2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

CloudSight: A tenant-oriented transparency framework
for cross-layer cloud troubleshooting

Hyunwook Baek*, Abhinav Srivastava’ and Jacobus Van der Merwe*
*University of Utah
TAT&T Labs - Research

Abstract—Troubleshooting in an infrastructure-as-a-Service
(IaaS) cloud platform is an inherently difficult task because it is
a multi-player as well as multi-layer environment where tenant
and provider effectively share administrative duties. To address
these concerns, we present our work on CloudSight in which
cloud providers allow tenants greater system-wide visibility
through a transparency-as-a-service abstraction. We present
the design, implementation, and evaluation of CloudSight in
the OpenStack cloud platform. We also develop two example
applications that make use of the CloudSight abstraction and
use the applications to explore real cloud problems.

I. INTRODUCTION

Today’s IaaS cloud software systems are under active
development. To survive in the cloud marketplace, different
software vendors competitively introduce new features. De-
veloping new features over short development cycles for a
cloud platform, which is essentially a sophisticated distributed
system, has the potential to introduce bugs, which might
impact the reliable operation of the system. The problem
is, in a cloud environment, it is neither the cloud developer
nor the cloud provider, but rather the cloud tenant who most
often encounter new bugs.

This problem is exacerbated because cloud tenants have
almost no means to deal with an infrastructure level bug.
Various cloud monitoring tools are being offered to cloud
tenants, but no single tool can clearly indicate whether the
cause of a problem is from the provider’s or the tenant’s
side. For example, cloud tenants have a difficult time getting
answers to questions such as:

* “I have recently rebooted my VM, but cannot access it
after a while. Is it because I have misconfigured my VM or
because the provider’s server is down?”

* “I have created a firewall, but the forbidden packets are
still bypassing it. Is the firewall not actually created? Did I
make a mistake? Or is it a system bug?”

* “I created a virtual interface that has silently disappeared.
When was it deleted? Did somebody else delete my interface
or did I?”

The fundamental reason why tenants cannot get an answer
for these questions is the way today’s IaaS cloud platforms
present an abstract view of the states of resources to tenants.
laaS cloud platforms simplify the work of cloud tenants by

978-1-5090-6611-7/17 $31.00 © 2017 IEEE
DOI 10.1109/CCGRID.2017.97

268

providing clean virtual resource abstractions. Specifically,
IaaS cloud platforms maintains the states of resources in
a central database, and forward the information to tenants
when tenants query the platform. The problem is that the
states recorded in the database are not necessarily consistent
with the real-world states of resources. We call this notion
‘functional (in)consistency’ of a resource':

Def. If a virtual resource X is functionally consistent at time
t, the data object representing the state of resource X in the
system must correspond to the real-world state of resource
X at time t.

A resource can be functionally inconsistent either because
the actual process of creating/deleting/modifying the resource
is not yet complete, or because of a bug or misconfiguration
of the system. Regardless, for cloud tenants, there is no way
to identify such inconsistency, and this leads to uncertainty
with respect to the cause when problems occur. For a clear
answer, tenants must depend on support from the provider,
which is costly for both tenant and provider.

Explicitly telling the tenants about inconsistencies can help
the tenants help themselves. In other words, if a tenant can
distinguish the state of a resource written in the central
database from its state directly monitored in the cloud
infrastructure and/or its state according to a unit tester, the
tenant can answer the questions listed above by themselves.

In this paper, we introduce CloudSight, a transparency-as-a-
service framework that maintains the history of states of cloud
resources from various vantage points, and two applications
on top of CloudSight: functional consistency verifier and time-
traveling cloud debugger. CloudSight dynamically inserts
monitoring functions into the target IaaS system to monitor
state changes of resources in different vantage points, stitches
together state information of the same resource monitored
in different places, and maintains the state change history in
a graph database. CloudSight applications can trace resource
state histories of interest using the Gremlin graph traversal
language.

The aforementioned fact that IaaS software systems are
under active development introduces a significant challenge in
the system design of CloudSight: compatibility. For example,

IThe term functional consistency originates from the real-time system
research of Audsley et al. in 1993 [1].

IEEE
computer
® I:)soaety

OpenStack, one of the market leading IaaS software systems,
releases a new major version update approximately once
every six months. To keep invasive monitoring tools such as
CloudSight compatible, it is required to update the expert
level domain knowledge about the target system and to patch
the tools accordingly. Likewise, to increase the coverage
of monitoring, similar effort is required. Thus, if a tool
is made by simply understanding a specific version of the
target system and modifying the target system, the amount of
time and effort to maintain compatibility becomes significant.
We combine two key techniques to resolve this challenge.
First, CloudSight uses key clustering to automate updating
domain knowledge of the target system. Key clustering is
adopted from the research on entity resolution [2], which is
about extracting, matching and resolving entities appearing
in heterogeneous records. Second, dynamic code injection
directly permits CloudSight to inject monitoring functions
into the target system without modifying the target system’s
source code. This enables CloudSight to be applied to a
cloud platform regardless of the software version of the cloud
system. In addition, this technique also allows cloud providers
to dynamically adjust the monitoring level by turning on/off
desired monitoring functions.
In summary, we make the following contributions:

* We show how the visibility problem of cloud tenants can
be reduced to the visibility of the functional consistency of
resources, and show how the CloudSight transparency-as-a-
service framework effectively realizes this visibility.

» We adopt an entity resolution algorithm from the distributed
systems domain, which efficiently minimizes the effort to
maintain domain knowledge of the target cloud system in
CloudSight.

* We present a working prototype implementation of the
CloudSight framework in OpenStack, as well as two applica-
tions, a functional consistency verifier and a time-traveling
cloud debugger.

* We demonstrate the utility of CloudSight by diagnosing
real problems, one of which is a critical security bug first
identified by our work [3].

II. CLOUDSIGHT ARCHITECTURE

Overview. CloudSight inserts loggers into existing cloud
components to obtain comprehensive monitoring of the
infrastructure. The logs obtained by the loggers are stored in
log storage and forms the basis for CloudSight’s transparency-
as-a-service abstraction. Specifically the logs are processed
to generate a resource graph, which essentially represents
changes of resources’ states in both the cloud database and
the cloud infrastructure. The information contained in the
resource graph can be queried via the CloudSight API by
tenants and tenant applications.

Figure 1 depicts the operational phases of CloudSight. A
variety of cloud data sources are collected from the cloud

269

Operator } Tenants

LeamingPhase .
Key Apply

Clustering Domain

Knowledge

Queries/
Applications

Operational Phase

|

|

|

|

|

|

I

¥ T
-y

Resource :

|

|

|

|

I

|

|

|

Processing
r 1

Resource :

Graphs :

. :

Log
Graphs
L)

Generate
Resource
Graphs

Data __———2| Generate
Sources 7 Log Graphs

Schema
L
|

Figure 1: CloudSight Operatioh

platform and transformed into graph format to generate a
log graph. The log graph forms the main input for the
offline learning phase. Specifically we apply semantics-
based clustering, termed key clustering, to associate related
data from different data sources. The cloud operator applies
domain knowledge to the output of this step to generate a
resource processing schema. During the operational phase
this schema serves as input to generate a resource graph
which represents the means whereby CloudSight exposes
information to cloud tenants.

A. Instrumentation and Log-preprocessing

CloudSight loggers require minimal domain knowledge
about the cloud platform. Specifically, because CloudSight
key clustering associates information from different data
sources, a logger developer can simply dump data into an
event log, without attempting to interpret the data in the
broader cloud context. We describe the implementation of
loggers in OpenStack platform in Section III.

CloudSight first preprocesses the collected event logs to
narrow down the range of semantics of each attribute. To be
specific, each nested attribute-value structured log is flattened
into a one-level attribute-value structure by concatenating the
chain of attributes of each inner-most value. We call this chain
of attributes a combinational key. For example in Fig. 2(b),
the edge labels others.networks.uuid, security_groups,
method, and so on are all combinational keys, derived
from the nested log shown in Fig. 2(a). A combinational
key can be understood as a contextualized attribute. For
example, the combinational key others.networks.uuid in
Fig. 2(b) can be distinguished from another combinational
key, €.g., instance.nova_object.data.uuid, which cannot
be distinguished if not flattened since both have the same
last attributes uuid. The preprocessed logs are stored in the
graph database, so we call the graph storing flattened logs a
log graph.

The flattened log in Fig. 2(b) will be fed to the resource
graph generator together with the resource processing schema
(Fig. 2(c)), and, accordingly, the entries of the resource graph
will be updated as in Fig. 2(d). In §II-B and §II-C, we explain
the details of the generation of the resource graph and the
resource processing schema.

"timestamp":

"resource_type":
"virtual_machine",
"log_type": "request",
"user_id": "uuu-uuu",
"tenant_id": "ttt-ttt",
"method": "POST",
"others": {
"networks":

uuid": "nnn-nnn",

}

"security_groups": [
"sss-sss1",
"sss-sss2"

1

"_id": iii-iii

2016»0i»ZET17:21:24A2232",

"timestamp":
"2016-01-28T17:21:24.223Z",
"resource_type":
"virtual_machine",
"log_type": "request",
"user_id": "uuu-uuu",
"tenant_id": "ttt-ttt",
"method": "POST",
"others.networks.uuid":
"security groups": "sss-sss1",
"security_groups":

" ign:

"sss-sss2",

iii-iii

"nnn-nnn",

(a) Example Log

(b) Flattened Example Log

Combinational Key

Semantics

“tenant_id"

ID of MetaTenant

"others.networks.uuid"

1D of MetaNetwork

"security_groups”

ID of MetaSecurityGroup

(c) Resource Processing Schema

(CownsJ[source:-i)

MetaTenant
id:tt-ttt

MetaNetwork
id:nnn-nnn

belongsTo [source:ii-iil

MetaVirtualMachine
created:true [source:iil-iii]

belongsTo [source:iil-il]

etaSecurityGroup
id:sss-sss1

etaSecurityGroup
id:sss-sss2

TN [source: -1

(d) Example Log in Resource Graph

Figure 2: Log-to-graph conversion

(a) A nested attribute-value structured log is transformed into (b) a single
level attribute-value structured log. This preprocessed log can be converted
into (d) state information of resources at a specific time in the resource
graph by referencing (c) the resource processing schema.

B. CloudSight Resource Graph

CloudSight follows a resource-centric approach in present-
ing cloud information to cloud tenants. Data from different
cloud sources are combined in a resource graph. This
represents a natural way for tenants to think about their
cloud resources and the relationships between them.

Figure 3 illustrates how different cloud resources are
associated in a graph structure. A VM created by a tenant via
the cloud API becomes a node vertex in the graph (VM 1) with
a set of properties (i.e., its ID, Name, the fact that it has been
Created and its Type. ‘meta’ indicating that this is a cloud
database object associated with a VM). In this example, the
cloud controller decides to instantiate the VM on a physical
machine (PM1), resulting in an assignedHost relationship
between the two vertices in the graph. Similarly, once the

1D: abcdexx D: rtiofjk-njku-yui

ID: efghixxx
Name: PM1

Name: VM1 Name: vm001

Created: true
Type: VM

Created: true

Type: metaVM Type:PM

assignedHost isHosting

instantiatedin /

Figure 3: Capturing relationships between cloud resources

270

hypervisor on host PM1 instantiates the VM, a Type : VM
node (vm001) is created in the graph with an isHosting and
instantiatedIn relationships with vertices PM1 and VM1.

To capture the history and state transitions associated
with cloud resources, CloudSight employs list-based property
cardinality (allowing multiple properties with the same
property key), as well as nested properties (allowing a
property to be contained in another property).

Since functional consistency of a cloud resource may vary
as time progresses, cloud troubleshooting often involves
investigating states of resources at a specific time (or within
a specific known time range). The resource graph can easily
be projected onto a time-plane to facilitate such efforts.
Specifically, we can create a projected time-plane subgraph
by selecting vertices whose event log timestamps fall within
the time range of interest.

The CloudSight resource graph maintains a complete
history of the cloud resources and their state transitions over
time. Allowing cloud tenants direct access to the complete
graph is inappropriate as it contains information for all
tenants, as well as information the cloud provider might
consider proprietary. Similar to time-plane projection, the
CloudSight resource graph can readily be projected onto a
tenant-plane. The base approach to project the resource graph
onto a tenant plane involves creating a subgraph limited to
vertices that have direct edges to the tenant vertex. We can
then extend the subgraph to include every connected edge
and neighbor vertex and can obfuscate or hide properties
associated with neighbor vertices based on cloud provider
domain knowledge (applied during the learning phase).

C. Key Clustering

Event sequencing approaches based on meta-data propa-
gation are generally invasive as it requires changes to the
system itself [4], [5], [6]. Schema-based approaches are
generally less invasive, but requires manual construction of
schema to associate events from different data sources [7], [8].
Thus, both approaches needs extensive domain knowledge,
and the need is exacerbated in cloud platforms. This is
especially true for open source efforts. l.e., not only are
these platforms under active development but they typically
also have a large number of contributors with relatively loose
coordination between them. Since different developers may
use different attribute names for the same entity in different
components, understanding the entire system through source
code to update domain knowledge is not an easy task. For
example in OpenStack, in different functions and messages,
argument names device_id and routers are used to
refer to the UUID of a virtual router, but device is used
to refer to the UUID of a virtual interface; also, uuid is
used to refer to the UUID of many entities including virtual
router and virtual interface.

With CloudSight event sequencing, we essentially follow
a schema based approach, but reduce the domain knowledge

Algorithm 1 Key Clustering

1: C+¢
2: for each artr € A do

3: hasCluster < False

4: for each c € C do

5: if c.values = attr.values then
6: c.keys < c.keys U {artr}
7: hasCluster < True

8: break

9: if hasCluster = False then
10: ¢ < new Cluster()

11: c.values = attr.values

12: c.keys < {attr}

13: c.super < ¢

14: c.sub < ¢

15: C+C U {c}

16: for each ¢;,c; € Comb(C,2) do

17: if c.values € c;.values then
18: c1.super < cy.super U {c2}
19: cp.sub < cy.sub U {c1}
20: else if ¢y.values € cy.values then
21: cy.super < cy.super U {ci}
22: cr.sub < cy.sub U {c2}

return C

required by automatically updating the event schema during
the learning phase through key clustering, which is inspired by
Entity Resolution research [2]. Key clustering is based on the
following syllogism: if we know (1) attribute Attr| denotes
X, and we know (2) attribute Attr, is the same as attribute
Attry, then we can conclude (3) attribute Attr, denotes X.
Here, the key challenge is how to obtain proposition (2), i.e.,
semantic relations between attributes. CloudSight gathers
semantic relations of attributes by clustering attributes based
on the following semantic definitions. We define a Value
Space of an attribute Attr, as the set of values that attribute
Attr, ever had in the given learning data set, and denote it
as V (Attr,). Then, the relationships between attributes are:

Attry is a synonym of Attry < V(Attr)) =V (Attr;)
Attry is a hyponym of Attry < V(Attry) C V (Attry)
Attry is a hypernym of Artry < V(Attr)) 2 V(Attry)

where a hyponym (hypernym) means a more specific (generic)
term in Semantics. Based on this definition, we can cluster
entire attributes by grouping synonyms in a cluster, namely
a Synonym Cluster. Moreover, we can define the hierarchy
among clusters by making hyponym clusters and hypernym
clusters to point to each other. As a consequence, if we know
the meaning of an attribute, we can infer the meaning of
the other attribute in the same cluster as well as the generic
meaning of attributes in all hyponym clusters.

Algorithm 1 shows the steps for the CloudSight key
clustering. Here, A refers to the set of every attribute (i.e.,
combinational key), which has property values (value space),
Comb() refers to a function returning combination of elements
of a given set, and Merge() refers to a function that merges
two master clusters and updates their sub-clusters accordingly.

271

f1 : The original function translates a security group rule into iptables rule. The
injected code supports mapping from security group rules to iptables rules by
inserting security group information into comment fields of iptables.

f2 : The original function returns a network interface name by accessing dictionary
object. The injected code changes a character of the returning value to support
(security group) active logging.

3 : The original function updates iptables rules. The injected code monitors the
changes of iptables, which show the real-world states of Security Group rules.

f4, £5 : The original functions are LibVirt VM creation and deletion functions.
The injected code monitors VM creation/deletion events at the edge, which show
the real-world state changes of VMs.

6, £7 : The original functions are network resource API functions. The injected
code monitors network API requests and their propagation to the cloud database.

18, 9 : The original functions are computing resource API functions. The injected
code monitors computing API requests and their propagation to the cloud database.

Table I: The OpenStack Functions Hooked by CloudSight

Security
Group
Probe

CloudSight
API

Server

=
==
(qbr)
;
— J

Figure 4: Security Group Active Logger in OpenStack

Once we finish key clustering, we can infer the meaning
of combinational keys in a synonym cluster if we know the
meaning of any combinational key in it. One of the most
practical sources of initial domain knowledge is the database
of the target cloud, where most of possibly existing keys are
used and usually is well documented by developers. Since
this metadata is included in the data used by CloudSight, this
provides a reasonable starting point for providers to apply
their domain knowledge.

III. IMPLEMENTATION

We now describe our prototype implementation of
CloudSight in the OpenStack cloud computing environment.

Instrumentation. The CloudSight loggers are developed
based on OpenStack Icehouse with Neutron OVS Hybrid
networking (ML2) in a minimally invasive way; OpenStack
components are implemented in Python and CloudSight
loggers “hook” the target OpenStack components without
changing the original source by replacing the entry module
for each component. The substitute is essentially the same
as the original, but it has additional code that dynamically
patches selected functions of OpenStack by importing them
in advance and wrapping them with a CloudSight wrapper.
Table I summarizes the list of the functions we hooked and
what each injected code does in each function. In addition
to these loggers, CloudSight also monitors RPC messages
exchanged among OpenStack components to trace the state
changes of resources at the edge.

Unit Test: Unit testing in CloudSight checks if the target
resource is functioning by effectively mimicking controlled
user behavior. This enables CloudSight to monitor the
functional consistency of resources in a more strict way:
if a virtual resource X is not only existing, as it is supposed
to, but is also functioning correctly. We have implemented
example unit test functionality for Security Groups in a form
of an active logger. Figure 4 depicts the security group active
logger implementation. The goal of the active logger is to
trace which security group rule is used for a specific packet.
Once an active logging request is received, the active logger
enables iptables rules tracing, sends a probe packet, and then
disables tracing. The security group unit test can be realized
by sending a probe packet directly into the bridge such that
it passes through the tap devices. For ingress rules, the active
logger can send a fabricated packet to qvo. The probe packet
will go through qvb and gbr and reach the tap device. Since
we cannot make a packet flow from the tap device to the
bridge without aid from the target virtual machine, realizing
an egress probe packet is a bit more involved. We solve this
problem by temporarily creating a fake interface that has
the target tap device name as its prefix, and add a wildcard
character at the end of iptables rules’ target device name so
that the rule will also be applied on the fake device.

Platform-independent Components. We used a com-
bination of Logstash and Elasticsearch to implement the
forwarding of logs from the cloud components to the
central log storage system. We used Titan 1.0 as the
graph database and Gremlin [9], a graph traversal language
developed under the Apache TinkerPop project, as the front-
end. The internal graph components such as the graph
generator, graph projectors and the key cluster learner are
implemented in Gremlin-Groovy. The projected resource
graphs can be delivered to tenants through a Gremlin Server.
The Gremlin Server allows tenants to make queries using
the Gremlin language or using applications written in the
Gremlin language. Time-traveling Cloud Debugger (§1V-A)
and Functional Consistency Verifier (§1V-B) are written in
Gremlin-Groovy as example applications which interact with
the Gremlin Server.

IV. APPLICATIONS

To demonstrate the efficacy of our framework, we devel-
oped two novel tenant-oriented applications that assist tenants
in troubleshooting the cloud problems.?

A. Time-traveling Cloud Debugger

Debugging a large scale distributed system, such as a cloud
platform, often involves determining the state of the system
at a specific point in time, and tracking the changes over
time. We developed a novel time-traveling interactive cloud
debugger on top of CloudSight to assist tenants to track

2A video, based on a demonstration of the CloudSight applications [10], is
available from the project website: http://www.flux.utah.edu/project/tcloud.

272

Table II: Cloud Debugger Commands

show tplist: list all available timepoints in a tenant space.

show reslist: list all resources belonging to a tenant.

set tp=(timepoint_index) : set the timepoint.

unset tp: unset the current timepoint.

next : move to the next timepoint.

> show tp: show the current timepoint.

> show (resource_index) : show the properties and connections
of the resource at the current timepoint.

> history (resource_index) : show entire historical changes
of the resource.

> dump: dump the snapshot of the virtual datacenter at the current
timepoint into a graph.

their resources and troubleshoot problems. With the cloud
debugger, cloud users can set a timepoint, similar to setting a
breakpoint in a typical software debugger. Once the timepoint
is set, the tenant can query the CloudSight’s resource graph to
probe the status of their virtual datacenter at that point of time.
For instance, tenants can obtain a list of existing resources, the
connections among the resources, and the properties of each
of those resources at the timepoint. Moreover, tenants can
also track changes in a desired resource as time progresses,
or explore the entire history of the resource. Table II shows
the commands that the cloud debugger currently supports.

An example use case for this CloudSight application
involves investigating the OpenStack port disappearance
bug (OpenStack bug#1158684) [11]. In this case a VM
port (i.e., a virtual interface) silently disappears in certain
versions of OpenStack. (Correct behavior involves deletion of
ports implicitly created by OpenStack, while ports explicitly
created by tenants are not deleted but only detached.) With
the cloud debugger, the tenant could trace back to the moment
when the port was deleted and identify the termination of
the virtual machine associated with the port triggered the
port deletion [10].

B. Functional Consistency Verifier

As discussed earlier, one of the main problems that tenants
face in the cloud is to determine if their rented resources are
functionally consistent. We develop a simple yet powerful
application called Functional Consistency Verifier built atop
CloudSight to determine the functional consistency history
of a given resource.

Practical examples of using the functional consistency veri-
fier include investigating policy violations of virtual machine
affinity group functionality [12], or investigating security
group bypassing problems (OpenStack bug #1359691) [3].

V. RELATED WORK

Our work relates to earlier efforts that can be classified as
those that assist cloud providers to troubleshoot the cloud and
those aimed at assisting tenants to debug and troubleshoot.

Tenant Domain Tools. CloudWatch [13] and Ceilome-
ter [14] provide visibility into the performance metrics of
virtual instances. Sharma et al. [15] developed a tenant level
end-point based cloud monitoring tool that allows tenants
to conduct customized monitoring on their resources. Wu et
al. [16] presented a cloud monitoring framework especially
focusing on tenant network packet tracking. Amazon AWS
CloudTrails [17] offers users an API history to track their
operation in a virtual datacenter, similar to CloudSight’s
logging requests from API servers. The scope of these cloud-
level tools is typically limited to identifying symptoms of
problems in their cloud resource instances. Our work is
perhaps most closely related to the efforts of Wencheng et
al. [18], who tried to resolve the visibility problem by offering
a predefined-knowledge-based troubleshooting tool to cloud
tenants. In contrast to these earlier efforts, CloudSight adopts
a holistic approach that combines information from various
places in the cloud, providing unique visibility to cloud
tenants and assisting cloud operators to apply their domain
knowledge to a complex and evolving cloud platform.

Provider Domain Tools. Ju et al. [5] built an intrusive
failure injection framework for OpenStack. Their framework
could trace internal task flows to narrow down the root
cause for a given OpenStack error. For the same problem,
Sharma et al. [19] developed an online analysis tool based
on RPC and API messages. Regarding the consistency
problem of cloud resources, Xu et al. [20] introduced network
consistency checking based on comparison of metadata from
the cloud controller and the state of actual network resources
on edge nodes. Madi et al. [21] adopted graph structure
similar to CloudSight to cloud security compliance auditing.
Likewise, Xiang et al. [22] used a similar graph structure as
a general knowledge base for debugging cloud infrastructure.
Compared to these works, CloudSight is unique in that it
extends the consistency problem to functionality of resources
by offering unit test against resources through active logging
as well as enabling tenants to troubleshoot cloud issues in a
holistic manner.

VI. CONCLUSION AND FUTURE WORK

CloudSight is a framework that provides IaaS cloud
tenants greater visibility into their virtual data centers. With
CloudSight, tenants can understand cloud mechanisms better,
debug their cloud applications more precisely, diagnose even
provider side problems, and interact with providers more
efficiently. We illustrated the utility of CloudSight by showing
how it addresses real world problems in the OpenStack
cloud platform. Using CloudSight we plan to explore a
synergistic cloud paradigm where cloud providers and tenants
can cooperate more efficiently to address cloud problems.

ACKNOWLEDGMENT

This work was initiated when the student was an intern
at AT&T Labs - Research and was supported in part by the

273

National Science Foundation under grant number 1314945.

REFERENCES

[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“Data consistency in hard real-time systems,” Department of
Computer Science, University of York, Tech. Rep., 1993.

L. Getoor and A. Machanavajjhala, “Entity resolution: theory,
practice & open challenges,” VLDB Endowment, 2012.
“OpenStack: Security Group Bypassing issue,” https://bugs.
launchpad.net/bugs/1359691.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica,
“X-trace: A pervasive network tracing framework,” in NSDI.
Usenix, 2007.

X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva,
“On fault resilience of OpenStack,” in SOCC. ACM, 2013.
J. Mace, R. Roelke, and R. Fonseca, “Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems,” in SOSP, 2015.
P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
Magpie for Request Extraction and Workload Modelling.” in
OSDI. Usenix, 2004.

J. L. Hellerstein, M. M. Maccabee, W. N. Mills, and J. J.
Turek, “ETE: a customizable approach to measuring end-
to-end response times and their components in distributed
systems,” in /CDCS. IEEE, 1999.

M. A. Rodriguez, “The gremlin graph traversal machine and
language (invited talk),” in DBPL. ACM, 2015.

H. Baek, A. Srivastava, and J. Van der Merwe, “Demo:
CloudSight: A Tenant-oriented Transparency Framework for
Cross-layer Cloud Troubleshooting,” SC, 2016. [Online].
Available: http://www.flux.utah.edu/project/tcloud
“OpenStack: Port Disappearance Issue,” https://bugs.launchpad.
net/bugs/1158684.

“Openstack: Migration issue with scheduler hints,” https://
bugs.launchpad.net/bugs/1039065.

“AWS CloudWatch - Cloud & Network Monitoring Services,”
http://aws.amazon.com/cloudwatch.

“OpenStack Ceilometer,” https://wiki.openstack.org/wiki/
Ceilometer.

P. Sharma, S. Chatterjee, and D. Sharma, “CloudView: En-
abling tenants to monitor and control their cloud instantiations,”
in IM. 1IEEE, 2013.

W. Wu, G. Wang, A. Akella, and A. Shaikh, “Virtual network
diagnosis as a service.” ACM, 2013.

“AWS CloudTrail,” http://aws.amazon.com/cloudtrail/.

Y. Wencheng and Z. Yian, “An Autonomic Capacity Man-
agement Approach with Cloud Insight towards Cost-Efficient
Throughput Optimization for High Performance Computing,”
in CSNT. IEEE, 2012.

D. Sharma, R. Poddar, K. Mahajan, M. Dhawan, and V. Mann,
“HANSEL : Diagnosing Faults in OpenStack,” in CoNEXT.
ACM, 2015.

Y. Xu, Y. Liu, R. Singh, and S. Tao, “Identifying SDN state
inconsistency in OpenStack,” in SOSR. ACM, 2015.

T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi,
and L. Wang, “Auditing security compliance of the virtualized
infrastructure in the cloud: Application to openstack,” in
CODASPY. ACM, 2016.

Y. Xiang, H. Li, S. Wang, C. P. Chen, and W. Xu, “Debugging
openstack problems using a state graph approach,” in APSys.
ACM, 2016.

(2]
(3]
[4]

(3]

[7

(8]

9]

[10]

[11]
[12]
[13]

[14

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

