THEu

UNIVERSITY
OF UTAH

Rocksteady: Fast Migration for Low-Latency
In-memory Storage

Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, Ryan Stutsman

Introduction

Distributed low-latency in-memory key-value stores are emerging
* Predictable response times ~10 us median, ~60 ps 99.9%-tile

Problem: Must migrate data between servers
e Minimize performance impact of migration - go slow?
e Quickly respond to hot spots, skew shifts, load spikes - go fast?

Solution: Fast data migration with low impact
e Early ownership transfer of data, leverage workload skew
e Low priority, parallel and adaptive migration

Result: Migration protocol for RAMCloud in-memory key-value store
* Migrates 256 GB in 6 minutes, 99.9"-tile [atency less than 250 ps
 Median latency recovers from 40 pus to 20 usin 14 s

Why Migrate Data?

Client 1

multiGet(

)

0

Server 1

multiGet(

Client 2

.

Server 2

6 Million

No Locality
Fanout=7

Poor spatial locality - High multiGet() fan-out -> More RPCs

3

Migrate To Improve Spatial Locality

Client 1 Client 2

multiGet() multiGet()

6 Million

No Locality
n Fanout=7

Server 1 Server 2

Spatial Locality Improves Throughput

Client 1 Client 2
. . 25 Million
multiGet() multiGet()
6 Million
v v Full Locality No Locality
Fanout=1 Fanout=7
B o

Server 1 Server 2

Better spatial locality - Fewer RPCs - Higher throughput
Benefits multiGet(), range scans

The RAMCloud Key-Value Store

Client Client Client Client

All Data in RAM

Kernel Bypass/

u Coordinator Data Center Fabric DPDK
10 ps reads
Master Master Master Master
Backup Backup Backup Backup

e

@

L2

L

The RAMCloud Key-Value Store

Client Client Client Client

Write RPC

u Coordinator Data Center Fabric

Master Master Master

Backup

e

Backup Backup

e @

The RAMCloud Key-Value Store

Client

Client

Client

u Coordinator

Master

Backup

e

Write RPC

Data Center Fabric

Master

Backup

Client

1x in DRAM

3x on Disk

Master

Backup

L

Fault-tolerance & Recovery In RAMCloud

Client

u Coordinator

Master

Backup

e

Client

Client

Client

Data Center Fabric

Master

Backup

Master

L2

Backup

L

Fault-tolerance & Recovery In RAMCloud

Client

u Coordinator

Master

Balkup

Client

Client

Data Center Fabric

Client

Master

2 seconds to
recover

Bagxup

Master

Baxup

10

Performance Goals For Migration

 Maintain low access latency
e 10 usec median latency - System extremely sensitive
e Tail latency matters at scale - Even more sensitive

 Migrate data fast
 Workloads dynamic - Respond quickly
e Growing DRAM storage: 512 GB per server
e Slow data migration - Entire day to scale cluster

Rocksteady Overview: Early Ownership Transfer

Problem: Loaded source can bottleneck migration

Solution: Instantly shift ownership and all load to target

Client 1 Client 2 Client 3 Client 4
Reads and Writes

Source Server Target Server

12

Rocksteady Overview: Early Ownership Transfer

Problem: Loaded source can bottleneck migration

Solution: Instantly shift ownership and all load to target

Client 1

S~

Client 2

N

Client 3

Source Server

U/

Instantly
Redirected

Target Server

Client 4

All future operations
serviced at Target

Creates “headroom” to
speed migration

13

Rocksteady Overview: Leverage Skew

Problem: Data has not arrived at source yet

Solution: On demand migration of unavailable data

Client 1 Client 2 Client 3 Client 4

Re&

On-demand Pull\

Source Server Target Server

Rocksteady Overview: Leverage Skew

Problem: Data has not arrived at source yet

Solution: On demand migration of unavailable data

Client 1 Client 2 Client 3 Client 4

——

Hot keys move
early
Median Latency
H recovers to
20usin14s
Source Server Target Server

15

Rocksteady Overview: Adaptive and Parallel

Problem: Old single-threaded protocol limited to 130 MB/s

Solution: Pipelined and parallel at source and target

Client 1 Client 2 Client 3 Client 4

S~

On-demand Pull

G

G

e —— _
Parallel Pulls

Source Server Target Server

Rocksteady Overview: Adaptive and Parallel

Problem: Old single-threaded protocol limited to 130 MB/s

Solution: Pipelined and parallel at source and target

Client 1

Client 2

S~

Source Server

Client 3

On-demand Pull

G
G
G

Parallel Pulls

Client 4

—

Target Server

Target Driven

Yields to
On-demand Pulls

Moves 758 MB/s

17

Rocksteady Overview: Eliminate Sync Replication

Problem: Synchronous replication bottleneck at target

Solution: Safely defer replication until after migration

Client 1

Client 2

S~

Source Server

Client 3

On-demand Pull

G
G
G

Parallel Pulls

—

Target Server

Client 4

Replication

18

Rocksteady Overview: Eliminate Sync Replication

Problem: Synchronous replication bottleneck at target

Solution: Safely defer replication until after migration

Client 1

S~

Client 2

Client 3

Source Server

Target Server

Client 4

Replication

19

Rocksteady: Putting it all together

* Instantaneous ownership transfer
* Immediate load reduction at overloaded source
e Creates “headroom” for migration work

e Leverage skew to rapidly migrate hot data
e Target comes up to speed with little data movement

e Adaptive parallel, pipelined at source and target
e All cores avoid stalls, but yield to client-facing operations

o Safely defer replication at target
e Eliminates replication bottleneck and contention

Rocksteady

Instantaneous ownership transfer

e Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target

Evaluation Setup

Client
YCSB-B (95/5)
Skew=0.99

Client
YCSB-B (95/5)
Skew=0.99

Client
YCSB-B (95/5)
Skew=0.99

Client

Skew=0.99

YCSB-B (95/5)

300 Million

Records
45 GB

Source Server

Target Server

22

Evaluation Setup

Client
YCSB-B (95/5)
Skew=0.99

Client
YCSB-B (95/5)
Skew=0.99

Client
YCSB-B (95/5)
Skew=0.99

Client
YCSB-B (95/5)
Skew=0.99

150 Million
Records

22.5 GB

150 Million
Records

150 Million

Records
22.5GB

Target Server

23

Instantaneous Ownership Transfer

80%

i Created 55%
Source CPU Headroom

25%
Before Ownership Immediately After
Transfer Transfer

Source CPU Utilization

Before migration: Source over-loaded, Target under-loaded

Ownership transfer creates Source headroom for migration

24

Rocksteady

* |nstantaneous ownership transfer

Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target

Leverage Skew To Move Hot Data :

|
W 99.9th Latency ® Median Latency Before Migration:
240ps 245us]
" Median=10 ps
th —
1550 99.9% = 60 ps
75us
] —
Uniform (Low) Skew=0.99 Skew=1.5 (High)

After ownership transfer, hot keys pulled on-demand
More skew - Median restored faster (migrate fewer hot keys)

26

Rocksteady

* |nstantaneous ownership transfer

e Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target

Parallel, Pipelined, & Adaptive Pulls

Target .. 0

Table . /

Worker

' 8
.
i K i
(7
-

""""

Per-Core — |
Buffers rl—rT—,_l [rm_l M7 |

VY

e Target driven, migration manager

e Co-partitioned hash tables, pull from partitions in parallel

Cores 1 9 - - C{ - - 9 -
St 1] replay éplay read(B)
|
Cp Z@ [Migration
ore Vsl 3 [Manager
Nlc\} Pull Buffers I
T Polling . | |
—— L0 pulling

e Replay pulled data into per-core buffers

28

Parallel, Pipelined, & Adaptive Pulls

Source 0

16

24

Hash
Table .

)=

Dispatch |

pulll(llx

\I'I Cop | L1
40Ok mses_@

pull|(b‘)\\
e

List

Core _\H |
o NIC Polling
——111LLI

e Stateless passive Source

e Granular 20 KB pulls

29

Parallel, Pipelined, & Adaptive Pulls

e Redirect any idle CPU for migration

e Migration yields to regular requests, on-demand pulls

Rocksteady

* |nstantaneous ownership transfer
e Leverage skew to rapidly migrate hot data
e Adaptive parallel, pipelined at source and target

e Safely defer synchronous replication at target

Naive Fault Tolerance During Migration

Each server has a recovery log distributed across the cluster

Source Target

A J e | c

S
Recovery Log | ISR A ls s |cimlals

Target
Recovery Log

32

Naive Fault Tolerance During Migration

Migrated data needs to be triplicated to target’s recovery log

Source

A J e | c

Source
Recovery Log

Target
Recovery Log

Target

Naive Fault Tolerance During Migration

Migrated data needs to be triplicated to target’s recovery log

Source

A J e | c

Target

Source
Recovery Log

Target
Recovery Log

Synchronous Replication Bottlenecks Migration

Synchronous replication hits migration speed by 34%

Source Target

A J e | c

Source
Recovery Log

Target
Recovery Log

Rocksteady: Safely Defer Replication At The Target

Replicate at Target only after all data has been moved over

Source

A J e | c

Source

Recovery Log

Target

Recovery Log

Target

N N

/l\

Writes/Mutations Served By Target

Mutations have to be replicated by the target Write

Source

A J e | c

Target

Source
Recovery Log “

Target
Recovery Log

Crash Safety During Migration

 Need both Source and Target recovery log for data
recovery

* |nitial table state on Source recovery log
e Writes/Mutations on Target recovery log

e Transfer ownership back to Source in case of crash
e Migration cancelled
e Recovery involves both recovery logs

e Source takes a dependency on Target recovery log at
migration start

e Stored reliably at the cluster coordinator
 |dentifies position after which mutations present

If The Source Crashes During Migration

Recover Source, recover from Target recovery log

Source Target

N N

S
Recovery Log | ISR A ls s |cimlals

Recovery Log

If The Target Crashes During Migration

Recover from Source and Target recovery log, recover Target

Source

A J e | c

Target

Source
Recovery Log

Target
Recovery Log

Crash Safety During Migration

 Need both Source and Target recovery log for data
recovery

e |nitial table state on Source recovery log

Safely Transfer Ownership At Migration Start

Safely Delay Replication Till All Data Has Been Moved

migration start
e Stored reliably at the cluster coordinator
 |dentifies position after which mutations present

Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half

_. 40-
2 30-
S 20- Rocksteady
g 10-
3 o
2
Q
g 40- ,
< 4. Source Keeps Ownership
5 +
5 20- I
2 1o- f b i Lt "" Sync Replication
0-

0 20 40 60 80
Time Since Experiment Start (Seconds)

42

Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half

Median latency
better after
~14 seconds

—t—

__ 40-
2 30-
S 20- Rocksteady
c
a 10-
3 o-
a
]
o 40- .
< 4. Source Keeps Ownership
= +
5 20- B Al I
§ 10- Sync Replication

0- 1 1 1 1 1

0 20 40 60 80

Time Since Experiment Start (Seconds)

43

Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half

Median latency
better after
~14 seconds

—— 28% faster
0 :g' migration
E‘ 20- ' Rocksteady
g 10-
3 o
a
]
o 40- .
< 4. Source Keeps Ownership
c +
5 20- L
% 10- M Sync Replication
0- 1 1 1 1 1
0 20 40 60 80

Time Since Experiment Start (Seconds)

44

Related Work

e Dynamo: Pre-partition hash keys

e Spanner: Applications given control over locality
(Directories)

e FaRM and DrTM: Re-use in-memory redundancy for
migration

e Squall: Reconfiguration protocol for H-Store
e Early ownership transfer
e Paced background migration
e Fully partitioned, serial execution, no synchronization

e Each migration pull stalls execution
e Synchronous replication at the target

Conclusion

Distributed low-latency in-memory key-value stores are emerging
* Predictable response times ~10 us median, ~60 ps 99.9%-tile

Problem: Must migrate data between servers
e Minimize performance impact of migration - go slow?
e Quickly respond to hot spots, skew shifts, load spikes - go fast?

Solution: Fast data migration with low impact
* Leverage skew: Transfer ownership before data, move hot data first
e Low priority, parallel and adaptive migration

Result: Migration protocol for RAMCloud in-memory key-value store
* Migrates at 758 MBps with 99.9t-tile latency < 250 ps

Source Code: https://github.com/utah-scs/RAMCloud/tree/rocksteady-sosp2017

Backup Slides

Rocksteady Tail Latency Breakdown

300
250
200
150
100

50

Rocksteady

48

Rocksteady Tail Latency Breakdown

300
250
200
150
100

50

Rocksteady

* Disabling parallel pulls brings tail latency down to 160 psec

49

Rocksteady Tail Latency Breakdown

300

250

> .
150
100

50

Rocksteady

* Disabling parallel pulls brings tail latency down to 160 psec

e Synchronous on-demand pulls further brings tail latency down to 135 psec

50

	Rocksteady: Fast Migration for Low-Latency�In-memory Storage
	Introduction
	Why Migrate Data?
	Migrate To Improve Spatial Locality
	Spatial Locality Improves Throughput
	The RAMCloud Key-Value Store
	The RAMCloud Key-Value Store
	The RAMCloud Key-Value Store
	Fault-tolerance & Recovery In RAMCloud
	Fault-tolerance & Recovery In RAMCloud
	Performance Goals For Migration
	Rocksteady Overview: Early Ownership Transfer
	Rocksteady Overview: Early Ownership Transfer
	Rocksteady Overview: Leverage Skew
	Rocksteady Overview: Leverage Skew
	Rocksteady Overview: Adaptive and Parallel
	Rocksteady Overview: Adaptive and Parallel
	Rocksteady Overview: Eliminate Sync Replication
	Rocksteady Overview: Eliminate Sync Replication
	Rocksteady: Putting it all together
	Rocksteady
	Evaluation Setup
	Evaluation Setup
	Instantaneous Ownership Transfer
	Rocksteady
	Leverage Skew To Move Hot Data
	Rocksteady
	Parallel, Pipelined, & Adaptive Pulls
	Parallel, Pipelined, & Adaptive Pulls
	Parallel, Pipelined, & Adaptive Pulls
	Rocksteady
	Naïve Fault Tolerance During Migration
	Naïve Fault Tolerance During Migration
	Naïve Fault Tolerance During Migration
	Synchronous Replication Bottlenecks Migration
	Slide Number 36
	Writes/Mutations Served By Target
	Crash Safety During Migration
	If The Source Crashes During Migration
	If The Target Crashes During Migration
	Crash Safety During Migration
	Performance of Rocksteady
	Performance of Rocksteady
	Performance of Rocksteady
	Related Work
	Conclusion
	Backup Slides�
	Rocksteady Tail Latency Breakdown
	Rocksteady Tail Latency Breakdown
	Rocksteady Tail Latency Breakdown

