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1 Overview

University campus infrastructures count among the most complex and sophisticated information technology
(IT) deployments; often combining a mix of enterprise, academic, research, and healthcare environments.
Different segments of the campus have very different policies and regulations that govern its treatment of
sensitive data (e.g., private student/employee information, health care data, financial transactions etc.).
Dealing with the security of this complex and highly dynamic environment is extremely challenging. The
unique requirements of data-intensive scientific research traffic often require exceptions to conventional IT
policies, which typically result in ad-hoc solutions that bypass standard operational methods and proce-
dures, thus leaving both the scientific workflow and the campus as a whole vulnerable to attack. In short,
state-of-the-art campus security operations still heavily rely on human domain experts to interpret high level
policy documents, attempt to implement those policies through low level mechanisms, manually implement
exceptions to these policies to accommodate scientific workflow requirements, interpret reports and alerts
from a variety of security point solutions, and be able to react to security events in near real time on a
24-by-7 basis. This state of affairs is clearly untenable.

In order to make the current systems to work, we have to let go of the dynamicity. So a researcher from
healthcare cannot access his healthcare resources unless he is connected to the healthcare network by being
present in the healthcare domain physically. And this applies for other groups too. In this project we aim
to solve this problem by automating the process of policing user groups and their traffic dynamically. Our
policy engine is fed information about user group, policies that these user groups should follow and then
whenever the user connects to the network, the policy engine kicks in and installs flows based on the policy
configured for that group

2 Background

Any campus network can be broken down into three main pieces. 1) Users, who are part of the campus
network. These users are generally identified using some authentication mechanism. Most of the network
use RADIUS for authentication. 2) Policies, which should be applied over these user/user groups. 3)
Hardware(switches/routers) over which these policies are implemented.

In KnowU, we will also be using RADIUS for authenticating/managing the users. Section 1 describes
the basic radius interactions when a user connects to the network. Sections 2.2 and 2.3 deals about how the
users and policies are represented in KnowU. KnowU implements these access control policies in networks
using Openflow rules and hence the network should be openflow capable. But most of the current campus
networks don’t have openflow capable switches and to replace the entire network with openflow capable
switches is not possible. So we have designed KnowU such that, it can implement access control in a campus
network provided the edge switches(user facing swithces) are openflow capable.
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2.1 RADIUS

The radius interactions are shown in Figure(1). Here the phone/laptop runs a 802.1x supplicant. The Talac
switch or any edge switch where the user connects to is called the Network Access Server(NAS). The radius
server which we are using is freeradius 3.0. The NAS is configured as valid in the radius server configuration
and their shared secret is configured in both the NAS and radius server. Each NAS has its own shared secret
with the Radius server. Now when the User connects to the AP(NAS), they use some secure protocol to
communicate. It can be EAP, CHAP, MSCHAP, PPP and so on. We are using EAP here. So when the
user initiates a EAP Start, the NAS sends EAP request identity message. Now when the user responds with
EAP response, the NAS converts this into a RADIUS ACCESS-REQUEST packet and sends it to the radius
server after encrypting with the shared key. The radius server decrypts the messages, and gives a challenge
to the USER via RADIUS ACCESS-CHALLENGE packet. The NAS converts this ACCESS-CHALLENGE
packet to EAP Request Authentication packet and once the user sends a response for this, the NAS converts
this to RADIUS ACCESS-CHALLENGE and also add the state variable to let the RADIUS know it is not
a new session. The radius then process the response and if its valid will respond with RADIUS ACCEPT-
ACCEPT or send a RADIUS ACCEPT-REJECT packet which the NAS will translate accordingly. The
radius can also use additional attributes to instruct the NAS, but in our case we dont use any additional
attributes.

2.2 What is security zone ?

Security Zone is a collection of users who can communicate with each other and have common policies that
they have to adhere when communicating with the other zones. Each zone has a id(number) associated with
it and a set of policies to determine the communication. Eg: Flux users can be put in a zone, INSCC users
can be put in a zone, Internet is also a zone(but a special one since the set of users cannot be quantified).
Now if the Flux users want to communiate with the Internet, they should have an appropriate policy which
will allow them to do so.

2.3 Policies

A Policy is associated with a zone and specifies how this zone’s users can communicate with another zone.
Apart from specifying the how the zones can communicate, the policies can also have fine grained exceptions
like, one particular user of the zone can access another zone; one particular resource is more secure and only
a smaller subset of the zone can access and so on. Lets say the flux zone has id 100 and inscc has id 200.
And let the policy be flux users can communicate with inscc users and inscc users can communicate with
flux users. But the flux printer(printer1) cannot talk with inscc and vice versa, but one inscc user(inscc1)
can talk with flux printer. This can be represented using the policy

{

"zoneId": "100",

"defaultAction": "false",

"zones": [

{

"dstZoneId": "200",

"isAllowed": "true",

"exceptions": [

{

"isAllowed": "false",

"srcIp": "printer1"

},

{

"isAllowed": "true",

"srcIp": "inscc1",
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Figure 1: Radius Interaction

"dstIp": "printer1"

}

]

},

}

Now lets look at generic policy structure.

list policy {

leaf zoneId {

type uint32;

description "Id used to represent the zone";

default ’0’;

}
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leaf defaultAction {

type boolean;

description "This is set to true if connections from other zones can be allowed";

default false;

}

list zones {

leaf dstZoneId {

type uint32;

description "Zone id of the destination";

default ’0’;

}

leaf isAllowed {

type boolean;

description "True if connection is allowed to this destination";

default false;

}

list exceptions {

description "This is used to specify the exceptions with respect to this zone";

leaf srcUser {

type string;

description "UID of the user";

}

leaf dstUser {

type string;

description "UID of the user";

}

leaf isAllowed {

type boolean;

description "True if connection is possible";

default false;

}

}

}

}

Here the ”zoneId” represents the id of the zone. This id value is unique. If the zone allows communication
from all users irrespective of their zone, then defaultAction can be set to true. The ”list zone” is used to
specify if the communication is possible between the specified zones or not. If we need more fine grained
control with respect to the communication between the zones, then exceptions can be used. For a communi-
cation to happen between two zones A and B, there should be two policies. A policy of Zone A which allows
its users to talk to Zone B and a policy in Zone B which allows its users to talk to Zone A. If a policy in
a zone doesnt have a complimenting policy in its peer zone, then the communication is not possible. This
will lead to lots of policies even if a zone doesn’t want any restrictions. This is where the defaultAction will
be helpful. Lets say there are 10 zones in the system (100, 200, ... 1000). Now each zone(Eg 100) will have
policy structure with zoneId set to 100 and a list destination zones and the restrictions associated with it.
But for a zone which allows all communication it can just have the defaultAction set to ”true” and the other
values can be empty. And later if the adminstrator decides to prevent the zone from communication to one
specific zone, then that zone details can be added to the zone list with the isAllowed of that particular zone
set to ”false”.
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Figure 2: KnowU System Overview

Figure 3 shows how the system architecture maps to the KnowNet Architecture
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Figure 3: System Architecture Mapped to KnowNet Architecture

2.4 Databases

Below is the description of the databases used in the system. How these database are used is explained in
the architecture section.

• User DB - A database which maintains the users connected in the system and their attributes.
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1. key - user ip - Ip associated with the user

2. Data

(a) zone id - The zone user belongs to

(b) attributes - Till now the implemented doesnt use this field. Additional user details can be
stored here. Could be used to add exceptions

(c) ap-ip - The switch/ap the user is connected to

(d) name - UID associated with the user

(e) mac - Mac address associated with this ip/user

• Switch Config DB - A database which maintains the list of switches present in the system. The
administrator knows the topology of the network and knows which ports of the switch is network
facing and this information is added to the ODL system using this database. When the Switches
connect to the ODL controller, this database is referred to find which are the uplink and downlink
ports and then this info is saved in the Switch DB

1. ip - Ip address of the switch

2. Uplink Ports - The interface which connects the AP to the core network.

• Switch DB - A database which maintains the list of switches connected with the controller

1. ip - Ip address of the switch

2. Node-ref - A pointer maintained by opendaylight to access the switch

3. name - The details of the manufacturer

4. Downlink Ports - The interface which connect the AP and the hosts.

5. Uplink Ports - The interface which connects the AP to the core network.

• Dhcp-Lease DB - A database which is populated based on dhcp alloc events. Whenever Dhcp server
allocates an IP for a mac, an entry is added in this DB. This information is crucial for the system and
uses this to bind the user with the IP at runtime.

1. mac - Mac address to which IP was allocated

2. ip - IP address allocated to the above MAC address

• User-AP DB - A database which maintains the association between the user and the ap the user is
connected

1. ip - user ip

2. Node-ref - an opendaylight reference to the AP associated with user

• Zone DB- A database which maintains security zone details using

1. key - ZoneId - Security Zone id

2. Data

(a) vlanId - Vlan Associated with the security zone

(b) userList - List of users associated with this security zone

(c) flowList - Opendaylight flow data structures used to install flows associated with this security
zone

i. Flow - ODL datastructure which represent a flow

ii. FlowId - ODL datastructure to represent the id of the flow

iii. nodeId - ODL reference to the switch where the flow was installed

7



3 Architecture

Our system can work only with the openflow enabled switches. As soon as the switch connects to the
controller, the details of the switch (the interfaces present in the switch, it capabilities) are fetched by the
ODL’s inventory module. Once this fetch is done, our module gets the notification and we walk through
the inventory modules database, fetch the information required by us and save them in the switch details
database. When the user connects to wifi access point/physical port and authenticates himself, the details of
the user is got from DHCP and RADIUS. This new user detail is updated in both the user details database
and the user ap database. Now whenever we need to know the zone corresponding to the user, we can look
up the user details database and when we need to install flows with respect to the user, we find the switch
associated to the user using the user ap database. Apart from these, there is a security policy database
which holds all security policy associated with zones which was described above. As the admin updates the
security policies, the policy database is populated. In the system, we install flows reactively for intra zone
communication and proactively for inter zone communication.

4 Workflow

• The openflow switches are configured to talk to the controller.

• The Access Points(APs) are configured with the Radius/DHCP Relay details.

• If the AP doesnt support DHCP relay, it will be configured in the first hop switch of the AP.

• When the OF switches establish a connection with the controller, the details of the switch is updated
in the switch db.

• For all the OF switches connected to the controller, a low priority rule which matches any IP packet and
sends the packet to the controller and a low priority L2 rule which does a MAC LEARING/FLOOD
are installed in the switch.

• The user connects to the AP and and uses his credentials to authenticate.

• AP(Radius Authenticator) passes the users details to the RADIUS server which verifies the users and
adds the user details in its DB.

• Upon authentication by radius, the user sends a dhcp request, which are collected by the dhcp relay
agent. The packets are sent to dhcp server and the dhcp reply is propagated to the user.

• Once the dhcp server assigns the ip, this information is updated in the DhcpLeases table in the ODL.
This triggers the ODL to query the Radius DB to find the entry associated with the MAC Addess.
Once the user entry from the radius is fetched, the user information from radius is binded with the ip
from the dhcp lease and this is updated in the UserDB.

• Now the ODL has the information that a new user with this ID belonging to this zone from the radius
update and also IP associate with the user from the Dhcp update. Now we bind these two information
and update the user’s detail in the UsersDB. This late binding of userid with the ip is how the system
manages to install the policy rules which are represented in the abstract domain(User id’s and zone
ids) into IP flow rules at runtime. This property makes the system more generic and now it can police
the user based on his ID and not based on his ip.

• The user’s security zone is identified and if this is the first user in that security zone, no flow rules
are added. If there are already users in that security zone, then flows are installed in the following
ways(proactive flow programming) - Lets say the current user has ip ’A’ and the associated AP is
’AP1”, and the existing users of the same zone are B, C, D. The flow with ”srcip = A and dstip =
B—C—D” and ”srcip = B—C—D and dstip = A” are created in AP1 and similar flows associated
with A is installed in AP’s associated with B.
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• Due to the above flows, the communication is possible only between nodes belonging to the same
security zone.

• Whenever a user(U1) from security zone A tries to contact user (U2) from security zone B, there is no
flow to forward the packet and hence this will be caught by the low priority catch all IP packet flow
installed in step 3 and will reach the controller(reactive flow programming).

• The controller then gets src ip, dst ip from packet and determines users and the zones associated with
them. With the zone information it queries the policy db to check if a connection between the entities
is possible. If so creates appropriate flows and a reference to these flows is maintained in the flowList
of the security zone db.

• Now whenever a policy associated with the security zone is updated, the flows associated with the
zones are identified and the flows are removed. Since our system works in the reactive mode, the flows
will be installed again whenever ever there is packets received. But then the new flows will follow the
updated policy.

• As we already mentioned, Internet is also a Zone, but a special one which doesnt have quantified
number of users. So if we create a flow for each communication to internet, the flow table in the switch
is going to explode immediately. So we treat Internet Zone in a special way. Lets say the ip space
controlled by our system is 100.x.x.x, then we will install rule which matches this prefix in src/dst and
its action is set to forward to controller. Lets call this rule R1. Now we install another rule which will
match this userip, dstip is wildcarded and forward the packet to the core. This rule’s priority is set
lower than R1’s priority. We also create the complimentary rule, src=* dstip = userip which forwards
packets to the user. Let these rules be R2. Now if the packet from internet arrives this will be matched
by the R2 and will be forwarded, but if the user try to initiate communicate with another security
zone, it will match R1 and will be lifted to controller which will make sure if the communication is
possible or not

• If a user disconnects, the change is propagated to ODL using a radius trigger. So the user is removed
from the security zone list and the flows associated with the user is removed. And here the user mean
one particular instance of the (user,ip) combination. If the user had multiple devices connected to the
network, the disconnect will only remove the flow of that (user, ip) pair.

5 Deployment

Figure 4 shows how the deployment will be. The lower layer comprises of open flow based talac switches,
which are controlled by our controller. The next level also comprises openflow enabled switches which are
connected to a separate controller which is configured to do basic l2 learning/switching. These switches
connect the talac switches to the core network. The policy restrictions are enforced by installing openflow
rules on the talac switches. Thus we enforce the policy restrictions at the source itself when the source is a
part of our network. If the source is internet or is connect to network via a switch which is not controlled
by us, then we cannot enforce source restriction and hence this will be handled at the destination which will
be a talac switch controlled by us.

Figure 5 shows the actual deployment at Flux. Here Talac and DELL form the edge AP. There is no
second level OF switch. The APs directly connect to the switch/router which connects the FLUX network
to campus core.

6 Deployment Issues

• The talac AP takes time to bring its wireless interfaces. So if the controller is running and the Talac is
turned on, it connects to the controller even before the wireless lan is up and hence the it doesnt inform
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Figure 4: Deployment setup

about its wlan interface during the connection time but is later updated. But the controller expects
the wlan interface to up in the beginning itself. So either we should have the talac switches connected
first and then turn on the controller(not a good solution) or listen to the interface up notification from
talac via openflow and then update the switch db and then trigger the communication. And also if the
wireless lan is turned off for some reason, the controller doesnt handle the situation. The notification
should be processed and the switch’s wlan should not be used to send packets till the wlan is up. In
short, the INTERFACE NOTIFICATIONS should be handled

• Unable to restrict flows between hosts connected to the same ap

• In the wired host scenario, its better to find which port the host is connected to and then send packets
to that interface instead of sending it to all the interfaces facing the hosts(current scenario)

• Some times, radius gives a user disconnected message even though user is still connected. As of now
since the main set of users will be wired machines in the lab, I assume this wont happen with wired
clients. So handle this issue later ?
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Figure 5: Flux Deployment

7 Future work

• The current policies are just in the ip level. It can be made much granular. For example instead of
saying one user can access the server in another zone, we can limit further by saying this user can only
access the server via this port number.

• Assigning Ip’s in a structured way so that, rules can be combined in the edge switches.(If there are n
users which fall into 2 zones, give them ips in a way such that each zone gets a continuous ip set, so
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that common flows can be combined

• As of now, the user can only be a part of one security group. What if he wants to be a part of multiple
security group. ?

• Extend the policy engine to specify the network path that this communication can/should use instead
of just saying allow communication

• Allow the policy engine to contain abstract user set instead of a concrete one. Eg: Zone 100 = Allow
users who have finished security tests. The users will get added/moved to the zone upon an trigger
from the security application. This will bring in more dynamicity to the system

• Currently the policies to a zone can only take another zone as input. Add support to add users also.

• Allow the policy engine to work with more than just IPs. A way to support data based policies. A
way to implement something like a taint system developed by Kirk
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