOgS include DISTALYZEZQ[that dlagnoses for the analysis of s@&ware failures: A rule-based approactEEE Transactions

system performance issues by comparing a problematic log against on So$ware Engineering (TSE) (2013), 806D821.

http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202011/challenges/MC2%20-%20Computer%20Networking%20Operations/
http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202011/challenges/MC2%20-%20Computer%20Networking%20Operations/
https://github.com/fchollet/keras

8]
[
[10]

[11]

[12]
[13]

[14]

[18]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Andrew M Dai and) ocV Le. 2015. Semi-supervised sequence learningrotn
Neural Information Processing Systems Conference (NIPS). 3079D3087.

Min Du and Feifei Li. 2016. Spell: Streaming Parsing of System Event Logs. In
Proc. IEEE International Conference on Data Mining (ICDM). 859D864.

Min Du and Feifei Li. 2017. ATOM (Ecient Tracking, Monitoring, and Orches-
tration of Cloud ResourcesEEE Transactions on Parallel and Distributed Systems
(2017).

Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly [31]
detection in distributed systems through unstructured log analysisPtoc. IEEE
International Conference on Data Mining (ICDM). 149D158.

Yoav Goldberg. 2016. A primer on neural network models for natural language
processing Journal of Artil cial Intelligence Research 57 (2016), 345D420.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. 2QD&p Learning. MIT
Press. Kp://lwww.deeplearningbook.org.

Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. LogMine: Fas#Ran Recognition for Log Analytics. In
Proc. Conference on Information and Knowledge Management (CIKM). 1573D1582.
Stephen E Hansen and E Todd Atkins. 1993. Automated System Monitoring [35]
and Noti' cation with Swatch.. InProc. Large Installation System Administration
Conference (LISA). 145D152.

Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2016. An evaluation
study on log parsing and its use in log mining. Proc. International Conference

on Dependable Systems and Networks (DSN). 654D661.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience Report: [37]
System Log Analysis for Anomaly Detection. Rroc. International Symposium

on So$ware Reliability Engineering (ISSRE). 207D218.

Sepp Hochreiter andt#igen Schmidhuber. 1997. Long short-term memaVyural
computation (1997), 1735D1780.

Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem idé&wttion for online service systems. In
Proc. International Conference on So$ware Engineering (ICSE). 102D111.

Chaochun Liu, Huan Sun, Nan Du, Shulong Tan, Hongliang Fei, Wei Fan, Tao
Yang, Hao Wu, Yaliang Li, and Chenwei Zhang. 2016. Augmented LSTM Frame- [40]
work to Construct Medical Self-diagnosis Android. Rroc. IEEE International

Conference on Data Mining (ICDM). 251D260.

Jian-Guang Lou, Qiang Fu, Shenggi Yang, Jiang Li, and Bin Wu. 2010. Mining [41]
program work$ow from interleaved traces. |®roc. ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (SIGKDD).

Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem DetectionPrw. USENIX [42
Annual Technical Conference (ATC). 231D244.

Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios.
2009. Clustering event logs using iterative partitioning.Rroc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (SIGKDD).
1255D1264.

Christopher D Manning and Hinrich Saftze. 1999 Foundations of statistical
natural language processing. MIT Press.

Tomas Mikolov, Martin Karaat, Lukas Burget, Jan Cernogkand Sanjeev Khu-
danpur. 2010. Recurrent neural network based language modéhtdrspeech,
Vol. 2. 3.

Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured compara- [45]
tive analysis of systems logs to diagnose performance problemBeden USENIX

Symposium on Networked Systems Design and Implementation (NSDI). 26D26.

Christopher Olah. 2015. Understanding LSTM Networks. (20¥5):/fcolah.
github.io/posts/2015-08-Understanding-LSTMs [Online; accessed 16-May-2017].
Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah Alrwais. 2015.
Detection of early-stage enterprise infection by mining large-scale log data. In

[29]

[30]

[32]

[33]

[34]

[36]

[38]

[39]

[43]

[44]

Proc. International Conference on Dependable Systems and Networks (DSN). 45D56.
James E Prewie 2003. Analyzing cluster lofes using Logsurfer. I®roc. Annual
Conference on Linux Clusters.

Robert Ricci, Eric Eide, arld e CloudLab Team. 2014. Introducing CloudLab:
Scientf ¢ Infrastructure for Advancing Cloud Architectures and Applications.
USENIX ;login: 39, 6 (Dec. 2014).#ps://www.usenix.org/publications/login/
decl4/ricci

John P Rouillard. 2004. Real-time Log File Analysis Using the Simple Event
Correlator (SEC).. I®roc. Large Installation System Administration Conference
(LISA). 133D150.

Sudip Roy, Arnd Christian &nig, Igor Dvorkin, and Manish Kumar. 2015. Per-
faugur: Robust diagnostics for performance anomalies in cloud service3otn
IEEE International Conference on Data Engineering (ICDE). IEEE, 1167D1178.
Elastic Stack. 2017. e Open Source Elastic Stack. (201Zp$t//www.elastic.
co/products [Online; accessed 16-May-2017].

Martin Sundermeyer, Ralf Sdfter, and Hermann Ney. 2012. LSTM Neural
Networks for Language Modeling.. linterspeech. 194D197.

llya Sutskever, Oriol Vinyals, and ocV Le. 2014. Sequence to sequence learning
with neural networks. InProc. Neural Information Processing Systems Conference
(NIPS). 3104D3112.

Liang Tang and Tao Li. 2010. LogTree: A framework for generating system
events from raw textual logs. IProc. IEEE International Conference on Data
Mining (ICDM). 491D500.

Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating system
events from raw textual logs. I®roc. Conference on Information and Knowledge
Management (CIKM). 785D794.

Wei Xu, Ling Huang, Armando Fox, David Parson, and Michael Jordan. 2009.
Online system problem detection by mining #arns of console logs. Ifroc.

IEEE International Conference on Data Mining (ICDM). 588D597.

Wei Xu, Ling Huang, Armando Fox, David Parson, and Michael | Jordan. 2009.
Detecting large-scale system problems by mining console log&réa ACM
Symposium on Operating Systems Principles (SOSP). 117D132.

Kenji Yamanishi and Yuko Maruyama. 2015. Dynamic syslog mining for network
failure monitoring. In Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 499D508.

Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson,
Ari Juels, and Engin Kirda. 2013. Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks. IProc. International Conference on
Dependable Systems and Networks (ACSAC). 199D208.

] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang. 2016.

CloudSeer: Workow Monitoring of Cloud Infrastructures via Interleaved Logs.

In Proc. ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 489D502.

Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. SherLog: error diagnosis by connecting clues from run-time
logs. INACM SIGARCH computer architecture news. ACM, 143D154.

Ke Zhang, Jianwu Xu, Martin Rengiang Min, Guofei Jiang, Konstantinos Pelechri-
nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep learn-
ing approach. InProc. IEEE International Conference on Big Data (IEEE BigData).
129191300.

Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-
intrusive performance proling for entire sa&ware stacks based on thow
reconstruction principle. IrProc. USENIX Symposium on Operating Systems Design

and Implementation (OSDI). 603D618.

http://www.deeplearningbook.org
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
https://www.elastic.co/products
https://www.elastic.co/products

