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Introduction

Distributed low-latency in-memory key-value stores are emerging
* Predictable response times ~10 us median, ~60 ps 99.9%-tile

Problem: Must migrate data between servers
e Minimize performance impact of migration - go slow?
e Quickly respond to hot spots, skew shifts, load spikes - go fast?

Solution: Fast data migration with low impact
e Early ownership transfer of data, leverage workload skew
e Low priority, parallel and adaptive migration

Result: Migration protocol for RAMCloud in-memory key-value store
* Migrates 256 GB in 6 minutes, 99.9"-tile [atency less than 250 ps
 Median latency recovers from 40 pus to 20 usin 14 s



Why Migrate Data?
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Migrate To Improve Spatial Locality
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Spatial Locality Improves Throughput
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The RAMCloud Key-Value Store
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The RAMCloud Key-Value Store
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The RAMCloud Key-Value Store
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Fault-tolerance & Recovery In RAMCloud
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Fault-tolerance & Recovery In RAMCloud

Client

u Coordinator

Master

Balkup

Client

Client

Data Center Fabric

Client

Master

2 seconds to
recover

Bagxup

Master

Baxup

10




Performance Goals For Migration

 Maintain low access latency
e 10 usec median latency - System extremely sensitive
e Tail latency matters at scale - Even more sensitive

 Migrate data fast
 Workloads dynamic - Respond quickly
e Growing DRAM storage: 512 GB per server
e Slow data migration - Entire day to scale cluster



Rocksteady Overview: Early Ownership Transfer

Problem: Loaded source can bottleneck migration

Solution: Instantly shift ownership and all load to target
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Rocksteady Overview: Early Ownership Transfer

Problem: Loaded source can bottleneck migration

Solution: Instantly shift ownership and all load to target
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Rocksteady Overview: Leverage Skew

Problem: Data has not arrived at source yet

Solution: On demand migration of unavailable data

Client 1 Client 2 Client 3 Client 4

Re&

On-demand Pull\

Source Server Target Server




Rocksteady Overview: Leverage Skew

Problem: Data has not arrived at source yet

Solution: On demand migration of unavailable data
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Rocksteady Overview: Adaptive and Parallel

Problem: Old single-threaded protocol limited to 130 MB/s

Solution: Pipelined and parallel at source and target
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Rocksteady Overview: Adaptive and Parallel

Problem: Old single-threaded protocol limited to 130 MB/s

Solution: Pipelined and parallel at source and target
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Rocksteady Overview: Eliminate Sync Replication

Problem: Synchronous replication bottleneck at target

Solution: Safely defer replication until after migration
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Rocksteady Overview: Eliminate Sync Replication

Problem: Synchronous replication bottleneck at target

Solution: Safely defer replication until after migration
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Rocksteady: Putting it all together

* Instantaneous ownership transfer
* Immediate load reduction at overloaded source
e Creates “headroom” for migration work

e Leverage skew to rapidly migrate hot data
e Target comes up to speed with little data movement

e Adaptive parallel, pipelined at source and target
e All cores avoid stalls, but yield to client-facing operations

o Safely defer replication at target
e Eliminates replication bottleneck and contention



Rocksteady

Instantaneous ownership transfer

e Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target



Evaluation Setup
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Instantaneous Ownership Transfer

80%

i Created 55%
Source CPU Headroom

25%
Before Ownership Immediately After
Transfer Transfer

Source CPU Utilization

Before migration: Source over-loaded, Target under-loaded

Ownership transfer creates Source headroom for migration

24



Rocksteady

* |nstantaneous ownership transfer

Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target



Leverage Skew To Move Hot Data :
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More skew - Median restored faster (migrate fewer hot keys)
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Rocksteady

* |nstantaneous ownership transfer

e Leverage skew to rapidly migrate hot data

Adaptive parallel, pipelined at source and target

Safely defer synchronous replication at target



Parallel, Pipelined, & Adaptive Pulls
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Parallel, Pipelined, & Adaptive Pulls

Source 0

16

24

Hash
Table .

)=

Dispatch |

pulll(llx

\I'I Cop | L1
40Ok mses\_@

pull|(b‘)\\
e

List

Core _\H |
o NIC Polling
——111LLI

e Stateless passive Source

e Granular 20 KB pulls

29



Parallel, Pipelined, & Adaptive Pulls

e Redirect any idle CPU for migration

e Migration yields to regular requests, on-demand pulls



Rocksteady

* |nstantaneous ownership transfer
e Leverage skew to rapidly migrate hot data
e Adaptive parallel, pipelined at source and target

e Safely defer synchronous replication at target



Naive Fault Tolerance During Migration

Each server has a recovery log distributed across the cluster
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Naive Fault Tolerance During Migration

Migrated data needs to be triplicated to target’s recovery log
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Naive Fault Tolerance During Migration

Migrated data needs to be triplicated to target’s recovery log
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Synchronous Replication Bottlenecks Migration

Synchronous replication hits migration speed by 34%
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Rocksteady: Safely Defer Replication At The Target

Replicate at Target only after all data has been moved over
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Writes/Mutations Served By Target

Mutations have to be replicated by the target  Write
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Crash Safety During Migration

 Need both Source and Target recovery log for data
recovery

* |nitial table state on Source recovery log
e Writes/Mutations on Target recovery log

e Transfer ownership back to Source in case of crash
e Migration cancelled
e Recovery involves both recovery logs

e Source takes a dependency on Target recovery log at
migration start

e Stored reliably at the cluster coordinator
 |dentifies position after which mutations present



If The Source Crashes During Migration

Recover Source, recover from Target recovery log
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If The Target Crashes During Migration

Recover from Source and Target recovery log, recover Target
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Crash Safety During Migration

 Need both Source and Target recovery log for data
recovery

e |nitial table state on Source recovery log

Safely Transfer Ownership At Migration Start

Safely Delay Replication Till All Data Has Been Moved

migration start
e Stored reliably at the cluster coordinator
 |dentifies position after which mutations present




Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half
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Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half

Median latency
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Performance of Rocksteady

YCSB-B, 300 Million objects (30 B key, 100 B value), migrate half

Median latency
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Related Work

e Dynamo: Pre-partition hash keys

e Spanner: Applications given control over locality
(Directories)

e FaRM and DrTM: Re-use in-memory redundancy for
migration

e Squall: Reconfiguration protocol for H-Store
e Early ownership transfer
e Paced background migration
e Fully partitioned, serial execution, no synchronization

e Each migration pull stalls execution
e Synchronous replication at the target



Conclusion

Distributed low-latency in-memory key-value stores are emerging
* Predictable response times ~10 us median, ~60 ps 99.9%-tile

Problem: Must migrate data between servers
e Minimize performance impact of migration - go slow?
e Quickly respond to hot spots, skew shifts, load spikes - go fast?

Solution: Fast data migration with low impact
* Leverage skew: Transfer ownership before data, move hot data first
e Low priority, parallel and adaptive migration

Result: Migration protocol for RAMCloud in-memory key-value store
* Migrates at 758 MBps with 99.9t-tile latency < 250 ps

Source Code: https://github.com/utah-scs/RAMCloud/tree/rocksteady-sosp2017



Backup Slides



Rocksteady Tail Latency Breakdown
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Rocksteady Tail Latency Breakdown
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* Disabling parallel pulls brings tail latency down to 160 psec
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Rocksteady Tail Latency Breakdown
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* Disabling parallel pulls brings tail latency down to 160 psec

e Synchronous on-demand pulls further brings tail latency down to 135 psec
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