
Typhoon: An SDN Enhanced Real-Time Big Data Streaming
Framework

Junguk Cho
University of Utah

junguk.cho@utah.edu

Hyunseok Chang
Nokia Bell Labs

hyunseok.chang@nokia-bell-labs.
com

Sarit Mukherjee
Nokia Bell Labs

sarit.mukherjee@nokia-bell-labs.
com

T.V. Lakshman
Nokia Bell Labs

tv.lakshman@nokia-bell-labs.com

Jacobus Van der Merwe
University of Utah
kobus@cs.utah.edu

ABSTRACT
Stream processing pipelines operated by current big data stream-
ing frameworks present two problems. First, the pipelines are not
flexible, controllable, and programmable enough to accommodate
dynamic streaming application needs. Second, the application-level
data routing over the pipelines do not exhibit optimal performance
for increasingly common one-to-many communication. To address
these problems, we propose an SDN-based real-time big data stream-
ing framework called Typhoon, that tightly integrates SDN func-
tionality into a real-time stream framework. By partially offloading
application-layer data routing and control to the network layer
via SDN interfaces and protocols, Typhoon provides on-the-fly
programmability of both the application and network layers, and
achieve high-performance data routing. In addition, Typhoon SDN
controller exposes cross-layer information, from both the applica-
tion and the network, to SDN control plane applications to extend
the framework’s functionality. We introduce several SDN control
plane applications to illustrate these benefits.

CCS CONCEPTS
• Computer systems organization → Distributed architectures;
• Networks→ Cross-layer protocols; Programmable networks;

KEYWORDS
Realtime Streaming Framework; SDN

ACM Reference format:
Junguk Cho, Hyunseok Chang, Sarit Mukherjee, T.V. Lakshman, and Ja-
cobus Van der Merwe. 2017. Typhoon: An SDN Enhanced Real-Time Big
Data Streaming Framework. In Proceedings of CoNEXT ’17, Incheon, Korea,
December 12–15, 2017, 13 pages.
https://doi.org/TBA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’17, December 12–15, 2017, Incheon, Korea
© 2017 Association for Computing Machinery.
ACM ISBN TBA. . . $TBA
https://doi.org/TBA

1 INTRODUCTION
The rapid growth in big data has resulted in the emergence of
versatile stream processing frameworks, enabling a variety of real-
time stream processing applications such as business intelligence,
event monitoring and detection, process control, data mining, ma-
chine learning, etc. To support the increasing number of stream
processing use cases, existing open-source stream processing frame-
works [3, 5, 6, 22, 43, 48, 55] provide desirable performance char-
acteristics such as high throughput and low latency in stream pro-
cessing, scalability, elasticity, as well as dependability properties
such as availability and reliability [54].

Another important quality of a stream processing framework,
especially for production environments, is runtime flexibility. In the
context of stream processing, runtime flexibility implies the ability
of a deployed stream application to dynamically adjust its pro-
cessing pipeline and modify accompanying tasks in real-time. The
need for such flexibility is particularly motivated by the following
scenarios and trends.

Streaming pipeline growth: Stream pipelines continue to grow
in scale and complexity (e.g., pipelines of 4K processing elements
and clusters of 8K server nodes [32, 56]). This increases the like-
lihood that already deployed pipelines require some functional
changes (e.g., improved anomaly detection algorithm, new business
intelligence metrics) or iterative maintenance updates. With such
expanded streaming pipelines, it is also more likely that some task
will encounter faulty hardware [35, 50], and need to be migrated
away without service degradation to meet SLA requirements [14].
IoT-driven data explosion: With a rapidly growing ecosystem
of diverse IoT devices (e.g., 26 billion by 2020 [11]) and their tight
integration with the cloud [27], re-purposing of an existing process-
ing pipeline for different types of IoT-generated data in the data
center may require hot-swapping different types of pre-processing,
transformation or post-processing tasks (e.g., to handle varying
data tuple schema) while the main pipeline is still active.
Non-determinism in data sources: When data streams are gen-
erated by high-entropy sources (e.g., tweets generated by human [15,
34], live video analytics [59]) or collected from geographically dis-
tributed wild environments [31], unpredictability and variability
are common attributes of data. To support such non-determinism
in input data, the processing pipeline must continue to adapt to
changing data patterns (e.g., uniform vs. skewed workloads) and
refine data sanitization logic without rebooting the pipeline.

https://doi.org/TBA
https://doi.org/TBA

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

Live debugging: Troubleshooting a live system is not easy, espe-
cially with a multitude of interacting tasks in a large pipeline [43].
At a minimum it requires a non-intrusive and interactive means
to inspect pipeline state while handling real data flows in the sys-
tem. For this, a selected portion of the pipeline may need to be
instrumented on the fly (similar to dynamic instrumentation in
programming [60]), or the intermediate pipeline may have to be
tapped into or rerouted temporarily (similar to dynamic tracing in
operating systems [45]).
Interactive data mining: One popular way to gain insight from
streaming data is interactive data mining [36], where dynami-
cally constructed queries are performed on existing streaming data
pipelines. This requires additional query processing computations
(e.g., combination of window, filter, join operations and custom
mining algorithms) be dynamically plugged and unplugged at the
main data pipelines.

All of these scenarios require that pipelined processing logic and
internal data routing be dynamically modified at runtime. How-
ever, the support for this type of application-level flexibility has
received relatively little attention in existing stream processing
platforms. Typically they are designed from the ground up with the
assumption that stream pipeline structures remain the same dur-
ing their lifetime, which significantly simplifies the management
of internal data routing. As a result, however, if the processing
logic of an active stream application ever needs to be modified,
either the application must go through a sequence of “shutdown,
modification and restart” actions, or an extra instance of the (modi-
fied) application must be up and running for instant swapping [13].
Shutdown-restart actions can be time consuming for large-scale
stream topologies, and can cause any in-flight or buffered tuple data
to be lost. Neither of them is acceptable in real-time environments or
mission-critical deployments (e.g., earthquake monitoring). Instant
application swapping can be very resource inefficient as the infras-
tructure usage is doubled even for a slight application modification.
Platform-supported ad-hoc rolling upgrade mechanisms often lead
to performance degradation or other compatibility issues [17].

Flexibility-aside, the application-level data routing in existing
stream frameworks does not exhibit optimal performance for cer-
tain types of communication patterns. In distributed computational
systems such as stream processing, serialization is known as the
main bottleneck for data object transfer (e.g., 60–90% of total trans-
fer time [42]). The serialization overhead becomes particularly ex-
pensive when the data routing of a node requires broadcasting a
data tuple to multiple next-hop destination nodes. In this case, the
node must perform multiple serialization computations because
each copy of the data tuple carries distinct metadata for each desti-
nation. As application-level data broadcast becomes increasingly
common in modern streaming pipelines [40], they can suffer from
significant performance degradation.

In this paper, we address these problems of application-level
data routing (i.e., flexibility and performance) in existing stream
processing frameworks. We design an SDN-enhanced streaming
framework, called Typhoon. In designing Typhoon we started with
the basic observation that a stream application relies on graph-
based communication patterns among processing nodes, which are
analogous to those in computer networks [44]. Our approach is

based on cross-layer design, where application-layer data routing
and delivery functions are partially offloaded to the network layer.
This idea is inspired by the analogy between application-level data
tuple routing and network-level packet steering, and the recent
advances on the centralized control and programmability for the
latter, driven by Software Defined Networking (SDN). To achieve
centralized control on stream processing’s data routing, the main
challenges are: (1) the timely collection and centralized manage-
ment of per-node routing state, and (2) the design of well-defined
interface and protocol for seamlessly updating internal routing
state without violating the application’s data computing logic.

To address these challenges with Typhoon’s SDN-based ap-
proach, we decouple the routing state from application nodes, and
offload the management of the routing state to the network (i.e.,
SDN controller and switches), under the framework’s coordina-
tion. In this model, the routing functions performed by individual
nodes are flexibly updated by the network’s SDN control plane,
which carries necessary routing state into the application-level
routing functions. During routing updates, the network and the
framework work together to avoid any disruption to the ongoing
data computations in a running topology. On the data plane, the
network is programmed to deliver data tuples from one node to
another based on the application-level routing decisions. If an ap-
plication’s routing decision requires broadcasting data tuples to
multiple nodes, the underlying SDN data plane is programmed to
replicate the tuples as necessary at the network layer, without in-
troducing any extra serialization overhead at the application layer.
The tight coupling between the framework and the network pro-
vides additional unique opportunities for the framework. Typhoon
enables extending the useful capabilities of a stream processing
framework, without modifying the framework itself, but simply
by building and deploying SDN control plane applications. These
applications leverage cross-layer information from the network (e.g.,
port/flow statistics and status events) and application (e.g., worker
statistics) layers to make application-level decisions (e.g., topology
scaling, fault recovery).

To the best of our knowledge, Typhoon is the first system that
integrates SDN into a real-time streaming framework. We make
the following specific contributions in this paper: (i) We design
the SDN-based Typhoon framework which tightly integrates SDN
functionality into a real-time stream framework to provide highly
flexible stream pipeline and high-performance application-level
data broadcast; (ii) We design several SDN control plane applica-
tions that can enhance the framework functionality by leveraging
cross-layer information available from the framework and the net-
work, and demonstrate their benefits; (iii) We implement a Typhoon
prototype based on the Storm framework, and evaluate the proto-
type implementation.

2 BACKGROUND
In this section, we provide a brief overview of a stream processing
framework without getting into the details of any particular system.
As highlighted in Fig. 1, a generic stream framework consists of:
(i) a streaming managerwhich manages and schedules the execution
of stream applications submitted to the framework, (ii) a cluster
of compute hosts with (iii) per-host worker agents which launch

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

streaming application upon request from the streaming manager,
(iv) workers which perform application-specific computation and
routing logic, and (v) a central coordinator which coordinates the
communication among the components.

App Developer

Central
Coordinator

Streaming Manager
Topology Builder &

Scheduler

Command line interface Management plane Data tuple stream

Compute Cluster

....

Worker

Worker

Worker Agent

Figure 1: Stream framework architecture.

Input
Split Aggre

gator
Count

Split Count

Input (1) Split (2) Aggreg
ator (1)Count (2)

(a) An example logical topology

(b) A physical topology converted from (a)

Figure 2: Example topology.

Stream processing topologies: When a stream application is
submitted to a stream processing framework, the topology builder
constructs a logical topology from it by analyzing its processing
logic. Fig. 2(a) shows a simple logical topology that implements a
word count example. The input is the stream of sentences, and the
final output is the list of words with counts of their occurrences.
A logical topology defines how input data tuples generated at the
source(s) are transformed into final output tuples at the sink(s)
through a directed acyclic graph (DAG). Each node in a DAG defines
(i) a data computing function which converts incoming tuples to
output tuples at the node, (ii) a routing policy which controls how
computed tuples are routed to the next-hop node(s), and (iii) the
degree of parallelism for the node. The logical topology is specified
in the application source code using the framework-provided APIs,
and thus determined at the application compile time. Given a logical
topology, the scheduler converts it into a physical topology (Fig. 2(b))
by considering node parallelism, and assigns it on available compute
hosts based on scheduling policies and current cluster availability.
During that time, the scheduler assigns to each physical node a
unique ID and transport channel information (IP address and TCP
port).

Topology deployment and maintenance: Once the assign-
ment of a physical topology is determined by the scheduler, indi-
vidual nodes in the topology are deployed as workers on assigned
compute hosts, which then interconnect with one another based on
assigned TCP transport channel information. Worker deployment
is handled by per-host worker agents which are responsible for
fetching application binaries and launching scheduled workers on a
host. During this process, the worker agents and the scheduler are
coordinated by the central coordinator, which notifies the worker

agents of any newworker assignment by the scheduler. Any worker
failure is detected from periodic heartbeats sent by workers, and
the scheduler re-schedules a failed worker upon detection.

Data tuple routing policies: A stream processing framework
can support several types of routing policies for individual workers
to meet different application requirements [9, 20, 47]. Key-based
routing forwards data tuples such that tuples with the same key
always go to the same next-hop worker. This routing is generally
used for stateful workers (e.g., caching, streaming top N [9], data
mining and machine learning [47]) due to its memory efficiency.
However, it may cause load imbalance in case of skewed input
distributions. Shuffle routing involves round-robin routing which
offers load balancing functionality. It is generally used for stateless
computations as it may lead to higher memory usage for stateful
workers [47]. Global routing forwards data tuples to one specific
worker, and is typically used for a sink worker to aggregate final
results. All routing sends copies of the same data tuples to every
connected next worker.

Per-worker routing policy is driven by the following routing
state maintained in each worker: (i) a local routing table composed
of a set of available next-hop worker IDs and their corresponding
TCP connections, and (ii) routing policy type and policy-specific
state (e.g., counter for round robin routing, key index for key-based
routing). In many existing frameworks such as Storm and Heron,
this per-worker routing state originates from the submitted appli-
cation’s source code.

Data tuple transfer: The format of egress data tuples consists
of the raw output from a data computing function, prepended by
its metadata which include source/destination node IDs, output
length, and stream type. The metadata is used for parsing, forward-
ing and multiplexing in destination nodes. When data tuples are
transferred from one worker to another, they are converted into
byte arrays by serialization, and converted back to the tuple format
by deserialization.

3 TYPHOON ARCHITECTURE
In this section, we present the Typhoon architecture. We start by
clarifying its design goals, and providing an architectural overview.
This is followed by a detailed description of the architecture.

3.1 Design Goals
In architecting an SDN-based stream processing framework, we
identify several key design goals. First, the per-node routing state
in a stream application (e.g., a set of next-hop node IDs, routing
policy type, and policy-specific state) must be re-configurable at
runtime in order to support dynamic routing policy update. Dur-
ing routing reconfiguration, we must also ensure that it does not
interrupt ongoing data computations (e.g., due to data tuple loss)
within affected nodes. Second, we aim to offload as much routing
functions (e.g., broadcasting) as possible to the network layer to
minimize application-level overhead. Third, given the tight coupling
between the framework and the network, we aim to design a uni-
fied management layer within the framework that controls both the
applications and the underlying network under the framework’s
coordination. Finally, the resulting framework should be evolvable,
in the sense that additional management functionality can easily

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

be built on top of the unified management layer to enhance the
framework.

Central
Coordinator

Streaming Manager

Dynamic Topology
Manager

Topology Builder &
Scheduler

App Developer

Command line interface Management plane
SDN control plane Data tuple stream

SDN Controller

SDN Control Plane
Application

Compute Cluster

....

Worker

Worker

Worker Agent

Software SDN Switch

Figure 3: Typhoon architecture.

3.2 Architecture Overview &Workflow
Before presenting the detailed architectural design of Typhoon, we
first describe its overall system workflow in an attempt to high-
light how Typhoon differs from other existing systems described
in Section 2.

As shown in Fig 3, Typhoon has the same basic components
found in a generic streaming framework. The figure shows new
components introduced by Typhoon in color. Specifically, the op-
erating environment of Typhoon is distinct from that of existing
stream frameworks in that hosts in the compute cluster contains
a host-based software SDN switch. Workers that are deployed on a
compute host are connected to the SDN switch running on the same
host. Data tuple exchanges among deployed workers is enabled by
SDN flow rules set up in these switches by the SDN controller. In
other words, when a stream application is submitted to Typhoon,
the application deployment procedure incorporates the configura-
tion of these software switches. In addition to basic inter-worker
communication, this SDN fabric enables the flexibility needs of Ty-
phoon. A new dynamic topology manager module in the streaming
manager is responsible for updating a running stream application
upon request from an application user. Finally, the Typhoon frame-
work enables SDN control plane applications to be deployed to realize
a range of cross layer framework functions.

Given this extended streaming framework, the following pro-
vides a step-by-step procedure for deploying a new application in
Typhoon: (i) Topology build and schedule: A logical topology
is built from the submitted application, and then converted into a
physical topology. While the scheduler assigns the physical topol-
ogy to an available cluster, it determines, for each physical node, a
compute host to deploy it, a unique worker ID, and its dedicated
SDN switch port on the host. (ii) Notification: The SDN controller
and all worker agents which are assigned part of the physical topol-
ogy are notified by the central coordinator about the assignment.
(iii) Network setup: The SDN controller sets up SDN flow rules
into the SDN switches to interconnect assigned compute hosts and
workers’ SDN ports according to the physical topology. (iv) Ap-
plication setup: The worker agent fetches application binaries,
launches assigned workers, and attach them to the SDN switch.
(v) Data tuple communication: Each worker is initialized and
starts processing data tuples communicated via the host-based SDN
switches.

In addition to basic stream processing, the Typhoon architecture
enables the following streaming application and pipeline reconfigu-
ration:

• Per-node parallelism: change the number of concurrent work-
ers for a particular node in a logical topology.
• Computation logic: launch new workers with new computa-
tion logic in an existing topology.
• Routing policy: change routing type (e.g., from key-based to
round robin), or change policy-specific parameters for routing
(e.g., key indices for key-based routing).

To support such reconfigurations, the dynamic topology man-
ager module updates the information of a running stream applica-
tion in the coordinator when necessary. The following outlines the
workflow steps involved with application and pipeline reconfigura-
tion: (i) Reconfiguration request: Typhoon receives a reconfigu-
ration request with reconfiguration options for an active application.
(ii) Topology reschedule: The topology manager updates the cor-
responding logical topology. The scheduler then re-schedules it as
necessary, and updates physical topology information in the coor-
dinator. (iii) Notification: The SDN controller and affected worker
agents are notified by the coordinator about the reconfiguration.
(iv) Network/application reconfiguration: The SDN controller
adds, deletes or updates flow rules in the SDN switches. The notified
worker agents launch or kill workers based on updated physical
topology information.

Table 1 summarizes global states maintained by the coordinator,
and how different components are coordinated via it based on these
states. In the rest of the section, we focus on the design of workers
and the SDN controller, both of which are unique to Typhoon.

3.3 Worker Design
In Typhoon, workers are integrated with both the application frame-
work and the SDN network, and thus its design plays a key role
in Typhoon’s overall operations. As shown in Fig. 4, the internal
worker design is functionally divided into three layers. The applica-
tion computation layer implements user-defined computation logic
for incoming tuples, and thus remains unchanged in Typhoon. The
framework layer provides necessary functions to support stream
applications such as implementing routing policies, tuple format-
ting and de/serialization. The I/O layer handles conversion between
data tuples from the framework and network packets from an SDN
switch. In the following, we elaborate the design of the latter two
layers.

3.3.1 Typhoon I/O layer. Interposing between the framework
and the SDN network, the I/O layer is responsible for converting
data tuples to network packets, and vice versa. One key design
decision we make for worker-to-worker tuple transport is that Ty-
phoon workers leverage a custom transport protocol instead of
relying on application-level TCP connections. The need for the
custom packetization I/O layer is motivated by this decision. An
end-to-end transport protocol like TCP is not suitable for Typhoon,
where next hop destinations of data tuples are determined by state-
less SDN rule matching at the network layer, without relying on
any end-to-end TCP state pre-established among workers. In ad-
dition, TCP-based worker communication is not optimal, in terms

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

States Information Writers Readers

Logical topology Topology ID, reconfiguration options, inter-node connec-
tivity, node parallelism, per-node routing info

Streaming manager,
SDN controller

Streaming manager,
SDN controller

Physical topology Topology ID, location of application binaries, per-worker
assignment info (worker ID, hostname, SDN switch port) Streaming manager SDN controller,

worker agents, workers

Worker agents Hostname, used/available switch ports Worker agents Streaming manager,
SDN controller

Table 1: Global states in Typhoon.

Application computation layer

Tuple classifier
- Data tuple
- Control tuple

TYPHOON
ROUTING

(e.g., shuffling,
key-based, etc)

TYPHOON I/O layer

Packet receiver
- Depacketizing
- Batching
- Demultiplexing
- Segmentation

Input rate
controller

Worker
statistics
reporter

Batch size
controller

Packet sender
- Packetizing
- Batching
- Multiplexing

TYPHOON framework layer
Tuples

Packets

Tuples

Data & Control tuple
Control tuple Data tuple
Control tuple for stateful workers

Packet Data

Software SDN switch

Figure 4: Typhoon worker design.

of throughput and latency, for one-to-many tuple communication,
which is increasingly popular due to the collective communication
pattern of HPC applications or publish-subscribe type of processing.
One-to-many communication patterns require multiple serializa-
tion computations for each data tuple, which can lead to significant
computation overhead and drop in throughput [42]. Besides, since
a source worker sends tuples serially to each destination worker
one at a time, the maximum latency experienced by destinations
can grow proportional to the number of designation workers [40].

While avoiding TCP connections in the worker-level for these
reasons, Typhoon leverages host-level TCP tunnels which intercon-
nect different compute hosts where workers are deployed. These
tunnels are used to reliably carry data tuples exchanged across
hosts over the network, and to hide Typhoon’s custom transport
protocol format from the underlying physical network. Even with
fixed inter-host TCP tunnels, data tuples can still be flexibly routed
to different workers, as programmed by SDN flow rules.

For custom transport packets that carry data tuples, we adopt
an Ethernet packet format with a custom EtherType as shown in
Fig. 5 (see Section 3.4 for more detail on the custom EtherType).
For SDN-based data forwarding, the Ethernet source/destination
addresses are filled with source/destination worker IDs combined
with application ID as an address prefix. The payload is populated by

Tuple length

List of objects
Stream ID

Set of tuples (bytes)

Dst
worker ID

Src
worker ID

Ether
type

Ethernet
Header
Payload

Figure 5: Typhoon packet and tuple format.

a set of tuples based on their size. This format is optimized for one-
to-many communication; a source worker emits only one packet
with its destination address field set to the broadcast address, and
intermediate SDN switches can forward it to as many destinations
as needed without multiple serializations since packet payload is
identical for all destination workers.

Functionality-wise, the I/O layer realizes de/packetizing, de/-
multiplexing, segmentation, and batching for correctness and per-
formance as shown in Fig. 4. When a tuple is sent out, a pair of
sender/destination worker IDs are determined by routing logic in
the framework layer, and then inserted into the source/destina-
tion address fields in the Ethernet header. During packetization,
more than one tuples with the same source/destination can be multi-
plexed into a single packet to save on throughput. When packets are
received from the SDN switch, the I/O layer handles segmentation
and demultiplexing of the packets based on source and destination
worker IDs contained in the Ethernet header. To support different
application requirements in terms of latency and throughput, the
I/O layer is designed to support a configurable amount of batching
when sending data tuples and packets to the framework and the
SDN switch. The batch size can be flexibly configured based on the
relative priority of latency and throughput on a per-application
basis.

3.3.2 Typhoon framework layer. The framework layer plays a
key role in the Typhoon architecture as it performs application-level
routing policies, and directly interacts with the SDN control plane to
reconfigure individual workers’ routing states. As with traditional
framework functionality, this layer also handles de/serialization of
tuple objects sent to, or received from the application computation
layer. In order to realize SDN-driven worker re-configuration, we
leverage the SDN controller’s ability to inject packets into the
SDN data plane (e.g., PacketOut in OpenFlow [24]), but under
the Typhoon unified tuple communication model. To this end, the
framework layer is designed to handle special control tuples which
are generated and injected by the SDN controller.

While having the same tuple format as data tuples, control tu-
ples have streamID and tuple payload fields set differently (e.g.,

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

dedicated streamID, and re-configuration information in the pay-
load) to distinguish them from data tuples. Incoming data tuples are
always handed over to the upper application layer after deserializa-
tion, while incoming control tuples can be either consumed within
the framework layer or passed to the upper application (Fig. 4),
depending on their role.

/* Round robin based routing policy */
index = (counter ++) % numNextHops;
dstWorker = nextHops[index];

/* Key -based routing policy */
hashedTuple = new Tuple(fieldA , fieldB);
hashVal = hash(hashedTuple);
index = hashVal % numNextHops;
dstWorker = nextHops[index];

Listing 1: Example data routing policies.

Let’s examine how control tuples are used for different purposes
in Typhoon. We first consider how a control tuple can update the
internal routing state of a worker (e.g., increase or decrease the
number of concurrent next-hop workers, or change routing policy
type). To understand the procedure, let’s examine what kind of
routing state is maintained in available routing functions. Listing 1
illustrates how commonly used routing functions like round-robin
and key-based routing are implemented in a stream framework.
As shown above, any routing function, regardless of its routing
policy, requires nextHops which is an array of next hop workers,
and numNextHops which is the number of next hop workers. These
are part of policy-independent routing state. There is also policy-
specific routing state. For example, in round-robin based policy, the
counter variable, which is incremented after every routing decision,
is the state needed to pick the next destination. In key-based routing,
a set of fields to hash on (e.g., fieldA and fieldB) is kept as policy-
specific routing state.

Depending on which routing state needs to be changed, Ty-
phoon’s control tuples carry necessary information in their pay-
load field. For example, in case of adjusting the number of next-hop
workers, the updated values of numNextHops and nextHops are
carried in a control tuple. If it needs to change a set of fields for key-
based routing without changing the number of next-hop workers,
a new set of fields are retrieved from a control tuple. The control
tuples which carry an updated routing state are forwarded to the
framework layer and the routing state is updated accordingly.

In addition to managing a worker’s internal routing state, control
tuples can also be used to support the framework functionality. For
example, while the SDN controller collects network-level statistics
for deployed workers by querying SDN switch, it can also collect
application-level statistics (e.g., the number tuples sent or received)
by injecting worker statistics requests into the workers via control
tuples. Control tuples can also be used to change the processing
rate in workers, or to adjust batch size for the I/O layer. In these
framework-supporting roles, control tuples are consumed within
the framework layer. Table 2 shows the supported control tuples
in Typhoon. All control tuples except for METRIC_RESP are sent by
the Typhoon SDN controller to workers.

The worker-level configurations in Typhoon provide not only
run-time flexibility not available in existing frameworks, but also
finer-grained controls for stream applications than existing frame-
works which generally allow only topology-level configurations.

Control tuple type Description
ROUTING Update application routing information
SIGNAL Flush a cache in workers

METRIC_REQ Request worker’s internal statistics

METRIC_RESP
Response to a metric request

(e.g., queue status, number of emitted tuples)
INPUT_RATE Control an input processing rate in workers

ACTIVATE/DEACTIVATE
(De)activate a topology by (un)throttling

the first workers in a topology
BATCH_SIZE Adjust tuple batch size

Table 2: Control tuples in Typhoon.

3.4 SDN Controller
As another key component of Typhoon, the SDN controller func-
tions as a unified management layer which controls not only the
SDN network, but also stream applications and the framework layer,
all via the well-defined OpenFlow protocol interface [24]. The SDN
controller directly controls data tuple transport among workers by
programming SDN switches with FlowMod OpenFlow messages. At
the same time, as shown in Section 3.3.2, it controls stream appli-
cations and the framework layer indirectly by leveraging control
tuples carried in PacketOut OpenFlow messages.

For better manageability, the Typhoon SDN controller is de-
signed as a stateless component, not maintaining any state about
stream application deployments and available compute cluster. In-
stead, the SDN controller learns the framework’s global states
through the central coordinator as shown in Table 1, and generates
flow rules based on the global states.

Table 3 shows the flow rules that are installed for data/control
tuples in Typhoon. For data tuple communication among workers,
the SDN controller installs flow rules (in Step 3 in Fig. 3), based
on worker IDs and their corresponding switch ports assigned to
a stream application. For transport packets that carry data tuples,
Typhoon uses an Ethernet format with a custom EtherType (e.g.,
0xffff), so that any unnecessary wildcards for unused IPv4 header
can be avoided in rule processing of SDN switches. For remote
tuple communication between workers running on different hosts,
a separate tunneling port is designated to send and receive tuples
via a TCP tunnel. When one worker wants to send the same tuple to
multiple workers, a corresponding flow rule matches the broadcast
address in the destination address field, and specifies those workers’
ports in the output action.

As for control tuples that are handled by the framework layer to
reconfigureworkers’ state, they are generated by the SDN controller,
and sent to the SDN switch via PacketOut OpenFlow messages,
and eventually delivered to connected workers by flow rules that
match those tuples. In case the SDN controller wants to collect
application-layer statistics from the framework layer, it sends a
worker statistics request via a PacketOut message, and collects
the requested statistics through a PacketIn message sent from a
requested worker.

3.5 Stable Topology Update
While an active stream application can be re-configured based on
updating SDN flow rules discussed in Section 3.4, reconfiguration
without careful consideration can negatively affect the performance,
as well as the accuracy and consistency of final results. For example,
if workers send data tuples to newly added downstream workers

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

Tuple type Worker communication SDN flow rules

Data tuple

Local transfer match in_port=[src worker’s port], dl_src=[src worker ID], dl_dst=[dst worker ID], ether_type=[0xffff]
action output=[dst worker’s port]

Remote transfer
(sender)

match in_port=[src worker’s port], dl_src=[src worker ID], dl_dst=[dst worker ID], ether_type=[0xffff]
action set_tun_dst=[peer’s IP addr], output=[tunneling port]

Remote transfer
(receiver)

match in_port=[tunneling port], dl_src=[src worker ID], dl_dst=[dst worker’s ID]
action output=[dst worker’s port]

One-to-many transfer match in_port=[src worker’s port], dl_dst=[BROADCAST], ether_type=[0xffff]
action output=[all dst workers’ ports]

Control tuple
SDN controller to workers match in_port=[OFPP_CONTROLLER], dl_dst=[BROADCAST], ether_type=[0xffff]

action output=[all reconfigured dst workers’ ports]
Worker to SDN controller match in_port=[src worker’s port], dl_dst=[OFPP_CONTROLLER], ether_type=[0xffff]

action output=[OFPP_CONTROLLER]
Table 3: SDN flow rules in Typhoon.

Worker type Stateful Stateless
In-memory cache Yes No
Routing policy Key-based routing Shuffling, global, all routing

Table 4: Type of workers.

which are not ready to receive tuples, or workers that were just
killed as part of reconfiguration, those tuples will be lost. If an
application must ensure the exactly-once processing for every tuple
for reliability, lost tuples need to be detected and recovered [18,
46], which will hurt throughput performance. Even if guaranteed
processing is not required, tuple loss can still introduce inaccuracy
in application processing (e.g., top-N ranks). In another scenario, if
a worker uses key-based routing policy, and the number of next-
hop workers is changed due to scale up/down reconfiguration, key-
based routing can no longer guarantee that tuples with the same key
will go to the same worker as numNextHops in Listing 1 changes. If
a worker accumulates data from incoming tuples using in-memory
cache (e.g., time-based window operation), such internal worker
state will be lost if the worker is killed off as part of a scale-down
request.

To avoid these problems, we classify workers based on whether
or not reconfiguration can potentially break consistency, and apply
different topology update procedures based on worker type. Table 4
shows two types of workers and their common implementation
characteristics. In the following, we describe detailed procedures
for adding or removing a worker according to its type.

Stateless worker: When a stateless worker requires reconfig-
uration, Typhoon proceeds as follows to guarantee no tuple loss
during reconfiguration (see Fig. 6(a)). If a reconfiguration requires
adding a new worker (to increase node parallelism or to add new
computation logic), a new worker is first launched, and SDN flow
rules are set up between its predecessor worker(s) and the new
worker. Finally, the predecessors’ routing states are updated via
control tuples. If an existing worker needs to be removed as part of
reconfiguration, first its predecessors’ routing states are updated
via control tuples, so that no more data tuple is sent to the worker
to be deleted. Then, once the worker finishes emitting any ongo-
ing tuples, it is removed from the topology. The SDN flow rules
interconnecting the worker and its predecessors are automatically
removed due to idle timeout of the rule entries.

Stateful worker:When modifying stateful workers, we lever-
age the insights from common routing patterns of stateful workers
in stream applications [9] to guarantee consistency. Stateful work-
ers are generally used for time-windowing, and Listing 2 illustrates
how they are typically implemented.

W

W

W

2

1
1

C

W

W

W

1

2
3

C

Control
tuple

SDN flow
rules

Deleted
worker

Added
worker

(a) Scale-up (b) Scale-down

SDN
controller

(a) Update stateless workers

W

W

W

3

1
1

(a) Scale-up (b) Scale-down

2C

W

W

W

1

3
4

2C

2

(b) Update stateful workers

Figure 6: Stable topology update.

public class StatefulWorker {
/* in-memory cache that stores currently processed results */
Map<String, Integer> counts = new HashMap<String, Integer>();
. . . .
public Tuple execute(Tuple input) {
if (TupleUtils.isSignalTuple(input))
emitRankings(counts); /* flush the cache */

else
addTupleInCounts(tuple); /* add it to the cache */

}
}

Listing 2: In-memory and key-based routing pattern.

As shown above, a stateful worker maintains currently processed
results in a memory cache. Upon receiving a special signal tuple, it
flushes the cache, and emits the current results to next-hop workers.
In conventional streaming frameworks, signal tuples are generated
and injected to support stream applications that want to perform
scheduled processing. For stateful workers, signal tuples are com-
monly utilized to flush internal states along with key-based routing.
In Typhoon, we leverage this pattern to guarantee consistency
while updating stateful workers. Fig. 6(b) shows the sequence of
updating stateful workers. The procedure is similar to the stateless
worker case, except that the SDN controller injects signal tuples
into the stateful worker to flush stored data after the first step, and
right before reconfiguration.

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

4 SDN CONTROL PLANE APPLICATIONS
As described in Sections 3.4 and 3.5, the basic functionality of the
SDN controller is to set up network-layer flows for data tuple com-
munication among workers, and reconfigure the workers and their
tuple communication flows. Besides this basic functionality, the
SDN controller can exploit cross-layer information from the network
(e.g., port/flow statistics and status events) and application (e.g.,
worker statistics) layers to enhance the framework functionality.
In the following, we introduce control plane applications that one
can build on top of the Typhoon SDN controller.

Fault detector: Since a stream application runs indefinitely as
multiple workers deployed across hosts, failure handling is impor-
tant. To detect worker failure, traditional frameworks generally
rely on periodic heartbeats from workers. However, handling peri-
odic heartbeats on a large-scale deployment is expensive [32], and
delayed failure detection from heartbeat timeouts can cause non-
negligible data loss. Instead, the Typhoon SDN controller detects a
dead worker from an unexpected port removal event, and takes a
proactive approach to update affected flow rules immediately, well
before the dead worker is re-scheduled with heartbeat timeouts.

Live debugger: Debugging a deployed stream application (e.g.,
inspecting a particular worker’s input/output tuples) is extremely
useful. One way to support debugging in traditional stream frame-
works is to provision special-purpose workers at application de-
ployment time, which then receive and display copies of data tu-
ples from a streaming pipeline [19]. This approach is not only
inflexible (in terms of monitoring granularity, display format, and
provisioning time), but can also degrade the application through-
put performance due to additional application-level serializations.
Instead, the Typhoon SDN controller can easily support highly flex-
ible and efficient live debugging capability by dynamically adding
a debug worker anywhere in a running topology and inserting
packet-mirroring rules for selected tuples. The debug worker can
be flexibly re-deployed with custom filtering logic and display for-
mat to meet application-specific debugging requirements.

Load balancer: Stream applications commonly use round-robin
based shuffle routing to evenly distribute the workload of a partic-
ular computation logic among multiple workers. However, round-
robin based load balancing can be unfair or can introduce straggling
workers if the tuple size distribution is highly skewed or the under-
lying compute cluster is heterogeneous in terms of compute power.
To overcome these problems, the Typhoon SDN controller can ap-
ply SDN-level load balancing, in which application-level routing
decisions are fully offloaded to SDN. In this approach, a worker
populates destination IDs for outgoing tuples randomly, instead of
applying any routing, and the SDN switch rewrites their destination
IDs in a weighted round robin fashion (e.g., using select-type Group
in OpenFlow [24]) among multiple destinations, and forwards them
accordingly. The weight associated with each destination can be
dynamically adjusted by the SDN controller based on application-
level (e.g., node’s CPU load) and network-level (e.g., port statistics)
information.

Auto scaler: The ability to auto-scale the number of concur-
rent workers in response to dynamically changing data volumes
is critical in stream processing. In this case, network-level statis-
tics collected from SDN switches are not sufficient to determine

whether or not running workers are overloaded. Instead, the auto-
scaler app leverages application-layer metrics (e.g., tuple queue
level and tuple processing time) retrieved from ZooKeeper or work-
ers, and initiates scale up/down operations via control tuples when
the metrics reach predefined maximum and minimum thresholds.

5 PROTOTYPE IMPLEMENTATION
We implemented the Typhoon architecture using Apache Storm [7]
as our base, and using Open vSwitch (OVS) and the Floodlight
controller [16] to realize the SDN components. We choose Apache
Storm as a baseline stream framework because it already provides
common runtime facilities (e.g., centralized job scheduler and co-
ordinator, per-host supervisor daemon), programming APIs for
developing and deploying stream applications, and pluggable/ex-
tensible interfaces for key components (e.g., scheduler, network
transport, coordinator), which allows us to re-use, replace or ex-
tend them relatively easily. Our implementation consists of 2000
lines of Java code and 800 lines of C code for implementing the
OVS-integrated Typhoon data plane, and 4500 lines of Java code for
extending Storm and integrating Typhoon with Floodlight control
plane. Below we highlight key implementation details.

Central coordinator: Following Storm, Typhoon utilizes Apache
ZooKeeper [38] as the central coordinator, and manages logical/-
physical topologies as language-agnostic Thrift objects [53] in
ZooKeeper. We extend the Thrift object definitions designed for
Storm to include reconfigurable parameters and SDN configura-
tions for logical and physical topologies, so that the SDN controller
and other Typhoon components can be coordinated via ZooKeeper
as shown in Table 1.

Typhoon streaming manager: We implement the Typhoon
streaming manager by refactoring Nimbus in Storm, which per-
forms central job management tasks such as building and schedul-
ing topologies. In the streaming manager, we modify the topology
builder component of Nimbus and implement the dynamic topology
manager module. Together, they update necessary Typhoon global
states in ZooKeeper during job submissions and reconfigurations.
We also implement a custom Typhoon topology scheduler by lever-
aging Storm’s pluggable scheduler interface (IScheduler). Replac-
ing Storm’s default round-robin scheduler, the Typhoon scheduler
assigns topologically neighboring workers to the same compute
node to minimize remote inter-worker communication.

Typhoonworker I/O layer: In order to implement theworker’s
I/O layer as explained in Section 3.3.1, we leverage the pluggable
network transport interface (IContext and IConnection) in Storm.
We implement the I/O layer as a custom transport library plugged
into that interface, which replaces the Netty-based Storm’s default
transport implementation. Transferring data tuples as custom Eth-
ernet packets between the framework layer and the SDN switch, the
Typhoon’s transport library must be able to create and process raw
Ethernet packets in user space without introducing performance
bottlenecks. To meet this requirement, we implement the library
using the DPDK framework [10], and integrate it with DPDK-based
userspace OVS as an SDN switch. One caveat is that while the
Storm’s network transport APIs are defined in Java, the DPDK
framework only provides the C interface. Thus, we implement the
transport library in two components; one written in Java, and the

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

 DPDK Shared Memory

DPDK
Ring Port

Southbound
Transport Lib

Tuples

Packets

SDN Switch
(DPDK-OVS)

Northbound
Transport Lib

Byte[]

Function call

Flow control
via flow rules

JNI CALL

JAVA CALL C CALL

Sender Worker

I/O Layer

Framework
Layer

BR

Receiver Worker

DPDK
Ring Port

 Southbound
Transport Lib

Packets

Northbound
Transport Lib

Tuples

Byte[]

Figure 7: Typhoon data plane implementation.

other in C, and interconnect them via Java Native Interface (JNI).
We refer to the framework-integrated Java component as a north-
bound transport library, and the network-integrated C component
as a southbound transport library.

The southbound transport library transforms byte arrays of tu-
ples received from the northbound library via JNI calls, into custom
Ethernet packets to be sent to DPDK OVS via shared memory ring
buffers. Conversely, it de-packetizes incoming Ethernet packets
into tuple byte arrays. It sends and receives multiple tuples or pack-
ets in a batch to minimize the overhead of JNI function calls and
DPDK-based inter-process communication. The workflow of the
southbound transport is implemented as follows. (i) egress workflow:
It receives a byte array of outgoing tuples with their source/des-
tination worker IDs set via the northbound library’s JNI call, and
converts them into a set of Ethernet packets with the worker IDs in
Ethernet headers and additional metadata (tuple length, packet seg-
mentation info, etc.) prepended in payloads. Multiple small tuples
with the same source/destination IDs are packed into one packet,
while one large tuple is segmented into multiple packets. Finally, it
sends out the packets via shared memory TX ring buffers of a target
switch port. (ii) ingress workflow: It polls for incoming packets in
shared memory RX ring buffers of DPDK OVS. Upon receiving
packets, it de-packetizes them into a byte array consisting of a set
of <source worker ID, payload length of a packet, payload>, and
sends the constructed byte array to the northbound library via a JNI
function call. (iii) management workflow: It can dynamically create
or destroy shared memory ring buffers to connect or disconnect
workers in the SDN switch. It can also adjust the batch size for
existing workers for latency/throughput tradeoff.

The northbound transport library transforms tuple objects from
the worker’s framework layer into serialized byte format, and vice
versa. It also exploits configurable batching to minimize JNI call
overhead. The workflow of the northbound transport is imple-
mented as follows. (i) egress workflow: It receives a list of tuple
objects from the framework layer, and queues them up internally.
When the number of queued objects reaches a batch size, it trans-
forms the tuple objects into a byte array consisting of a set of <tuple
length, tuple data> with source and destination worker IDs, and

sends the byte array to the southbound library via JNI. (ii) ingress
workflow: It receives a byte array of tuples with their length and
source worker ID information from the southbound library via JNI,
and converts them into a list of tuple objects. When multiple tuples
are received as a single packet, it segments the payload in the byte
array into multiple tuple objects. It forwards the constructed tuple
objects to the framework layer.

Typhoon SDN control plane: We implement the Typhoon’s
SDN control plane using Java-based Floodlight. We re-use the tuple
libraries from Storm to implement the control tuple communica-
tion in Floodlight, and use Apache Curator [2] for the interaction
between Floodlight and ZooKeeper. We implement those control
plane applications described in Section 4 and deploy them on Flood-
light. Some of these applications interact with framework users
via REST APIs, so that the users can leverage a Typhoon-provided
framework service (e.g., topology reconfiguration and debugging
services).

6 EVALUATION
In this section, we evaluate the baseline performance of Typhoon
and demonstrate its benefits as compared to Apache Storm. We
deploy the Typhoon prototype and Storm on baremetal servers
from the Emulab testbed [57], each with 32 cores, 64GB of mem-
ory and 10GB NICs. For Typhoon, one server is designated to run
the streaming manager, Zookeeper and the SDN controller, while
the rest servers run workers. In all experiments, we use Storm’s
default configurations with a round-robin topology scheduler for
fair comparisons.

6.1 Baseline Performance
While Typhoon provides enhanced features (e.g., runtime recon-
figurability, extensible SDN functionality), such capability should
not come at the cost of degraded performance. Here we evaluate
the performance of Typhoon’s custom transport implementation
in terms of throughput and latency, and compare it against Storm.

Tuple forwarding:We first evaluate the performance of data
tuple forwarding in a simple topology consisting of two workers.
A source worker injects a sequence of string tuples at maximum
speed, and a sink worker checks the sequence numbers in the tuples.
Fig. 8(a) shows the maximum throughput performance (tuples/sec)
of this topology. LOCAL means both workers run on the same
server, while REMOTE implies they are deployed on two servers.
The number in the label indicates different batch sizes in Typhoon
I/O. Typhoon and Storm show similar throughput in both cases,
meaning that Typhoon’s flexible I/O layer is still fast enough to
handle maximum speed inputs from the application layer. The batch
size has minimal effect in this experiment as the source worker
emits tuples at maximum speed.

Tuple forwarding with reliability guarantee: To support
stream applications with reliability requirements, Storm provides
guaranteed processing [18], which ensures that each input tuple to
a topology is fully processed (i.e., at least once) through the entire
topology despite any worker/host failures. This is implemented
by leveraging an application-level ACK mechanism, where special
acker workers receive ACK messages for every tuple processing
downstream to detect failed tuples, and notify input workers. If any

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

 0

 0.4

 0.8

 1.2

LOCAL REMOTE

#
 M

il
li
o
n
 T

u
p
le

s
/s

e
c

STORM
TYPHOON (100)
TYPHOON (250)

TYPHOON (500)
TYPHOON (1000)

(a) Tuple forwarding.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

LOCAL REMOTE

#
 M

il
li
o
n
 T

u
p
le

s
/s

e
c

STORM
TYPHOON (100)
TYPHOON (250)

TYPHOON (500)
TYPHOON (1000)

(b) Tuple forwarding with ACK.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Latency (msec)

STORM
TYPHOON (100)
TYPHOON (250)

TYPHOON (500)
TYPHOON (1000)

(c) Tuple latency (local).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Latency (msec)

STORM
TYPHOON (100)
TYPHOON (250)

TYPHOON (500)
TYPHOON (1000)

(d) Tuple latency (remote).

Figure 8: Storm vs. Typhoon performance comparison.

input tuple is not fully processed, it is replayed from input workers.
Typhoon supports Storm’s guaranteed processing by installing SDN
flow rules for ackers when they are enabled. Fig. 8(b) compares the
throughput performance of Storm and Typhoon when one acker
worker is enabled for the above two-worker topology. Both system
shows similar throughput, while the performance drops in half
compared to Fig. 8(a) due to the extra computation and network
overhead of the acker.

We also measure the end-to-end latency of tuple processing and
plot their CDFs in Figs. 8(c) and 8(d). The latency is measured in
the source worker which is notified from the acker worker when
the processing of each tuple is completed. Latency becomes smaller
as the batch size decreases in Typhoon I/O layer, which is expected.
When the batch size is smaller than 500, Typhoon shows lower
latency than Storm. We expect that the end-to-end latency without
acker will show similar patterns with varying batch sizes.

 0

 0.4

 0.8

 1.2

STORM
(LOCAL)

TYPHOON
(LOCAL)

STORM
(REMOTE)

TYPHOON
(REMOTE)

#
 M

ill
io

n
 T

u
p

le
s
/s

e
c

2 3 4 5 6

Figure 9: One-to-many communication.

One-to-many tuple forwarding: If a stream application lever-
ages one-to-many routing, it can benefit from serialization-free
network-level broadcasting in Typhoon. To demonstrate this ben-
efit, we deploy a topology consisting of one source worker and a
varying number of sink workers. The source worker broadcasts
input tuples to all connected sink workers. Fig. 9 shows the through-
put performance of Storm and Typhoon when the number of sink
workers increases from two to six. The figure clearly shows the
increasing performance gap between Storm and Typhoon. While
the throughput of the former significantly drops with more sink
workers due to multiple serializations, data copies and TCP over-
head, the latter shows similar throughput regardless of the number
of sink workers due to negligible packet copy overhead in OVS.

6.2 SDN Control Plane Applications
One key selling point of Typhoon is its extensible functionality via
SDN control plane. We describe the implementation of several SDN

control plane applications and demonstrate their usecases. In all
experiments, we set the batch size to 100.

0

40K

80K

120K

160K

200K

 0 10 20 30 40 50 60 70

Split fault

#
 o

f
T

u
p

le
s
/s

e
c

Time (sec)

COUNT1
COUNT2
COUNT3
COUNT4

(a) Sink workers in Storm.

0

40K

80K

120K

160K

200K

 0 10 20 30 40 50 60 70

Split fault

#
 o

f
T

u
p

le
s
/s

e
c

Time (sec)

COUNT1
COUNT2
COUNT3
COUNT4

(b) Sink workers in Typhoon.

Figure 10: Storm and Typhoon fault evaluation.

Fault detector:The fault detector SDN app is useful for fast fault
detection and recovery in case running workers die. We use a word
count topology shown in Fig. 2, with one source, two split workers
and four count workers deployed on three servers. Shuffle and
key-based routing are used between the source and split workers,
and between split and count workers, respectively. Each count
worker may receive a different amount of workload from preceding
split workers if the key distribution is skewed. For evaluation, we
intentionally cause NullPointerException in one split worker,
and compare the fault recovery in Storm and Typhoon in Fig. 10.

In Storm,when aworker dies, it is locally detected and theworker
gets restarted on the same server. Since it continuously fails, and is
unable to send heartbeats (for 30 sec. in Storm by default), Nimbus
re-assigns it on another server. During this time, count workers
cannot receive any tuple from the faulty worker, and thus their
throughput drops in half as shown in Fig. 10(a). Even after worker
rescheduling, the throughput of counter workers remains in half
since Nimbus does not realize the re-deployed worker is also faulty.
Typhoon follows the same recovery mechanism as Storm, except
that the fault detector receives SwitchPortChanged notification
due to the worker fault, and immediately re-directs incoming tuples
to the other alive split worker. As shown in Figs. 10(b) and 10(a),
the average aggregate throughput of sink workers in Typhoon
remains the same after sink worker failure, while in Storm, their
aggregate throughput drops in half. The fluctuation in throughput
in Typhoon is because the other split worker needs to process
double the amount of tuples.

Auto-scaler: Next, we demonstrate the worker-level reconfigu-
ration capability of Typhoon, in particular, auto-scaling workers.
To demonstrate the impact of auto scaling, we deploy the same
topology used for the fault detection scenario, but with a very high

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

 0

 0.4

 0.8

 1.2

 1.6

 0 500 1000 1500 2000

M

ill
io

n
T

up
le

s/
se

c

Time (sec)

COUNT1
COUNT2

COUNT3
COUNT4

(a) Throughput in count workers.

 0

 0.4

 0.8

 1.2

 0 1000 2000 3000 4000

M

ill
io

n
T

up
le

s/
se

c

Time (sec)

COUNT1
COUNT2

COUNT3
COUNT4

(b) Throughput in count workers.

 0.04

 0.08

 0.12

 0.16

 0 20 40 60 80 100

Scale-up

M

ill
io

n
T

up
le

s/
se

c

Time (sec)

SPLIT1
SPLIT2
NEW SPLIT3

(c) Throughput in split workers.

Figure 11: Typhoon auto scale-up performance.

input rate. Fig. 11(a) shows the throughput of four count workers
in Storm. Occasional throughput drops are caused by the failure
of their preceding split worker due to OutOfMemoryError. While
the throughput is back up after the failed split worker is restarted,
it is not a permanent solution. Instead, as shown in Fig. 11(c), the
Typhoon’s auto scaler app detects overloaded split workers, and ini-
tiates scale-up operation by introducing the third split worker, and
re-distributes input tuples among three split workers. As a result,
the throughput in count workers is much more stable afterwards
as demonstrated in Fig. 11(b). While the figure shows a temporary
dip in throughput, we verify that there was no packet drop or tuple
loss during the Typhoon experiment.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 10 20 30 40 50 60 70

Start End

#
 M

ill
io

n
 T

u
p

le
s
/s

e
c

Time (sec)

STORM
TYPHOON

Figure 12: Live debugging overhead.

Live debugger:We compare the live debug system in Storm and
Typhoon. In this experiment, we deploy a topology consisting of a
source, a sink, and a debug worker for live logging. In both systems,
live logging is temporarily activated from 18 sec., during which
tuples from the source are replicated to the debug worker. As shown
in Fig. 12, the throughput of the topology drops significantly in
Storm due to serialization overheads, while Typhoon’s throughput
is not affected thanks to lightweight network-level packet copy.
Table 5 summarizes the comparison of Storm and Typhoon for their
live debugging capability.

Property Debugging
granularity

Resource
requirement

Dynamic
provisioning

Multiple
serialization

Storm An entire topology,
or a set of workers

Pre-provisioned
memory and

TCP connections

No
(predefined via
storm.yaml or
API in apps

Yes

Typhoon Each worker Memory allocated
on demand Yes No

Table 5: Storm vs. Typhoon: live debugger comparison.

Redis
DB

Apache
Kafka

Parse
(1)

Kafka
client

(1)

Filter
(3)

Projection
(3)

Join
(3)

Aggregation
& store (1)

Figure 13: Yahoo advertisement analytics application.

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

Reconfig

T
u

p
le

s
/s

e
c

Time (sec)

Parse worker
Store worker (sink)

Figure 14: Runtime update on computation logic.

Computation logic reconfiguration: Next, we demonstrate
Typhoon’s capability to replace the computation logic of an active
worker by using the Yahoo streaming benchmarks [30]. Simulating
an advertisement analytics pipeline, the benchmark application
performs six distinct computations in its pipeline, with Kafka as
an input source and Redis as a database for join and aggregation
workers (Fig. 13). The number in each computation indicates the
number of workers. Except for the join and aggregation computa-
tions which maintain a local cache and a 10-second tuple window,
the rest of computations are stateless. For reconfiguration, we focus
on the filter worker which processes three different types of event
tuples (e.g, view, click and purchase). In the initial deployment, the
filter worker allows only view events, but let’s assume we need to
change the filtering logic such that it allows both view and click
events. Typhoon enables computation logic change via Typhoon
SDN controller. A user simply submits a reconfiguration request to
the Typhoon SDN controller with updated topology information.
Coordinated via ZooKeeper, Typhoon then deploys three new fil-
ter workers, connects them to parse and protection workers, and
kills the old filter workers. The reconfiguration procedure does
not require shut-down or topology hot swapping operations which
are expensive. Fig. 14 confirms that windowed count increases af-
ter replacing filter workers as the new filtering logic allows more
events.

CoNEXT ’17, December 12–15, 2017, Incheon, Korea J. Cho, H. Chang, S. Mukherjee, T.V. Lakshman, and J. Van der Merwe

7 RELATEDWORK
Several open-source stream frameworks provide runtime reconfig-
urability, but not to the extent of Typhoon. For example, Storm [23]
provides a rebalancing mechanism by which compute resources
assigned to a physical topology can be adjusted, but the topology
itself is fixed during its life time. Gearpump [4] allows dynamic re-
configuration at a logical topology level, but cannot switch routing
policies at runtime [12]. Apex [1] supports dynamic modification
of logical DAGs, but any possible modification must be pre-planned
and implemented at the application design stage [8, 21]. In terms
of research efforts, TimeStream [49] proposes a resilient substitu-
tion abstraction to replace any sub-graph of a streaming topology
at runtime, but it does not allow dynamic routing policy change
or composition of multiple routing policies. Load-aware routing
policies for stream processing [47, 58] are point solutions focusing
on data load balancing.

Early works on distributed stream processing [25, 29, 51] support
adaptive re-partitions to address load imbalances on the fly. The
load of Flux data flow operators [51] is monitored and dynamically
repartitioned by a centralized controller. Borealis [25], based on its
predecessor Aurora [29], has control lines which carry information
to update operator’s behavior (e.g., revised operator’s parameters
and functions). While there are similarities between Typhoon and
their components, Flux does not support elastic scaling of parallel
operators, and Borealis supports only limited elasticity using box
splitting approaches adopted from Aurora. None of these systems
supports dynamic user-defined computation logic update.

An SDN-based intra-host communication model [44] is in similar
spirit as Typhoon, but no detailed architecture or prototype imple-
mentation is available. Authors of [40] focus on data tuple broad-
casting and propose several broadcasting algorithms that reduce
inter process communication overhead by using shared memory.

8 DISCUSSION
Cross-layer design. Typhoon presents a case of cross-layer design,
leveraging tight integration between the network and streaming
applications via SDN interfaces and programmability. While cross-
layer designs are often met with caution and skepticism in fear of
unintended consequences of cross-layer interactions and relatively
poor sustainability [41], we argue for Typhoon’s cross-layer ap-
proach as follows. First, the recent SDN innovation has introduced
“SDN network hypervisors” [26, 28, 52], which empower data center
tenants to operate their own fully isolated virtual SDN slices. This
capability offers opportunities for data center tenant applications
like streaming frameworks to easily interact with their own SDN
slices, independently of data center network infrastructure, and
while avoiding any potential conflicts with other cross-layer appli-
cations operated by other tenants [33]. Also, while we admit that
any limitation of existing streaming frameworks could be addressed
at the application layer (e.g., application-level proxy for flexible
tuple routing), the ultimate benefit of Typhoon design comes from
its extensible architecture beyond run-time flexibility (Section 4).

Stateful worker management. Our current design for recon-
figuration supports limited types of stateful workers based on win-
dow operations and in-memory cache, as described in Section 3.5.
However, given the emerging trends toward decoupling state from

processing logic to an external storage [37, 39], we believe that
Typhoon can be extended to support more general stateful workers
by leveraging fine-grained run-time management of workers via
control tuples (Table 2) and dynamic flow modification via the SDN
controller. For example, in case of relocating a stateful worker from
one host to another, Typhoon can simply “pause-and-resume” the
worker via control tuples (e.g., SIGNAL and (DE)ACTIVATE tuples),
while its state remains in an external storage.

Packet loss in software SDN switches. In typical Typhoon
deployments, the main bottleneck will be the workers, not the SDN
switches, and Typhoon can scale workers to avoid bottlenecks (e.g.,
auto-scaler in Section 6.2). However, tuple loss may still occur at
the SDN switches (e.g., due to temporary TX/RX queue overflow)
if workers send via Typhoon I/O layer a large batch of tuples to the
switches at once. Such switch-level tuple drops need to be handled
by an application-level ACK mechanism. To avoid switch-level
packet drops and minimize expensive application-level recovery,
one can apply moderate batch sizes in the worker I/O layer, and also
use large sizes of TX/RX queues and packet buffers in the switches.

Impact of host-level TCP tunnels. For reliable tuple delivery,
Typhoon maintains TCP tunnels at the host level, not worker level.
This raises a question on its impact on data center wide network
load balancing, since the host-level TCP tunnels will create more
elephant flows, and thus can prevent ECMP from performing prop-
erly. This point is certainly true if the Typhoon framework and its
applications are deployed in a dedicated compute cluster. However,
if Typhoon is deployed as a regular tenant application running in
virtual compute resources (e.g., VMs) interconnected with an encap-
sulated overlay (e.g., VxLAN, Geneve, STT), Typhoon’s TCP tunnels
do not reduce the entropy of data center’s traffic distributions be-
yond what those overlays have. Even if Typhoon is deployed in a
dedicated compute cluster, Typhoon’s run-time flexibility allows
any deployed worker to be relocated to a different host at run time.
Thus, it can re-schedule any deployed worker pair to the same host
if they generate significant remote communication traffic. More
detailed analysis of performance implication is left for future work.

9 CONCLUSION
We present Typhoon, an SDN-based real-time stream framework
that tightly integrates SDN functionality into a real-time stream
framework to enhance its capabilities. Typhoon uses an SDN con-
troller to control both network and applications for stream process-
ing, usingwell-defined interfaces. Moreover, the Typhoon controller
exposes cross-layer information to SDN control plane applications
to manage active stream applications. We showcase several useful
SDN control plane applications and present a thorough evaluation
of the Typhoon prototype implementation. Compared to an ex-
isting stream framework, our results show better performance in
terms of throughput and better managements of running stream
applications.
Acknowledgements:Wewould like to thank our shepherd Monia
Ghobadi and our reviewers for their feedback on earlier versions
of this paper. We also thank Limin Wang for his technical help.
This work was initiated when the primary author was an intern at
Nokia Bell Labs, and is supported in part by the National Science
Foundation under grant numbers 1302688 and 1305384.

An SDN Enhanced Real-Time Big Data Streaming Framework CoNEXT ’17, December 12–15, 2017, Incheon, Korea

REFERENCES
[1] Apache Apex. https://apex.apache.org.
[2] Apache Curator. http://curator.apache.org.
[3] Apache Flink. https://flink.apache.org.
[4] Apache Gearpump. http://gearpump.apache.org.
[5] Apache Samza. http://samza.apache.org.
[6] Apache Spark. http://spark.apache.org.
[7] Apache Storm. http://storm.apache.org.
[8] Apex Application Developer Guide. https://github.com/DataTorrent/docs/blob/

master/docs/application_development.md.
[9] Common Topology Patterns. http://storm.apache.org/releases/1.0.3/

Common-patterns.html.
[10] Data Plane Development Kit. http://dpdk.org.
[11] Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units

By 2020. https://www.gartner.com/newsroom/id/2636073.
[12] Gearpump - dynamic DAG. http://mail-archives.apache.org/mod_mbox/

incubator-gearpump-user/201609.mbox/browser. Gearpump User Mailing List.
[13] How Spotify Scales Apache Storm. https://labs.spotify.com/2015/01/05/

how-spotify-scales-apache-storm/.
[14] Microsft Azure SLA for Stream Analytics. https://azure.microsoft.com/support/

legal/sla/stream-analytics/.
[15] New Tweets per second record, and how! https://blog.twitter.com/engineering/

en_us/a/2013/new-tweets-per-second-record-and-how.html.
[16] Project Floodlight. http://www.projectfloodlight.org/floodlight/.
[17] STORM-634: Storm serialization changed to thrift to support rolling upgrade.

https://github.com/apache/storm/pull/414.
[18] Storm Guaranteeing Message Processing. http://storm.apache.org/releases/

current/Guaranteeing-message-processing.html.
[19] Storm topology event inspector. http://storm.apache.org/releases/2.0.

0-SNAPSHOT/Eventlogging.html.
[20] Stream groupings. http://storm.apache.org/releases/2.0.0-SNAPSHOT/Concepts.

html.
[21] Support for Dynamic Topology. http://mail-archives.apache.org/mod_mbox/

apex-users/201608.mbox/browser. Apex Users Mailing List.
[22] Tigon. http://tigon.io.
[23] Understanding the Parallelism of a Storm Topol-

ogy. http://storm.apache.org/releases/2.0.0-SNAPSHOT/
Understanding-the-parallelism-of-a-Storm-topology.html.

[24] OpenFlow Switch Specification. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf, 2014.

[25] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The Design of the Borealis
Stream Processing Engine. In Proc. CIDR, 2005.

[26] A. Al-Shabibi et al. OpenVirteX: Make Your Virtual SDNs Programmable. In
Proc. HotSDN, 2014.

[27] A. Botta, W. de Donato, V. Persico, and A. Pescapè. On the Integration of Cloud
Computing and Internet of Things. In Proc. IEEE International Conference on
Future Internet of Things and Cloud, 2014.

[28] Z. Bozakov and P. Papadimitriou. AutoSlice: Automated and Scalable Slicing for
Software-Defined Networks. In Proc. ACM CoNEXT, 2012.

[29] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. B. Zdonik. Scalable Distributed Stream Processing. In Proc. CIDR, 2003.

[30] S. Chintapalli et al. Benchmarking Streaming Computation Engines: Storm,
Flink and Spark Streaming. In Proc. IEEE International Parallel and Distributed
Processing Symposium Workshops, 2016.

[31] L. G. D. Estrin and M. S. G. Pottie. Instrumenting the World with Wireless Sensor
Networks. In Proc. IEEE ICASSP, 2001.

[32] R. Evans. From Gust to Tempest: Scaling Storm. In Proc. Hadoop Summit, 2015.
[33] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. Participatory

Networking: An API for Application Control of SDNs. In Proc. ACM SIGCOMM,
2013.

[34] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion: Self-
Regulating Stream Processing in Heron. VLDB Endowment, 10(12), 2017.

[35] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, and V.-A. Truong. Availability in
Globally Distributed Storage Systems. In Proc. USENIX OSDI, 2010.

[36] A. Ghoting and S. Parthasarathy. Facilitating Interactive Distributed Data Stream
Processing and Mining. In Proc. IEEE International Parallel and Distributed Pro-
cessing Symposium, 2004.

[37] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Serverless Computation with OpenLambda. In
Proc. 8th USENIX Workshop on HotCloud, 2016.

[38] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems. In Proc. USENIX ATC, 2010.

[39] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the Cloud:
Distributed Computing for the 99%. In Proc. ACM Symposium on Cloud Computing,
2017.

[40] S. Kamburugamuve, S. Ekanayake, M. Pathirage, and G. Fox. Towards High
Performance Processing of Streaming Data in Large Data Centers. In Proc. IEEE
International Parallel and Distributed Processing Symposium Workshops, 2016.

[41] V. Kawadia and P. Kumar. A Cautionary Perspective on Cross-layer Design. IEEE
Wireless Communications, 12(1), 2005.

[42] A. Khrabrov and E. de Lara. Accelerating Complex Data Transfer for Cluster
Computing. In Proc. 8th USENIX Workshop on HotCloud, 2016.

[43] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter Heron: Stream Processing at Scale. In
Proc. ACM SIGMOD, 2015.

[44] O. Michel, M. Coughlin, and E. Keller. Extending the Software-Defined Network
Boundary. ACM SIGCOMM Computer Communication Review, 44(4):381–382,
2014.

[45] R. Moore. A Universal Dynamic Trace for Linux and other Operating Systems.
In Proc. USENIX ATC, FREENIX Track, 2001.

[46] M. A. U. Nasir. Fault Tolerance for Stream Processing Engines. arXiv preprint
arXiv:1605.00928, 2016.

[47] M. A. U. Nasir, G. D. F. Morales, D. García-Soriano, N. Kourtellis, and M. Serafini.
The Power of Both Choices: Practical Load Balancing for Distributed Stream
Processing Engines. In Proc. IEEE International Conference on Data Engineering,
2015.

[48] L. Neumeyer, B. Robbins, A. Nair, andA. Kesari. S4: Distributed StreamComputing
Platform. In Proc. IEEE International Conference on Data Mining Workshops, 2010.

[49] Z. Qian et al. TimeStream: Reliable Stream Computation in the Cloud. In
Proc. EuroSys, 2013.

[50] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang. Failure Data
Analysis of a Large-Scale Heterogeneous Server Environment. In Proc. IEEE
International Conference on Dependable Systems and Networks, 2004.

[51] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An
Adaptive Partitioning Operator for Continuous Query Systems. In Proc. IEEE
International Conference on Data Engineering, 2003.

[52] R. Sherwood et al. FlowVisor: A Network Virtualization Layer. In OpenFlow
Switch Consortium, 2009.

[53] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable Cross-Language
Services Implementation. Facebook White Paper, 5(8), 2007.

[54] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 Requirements of Real-Time
Stream Processing. ACM SIGMOD Record, 34(4), 2005.

[55] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jack-
son, K. Gade, M. Fu, J. Donham, et al. Storm @Twitter. In Proc. ACM SIGMOD,
2014.

[56] L. Wang. Usages and Optimizations of Spark at Tencent. In Proc. Big Data
Conference, 2015.

[57] B. White et al. An Integrated Experimental Environment for Distributed Systems
and Networks. ACM SIGOPS Operating Systems Review, 36(SI), 2002.

[58] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in the borealis
stream processor. In Proc. IEEE International Conference on Data Engineering,
2005.

[59] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freed-
man. Live Video Analytics at Scale with Approximation and Delay-Tolerance. In
Proc. USENIX NSDI, 2017.

[60] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong. How to Do a
Million Watchpoints: Efficient Debugging Using Dynamic Instrumentation. In
Proc. International Conference on Compiler Construction, 2008.

https://apex.apache.org
http://curator.apache.org
https://flink.apache.org
http://gearpump.apache.org
http://samza.apache.org
http://spark.apache.org
http://storm.apache.org
https://github.com/DataTorrent/docs/blob/master/docs/application_development.md
https://github.com/DataTorrent/docs/blob/master/docs/application_development.md
http://storm.apache.org/releases/1.0.3/Common-patterns.html
http://storm.apache.org/releases/1.0.3/Common-patterns.html
http://dpdk.org
https://www.gartner.com/newsroom/id/2636073
http://mail-archives.apache.org/mod_mbox/incubator-gearpump-user/201609.mbox/browser
http://mail-archives.apache.org/mod_mbox/incubator-gearpump-user/201609.mbox/browser
https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-storm/
https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-storm/
https://azure.microsoft.com/support/legal/sla/stream-analytics/
https://azure.microsoft.com/support/legal/sla/stream-analytics/
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
http://www.projectfloodlight.org/floodlight/
https://github.com/apache/storm/pull/414
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Eventlogging.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Eventlogging.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Concepts.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Concepts.html
http://mail-archives.apache.org/mod_mbox/apex-users/201608.mbox/browser
http://mail-archives.apache.org/mod_mbox/apex-users/201608.mbox/browser
http://tigon.io
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Understanding-the-parallelism-of-a-Storm-topology.html
http://storm.apache.org/releases/2.0.0-SNAPSHOT/Understanding-the-parallelism-of-a-Storm-topology.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

	Abstract
	1 Introduction
	2 Background
	3 Typhoon Architecture
	3.1 Design Goals
	3.2 Architecture Overview & Workflow
	3.3 Worker Design
	3.4 SDN Controller
	3.5 Stable Topology Update

	4 SDN Control Plane Applications
	5 Prototype Implementation
	6 Evaluation
	6.1 Baseline Performance
	6.2 SDN Control Plane Applications

	7 Related work
	8 Discussion
	9 conclusion
	References

