
Rocksteady: Fast Migration for Low-latency
In-memory Storage

Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and Ryan Stutsman

University of Utah

ABSTRACT
Scalable in-memory key-value stores provide low-latency

access times of a few microseconds and perform millions of

operations per second per server. With all data in memory,

these systems should provide a high level of reconfigurability.

Ideally, they should scale up, scale down, and rebalance load

more rapidly and flexibly than disk-based systems. Rapid

reconfiguration is especially important in these systems since

a) DRAM is expensive and b) they are the last defense against

highly dynamic workloads that suffer from hot spots, skew,

and unpredictable load. However, so far, work on in-memory

key-value stores has generally focused on performance and

availability, leaving reconfiguration as a secondary concern.

We present Rocksteady, a live migration technique for the

RAMCloud scale-out in-memory key-value store. It balances

three competing goals: it migrates data quickly, it minimizes

response time impact, and it allows arbitrary, fine-grained

splits. Rocksteady migrates 758 MB/s between servers under

high load while maintaining a median and 99.9
th
percentile

latency of less than 40 and 250 µs, respectively, for concurrent
operations without pauses, downtime, or risk to durability

(compared to 6 and 45 µs during normal operation). To do

this, it relies on pipelined and parallel replay and a lineage-

like approach to fault-tolerance to defer re-replication costs

during migration. Rocksteady allows RAMCloud to defer all

repartitioning work until the moment of migration, giving it

precise and timely control for load balancing.

ACM Reference Format:
Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and

Ryan Stutsman. 2017. Rocksteady: Fast Migration for Low-latency

In-memory Storage. In Proceedings of SOSP ’17. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3132747.3132784

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00

https://doi.org/10.1145/3132747.3132784

1 INTRODUCTION
The last decade of computer systems research has yielded effi-

cient scale-out in-memory stores with throughput and access

latency thousands of times better than conventional stores.

Today, even modest clusters of these machines can execute

billions of operations per second with access times of 6 µs
or less [11, 33]. These gains come from careful attention to

detail in request processing, so these systems often start with

simple and stripped-down designs to achieve performance

goals. For these systems to be practical in the long-term,

they must evolve to include many of the features that con-

ventional data center and cloud storage systems have while
preserving their performance benefits.

To that end, we present Rocksteady, a fast migration and re-

configuration system for the RAMCloud scale-out in-memory

store. Rocksteady facilitates cluster scale-up, scale-down, and

load rebalancing with a low-overhead and flexible approach

that allows data to be migrated at arbitrarily fine-grained

boundaries and does not require any normal-case work to

partition records. Our measurements show that Rocksteady

can improve the efficiency of clustered accesses and index

operations by more than 4×: operations that are common in

many real-world large-scale systems [8, 30]. Several works

address the general problem of online (or live) data migration

for scale-out stores [5, 8–10, 13, 14, 41], but hardware trends

and the specialized needs of an in-memory key value store

make Rocksteady’s approach unique:

Low-latency Access Times. RAMCloud services requests

in 6 µs, and predictable, low-latency operation is its primary

benefit. Rocksteady’s focus is on 99.9
th
-percentile response

times but with 1,000× lower response times than other tail

latency focused systems [10]. For clients with high fan-out re-

quests, even a millisecond of extra tail latency would destroy

client-observed performance. Migrationmust haveminimum

impact on access latency distributions.

Growing DRAM Storage. Off-the-shelf data centermachines

pack 256 to 512 GB per server with terabytes coming soon.

Migration speeds must grow along with DRAM capacity for

load balancing and reconfiguration to be practical. Today’s

migration techniques would take hours just to move a frac-

tion of a single machine’s data, making them ineffective for

scale-up and scale-down of clusters.

https://doi.org/10.1145/3132747.3132784
https://doi.org/10.1145/3132747.3132784

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

High Bandwidth Networking. Today, fast in-memory stores

are equipped with 40 Gbps networks with 200 Gbps [28] ar-

riving in 2017. Ideally, with data in memory, these systems

would be able to migrate data at full line rate, but there

are many challenges to doing so. For example, we find that

these network cards (NICs) struggle with the scattered, fine-

grained objects common in in-memory stores (§3.2). Even

with the simplest migration techniques, moving data at line

rate would severely degrade normal-case request processing.

In short, the faster and less disruptive we canmakemigration,

the more often we can afford to use it, making it easier to

exploit locality and scaling for efficiency gains.

Besides hardware, three aspects of RAMCloud’s design

affect Rocksteady’s approach; it is a high-availability system,

it is focused on low-latency operation, and its servers inter-

nally (re-)arrange data to optimize memory utilization and

garbage collection. This leads to the following three design

goals for Rocksteady:

Pauseless. RAMCloud must be available at all times [32], so

Rocksteady can never take tables offline for migration.

Lazy Partitioning. For load balancing, servers in most sys-

tems internally pre-partition data to minimize overhead at

migration time [10, 11]. Rocksteady rejects this approach for

two reasons. First, deferring all partitioning until migration

time lets Rocksteady make partitioning decisions with full

information at hand; it is never constrained by a set of pre-

defined splits. Second, DRAM-based storage is expensive;

during normal operation, RAMCloud’s log cleaner [37] con-

stantly reorganizes data physically in memory to improve

utilization and to minimize cleaning costs. Forcing a parti-

tioning on internal server state would harm the cleaner’s

efficiency, which is key to making RAMCloud cost-effective.

Low Impact With Minimum Headroom. Migration increases

load on source and target servers. This is particularly prob-

lematic for the source, since data may be migrated away

to cope with increasing load. Efficient use of hardware re-

sources is critical during migration; preserving headroom

for rebalancing directly increases the cost of the system.

Four key ideas allow Rocksteady to meet these goals:

Adaptive Parallel Replay. For servers to keep up with fast

networks during migration, Rocksteady fully pipelines and

parallelizes all phases of migration between the source and

target servers. For example, target servers spread incom-

ing data across idle cores to speed up index reconstruction,

but migration operations yield to client requests for data to

minimize disruption.

Exploit Workload Skew to Create Source-side Headroom.
Rocksteady prioritizes migration of hot records. For typical

skewed workloads, this quickly shifts some load with mini-

mal impact, which creates headroom on the source to allow

faster migration with less disruption.

Client

Master

Backup

Master

Backup

Master

Backup

Master

Backup

Client Client Client

CoordinatorData Center Fabric

Figure 1: TheRAMCloud architecture. Clients issue re-
mote operations to RAMCloud storage servers. Each
server contains a master and a backup. The master
component exports the DRAM of the server as a large
key-value store. The backup accepts updates from
othermasters and records state on disk used for recov-
ering crashedmasters. A central coordinator manages
the server pool and maps data to masters.

Lineage-based Fault Tolerance. Each RAMCloud server logs

updated records in a distributed, striped log which is also

kept (once) in-memory to service requests. A server does not

know how its contents will be partitioned during a migra-

tion, so records are intermixed in memory and on storage.

This complicates fault tolerance during migration: it is ex-

pensive to synchronously reorganize on-disk data to move

records from the scattered chunks of one server’s log into

the scattered chunks of another’s. Rocksteady takes inspi-

ration from Resilient Distributed Datasets [45]; servers can

take dependencies on portions of each others’ recovery logs,

allowing them to safely reorganize storage asynchronously.

Optimization for Modern NICs. Fast migration with tight

tail latency bounds requires careful attention to hardware at

every point in the design; any “hiccup” or extra load results

in latency spikes. Rocksteady uses kernel-bypass for low

overhead migration of records; the result is fast transfer with

reduced CPU load, reduced memory bandwidth load, and

more stable normal-case performance.

We start by motivating Rocksteady (§2) and quantifying

the gains it can achieve. Then, we show why state of the art

migration techniques are insufficient for RAMCloud includ-

ing a breakdown of why RAMCloud’s simple, pre-existing

migration is inadequate (§2.3). We describe Rocksteady’s

full design (§3) including its fault tolerance strategy, and

we evaluate its performance with emphasis on migration

speed and tail latency impact (§4). Compared to prior ap-

proaches, Rocksteady transfers data an order of magnitude

faster (> 750 MB/s) with median and tail latencies 1,000×

lower (< 40 µs and 250 µs, respectively); in general, Rock-

steady’s ability to use any available core for any operation

is key for both tail latency and migration speed.

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

User Table
Hash Partitioned on uid

FirstName Index
Range Partitioned

FirstName → hash(uid)

8 Belle

2 Tiana

4 Ariel

12 Sofia

11 Anna

21 Alice

29 Nala

22 Elsa

A-B

21 11 4 8

C-Z

22 29 2 12

User Tablet 1

User Tablet 2

User Tablet 3

FirstName Indexlet 1 FirstName Indexlet 2

Figure 2: Index partitioning. Records are stored in un-
ordered tables that can be split into tablets on differ-
ent servers, partitioned on primary key hash. Indexes
can be range partitioned into indexlets; indexes only
contain primary key hashes. Range scans require first
fetching a list of hashes from an indexlet, then multi-
gets for those hashes to the tablet servers to fetch the
actual records. A lookup or scan operation is (usually)
handled by one server, but tables and their indexes can
be split and scaled independently.

2 BACKGROUND AND MOTIVATION
RAMCloud [33] is a key-value store that keeps all data in

DRAM at all times and is designed to scale across thousands

of commodity data center servers. Each server can service

millions of operations per second, but its focus is on low

access latency. End-to-end read and durable write operations

take just 6 µs and 15 µs respectively on our hardware (§4).

Each server (Figure 1) operates as amaster, whichmanages

RAMCloud objects in its DRAM and services client requests,

and a backup, which stores redundant copies of objects from

other masters on local disk. Each cluster has one quorum-

replicated coordinator that manages cluster membership and

table-partition-to-master mappings [31].

RAMCloud only keeps one copy of each object in memory

to avoid replication in expensive DRAM; redundant copies

are logged to (remote) flash. It provides high availability with

a fast distributed recovery that sprays the objects previously

hosted on a failed server across the cluster in 1 to 2 sec-

onds [32], restoring access to them. RAMCloud manages

in-memory storage using an approach similar to that of log-

structured filesystems, which allows it to sustain 80-90%

memory utilization with high performance [37].

RAMCloud’s design and data model tightly intertwine

with load balancing and migration. Foremost, RAMCloud

is a simple variable-length key-value store; its key space

is divided into unordered tables and tables can be broken

into tablets that reside on different servers. Objects can be

accessed by their primary (byte string) key, but ordered sec-

ondary indexes can also be constructed on top of tables [22].

Like tables, secondary indexes can be split into indexlets
to scale them across servers. Indexes contain primary key

hashes rather than records, so tables and their indexes can

be scaled independently and needn’t be co-located (Figure 2).

Clients can issue multi-read and multi-write requests that

fetch or modify several objects on one server with a single

request, and they can also issue externally consistent and

serializable distributed transactions [24].

2.1 Why Load Balance?
All scale-out stores need some way to distribute load. Most

systems today use some form of consistent hashing [10, 39,

42]. Consistent hashing is simple, keeps the key-to-server

mapping compact, supports reconfiguration, and spreads

load fairly well even as workloads change. However, its load

spreading is also its drawback; even in-memory stores benefit

significantly from exploiting access locality.

In RAMCloud, for example, co-locating access-correlated

keys benefits multiget/multiput operations, transactions, and

range queries. Transactions can benefit greatly if all affected

keys can be co-located, since synchronous, remote coordi-

nation for two-phase commit [4, 24] can be avoided. Multi-

operations and range queries benefit in a more subtle but still

important way. If all requested values live together on the

same machine, a client can issue a single remote procedure

call (RPC) to a single server to get the values. If the values

are divided among multiple machines, the client must issue

requests to all of the involved machines in parallel. From the

client’s perspective, the response latency is similar, but the

overall load induced on the cluster is significantly different.

Figure 3 explores this effect. It consists of a microbench-

mark run with 7 servers and 14 client machines. Clients issue

back-to-back multiget operations evenly across the cluster,

each for 7 keys at a time. In the experiment, clients vary

which keys they request in each multiget to vary how many

servers they must issue parallel requests to, but all servers

still handle the same number of requests as each other. At

Spread 1, all of the keys for a specific multiget come from one

server. At Spread 2, 6 keys per multiget come from one server,

and the 7
th
key comes from another server. At Spread 7, each

of the 7 keys in the multiget is serviced by a different server.

When multigets involve two servers rather than one, the

cluster-wide throughput drops 23% even though no resources

have been removed from the cluster. The bottom half of the

figure shows the reason. Each server has a single dispatch
core that polls the network device for incoming messages

and hands off requests to idle worker cores. With high local-

ity, the cluster is only limited by how quickly worker cores

can execute requests. When each multiget results in requests

to two servers, the dispatch core load doubles and saturates,

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

●

●

●

●

●

●

●Single Server Throughput

0

10

20

30

To
ta

l T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
bj

ec
ts

 R
ea

d
P

er
 S

ec
on

d)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Spread (Servers Involved per Multiread)

C
P

U
 L

oa
d

Core Type Worker Dispatch

Figure 3: Throughput and CPU load impact of access
locality. When multigets always fetch data from a sin-
gle server (Spread 1) throughput is high and worker
cores operate in parallel. When each multiget must
fetch keys from many machines (Spread 7) through-
put suffers as each server becomes bottlenecked on
dispatching requests.

leaving the workers idle. The dotted line shows the through-

put of a single server. When each multiget must fetch data

from all 7 servers, the aggregate performance of the entire

cluster barely outperforms a single machine.

Overall, the experiment shows that, even for small clus-

ters, minimizing tablet splits and maximizing locality has a

big benefit, in this case up to 4.3×. Our findings echo recent

trends in scale-out stores that replicate to minimize multi-

get “fan out” [30] or give users explicit control over data

placement to exploit locality [8].

Imbalance has a similar effect on another common case:

indexes. Index ranges are especially prone to hotspots, skew

shifts, and load increases that require splits and migration.

Figure 4 explores this sensitivity on a cluster with a single

table and secondary index. The table contains one million

100 B records each with a 30 B primary and a 30 B secondary

key. Clients issue short 4-record scans over the index with

the start key chosen from a Zipfian distribution with skew

θ = 0.5. Figure 4 shows the impact of varying offered client

load on the 99.9
th
percentile scan latency.

For a target throughput of 1 million objects per second, it

is sufficient (for a 99.9
th
percentile access latency of 100 µs)

and most efficient (dispatch load is lower) to have the index

and table on one server each, but this breaks down as load

increases. At higher loads, 99.9
th
percentile latency spikes

● ●
●

●
● ● ●

●

●

●

●

0

50

100

150

99
.9

th
 P

er
ce

nt
il

e
L

at
en

cy
 (

µs
)

● ● ● ● ● ● ●

●
● ● ●●

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1 1.5 2

Throughput (Millions of Objects Read Per Second)

To
ta

l C
lu

st
er

 D
is

pa
tc

h
L

oa
d

● 1 Indexlet, 1 Tablet 2 Indexlets, 1 Tablet 2 Indexlets, 2 Tablets

Figure 4: Index scaling as a function of read through-
put. Points represent the median over 5 runs, bars
show standard error. Spreading the backing table
across two servers increases total dispatch load and
the 99.9th percentile access latency for a given
throughput when compared to leaving it on a single
server.

and more servers are needed to bound tail latency. Splitting

the index over two servers improves throughput and restores

low access latency.

However, efficiently spreading the load is not straight-

forward. Indexes are range partitioned, so any single scan

operation is likely to return hashes using a single indexlet.

Tables are hash partitioned, so fetching the actual records

will likely result in an RPC to many backing tablets. As a

result, adding tablets for a table might increase throughput,

but it also increases dispatch core load since, cluster-wide, it

requires more RPCs for the same work.

Figure 4 shows that neither minimizing nor maximizing

the number of servers for the indexed table is the best un-

der high load. Leaving the backing table on one server and

spreading the index over two servers increases throughput

at 100 µs 99.9th percentile access latency by 54% from 1.3

to 2.0 million objects per second. Splitting both the backing

table and the index over two servers each gives 6.3% worse

throughput and increases load by 26%.

Overall, reconfiguration is essential to meet SLAs (service

level agreements), to provide peak throughput, and to mini-

mize load as workloads grow, shrink, and change. Spreading

load evenly is a non-goal inasmuch as SLAs are met; ap-

proaches like consistent hashing can throw away (sometimes

large factor) gains from exploiting locality.

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

2.2 The Need for (Migration) Speed
Data migration speed dictates how fast a cluster can adapt

to changing workloads. Even if workload shifts are known

in advance (like diurnal patterns), if reconfiguration takes

hours, then scaling up and down to save energy or to do other

work becomes impossible. Making things harder, recent per-

server DRAM capacity growth has been about 33-50% per

year [15], meaning each server hosts more and more data

that may need to move when the cluster is reconfigured.

A second hardware trend is encouraging; per-host net-

work bandwidth has kept up with DRAM growth in recent

years [16], so hardware itself doesn’t limit fast migration. For

example, an unrealistically large migration that evacuates

half of the data from a 512 GB storage server could complete

in less than a minute at line rate (5 GB/s or more).

Unfortunately, state-of-the-artmigration techniques haven’t

kept up with network improvements. They move data at a

few megabytes per second in order to minimize impact on

ongoing transactions, and they focus on preserving trans-

action latencies on the order of tens of milliseconds [13].

Ignoring latency, these systems would still take more than

16 hours to migrate 256 GB of data, and small migrations

of 10 GB would still take more than half an hour. Further-

more, modern in-memory systems deliver access latencies

more than 1,000× lower: in the range of 5 to 50 µs for small

accesses, transactions, or secondary index lookups/scans. If

the network isn’t a bottleneck for migration, then what is?

2.3 Barriers to Fast Migration
RAMCloud has a simple, pre-existing mechanism that al-

lows tables to be split and migrated between servers. During

normal operation each server stores all records in an in-

memory log. The log is incrementally cleaned; it is never

checkpointed, and a full copy of it always remains in memory.

To migrate a tablet, the source iterates over all of the entries

in its in-memory log and copies the values that are being

migrated into staging buffers for transmission to the target.

The target receives these buffers and performs a form of log-

ical replay as it would during recovery. It copies the received

records into its own log, re-replicates them, and it updates

its in-memory hash table, which serves as its primary key

index. Only after all of the records have been transferred is

tablet ownership switched from the source to the target.

This basic mechanism is faster than most approaches, but

it is still orders of magnitude slower than what hardware

can support. Figure 5 breaks down its bottlenecks. The ex-

periment shows the effective migration throughput between

a single loaded source and unloaded target server during the

migration of 7 GB of data. All of the servers are intercon-

nected via 40 Gbps (5 GB/s) links to a single switch.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time Since Start of Migration (s)

M
ig

ra
ti

on
 R

at
e

(M
B

/s
) Part of Migration

Full

Skip Re−replication

Skip Replay on Target

Skip Tx to Target

Skip Copy for Tx

Figure 5: Bottlenecks using log replay for migration.
Target side bottlenecks include logical replay and re-
replication. Copying records into staging buffers at
the source has a significant impact on migration rate.

The "Full" line shows migration speed when the whole

migration protocol is used. The source scans its log and

sends records that need to be migrated; the target replays

the received records into its log and re-replicates them on

backups. In steady state, migration transfers about 130 MB/s.

In "Skip Re-Replication" the target skips backing up the

received data in its replicated log. This is unsafe, since the

target might accept updates to the table after it has received

all data from the source. If the target crashes, its recovery log

would be missing the data received from the source, so the

received table would be recovered to an inconsistent state.

Even so, migration only reaches 180 MB/s. This shows that

the logical replay used to update the hash table on the target

is a key bottleneck in migration.

"Skip Replay on Target" does the full source-side process-

ing of migration and transmits the data to the target, but

the target skips replay and replication. This raises migration

performance to 600 MB/s, more than a 3× increase in migra-

tion rate. Even so, it shows that the source side is also an

impediment to fast migration. The hosts can communicate

at 5 GB/s, so the link is still only about 10% utilized. Also, at

this speed re-replication becomes a problem; RAMCloud’s

existing log replication mechanism bottlenecks at around

380 MB/s on our cluster.

Finally, "Skip Tx to Target" performs all source-side pro-

cessing and skips transmitting the data to the target, and

"Skip Copy for Tx" only identifies objects that need to be

migrated and skips all further work. Overall, copying the

identified objects into staging buffers to be posted to the

transport layer (drop from 1,150 MB/s to 710 MB/s) has a

bigger impact than the actual transmission itself (drop from

710 MB/s to 600 MB/s).

2.4 Requirements for a New Design
These bottlenecks give the design criteria for Rocksteady.

No Synchronous Re-replication. Waiting for data to be

re-replicated by the target server wastes CPU cycles on the

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

Source Master

1 Pull(tableId, nextHash) Response

Gather
ListHash

Table

In-memory Segmented Log

2

3

Target Master
Hash
Table

In-memory Segmented Log

4

Figure 6: Overview of Rocksteady Pulls. A Pull RPC
issued by the target iterates down a portion of the
source’s hash table and returns a batch of records. This
batch is then logically replayed by the target into it’s
in-memory log and hash table.

target waiting for responses from backups, and it burns mem-

ory bandwidth. Rocksteady’s approach is inspired by lin-

eage [45]; a target server takes a temporary dependency on

the source’s log data to safely eliminate log replication from

the migration fast path (§3.4).

Immediate Transfer of Ownership. RAMCloud’s migra-

tion takes minutes or hours during which no load can be

shifted away from the source because the target cannot safely

take ownership until all the data has been re-replicated. Rock-

steady immediately and safely shifts ownership from the

source to the target (§3).

Parallelism on Both the Target and Source. Log replay

needn’t be single threaded. A target is likely to be under-

loaded, so parallel replay makes sense. Rocksteady’s parallel

replay can incorporate log records at the target at more than

3 GB/s (§4.5). Similarly, source-side migration operations

should be pipelined and parallel. Parallelism on both ends

requires care to avoid contention.

Load-Adaptive Replay. Rocksteady’s migration manager

minimizes impact on normal request processing with fine-

grained low-priority tasks [25, 34]. Rocksteady also incor-

porates into RAMCloud’s transport layer to minimize jitter

caused by background migration transfers (§3.1).

3 ROCKSTEADY DESIGN
In order to keep its goal of fast migration that retains 99.9

th

percentile access latencies of a few hundred microseconds,

Rocksteady is fully asynchronous at both the migration

source and target; it uses modern kernel-bypass and scat-

ter/gather DMA for zero-copy data transfer when supported;

and it uses pipelining and adaptive parallelism at both the

source and target to speed transfer while yielding to normal-

case request processing.

Migration in Rocksteady is driven by the target, which

pulls records from the source. This places most of the com-

plexity, work, and state on the target, and it eliminates the

bottleneck of synchronous replication (§2.3). In most mi-

gration scenarios, the source of the records is in a state of

overload or near-overload, so we must avoid giving it more

work to do. The second advantage of this arrangement is

that it meets our goal of immediate transfer of record own-

ership. As soon as migration begins, the source only serves

a request for each of the affected records at most once more.

This makes the load-shedding effects of migration immediate.

Finally, target-driven migration allows both the source and

the target to control the migration rate, fitting with our need

for load-adaptive migration and making sure that cores are

never idle unless migration must be throttled to meet SLAs.

The heart of Rocksteady’s fast migration is its pipelined

and parallelized record transfer. Figure 6 gives an overview

of this transfer. In the steady state of migration, the target

sends pipelined asynchronous Pull RPCs to the source to

fetch batches of records (①). The source iterates down its

hash table to find records for transmission (②); it posts the

record addresses to the transport layer, which transmits the

records directly from the source log via DMA if the underly-

ing hardware supports it (③). Whenever cores are available,

the target schedules the replay of the records from any Pulls
that have completed. The replay process incorporates the

records into the target’s in-memory log and links the records

into the target’s hash table (④).

Migration is initiated by a client: it does so by first split-

ting a tablet, then issuing a MigrateTablet RPC to the target

to start migration. Rocksteady immediately transfers own-

ership of the tablet’s records to the target, which begins

handling all requests for them. Writes can be serviced imme-

diately; reads can be serviced only after the records requested

have been migrated from the source. If the target receives

a request for a record that it does not yet have, the target

issues a PriorityPull RPC to the source to fetch it and tells

the client to retry the operation after randomly waiting a

few tens of microseconds. PriorityPull responses are pro-

cessed identically to Pulls, but they fetch specific records

and the source and target prioritize them over bulk Pulls.
This approach to PriorityPulls favors immediate load

reduction at the source. It is especially effective if access

patterns are skewed, since a small set of records constitutes

much of the load: in this case, the source sends one copy of

the “hot” records to the target early in the migration, then it

does not need to serve any more requests for those records.

In fact, PriorityPulls can actually accelerate migration.

At the start of migration, they help to quickly create the

headroom needed on the overloaded source to speed parallel

background Pulls and help hide Pull costs.

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

Sources keep nomigration state, and theirmigrating tablets

are immutable. All the source needs to keep track of is the

fact that the tablet is being migrated: if it receives a client

request for a record that is in a migrating tablet, it returns a

status indicating that it no longer owns the tablet, causing

the client to re-fetch the tablet mapping from the coordinator.

3.1 Task Scheduling, Parallelism, and QoS
The goal of scheduling within Rocksteady is to keep cores on

the target as busy as possible without overloading cores on

the source, where overload would result in SLA violations.

To understand Rocksteady’s approach to parallelism and

pipelining, it is important to understand scheduling in RAM-

Cloud. RAMCloud uses a threading model that avoids pre-

emption: in order to dispatch requests within a few microsec-

onds, it cannot afford the disruption of context switches [33].

One core handles dispatch; it polls the network for messages,

and it assigns tasks to worker cores or queues them if no

workers are idle. Each core runs one thread, and running

tasks are never preempted (which would require a context-

switch mechanism). Priorities are handled in the following

fashion: if there is an available idle worker core when a task

arrives, the task is run immediately. If no cores are available,

the task is placed in a queue corresponding to its priority.

When a worker becomes available, if there are any queued

tasks, it is assigned a task from the front of the highest-

priority queue with any entries.

RAMCloud’s dispatch/worker model gives four benefits

for migration. First, migration blends in with background

system tasks like garbage collection and (re-)replication. Sec-

ond, Rocksteady can adapt to system load ensuring minimal

disruption to normal request processing while migrating

data as fast as possible. Third, since the source and target are

decoupled, workers on the source can always be busy col-

lecting data for migration, while workers on the target can

always make progress by replaying earlier responses. Finally,

Rocksteady makes no assumptions of locality or affinity; a

migration related task can be dispatched to any worker, so

any idle capacity on either end can be put to use.

3.1.1 Source-side Pipelined and Parallel Pulls. The source’s
only task during migration is to respond to Pull and

PriorityPull messages with sufficient parallelism to keep

the target busy. While concurrency would seem simple to

handle, there is one challenge that complicates the design.

A single Pull can’t request a fixed range of keys, since the

target does not know ahead of time how many keys within

that range will exist in the tablet. A Pull of a fixed range of

keys could contain too many records to return in a single

response, which would violate the scheduling requirement

for short tasks. Or, it could contain no records at all, which

would result in Pulls that are pure overhead. Pull must be

Source
Master

Worker
Cores

NIC

Dispatch
Core

Polling

read(A)

Hash
Table

0 8 16 24

pull(11) pull(17)

Gather
List

Gather
List

Copy
Addresses

Figure 7: Source pull handling. Pulls work concur-
rently over disjoint regions of the source’s hash table,
avoiding synchronization, and return a fixed amount
of data (20 KB, for example) to the target. Any worker
core can service a Pull on any region, and all cores pri-
oritize normal case requests over Pulls.

efficient regardless of whether the tablet is sparse or dense.

One solution is for each Pull to return a fixed amount of

data. The amount can be chosen to be small enough to avoid

occupying source worker cores for long periods, but large

enough to amortize the fixed cost of RPC dispatch.

However, this approach hurts concurrency: each new pull

needs state recording which record was the last pulled, so

that the pull can continue from where it left off. The target

could remember the last key it received from the previous

pull and use that as the starting point for the next pull, but

this would prevent it from pipelining its pulls. It would have

to wait for one to fully complete before it could issue the next,

making network round trip latency into a major bottleneck.

Alternately, the source could track the last key returned for

each pull, but this has the same problem. Neither approach

allows parallel Pull processing on the source, which is key

for fast migration.

To solve this, the target logically partitions the source’s
key hash space and only issues concurrent Pulls if they
are for disjoint regions of the source’s key hash space (and,

consequently, disjoint regions of the source’s hash table).

Figure 7 shows how this works. Since round-trip delay is

similar to source pull processing time, a small constant factor

more partitions than worker cores is sufficient for the target

to keep any number of source workers running fully-utilized.

The source attempts tomeet its SLA requirements by prior-

itizing regular client reads and writes over Pull processing:

the source can essentially treat migration as a background

task and prevent it from interfering with foreground tasks.

It is worth noting that the source’s foreground load typically

drops immediately when migration starts, since Rocksteady

has moved ownership of the (likely hot) migrating records to

the target already; this leaves capacity on the source that is

available for the background migration task. PriorityPulls
are given priority over client traffic, since they represent the

target servicing a client request of its own.

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

Target
Master Hash

Table

0 8 16 24

Worker
Cores

NIC

Dispatch
Core

Polling

replay replay read(B)

Migration
Manager

Pull Buffers

pulling

Per-Core
Side Logs

Figure 8: Target pull management and replay. There
is one Pull outstanding per source partition. Pulled
records are replayed at lower priority than normal re-
quests. Eachworker places records into a separate side
log to avoid contention. Any worker core can service
a replay on any partition.

3.1.2 Target-side Pull Management. Since the source is
stateless, amigrationmanager at the target tracks all progress
and coordinates the entire migration. The migration man-

ager runs as an asynchronous continuation on the target’s

dispatch core [40]; it starts Pulls, checks for their comple-

tion, and enqueues tasks that replay (locally process) records

for Pulls that have completed.

Atmigration start, themanager logically divides the source

server’s key hash space into partitions (§3.1.1). Then, it asyn-

chronously issues Pull requests to the source, each belong-

ing to a different partition of the source hash space. As Pulls
complete, it pushes the records to idle workers, and it issues

a new Pull. If all workers on the target are busy, then no

new Pull is issued, which has the effect of acting as built-in

flow control for the target node. In that case, new Pulls
are issued when workers become free and begin to process

records from already completed Pulls.
Records from completed pull requests are replayed in par-

allel into the target’s hash table on idle worker cores. Pull

requests from distinct partitions of the hash table naturally

correspond to different partitions of the target’s hash table

as well, which mitigates contention between parallel replay

tasks. Figure 8 shows how the migration manager “score-

boards” Pull RPCs from different hash table partitions and

hands responses over to idle worker cores. Depending on

the target server’s load, the manager naturally adapts the

number of in-progress Pull RPCs, as well as the number of

in-progress replay tasks.

Besides parallelizing Pulls, performing work at the gran-

ularity of distinct hash table partitions also hides network

latency by allowing Rocksteady to pipeline RPCs. Whenever

a Pull RPC completes, the migration manager first issues a

new, asynchronous Pull RPC for the next chunk of records

on the same partition; having a small number of independent

partitions is sufficient to completely overlap network delay

with source-side Pull processing.

3.1.3 Parallel Replay. Replaying a Pull response primar-

ily consists of incorporating the records into the master’s

in-memory log and inserting references to the records in the

master’s hash table. Using a single core for replay would limit

migration to a few hundred megabytes per second (§4.5), but

parallel replay where cores share a common log would also

break down due to contention. Eliminating contention is key

for fast migration.

Rocksteady does this by using per-core side logs off of

the target’s main log. Each side log consists of independent

segments of records; each core can replay records into its side

log segments without interference. At the end of migration,

each side log’s segments are lazily replicated, and then the

side log is committed into the main log by appending a small

metadata record to the main log. RAMCloud’s log cleaner

needs accurate log statistics to be effective; side logs also

avoid contention on statistics counters by accumulating in-

formation locally and only updating the global log statistics

when they are committed to the main log.

3.2 Exploiting Modern NICs
All data transfer in Rocksteady takes place through RAM-

Cloud’s RPC layer allowing the protocol to be both transport

and hardware agnostic. Target initiated one-sided RDMA

readsmay seem to promise fast transfers without the source’s

involvement, but they break down because the records under

migration are scattered across the source’s in-memory log.

RDMA reads do support scatter/gather DMA, but reads can

only fetch a single contiguous chunk of memory from the re-

mote server. That is, a single RDMA read scatters the fetched
value locally; it cannot gathermultiple remote locations with

a single request. As a result, an RDMA read initiated by the

target could only return a single data record per operation

unless the source pre-aggregated all records for migration

beforehand, which would undo the zero-copy benefits of

RDMA. Additionally, one-sided RDMA would require the

target to be aware of the structure and memory addresses

of the source’s log. This would complicate synchronization,

for example, with RAMCloud’s log cleaner. Epoch-based pro-

tection can help (normal-case RPC operations like read and

write synchronize with the local log cleaner this way), but

extending epoch protection across machines would couple

the source and target more tightly.

Rocksteady never uses one-sided RDMA, but it uses scat-

ter/gather DMA [33] when supported by the transport and

the NIC to transfer records from the source without interven-

ing copies. Rocksteady’s implementation always operates on

references to the records rather than making copies to avoid

all unnecessary overhead.

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

All experiments in this paper were run with a DPDK dri-

ver that currently copies all data into transmit buffers. This

creates one more copy of records than strictly necessary

on the source. This limitation is not fundamental; we are

in the process of changing RAMCloud’s DPDK support to

eliminate the copy. Rocksteady run on Reliable Connected

Infiniband with zero-copy shows similar results. This is in

large part because Intel’s DDIO support means that the final

DMA copy from Ethernet frame buffers is from the CPU

cache [2]. Transition to zero-copy will reduce memory band-

width consumption [23], but source-side memory bandwidth

is not saturated during migration.

3.3 Priority Pulls
PriorityPulls work similarly to normal Pulls but are trig-
gered on-demand by incoming client requests. A PriorityPull
targets specific key hashes, so it doesn’t require the coordi-

nation that Pulls do through partitioning. The key consider-

ation for PriorityPulls is how to manage waiting clients

and worker cores. A simple approach is for the target to

issue a synchronous PriorityPull to the source when ser-

vicing a client read RPC for a key that hasn’t been moved

yet. However, this would slow migration and hurt client-

observed latency and throughput. PriorityPulls take sev-
eral microseconds to complete, so stalling a worker core on

the target to wait for the response takes cores away from

migration and normal request processing. Thread context

switch also isn’t an option since the delay is just a few mi-

croseconds, and context switch overhead would dominate.

Individual, synchronous PriorityPulls would also initially
result in many (possibly duplicate) requests being forwarded

to the source, delaying source load reduction.

Rocksteady solves this in two ways. First, the target issues

PriorityPulls asynchronously and then immediately re-

turns a response to the client telling it to retry the read after
the time when the target expects it will have the value. This

frees up the worker core at the target to process requests for

other keys or to replay Pull responses. Second, the target

batches the hashes of client-requested keys that have not yet
arrived, and it requests the batch of records with a single

PriorityPull. While a PriorityPull is in flight, the tar-

get accumulates new key hashes of newly requested keys,

and it issues them when the first PriorityPull completes.

De-duplication ensures that PriorityPulls never request
the same key hash from the source twice. If the hash for a

new request was part of an already in-flight PriorityPull
or if it is in the next batch accumulating at the target, it is

discarded. Batching is key to shedding source load quickly

since it ensures that the source never serves a request for a

key more than once after migration starts, and it limits the

number of small requests that the source has to handle.

3.4 Lineage for Safe, Lazy Re-replication
Avoiding synchronous re-replication of migrated data cre-

ates a challenge for fault tolerance if tablet ownership is

transferred to the target at the start of migration. If the tar-

get crashes in the middle of a migration, then neither the

source nor the target would have all of the records needed

to recover correctly; the target may have serviced writes

for some of the records under migration, since ownership

is transferred immediately at the start of migration. This

also means that neither the distributed recovery log of the

source nor the target contain all the information needed for

a correct recovery. Rocksteady takes a unique approach to

solving this problem that relies on RAMCloud’s distributed

fast recovery, which can restore a crashed server’s records

back into memory in 1 to 2 seconds.

To avoid synchronous re-replication of all of the records

as they are transmitted from the source to the target, the mi-

gration manager registers a dependency of the source server

on the tail of the target’s recovery log at the cluster coor-

dinator. The target must already contact the coordinator to

notify it of the ownership transfer, so this adds no additional

overhead. The dependency is recorded in the coordinator’s

tablet metadata for the source, and it consists of two inte-

gers: one indicating which master’s log it depends on (the

target’s), and another indicating the offset into the log where

the dependency starts. Once migration has completed and

all sidelogs have been committed, the target contacts the

coordinator requesting that the dependency be dropped.

If either the source or the target crashes during migra-

tion, Rocksteady transfers ownership of the data back to

the source. To ensure the source has all of the target’s up-

dates, the coordinator induces a recovery of the source server

which logically forces replay of the target’s recovery log tail

along with the source’s recovery log. This approach keeps

things simple by reusing the recovery mechanism at the ex-

pense of extra recovery effort (twice as much as for a normal

recovery) in the rare case that a machine actively involved

in migration crashes.

Extending RAMCloud’s recovery to allow recovery from

multiple logs is straightforward but ongoing.

4 EVALUATION
To evaluate Rocksteady, we focused on five key questions:

How fast can Rocksteady go and meet tight SLAs? §4.2

shows Rocksteady can sustain migration at 758 MB/s with

99.9
th
percentile access latency of less than 250 µs.

Does lineage accelerate migration? Lineage and deferred

log replication allow Rocksteady to migrate data 1.4× faster

than synchronous re-replication, while shifting load from

the source to the target more quickly (§4.2).

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

CPU 2×Xeon E5-2650v2 2.6 GHz,

16 cores in total after disabling hyperthreading

RAM 64 GB 1.86 GHz DDR3

NIC Mellanox FDR CX3 Single port (40 Gbps)

Switch 36 port Mellanox SX6036G (in Ethernet mode)

OS Ubuntu 15.04, Linux 3.19.0-16,

DPDK 16.11, MLX4 PMD, 1×1 GB Hugepage

Table 1: Experimental cluster configuration. The eval-
uation was carried out on a 24 node c6220 cluster on
CloudLab. Hyperthreading was disabled on all nodes.
Of the 24 nodes, 1 ran the coordinator, 8 ran one client
each, and the rest ran RAMCloud servers.

What is the impact at the source and target? §4.3

shows that regardless of workload skew, Rocksteady mi-

grations cause almost no increase in source dispatch load,

which is the source’s most scarce resource for typical read-

heavy workloads. Background Pulls add about 45% worker

CPU utilization on the source, and Rocksteady effectively

equalizes CPU load on the source and target. Dispatch load

due to the migration manager on the target is minimal.

Are asynchronous batched priority pulls effective?
§4.4 shows that asynchronous priority pulls are essential

in two ways. First, synchronous priority pulls would in-

crease both dispatch and worker load during migration due

to the increased number of RPCs to the source and the

wasted effort waiting for PriorityPull responses. Second,
asynchronous batched PriorityPulls reduce load at the

source fast enough to help hide the extra load due to back-

ground Pulls on the source, which is key to Rocksteady’s

fast transfer.

What limits migration? §4.5 shows that the source and

target can send/consume small records at 5.7 GB/s and

3 GB/s, respectively; for small records target replay lim-

its migration more than networking (5 GB/s today). Tar-

get worker cores spend 1.8 to 2.4× more cycles processing

records during migration than source worker cores.

4.1 Experimental Setup
All evaluation was done on a 24 server Dell c6220 cluster

on the CloudLab testbed [36] (Table 1). RAMCloud is trans-

port agnostic; it offers RPC over several hardware and trans-

port protocol combinations. For these experiments, servers

were interconnected with 40 Gbps Ethernet and Mellanox

ConnectX-3 cards; hosts used DPDK [1] and the mlx4 poll-
mode driver for kernel-bypass support. Each RAMCloud

server used one core solely as a dispatch core to manage the

network; it used 12 additional cores as workers to process

requests; the remaining three cores helped prevent inter-

ference from background threads. The dispatch core runs

a user-level reliable transport protocol on top of Ethernet

that provides flow control, retransmission, etc. without the

overhead of relying on the kernel TCP stack.

To evaluate migration under load, 8 client machines run

the YCSB-B [7] workload (95% reads, 5% writes, keys chosen

according to a Zipfian distribution with θ = 0.99), which

accesses a table on the source server. The table consists of

300 million 100 B record payloads with 30 B primary keys

constituting 27.9 GB of record data consuming 44.4 GB of

in-memory log on the source. Clients offer a nearly open

load to the cluster sufficient to keep a single server at 80%

(dispatch) load. While the YCSB load is running, a migration

is triggered that live migrates half of the records from the

source to the target.

Rocksteady was configured to partition the source’s key

hash space into 8 parts, with each Pull returning 20 KB of

data. Pulls were configured to have the lowest priority in

the system. PriorityPulls returned a batch of at most 16

records from the source and were configured to have the

highest priority in the system. The version of Rocksteady

used for the evaluation can be accessed online on github at

https://github.com/utah-scs/RAMCloud/tree/rocksteady-sosp2017.

4.2 Migration Impact and Ownership
Figures 9 and 10 (a) show Rocksteady’s impact from the

perspective of the YCSB clients. Migration takes 30 s and

transfers at 758 MB/s. Throughput drops when ownership is

transferred at the start of migration, since the clients must

wait for records to arrive at the target. As records are be-

ing transferred, 99.9
th
percentile end-to-end response times

start at 250 µs and taper back down to 183 µs as hot records
from PriorityPulls arrive at the target. After migration,

median response times drop from 10.1 µs to 6.7 µs, since each
server’s dispatch is under less load. Likewise, after migra-

tion moves enough records, throughput briefly exceeds the

before-migration throughput, since client load is open and

some requests are backlogged.

Figures 9 and 10 (b) show PriorityPulls are essential

to Rocksteady’s design. Without PriorityPulls, client re-
quests for a record cannot complete until they are moved by

the Pulls, resulting in requests that cannot complete until

migration is done. Only a small fraction of requests complete

while the migration is ongoing, and throughput is elevated

after migration for a longer period. In practice, this would

result in timeouts for client operations. Migration speed is

19% faster (904 MB/s) without PriorityPulls enabled.
Instead of transferring ownership to the target at the start

of migration, another option is to leave ownership at the

source during migration while synchronously re-replicating

https://github.com/utah-scs/RAMCloud/tree/rocksteady-sosp2017

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
0

200

400

600

800

Time Since Start of Experiment (s)

T
hr

ou
gh

pu
t (

K
O

ps
/s

)

Figure 9: Running total YCSB-B throughput for (a) Rocksteady, (b) Rocksteady with no PriorityPulls, and (c)
when ownership is left at the source throughout the migration. Dotted lines demarcate migration start and end.

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
5

10

100

1000

Time Since Start of Experiment (s)

R
ea

d
L

at
en

cy
 (

µs
)

Figure 10: Runningmedian (dashed line) and 99.9th percentile (solid line) client-observed access latency onYCSB-B
for (a)Rocksteady, (b)Rocksteadywith no PriorityPulls, and (c)when ownership is left at the source throughout.

migrated data at the target. Figures 9 and 10 (c) explore

this approach. The main drawback is that it cannot take

advantage of the extra resources that the target provides.

Similar to the case above, source throughput decreases under

migration load, and clients eventually fall behind. For long

migrations, this can lead to client timeouts in a fully open

load, since throughput would drop below offered load for

the duration of migration. Additionally, migration suffers

a 27.7% slowdown (758 MB/s down to 549 MB/s), and the

impact on the 99.9
th
percentile access latency is worse than

the full Rocksteady protocol because of the re-replication

load generated by the target interfering with the replication

load generated by writes at the source. For larger RAMCloud

clusters, such interferencewill not be an issue, and onewould

expect the 99.9
th
percentile to be similar to Rocksteady.

4.3 Load Impact
Figure 11 (a) shows Rocksteady immediately equalizes dis-

patch load on the source and target. Worker and dispatch

load on the target jumps immediately when migration starts,

offloading the source. Clients refresh their stale tablet map-

pings after migration starts. Dispatch is immediately equal-

ized because a) exactly half of the table ownership has been

shifted to the target, and b) the migration manager is asyn-

chronous and requires little CPU.

A key goal of Rocksteady is to shift load quickly from the

source to the target. Most workloads exhibit some skew, but

the extent of that skew impacts Rocksteady’s ability to shift

load quickly. Figure 12 examines the extent to which Rock-

steady’s effectiveness at reducing client load is skew depen-

dent.With no skew (uniform access, skewθ = 0) PriorityPulls
are sufficient to maintain client access to the tablet, but low

request locality means the full load transfer only proceeds as

quickly as the background pulls can transfer records. Overall,

the results are promising when considering the source’s dis-

patch load, which is its most scarce resource for typical read-

heavy workloads. Regardless of workload skew, source-side

dispatch load remains relatively flat from the time migration

starts until it completes. This means that Rocksteady’s ea-

ger ownership transfer enabled by batched PriorityPulls
makes up for any extra dispatch load the Pulls place on the

source regardless of the skew.

4.4 Asynchronous Batched Priority Pulls
Figures 13 and 14 compare asynchronous batched PriorityPulls
with the naïve, synchronous approach when background

Pulls are disabled. The asynchronous approach doesn’t help

tail latency: 99.9
th
latency stays consistent at 160 µs for the

rest of the experiment, but median access latency drops to

7.4 µs immediately. On the other hand, the synchronous

approach results in median latency jitter, primarily due to

workers at the target waiting for PriorityPulls to return,

which can be seen in the increased worker utilization at

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

D
ispatch

W
orker

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.00
0.25
0.50
0.75
1.00

0
4
8

12

Time Since Start of Experiment (s)

U
ti

li
za

ti
on

 (
A

ct
iv

e
C

or
es

)

Machine Source Target

Figure 11: Dispatch core and worker core utilization on both source and target for (a) Rocksteady, (b) Rocksteady
with no PriorityPulls, and (c) when ownership is left at the source throughout the migration.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120

Time Since Start of Experiment (s)

D
is

pa
tc

h
L

oa
d

Skew

0

0.5

0.99

1.5

Figure 12: Impact of workload access skew on source-
side dispatch load. Batched PriorityPulls hide the ex-
tra dispatch load of background Pulls regardless of ac-
cess skew.

the target (Figure 14b). However, 99.9
th
percentile access la-

tency is lower than the asynchronous approach since pull

responses are sent to waiting clients immediately.

PriorityPulls are critical to the goal of rapidly shifting

load away from the source. The headroom thus obtained

can be used to service Pulls at the source thereby allow-

ing the migration to go as fast as possible. At the same

time, PriorityPulls help maintain tail latencies by fetching

client requested data on-demand.

4.5 Pull and Replay Scalability
Parallel and pipelined pulls and replay are key to migration

speed that interleaves with normal case request processing.

The microbenchmark shown in Figure 15 explores the scala-

bility of the source and target pull processing logic. In the

experiment, the source and target pull/replay logic was run

in isolation on large batches of records to stress contention

and to determine the upper bound on migration speed at

both ends independently.

Overall, both the source and target can process pulls and

replays in parallel with little contention. In initial experi-

ments, performance was limited when the target replayed

records into a single, shared in-memory log, but per-worker

(a) Async and Batched (b) Sync and Single

0 5 10 15 20 25 30 0 5 10 15 20 25 30

5

10

100

300

Time Since Start of Experiment (s)

R
ea

d
L

at
en

cy
 (

µs
)

Figure 13: Median (dashed line) and 99.9th percentile
(solid line) access latency without background Pulls.
Async batched PriorityPulls restore median latency
almost immediately compared to sync PriorityPulls.

side logs remedy this. Small 128 B records (like those used

in the evaluation) are challenging. They require computing

hashes and checksums over many small log entries on both

the source and target. On the target, they also require many

probes into the hash table to insert references, which induces

many costly cache misses. Even so, the source and target

can migrate 5.7 GB/s and 3 GB/s respectively. The source

outpaces target replay by 1.8 to 2.4× on the same number of

cores, so migration stresses the target more than the source.

This works well for scaling out, since the source is likely

to be under an existing load that is being redistributed to a

less loaded target. For larger record sizes, pull/replay logic

doesn’t limit migration.

5 DISCUSSION
Some of the most broadly applicable lessons from Rock-

steady are on the interplay of partitioning, dispatch, and

synchronization. Recent works have often partitioned oper-

ations [3, 20] or sometimes just mutating operations [27] to

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

(a) Async and Batched (b) Sync and Single

D
ispatch

W
orker

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0.00
0.25
0.50
0.75
1.00

0
4
8

12

Time Since Start of Experiment (s)

U
ti

li
za

ti
on

 (
A

ct
iv

e
C

or
es

)

Machine Source Target

Figure 14: CPU Load with no background Pulls. Asyn-
chronous batched PriorityPulls improve dispatch
and worker utilization at both the source and tar-
get compared to synchronous Pulls that stall target
worker cores.

reduce locking and contention. Systems that strictly parti-

tion work (even just writes) are likely to have to reconfigure

more often under skew. Their access latencies also suffer,

since migration must be interleaved with normal execution.

RAMCloud’s dispatch can be a bottleneck, but it can also redi-

rect any idle CPU resources on few microseconds timescale,

which is key to Rocksteady’s adaptive parallel replay and

tight SLAs. Hardware-assisted [21], client-assisted [27], and

parallel dispatch help mitigate bottlenecks and delay the

need for migration, but none of these can eliminate the need

for cross-machine rebalancing or the need to overlap nor-

mal execution and migration. Optimizing for normal-case,

steady-state request processing can make inevitable back-

ground system tasks more costly. Designers of in-memory

systems must carefully navigate partitioning, dispatch, and

locking trade-offs when planning for heavy rebalancing op-

erations, like migration.

Rocksteady’s safe deferred re-replication can also be ap-

plied to other systems. For example, H-Storewith the Squall [13]

migration system could exploit the same idea to improve mi-

gration throughput and access distribution impact. Squall

could take a temporary dependency on source data and back-

ups to avoid synchronous re-replication at the target; this

would have a significant impact since re-replication blocks

execution on the whole target partition in Squall.

5.1 Going Even Faster
Rocksteady can migrate hundreds of megabytes per second

with tight response latency, but it still only uses a small

fraction of the bandwidth provided by modern networks.

While its approach and its implementation can be tuned for

some gains, it is unlikely that simple changes would result

in the order-of-magnitude speed up that would be needed to

saturate the network.

Line
Rate

Line
Rate

Source Target

4 8 12 16 4 8 12 16
0

2

4

6

8

10

Number of Threads

T
hr

ou
gh

pu
t (

G
B

/s
)

Object Size 128 Byte 1024 Byte

Figure 15: Source and target parallel migration scala-
bility. Source side pull logic can process small 128 B
objects at 5.7 GB/s. Target side replay logic can pro-
cess small 128 B objects at 3 GB/s. For larger objects,
neither side limits migration.

To achieve such gains without destroying normal case

request processing, migration might be limited to merely

transferring large, opaque memory regions between hosts,

with little-to-no packaging or replay work on either end.

This would require the source to keep state strictly physically

partitioned in fine enough units for it to satisfy all possible

future splits. FaRM’s data layout for example, meets these

properties [12].

Physically partitioning groups of records on key or key

hash would constrain RAMCloud’s log structured memory

cleaning. The cleaner minimizes cleaning CPU and memory

bandwidth load by physically colocating records that are

likely to have a similar lifetime [37]. With physical parti-

tioning constraints, the cleaner wouldn’t be able to globally

optimize hot/cold separation of objects. Investigating the

cleaner’s sensitivity to such partitioning could be an inter-

esting direction, particularly since it might be able to assist

in the process of physically partitioning records.

Even if recordswere partitioned and could bemoved at line

rate, it is possible that RAMCloud would need network-level

support in order to avoid interference between large, fast

migration transfers and fine-grained normal-case requests.

Beyond improvements in dispatch scalability, other im-

provements to RAMCloud’s concurrency model could also

have a significant impact on Rocksteady. Today, RAMCloud

processes requests onworkers that use standard kernel threads.

Coroutines or cooperative user-level threading could both

improve response distributions and efficiency [19]. If Pull
and replay operations could afford frequent yields to RAM-

Cloud’s dispatch, heavy operations would have less impact

on normal case request processing. Replay and Pull opera-
tions could be coarser as well, resulting in less requests and

lower dispatch overheads. This could allow Rocksteady to

transfer data even more quickly with the same SLAs.

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

6 RELATEDWORK
Amazon’s Dynamo [10] is a highly-available distributed

key-value store that pushed for focus on 99.9
th
percentile

access latency, though Rocksteady pushes for tail latency

nearly 1,000× lower even while migrating. Dynamo sup-

ported strong SLAs and reconfiguration through a very differ-

ent approach that took advantage of pre-partitioning records

inside each server, replication, and weak consistency. DRAM

is expensive, so Rocksteady must not rely on in-memory

replication or internal pre-partitioning of records.

Distributed database live migration has received a great

deal of attention, particularly formulti-tenant cloud databases.

Rocksteady uses many ideas from prior work like pacing

migration [5], eager transfer of ownership [13, 14], and com-

bining on-demand and background migration [13, 14, 38].

Others have explored holding ownership at the source and

“catching up” the target through delta records or recovery

log data [9], similar to RAMCloud’s original migration.

Squall [13, 41] is a state-of-the-art live migration system

for the H-Store [20] scale-out shared-nothing database. It

offloads the source quickly by breaking requested tuples

out into separate units and migrating them on-demand. Un-

der skewed loads, hot tuples move quickly and background

transfers are paced to try to minimize disruption. Rocksteady

uses Squall’s combined background/tuple-level reactive pull,

but it extends the approach to RAMCloud’s more flexible

parallelism model. H-Store’s strict serial execution makes

synchronizing withmigration expensive; the execution of mi-

gration operations on a partition are interlocked between the

source and target and block normal requests. That is, each

pull from a target core can only be serviced by a specific

source core, and pulls and replays must operate in isolation

on a partition. Requests cannot be processed for keys that

are being pulled (or for any key in a partition where a pull is

ongoing). Target cores also spin waiting for pull responses

hurting normal request access latency and throughput as

well as migration speed. Compared to all prior approaches,

Rocksteady transfers data an order of magnitude faster with

tail latencies 1,000× lower; in general, Rocksteady’s ability

to use any available core for any operation is key for both

tail latency and migration speed.

Rocksteady builds on recent work on recovery and dis-

patching for in-memory storage that relies on kernel-bypass

networking [6, 17–19, 26, 27, 29, 35]. RAMCloud’s recovery

is a form of distributed migration [32], but it is disruptive

since it uses the resources of the entire cluster to reload con-

tents of a crashed server as fast as possible. FaRM [11, 12]

relies on in-memory triplication for redundancy, but it must

re-replicate lost partitions when a server fails. It paces re-

covery to a few hundred megabytes per second per server

in order to minimize performance impact. Similarly, DrTM-

B [44] minimizes the impact of reconfiguration by relying

on in-memory replicas. However, replicas can become over-

loaded too, so data is migrated using parallel RDMA reads.

One key aspect of FaRM is that partitions are physical: a

lost partition is an opaque region of memory, so most of the

overhead of re-replication is network transfer. RAMCloud

migration is more complex, since the source and target don’t

share a common partitioning or physical memory layout.

Rocksteady’s fast parallel packaging and replay is similar

to Silo’s single-server parallel recovery [43, 46]. Silo parti-

tions recovery logs across cores during record and during

replay. Rocksteady’s replay doesn’t require any particular or-

der; any core can replay any portion of records, which helps

Rocksteady hit SLAs. In Silo the database is also naturally

offline during replay, and recovery can consume all of the

resources of the machine. Silo’s parallel replay is state-of-

the-art, but Rocksteady’s parallel replay outperforms it on

far fewer cores. This may be because Silo must reconstruct a

tree-like index rather than a flat hash table and filesystem I/O

may induce more overhead than a NIC using kernel-bypass.

7 CONCLUSION
Low-latency in-memory stores are designed to tolerate the

heaviest request loads, but if they are too stripped down

they cannot deal with complex higher-level operations like

reacting to workload changes, skew shifts, and load spikes.

Rocksteady is a migration protocol for in-memory key-value

stores that avoids the need for and overhead of in-advance

state partitioning; it eliminates replication overhead from

the migration fast path; it exploits parallelism; and it exploits

modern NIC hardware. Rocksteady has a “pay-as-you-go”

approach that helps avoid overloading the source during

migration using asynchronous batched on-demand pulls to

shift load away from the source as parallel background trans-

fers proceed. In all, Rocksteady can move the entire DRAM

of a modern data center machine in a few minutes while

retaining 99.9
th
percentile tail latency of less than 250 µs.

ACKNOWLEDGMENTS
Thanks to the Stanford RAMCloud team for creating a great

system to build upon. Thanks to KirkWebb and the CloudLab

team for help with our special networking requests. Thanks

to the anonymous reviewers for their comments and to our

shepherd, Dan Ports. This material is based upon work sup-

ported by the National Science Foundation under Grant Nos.

CNS-1566175 and CNS-1338155. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation. This work was

also supported in part by Facebook and VMware.

Rocksteady: Fast Migration for Low-latency In-memory Storage SOSP ’17, October 28, 2017, Shanghai, China

REFERENCES
[1] Data Plane Development Kit. http://dpdk.org/. 4/10/2017.

[2] Intel®Data Direct I/O technology. http://www.intel.com/content/

www/us/en/io/data-direct-i-o-technology.html. Accessed: 10-19-2016.

[3] Redis. http://redis.io/. 7/24/2015.

[4] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and Kara-

manolis, C. Sinfonia: A New Paradigm for Building Scalable Dis-

tributed Systems. In Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles (New York, NY, USA, 2007), SOSP

’07, ACM, pp. 159–174.

[5] Barker, S., Chi, Y., Moon, H. J., Hacigümüş, H., and Shenoy, P. "Cut

Me Some Slack": Latency-aware Live Migration for Databases. In

Proceedings of the 15th International Conference on Extending Database
Technology (New York, NY, USA, 2012), EDBT ’12, ACM, pp. 432–443.

[6] Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C.,

and Bugnion, E. IX: A protected dataplane operating system for high

throughput and low latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (2014), pp. 49–65.

[7] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,

R. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (New York, NY, USA,

2010), SoCC ’10, ACM, pp. 143–154.

[8] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.,

Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W.,

Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D.,

Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M.,

Taylor, C., Wang, R., and Woodford, D. Spanner: Google’s globally-

distributed database. In 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (Hollywood, CA, Oct. 2012),
USENIX Association, pp. 251–264.

[9] Das, S., Nishimura, S., Agrawal, D., and El Abbadi, A. Albatross:

Lightweight Elasticity in Shared Storage Databases for the Cloud Using

Live Data Migration. Proc. VLDB Endow. 4, 8 (May 2011), 494–505.

[10] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-

man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels,

W. Dynamo: Amazon’s Highly Available Key-value Store. SIGOPS
Operating Systems Review 41, 6 (Oct. 2007), 205–220.

[11] Dragojević, A., Narayanan, D., Castro, M., and Hodson, O. FaRM:

Fast Remote Memory. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14) (Seattle, WA, Apr. 2014),

USENIX Association, pp. 401–414.

[12] Dragojević, A., Narayanan, D., Nightingale, E. B., Renzelmann,M.,

Shamis, A., Badam, A., and Castro, M. No compromises: distributed

transactions with consistency, availability, and performance . In SOSP
(2015), pp. 85–100.

[13] Elmore, A. J., Arora, V., Taft, R., Pavlo, A., Agrawal, D., and El Ab-

badi, A. Squall: Fine-Grained Live Reconfiguration for Partitioned

Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (New York, NY, USA,

2015), SIGMOD ’15, ACM, pp. 299–313.

[14] Elmore, A. J., Das, S., Agrawal, D., and El Abbadi, A. Zephyr: Live

Migration in Shared Nothing Databases for Elastic Cloud Platforms.

In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2011), SIGMOD ’11, ACM,

pp. 301–312.

[15] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A
Quantitative Approach. Elsevier, 2011.

[16] IEEE. 802.3-2015 - IEEE Standard for Ethernet. https://standards.ieee.

org/findstds/standard/802.3-2015.html.

[17] Kalia, A., Kaminsky, M., and Andersen, D. G. Using RDMA Effi-

ciently for Key-value Services. In Proceedings of the 2014 ACM Confer-
ence on SIGCOMM (New York, NY, USA, 2014), SIGCOMM ’14, ACM,

pp. 295–306.

[18] Kalia, A., Kaminsky, M., and Andersen, D. G. Design Guidelines

for High Performance RDMA Systems. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16) (Denver, CO, June 2016), USENIX
Association, pp. 437–450.

[19] Kalia, A., Kaminsky, M., andAndersen, D. G. Fasst: Fast, scalable and

simple distributed transactions with two-sided (rdma) datagram rpcs.

In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (GA, Nov. 2016), USENIX Association, pp. 185–201.

[20] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik,

S., Jones, E. P. C., Madden, S., Stonebraker, M., Zhang, Y., Hugg,

J., and Abadi, D. J. H-store: A High-performance, Distributed Main

Memory Transaction Processing System. Proc. VLDB Endow. 1, 2 (Aug.
2008), 1496–1499.

[21] Kaufmann, A., Peter, S., Sharma, N. K., Anderson, T., and Krish-

namurthy, A. High Performance Packet Processing with FlexNIC. In

Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2016), ASPLOS ’16, ACM, pp. 67–81.

[22] Kejriwal, A., Gopalan, A., Gupta, A., Jia, Z., Yang, S., and Ouster-

hout, J. SLIK: Scalable Low-Latency Indexes for a Key-Value Store. In

2016 USENIX Annual Technical Conference (USENIX ATC 16) (Denver,
CO, June 2016), USENIX Association, pp. 57–70.

[23] Kesavan, A., Ricci, R., and Stutsman, R. To Copy or Not to Copy:

Making In-Memory Databases Fast on Modern NICs. In 4th Workshop
on In-memory Data Management (2017).

[24] Lee, C., Park, S. J., Kejriwal, A., Matsushita, S., and Ousterhout,

J. Implementing linearizability at large scale and low latency. In

Proceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 71–86.

[25] Leis, V., Boncz, P., Kemper, A., and Neumann, T. Morsel-driven

Parallelism: A NUMA-aware Query Evaluation Framework for the

Many-core Age. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (New York, NY, USA, 2014),

SIGMOD ’14, ACM, pp. 743–754.

[26] Li, S., Lim, H., Lee, V. W., Ahn, J. H., Kalia, A., Kaminsky, M., An-

dersen, D. G., Seongil, O., Lee, S., and Dubey, P. Architecting to

achieve a billion requests per second throughput on a single key-value

store server platform. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (New York, NY, USA, 2015), ISCA

’15, ACM, pp. 476–488.

[27] Lim, H., Han, D., Andersen, D. G., and Kaminsky, M. MICA: A

Holistic Approach to Fast In-Memory Key-Value Storage. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14) (Seattle, WA, Apr. 2014), USENIX Association, pp. 429–444.

[28] Mellanox Technologies. Mellanox Announces 200Gb/s HDR Infini-

Band Solutions Enabling Record Levels of Performance and Scalability.

http://www.mellanox.com/page/press_release_item?id=1810, 2016.

[29] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and

Oskin, M. Latency-Tolerant Software Distributed Shared Memory.

In 2015 USENIX Annual Technical Conference (USENIX ATC 15) (Santa
Clara, CA, July 2015), USENIX Association, pp. 291–305.

[30] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski,M., Lee, H., Li, H. C.,

McElroy, R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung,

T., and Venkataramani, V. Scaling Memcache at Facebook. In 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13) (Lombard, IL, 2013), USENIX, pp. 385–398.

[31] Ongaro, D., and Ousterhout, J. In Search of an Understandable

http://dpdk.org/
http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://redis.io/
https://standards.ieee.org/findstds/standard/802.3-2015.html
https://standards.ieee.org/findstds/standard/802.3-2015.html
http://www.mellanox.com/page/press_release_item?id=1810

SOSP ’17, October 28, 2017, Shanghai, China Kulkarni et al.

Consensus Algorithm. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14) (Philadelphia, PA, 2014), USENIX Association,

pp. 305–319.

[32] Ongaro, D., Rumble, S.M., Stutsman, R., Ousterhout, J., and Rosen-

blum, M. Fast Crash Recovery in RAMCloud. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (2011),
ACM, pp. 29–41.

[33] Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Mon-

tazeri, B., Ongaro, D., Park, S. J., Qin, H., Rosenblum, M., Rumble,

S., Stutsman, R., and Yang, S. The RAMCloud Storage System. ACM
Transactions on Computer Systems 33, 3 (Aug. 2015), 7:1–7:55.

[34] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Sparrow:

Distributed, Low Latency Scheduling. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (New York,

NY, USA, 2013), SOSP ’13, ACM, pp. 69–84.

[35] Peter, S., Li, J., Zhang, I., Ports, D. R., Woos, D., Krishnamurthy,

A., Anderson, T., and Roscoe, T. Arrakis: The operating system is

the control plane. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI’14) (2014).

[36] Ricci, R., and Eide, E. Introducing CloudLab: Scientific Infrastructure

for Advancing Cloud Architectures and Applications. ; login: 39, 6
(2014), 36–38.

[37] Rumble, S. M., Kejriwal, A., and Ousterhout, J. Log-structured

Memory for DRAM-based Storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14) (Santa Clara, CA,
2014), USENIX, pp. 1–16.

[38] Schiller, O., Cipriani, N., and Mitschang, B. ProRea: Live Data-

base Migration for Multi-tenant RDBMS with Snapshot Isolation. In

Proceedings of the 16th International Conference on Extending Database
Technology (New York, NY, USA, 2013), EDBT ’13, ACM, pp. 53–64.

[39] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrish-

nan, H. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions (2001).

[40] Stutsman, R., Lee, C., and Ousterhout, J. Experience with Rules-

Based Programming for Distributed, Concurrent, Fault-Tolerant Code.

In USENIX ATC (Santa Clara, CA, July 2015).

[41] Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J., Aboul-

naga, A., Pavlo, A., and Stonebraker, M. E-store: Fine-grained

Elastic Partitioning for Distributed Transaction Processing Systems.

Proc. VLDB Endow. 8, 3 (Nov. 2014), 245–256.
[42] The Apache Software Foundation. Apache Cassandra. http://

cassandra.apache.org/.

[43] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. Speedy

Transactions in Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(2013), ACM, pp. 18–32.

[44] Wei, X., Shen, S., Chen, R., and Chen, H. Replication-driven live

reconfiguration for fast distributed transaction processing. In 2017
USENIX Annual Technical Conference (USENIX ATC 17) (Santa Clara,
CA, 2017), USENIX Association, pp. 335–347.

[45] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,

M., Franklin, M. J., Shenker, S., and Stoica, I. Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-

puting. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12) (San Jose, CA, 2012), USENIX, pp. 15–28.

[46] Zheng, W., Tu, S., Kohler, E., and Liskov, B. Fast databases with fast

durability and recovery through multicore parallelism. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2014), OSDI’14, USENIX Association,

pp. 465–477.

http://cassandra.apache.org/
http://cassandra.apache.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Load Balance?
	2.2 The Need for (Migration) Speed
	2.3 Barriers to Fast Migration
	2.4 Requirements for a New Design

	3 Rocksteady Design
	3.1 Task Scheduling, Parallelism, and QoS
	3.2 Exploiting Modern NICs
	3.3 Priority Pulls
	3.4 Lineage for Safe, Lazy Re-replication

	4 Evaluation
	4.1 Experimental Setup
	4.2 Migration Impact and Ownership
	4.3 Load Impact
	4.4 Asynchronous Batched Priority Pulls
	4.5 Pull and Replay Scalability

	5 Discussion
	5.1 Going Even Faster

	6 Related Work
	7 Conclusion
	References

