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I. INTRODUCTION

Networks, and the services they enable, are increasingly
diverse and highly utilized. From DSL and fiber-to-the-home
access networks, to cellular mobile networks, to content-
delivery networks; all require extensive monitoring in order to
meet the increase of user expectations of the availability and
quality of those services provided to them. The complexity of
these networks and services require better management on the
part of providers as the data resulting from service monitoring
experiences an increase in dimensionality, making it difficult
to fully interpret anomalies in the data. For example, anomaly
detection generally says “I found an anomaly with mobile
phone A in market Z”. But it is more useful to know what
other phones and what other markets are also experiencing the
same anomaly.

We call this problem impact scoping of anomalous service
events. It is the first important troubleshooting step when
operators receive notification of an anomalous event, at which
time, the full scope of the impact of the event is often unclear.
This troubleshooting process occurs across various network
services. E.g., when analyzing problems using customer data
from a video transmission service, one might ask questions
about the set top box the customer uses, the region in which
they reside, if a specific channel(s) is/are experiencing prob-
lems, or what type of service plan the customer subscribes to.
Similarly, when problems arise in content delivery networks
(CDNs), operators might ask questions about what type of
content is being accessed, what areas are affected, or what
client devices/software is affected.

With the enormous size of these datasets plus their increas-
ing dimensionality, determining the impact scope of anomalies
is becoming increasingly complex. Because the number of
domains in which this process is used, and the similar na-
ture of troubleshooting questions asked in multidimensional
scenarios, we see the need for a generic approach to automate
the process for all domains. In this paper we present such
an approach, called AutoFocus: an algorithm which, given a
single instance of an anomalous event, looks for symptoms
of that anomaly across multiple dimensions (region/market,
phone model, etc.). The key is our fitness score metric which
explains the characteristics of an anomaly. It represents the
level of anomalous behavior for a given time series with
respect to other behaviors across dimensions in the dataset.

Finding the scope of an event then becomes an exercise
of finding an aggregate time series which has the highest
fitness score (aggregate meaning a combination of time series
corresponding to the attributes, or values, of a dimension).
However, given the size of typical monitoring datasets, testing
every aggregate combination for the highest fitness score is
prohibitively expensive. We developed AutoFocus to stream-
line this process by significantly trimming the search space
associated with an event. Specifically, AutoFocus searches
for time series aggregates that produce the locally maximum
fitness score, then iteratively identifies attributes from each
dimension that increase the overall fitness score.

The contributions of this paper are as follows:
• A fitness score metric, which models how well an anomaly
fits across relevant dimensions of a multidimensional dataset.
• An algorithm which, guided by the fitness score, significantly
reduces the search space in the process of impact scoping.
• We show that our approach provides a general solution to
the problem of scoping the impact of anomalies.
• We evaluate our approach using three diverse, real datasets.

II. METHODOLOGY

Given an instance of an anomalous event, the goal of impact
scoping is to understand the scope of the impact of that
event. We developed a fitness score metric to help automate
this process by interpreting the behavior of an anomalous
event buried within a multidimensional, time series dataset.
It analyzes the attributes of the anomaly (i.e., the possible
values or instances of a dimension, such as Utah in the
Markets dimension), and then can be used to search for similar
behaviors across all attributes for all dimensions in the dataset.

The idea of a fitness score comes from genetic algorithms
where the evolutionary process of natural selection or “survival
of the fittest” is used to find the solution to problems with
many possible solutions [2], [11]. They trim the search space
to only potential solutions with a higher probability of being
the correct solution, all driven by a fitness score which
determines the strength, or fitness, of a particular member of
a population. Or in the case of search algorithms, how close a
potential solution is to the optimal solution. Our fitness score
serves the same purpose: we wish to find the subset of our data
that is more relevant (i.e., higher fitness) to a given anomaly.
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(b) Small Magnitude.
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(c) Good Significance.
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(d) Bad Significance.
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(f) Bad Consistency.
Fig. 1: The fitness score filters out time series which violate
each statistical component. These graphs, drawn from our
Cloud API dataset, illustrate each component.

We define “relevance to an anomaly” in terms of four
main components which explain different characteristics of an
anomalous event (illustrated in figure 1):

Magnitude. Determines how much of the event is captured
by a subset of the dataset, and if the subset encompasses all
elements pertaining to the event. Larger magnitudes suggest
higher fitness scores. Figure 1a shows an obvious and signif-
icant spike in the time series. Whereas the spike in figure 1b
is not very prominent, it could even be just noise.

Statistical Significance. Determines how significant the
event is as compared to normal variations. Figure 1c shows a
time series with an event of significant magnitude with respect
to the historical variance. However, the event in Figure 1d is
less meaningful due to the high historical variance in the series.

Consistency. Reveals the level of difference between com-
ponents of the scope. Figure 1f is a collection of time series
to be analyzed for anomalies. However, it includes a few
time series that do not follow the same anomalous patterns
as the rest. This aggregate has low consistent as it does not
accurately represent the anomaly. Whereas, in figure 1e, with
the irrelevant time series removed, there is little difference
between the components resulting in a higher consistency.
Information Criteria. Defines the simplest explanation of the
scope of the event, the parameters. In other words, it says how
much of the scope is included in the dataset.

A. Notation and Fitness Score

Consider a networked service and its service performance
metrics defined over multidimensional attributes. We define
such a service performance metric as f : A1×A2×. . .×Ak →
R ∪ {null} where for i ∈ [1, k], Ai = P(ai) represents the
superset of ai, which is the set of values for the i-th dimension
attribute. For example, the end-user phone model attribute
may take values in ai = {pc, tablet, smartphone, misc}.
For example, let f be the average page loading time, and
f({App A}, {Smartphone}, {Phone Model A, Phone Model
B}) reports the average page loading time for the service
requests originated from App A running on either Phone
Model A or Phone Model B. When no service matching the
specified attribute values are observed, null value is expected.
An example of such incompatible attributes is f({App B},
{tablet}, {Phone Model A, Phone Model B}) = null.

While f is time varying, typically modeled as a time series,
we simplify the time series aspect of f in our application as
follows. We define the observed performance metric as fts,te
during the detected anomalous service event time (from ts
to te), and define the expected performance as f̂ts,te . There
exists a rich literature on multidimensional time series fore-
casting [7], [6], [10], [8] that can be leveraged to derive f̂ts,te
from historical values of f . For simplicity of the presentation,
we drop the time ts, te annotation such that both f and f̂ refer
to the service performance during the service anomaly.

The scoping of the service problem is to identify x where
x ∈ A1 ×A2 × . . . ×Ak such that all services matching x
are affected by the service anomaly while all services out of
the scope (a1 × a2 × . . .× ak − x) are unaffected.

Since it is challenging to determine whether a service is
actually affected by the service anomaly event without the
knowledge of the root cause, we construct a set of heuristics
that guide us in finding the right scoping x.

The service degradation magnitude function Hm:
Hm(x) = |f(x)− f̂(x)|

captures the degree of service degradation in the scope.
The significance of service degradation function Hz :

Hz(x) = min

(
|f(x)− f̂(x)|

δ(x)
, zmax

)
captures the significance of the observed service degradation
compared to the historical performance, where δ(x) is the stan-
dard deviation of the forecast error of f̂(x), and zmax is used
to guard against small or zero δ(x) causing unbounded Hz(x).
This is essentially the z-score of the service degradation. We
use zmax = 5 for the remainder of the paper.

The consistency of service degradation function Hc:

Hc(x) =

k∑
i=1

H(i)
c (x)

captures the degree of variations in service degradation among
the sub-scopes of x, where k is the number of attribute
dimensions and

H(i)
c (x) = 1−

∑
y
(i)

⊆x

∣∣∣∣∣∣∣
|f(y)− f̂(y)|∑

z
(i)

⊆x
|f(z)− f̂(z)|

− f(y)∑
z
(i)

⊆x
f(z)

∣∣∣∣∣∣∣



Here y
(i)

⊆ x denotes that y differs from x only in the i-
th dimension and the value of y in the i-th dimension has
cardinality of one (i.e., has a single element) and is a subset
of the value of x in the i-th dimension. For example, both

{a, b, c} × {d}
(2)

⊆ {a, b, c} × {d, e} and {a, b, c} × {e}
(2)

⊆
{a, b, c} × {d, e} are valid.

And finally the information criteria function Hi:

Hi(x) =

k∑
i=1

C − |x
(i)|
|ai|

(
1− |x

(i)|
|ai|

)
provides a bias toward simple scoping construction, where x(i)

is the value at the i-th dimension of x and C > 0.25 is a
weighting constant. Note Hi is maximized if all or none of the
components in every dimensions are affected. This heuristic
observes the Occam’s razor principle, that is, the simplest
answer is most often correct.

The overall fitness score of scoping x is a
combination of the four heuristics above: H(x) =
g(Hm(x), Hz(x), Hc(x), Hi(x)) It is not hard to construct
scenarios in which the function g should be best tailored to
give weighting to different considerations. For simplicity, we
use the product of the four heuristic functions as the fitness
score of any given impact scoping x.

B. AutoFocus
We designed AutoFocus to automate the process of quickly

finding the scope of an anomaly using our fitness score. Given
the date and time of a reported anomalous event as input,
the main idea is to find the entire scope of the event by
checking the fitness score of different combinations of time
series aggregates. The aggregate with the maximum fitness
score then represents the entire scope of the anomaly.

AutoFocus filters through the relevant attributes of each
dimension until it finds the aggregate time series which
represents the correct scope of the given event. Starting with
the dimension with the single attribute with the highest fitness
score, we select only relevant attributes from that dimension.
To do this we combine all attributes of the dimension, one at a
time (starting with the attribute with the highest fitness score),
until an attribute causes a decrease in the running fitness score.

Having identified the most relevant attributes of a single
dimension, AutoFocus continues to search the remaining di-
mensions for relevant attributes in order of which dimensions
have the highest individual attribute. However the difference in
the following iterations (i.e., dimensions) is that the attributes
previously identified as relevant are maintained as context un-
der which any future fitness score calculations are performed.
This is key to trimming down the search space for all relevant
attributes in all dimensions. It makes sense intuitively as well;
once an attribute is deemed irrelevant to an event, it should
be omitted when deciding the relevance of other attributes.

The last step within each iteration is to reorder all remaining
dimensions, again by maximum individual attribute fitness.
Adding the context of fixed attributes from previous iterations
impacts the fitness score of other remaining attributes, often
resulting in a change of the order of the dimensions.

III. DATASETS, CASE STUDIES & EVALUATION

We analyze three multidimensional datasets as part of this
work. These datasets represent various services offered by a
large network and service provider in the United States. Each
dataset comes from different domains, related to network man-
agement and operation, but with different high-level behaviors.

In this section we briefly describe each dataset, accompanied
with case studies where we used AutoFocus to find the scope
of real anomalies. These events were all confirmed via post-
hoc analysis reports given by the operations team from the
large network and service provider. We have anonymized
individual attributes throughout the paper.

We also performed an evaluation using synthetic events. To
inject a synthetic event into our real datasets we: (1) select
a date and time, (2) randomly select a number of attributes
to define the ground truth scope of the synthetic event, and
(3) modify the observed values of the randomly selected
attributes We used the median of the time series, multiplied
by the length of the time series, as the observed value
of the synthetic event. After injecting the anomaly, we ran
AutoFocus and verified whether it found the target scope. To
evaluate the success of the simulation, we checked to see if the
results exactly matched the target. If there were any missed
attributes, or if there were any extra, we count the simulation
as a failure. We repeated the evaluation with 100 different
randomly-generated synthetic anomalies.

A. Customer Care Calls

This dataset consists of counters referring to the hourly
number of customer calls placed to customer care centers
reporting cellular service issues (e.g., dropped calls, slow video
streaming). Typically the majority of customer calls concern
individual customer issues, e.g., device issues or user errors.
However, in some situations, these issues may be the result of a
broader service impacting event. There are three dimensions in
the customer care call data set: (i) Market: geographic region
where the mobile user is located. (ii) Phone Model: model
of the user’s mobile phone. (iii) Application: the function
operating on the phone such as SMS or VoLTE. An example
entry in the dataset might be “12 mobile calls in Utah with
Phone Model A using the VoLTE application”. Our synthetic
evaluation resulted in a success rate of 96.4% on this dataset.

Case Study: Widespread Voice Call Drop Event. This case
study finds an event with a noticeable increase in customer
care calls concerning dropped voice calls. AutoFocus correctly
identified the scope of the impact of this issue as confirmed
by the network operations team Figure 2c shows a timeseries
graph of the solution output by AutoFocus with the highest
fitness score. The circle identifies the anomaly given as input
to AutoFocus. Figures 2(a-b) illustrate two potential solutions
evaluated by AutoFocus that were determined to be subopti-
mal. These time series graphs are taken from a tool used by
the operations team to try and identify the scope of an event by
hand. Using the fitness score, AutoFocus is able to automate
the process for a quicker approach that is less tedious and
error-prone.



(a) Suboptimal Solution 1 with a Fitness Score of 66,668.

(b) Suboptimal Solution 2 with a Fitness Score of 16,620.

(c) Optimal Solution with a Fitness Score of 90,599.

Fig. 2: Customer Care Case Study: Voice Call Drop Event.
Each graph represents a time series of the customer care call
dataset, filtered by different combinations of attributes. Values
are removed for anonymization.

B. Cloud API Platform Error Logs

The next dataset consists of error logs collected from a
large-scale operational cloud API platform providing various
services (e.g., speech, payment, notary, SMS, advertisement)
to third-party applications. Each API request first traverses a
particular proxy server, and then interacts with a particular
back-end server, as determined by load balancing. Error logs
report any HTTP 4** and 5** error codes returned by these
APIs. The number of these error codes are calculated from the
logs and broken down into the following 3 dimensions: (i) API:
provided by the cloud platform and used by any authorized
users over the public Internet. (ii) Proxy Server: the façade of
the API requests, handling authentication and load balancing.
(iii) Back-end Server: where the business logic of various APIs
are executed. An example entry in the dataset might be: there
were 46 error log entries with HTTP status 504 on speech API
requests going through proxy server 1 and back-end server 2.

Case Study: Issue with Multiple Proxies. This case study
focuses on an event consisting of an increase in error responses
from a few proxy servers. Since these proxies serve APIs
used by third-party applications, it is essential to quickly
identify exactly what proxies are having problems and which
APIs are impacted by them. AutoFocus correctly identified the
offending proxies as well as the APIs and back-end servers
showing symptoms caused by the proxy issues.

C. LTE Traffic Performance Data

The last dataset is from an LTE mobile network. To ensure
traffic is allocated appropriate Quality of Service (QoS) at-
tributes such as delay and loss, a QoS Class Identifier (QCI)
is used to prioritize traffic into QoS classes from the Radio

Access Network (RAN) to the serving gateway inside the core
network. When the traffic reaches the Packet Data Network
(PDN) gateway, the Access Point Name (APN) is used to
determine where to route the traffic. Each end-to-end traffic
flow in the LTE network is associated with a QCI-APN pair, as
well as various metrics (e.g., the number of dropped packets)
measured for each flow. These three components of the LTE
network are the dimensions we analyze in this paper: (i) QCI:
The QoS Class Identifier for a set of traffic flows. (ii) APN:
The APN being used by a set of traffic flows. (iii) PDN
gateway: The PDN gateway that serves a geographic region.

We were not able to obtain any case studies for this dataset.
However, the synthetic event evaluation resulted in a success
rate of 88.6%.

IV. RELATED WORK

The problem of impact scoping across multiple dimensions,
to our knowledge, has not been widely studied. While anomaly
detection has been studied extensively [4], impact scoping
is the next step after anomaly detection. Specifically, con-
sider previous works such as Argus [12], G-RCA [3], and
ABSENCE [9], that focus on finding service-oriented events
through event correlation on time series data. G-RCA tracks
service dependencies across multiple datasets while Argus
scopes them within within aggregate groups. ABSENCE is
able to find otherwise undetected or “silent” events by corre-
lating finding anomalies in customer usage volume.

RCATool [5] is an anomaly detection and diagnosis frame-
work for Internet service anomalies, performing Root Cause
Analysis on DNS traffic. The Distribution-based Anomaly
Detection is closest to our work, using the entropy of an
observed distribution of DNS requests compared to a refer-
ence distribution. When an anomaly is found, the elements
experiencing impact from the anomaly can be determined by
looking at their individual divergence over a certain threshold.

NetPoirot [1] uses machine learning to track patterns of TCP
behavior in order to determine which network management
team should be responsible for handling the trouble manage-
ment process for a particular event. In a sense it localizes the
scope of an event, but only enough to broadly describe the
boundary within which the root cause of the event occurred.
AutoFocus is more detailed in that it specifically identifies
which individual components are associated with an event.

V. CONCLUSION

We presented AutoFocus, an algorithm to automate the
process of finding the scope of the impact of anomalous events
in multidimensional time series datasets. AutoFocus relies on
its fitness score metric, which statistically defines the relevance
of anomalous behavior. AutoFocus uses the fitness score to
trim the search space of anomaly descriptions in order to find
the scope of the impact of a given anomaly. We presented
a data-driven, systematic evaluation of AutoFocus involving
finding synthetic events in real datasets, as well as accurately
detecting known ground truth events in real datasets, showing
the feasibility of automated, accurate trouble isolation.
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