
Federated Content Filtered Network

Gurupragaash Annasamy Mani

University Of Utah

guru@cs.utah.edu

August 26, 2017

1 PROBLEM STATEMENT

Educational institutions (universities, school districts etc.) often take part in federated authenti-
cation via a system called EduRoam. In essence, this allows users of participating institutions
with authenticated access to the networks (WiFi/Internet etc.) of member institutions. E.g.,
students visiting the campus of a participating institution would be authenticated with their
home institution and, when successfully authenticated, will be allowed access to the network at
the visited institution. This approach has been very successful and is widely deployed on both
university campuses and K-12 schools.

This federated authentication approach, however, by design only deals with authentication.
Specifically, at a local level, many educational networks apply different network policies to differ-
ent users, and these policies are not applied in the current federated authentication approach.
For example, students of a K-12 school have to be protected against adult content by law on the
Web which is ensured by passing their access requests through an appropriate content filtering
device. Should a student from one of these schools gain access at, for example, a public library,
the network should ensure that this policy is still being applied to the students traffic (while
traffic from the general public at the same public library might not be subjected to the same
policy treatment). State-of-the-art federated networks authenticate the user across networks but,
since the policy is maintained locally in the home system and is not transferred across, the users
are granted access to the network without any policy being applied, or with default policy being
applied. In some cases, this default group has a strict policies and would satisfy the institution’s
requirement, but in some cases the user gets access to content which they are not allowed to,
leading to breach of FERPA requirements. So to be on a safer side, most institutions do not allow
remote users on their network.

We aim to solve this problem by adding a policy exhange phase during the authentication
process. At the end of this policy exchange process, if it was successful, the remote institution

1

can assertain that a correct policy will be applied to the user’s traffic. Hence it can allow the user
if the credentials are valid, or deny the valid authentication request if the policy exchange was
not successful.

2 NAIVE SOLUTION

There are few straight forward solutions to our problem.

• Send the policy associated with the user to the local network and realize the policy in the
local network.

• Have a pre-negotiated policy which can be used for users of different network.

• Tunnel the traffic to the home network.

3 RELATED WORK

There is lot of work in the space which implement the naive solution(sending the policy across
networks). PacketFence [2] and Aruba’s ClearPass [1] are examples of such systems. These
systems are capable of doing authentication across networks, exchange policies across networks,
convert the policies and realize them based on the local network’s hardware support. But they
strongly assume that the policy exchanged can be implemented in the local network.

Instead of sending policies and translating them based on the network support, some of the sys-
tems create a higher policy layer which can be understood by all the participant networks. Then
the local institutions write policies which adhere to the higher layer. In this way, the policies can
be sent across and can be implemented in the local network without any conversion/translation
of policies. Multi-OrBAC [4], X-FEDERATE [3] use this approach. There are two main issues with
these approaches. 1) Creating a common policy layer and asking all the participants to change
implemention to support this policy layer is not feasible and cumbersome where there are lots
of participants in a federation. 2) We cannot assume that the policy of one participant can be
realized in another participant since the other might not have necessary hardware to implement
such a policy. Even if a network has the capacity to instantiate a policy, instatiating one for every
user is not scalable.

The issue with the other naive solutions are pretty straight forward. Tunneling the traffic leads
to latency and the pre-negotiation of policies across participants is not a feasible task when the
participants are huge in number. Due to these reasons, we believe the current solutions do not
solve the problems faced in a federated network scenario.

4 OUR SOLUTION

Policy is an overloaded term and can mean lots of different things like access control policies,
content filter policies, network security policies, data protection policies and so on. For this

2

work, we will be focussing on content filter policies. As discussed before, the system should not
assume that the local network is capable of implementing the policy received from the remote.
With that as the main motive, we have built our system, which facilitates a policy negotiation
process between the local and remote network using a policy exchange protocol. The policy
exchange protocol ensures that at the end of the exchange, both the local and remote network
agree on an action which will ensure that the user’s traffic is subjected to the policy which is
acceptable by the remote network, if not the user will not be allowed on the network.

At the start of the policy exchange protocol, the local network sends its capabilities to the
remote network. The remote picks a capability and initiates the protocol associated with the
capability. If the protocol exchange results in a success, then this entire policy negotiation
process is a success and thus the user is allowed in the network, else the next capability from the
received capabilities is picked the process continues till the exchange is successful or the remote
runs out of capabilities. In which case, the user is not allowed on the network.

5 BACKGROUND

Before we go into our system, we need to know 1) How a content filter policy looks like and 2)
How federated authentication is performed.

5.1 CONTENT FILTER POLICIES

Figures 1 - 4 shows some of the commonly present configs in the content filtering device. These
configs as a whole represent a content filter policy. Figure 1 lets the administrator to specify
which categories are allowed for an user, which is blocked, which is allowed but access is logged
and so on. Figure 2 lets administrator to control the list of applications the user can have access
to. Figure 3 allows administrator to configure fine grained control on social media and finally
Figure 4 allows administrator to configure allow lists and block lists. Apart from these generic
ones, there are other vendor specific configs. All these configs can be categorized into two types,
1) Fixed Sized Configs and 2) Variable Sized Configs. Fixed Sized Configs are one which has a fixed
numbers of key, value pairs and the administrator sets the values for each key. Webcategories,
applications and socialmedia are examples of Fixed Sized Configs. Variable Sized Configs are
ones which contain a list and the administrator is allowed to add as many entries to the list as
needed. Allow Lists and Block Lists are examples of this type of config.

5.2 FEDERATED AUTHENTICATION

Radius [5] is one of the most widely used systems for authentication in a federated network. We
will also be using Radius to do the federated authentication part of the system.

3

Figure 1: Web Categories

5.2.1 RADIUS INTERACTION

The radius interactions are shown in Figure 5. Here the user (phone/laptop) runs a 802.1x
supplicant. Any Access Point(Wired/Wireless) where the user connects to is called the Network
Access Server(NAS). The radius server which we are using is freeradius 3.0. The NAS is configured
as a valid client in the radius server configuration and a shared secret is configured in both the
NAS and radius server. Each NAS has its own shared secret with the Radius server. Now when the
User connects to the AP(NAS), they use some secure protocol to communicate. It can be EAP,
CHAP, MSCHAP, PPP and so on. In this example, we are using EAP. So when the user initiates a
EAP Start, the NAS sends EAP request identity message. Now when the user responds with EAP
response, the NAS converts this into a RADIUS ACCESS-REQUEST packet and sends it to the
radius server after encrypting with the shared key. The radius server decrypts the messages, and
gives a challenge to the USER via RADIUS ACCESS-CHALLENGE packet. The NAS converts this
ACCESS-CHALLENGE packet to EAP Request Authentication packet and once the user sends
a response for this, the NAS converts this to RADIUS ACCESS-CHALLENGE and also adds the

4

Figure 2: Applications

Figure 3: Social Media

Figure 4: Allow and Block Lists

5

Radius
Network Access

Server
 (Access Point)

EAPOL Start

EAP - Success

EAP - Request Identity

EAP- Response
Identity

Radius - Access
Request

Radius - Access
Challenge

EAP - Request Auth

EAP - Response
Auth

Radius - Access
Request

Radius - Access
Accept

Credentials

Protocol
Exchange

Access
Request

Response

Figure 5: Radius Interactions

state variable to let the RADIUS know it is not a new session. The radius server then processes
the response and if its valid will respond with RADIUS ACCEPT-ACCEPT or send a RADIUS
ACCEPT-REJECT packet which the NAS will translate accordingly. Now lets consider the case
when a user moves across institutions in a federated network. When the user connects to an
AP, the users request are sent to the Radius Server configured in the AP. The Radius server looks
into the realm attribute of the user. If the realm, is the local realm, then this user credentials
will be present in the local DB, else it should pass this information to appropriate Radius Server.
Assume there are "N" participants, then each of the participants should have N-1 realm and
their Radius Server details configured and whenever a new institution becomes a part of the
federated network, all the participants should be updated. This is cumbersome and hence an
alternate method is used. All the institutions send the requests to a proxy Radius Server if it
is not their realm and this proxy Radius is configured with the realm information and it can

6

pass this information to the appropriate Radius Server and any changes in the realm will lead to
changes only in the proxy Radius Server. There can be multiple proxy servers, hierarchy of proxy
servers for realiability and so on. Figure 6 shows the interactions in the proxy case. As shown
in the figure, the communication between the Radius Server’s are hop by hop and hence in the
vanilla Radius protocol, the final Radius Server cannot determine from where the request was
originated.

............Radius
Proxy1

Radius
Proxyn

Remote RadiusLocal Radius
Network Access

Server
 (Access Point)

Credentials

Authenticate

Authenticate

Authenticate

Authenticate

Accept

Accept

Accept

Accept

Accept

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Figure 6: Radius Proxy Interactions

5.2.2 RADIUS WITH POLICY EXCHANGE

Figure 7 shows where the policy exchange protocol will be hooked in the Radius authentication
process. But for this to happen, as shown in the figure, we need to know where the request
originated from, so that a policy exchange can be initiated between the appropriate participant
networks. We plan to achieve this by using the Proxy-State Attribute in the Radius protocol.
According to the Radius RFC2865 [5], a Radius server(proxy) can add any information as a Proxy-
State Attribute when forwarding a Access-Request message. The Radius Server receiving the
Proxy-State Attribute cannot modify the attribute and if it needs to add its own proxy-state details,

7

............Radius
Proxy1

Radius
Proxyn

Remote RadiusLocal Radius
Network Access

Server
 (Access Point)

Credentials

Authenticate
Authenticate,
Add Radius IP
as Proxy-State Authenticate,

Add Radius IP
as Proxy-State Authenticate,

Add Radius IP
as Proxy-State

Find Local
Radius IP

 from
Proxy-State

&
User Policy

from DB

Accept

Accept

Accept

Accept

Accept

Policy Exchange Protocol

Policy Accept

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Authentication
Protocol

Exchange

Figure 7: Radius Interaction with Policy Exchange

Remote/Home School

RADIUS

Policy
Component

Local/Roaming School

RADIUS

Policy
Component

4.Policy
Exchange
Protocol

1.Authenticate

2.Authentication Protocol
Exchange

3.Initiate
Policy

Exchange

5.Accept

Figure 8: Policy Exchange via Components - Abstract

8

RADIUS Policy ServerPolicy
Authenticator

Policy Client
(As Home)

Policy Client
(As Remote)

ContentF
ilter

Policies

Connection
Request from
Policy Client(As
Remote)Check

Policy

Connection
Request to
Policy Server

Initiate
Policy

Exchange

Initiate
Policy

Exchange

Policy
Exchange
Protocol

Figure 9: Policy Exchange via Components - HighLevel

it should be added on top of existing proxy-state attribute. Thus the proxy-state attribute added
by the first Radius Server will reach the final Radius Server without any change in its value. The
Radius Server of the participating instituions will be configured to add their ip address when
forwarding an Access-Request packet. Thus the final Radius Server will know where the request
was originated from using the proxy-state attribute. If there are multiple proxy-state attributes
present, the last proxy-state attribute in the stack will have the origin ip address. Now that we
have the origin ip address, we can initiate the policy exchange process, but Radius protocol
prevents any server to initiate a communication. According to the RFC, Radius is a request-
response protocol and the request should be initiated by the user and hence we cannot do policy
exchange using Radius messages. Instead we can create a side channel to do the policy exchange
and if the exhange was successfull, we can notify the Radius Server that policy exchange was
successful and to proceed with validating the user.

Figure 8 displays the same interactions shown in Figure 7 but in components level. The Policy
Component piece is the contribution of this project which enables the policy exchange in the
authentication process. The Policy Component piece is comprised of many smaller components
which will be discussed in detail in the section 7. Figure 9 shows the same interaction with some
of the main components of Policy Component. The Policy Authenticator is a Radius module,
which will be hooked to the Radius in the authentication flow. And hence whenever there is
an authentication request, Policy Authenticator receives the request and if its from a remote
network, it initiates the Policy Exchange process else will reply immediately. The Remote Policy
Client performs the policy negotiation with the Local Policy Server via Local Policy Client and
the result of this negotiation is passed on to the Policy Authenticator which then informs the

9

New Messages

Local
Policy Client Remote Radius

Remote
Policy ClientLocal Radius

Authenticate

Accept

Accept

Authentication
Protocol

Exchange Initiate
Policy

Exchange

Connect

Local
Policy Server

Initiate
Policy

Exchange
Policy Exchange Protocol

Policy Exchange Success

Existing Messages

Policy
Authenticator

Check
Policy

Accept

(a) Flow Diagram

SchoolA

Policy
Authenticator

Content
Filter

Policies

3.Check
Policy

SchoolB

Radius Policy
Server

Policy Client
(As Home)

Content
Filter

Policies

1.
A

ut
he

nt
ic

at
e

Radius

2. A
uthentication P

rotocol E
xchange

4.Initiate Policy
Exchange

Policy Client
(As Remote)

5.Connect

6.Initiate Policy
Exchange

7.Policy
Exchange
Protocol

Policy
Server

Policy Client
(As Home)

Policy
Authenticator

Policy Client
(As Remote)

10.A
ccept

8.Accept

9.Accept

Unused
Components

Unused
Components

(b) Flow via Components

Figure 10: Policy Exchange - HighLevel
10

Radius Server. Based on the result, the Remote Radius server will decide if its okay to allow the
user or not. The Policy Server is a ever-running process which services requests from the Policy
Client from the remote network. Figure 10a shows the messages exhanged in this side channel at
a high level. Figure 10b shows the same policy interaction we just saw, but also shows what all
components are active at each location during the policy exchange.

6 POLICY EXCHANGE PROTOCOL

Figure 11: Policy Exchange Protocol

The Policy Exchange Protocol is a sequence of messages sent between the Policy Components
of local and remote network. The protocol interactions are as follows

• The Remote sends a Hello message to the Local

• The Local responds with a Hello and a list of capabilities supported by the local network.
The Capabilities are discussed in detail in section 6.1.

11

• The Remote picks a capability from the received list and initiates the exchange associated
with the capabilities.

• If the exchange was successful, then it means the Policy Exchange was successful due
to this capability and the action associated with the capability will be performed by the
local network and the user will be allowed. Since the capability was published by the local
network, it will have the resources required to perform the action associated with the
capability.

• If the exchange was a failure, the remote picks the next capability in the list and starts
again.

• This continues until an exchange is successful or the remote runs out of capabilities. In
that latter case, the policy exchange protocol was unable to successfully negotiate policy
across local and remote networks, and so the user will not be allowed in the local network.

Figure 11 shows the above interactions as a flow diagram.

6.1 CAPABILITIES

A network can have any combination of the following capabilities

• Can Instantiate a Policy - Given a policy, is the network willing to instantiate this policy.
This capability just tells if the network is willing to instantiate or not, it does not guarantee
that it will be capable of realizing the policy. Refer Figure 12a for interactions.

• Add user to FERPA Compliant Policy - The network has a policy which is FERPA complaint
and can add the user to that policy group. Refer Figure 12b for interactions.

• Tunnel the traffic - Given a destination, is the network capable of tunneling all the users
traffic(to whom the authentication is being performed) to the given destination. Refer
Figure 12c for interactions.

• Can Negotiate a Policy Capability - Given a policy, this capability aims at finding a policy in
the local network which differs from the user’s policy in the remote network by a threshold
which is acceptable by the remote network. Figure 12d shows the messages involved with
this capability and the section 6.2 describes this capability in detail.

This capability list is not a fixed one. A group of participants could come with a policy, which
all of them are comfortable with and this policy could be added to the capability list and when
there is a policy exchange between this small group, they can decide on this capability.

12

(a) Can Instantiate a Policy Capability (b) Add user to FERPA Compliant Policy Capability

(c) Tunnel the traffic Capability (d) Can Negotiate a Policy Capability

Figure 12: Types of Capabilities

13

6.2 POLICY NEGOTIATION PROCESS (POLICY DIFF CAPABILITY)

This capability aims at finding a policy in the local network which differs from the user’s policy in
the remote network by a threshold which is acceptable by the remote network. The interactions
in this process are as follows:

• Along with the ’Can Negotiate a Policy Capability’ header, the remote network sends the
policy associated with the user(PolUA).

• The local network extracts the PolUA from the message and performs a difference with
its local policies. The way to perform the difference is decided based on the type of the
content filter policy. Each policy has an approriate differentiator module associated with it
and this module performs the difference calculation.

• Once the difference is calculated, the difference is send to the remote network to be
evaluated.

• The remote network then evaluates the difference using the appropriate evaluator module.
Since each policy can be of different format, the difference can be of different formats. So
the appropriate difference evaluator is fetched and evaluates the difference and says which
of the given difference is acceptable by the remote network. Section 6.2.1 discusses this
evaluation process in detail.

• The remote network then sends the policy which was picked by the difference evaluator(PolU∗∗
A)

to the local network.

• The local network, then checks if the user can be added to policy PolU∗∗
A . If so, it returns

success to the remote network, else returns a failure.

• Based on the result, the remote will either authenticate the user or proceed with the next
capability.

6.2.1 DIFFERENCE EVALUATION

Consider the policy in Figure 13a. In this case, the differentiator will say, that the Policies B
and C differ from A by one deletion. A naive evaluator can say, since they both differ by one
deletion, they are both are equidistant from the Policy A in similarity measure. But this is without
considering the value of the deleted entry. In Policy B’s case, a rule which blocks porn sites is
removed. Whereas in Policy C, a rule which blocks the gaming sites is removed. The remote
school could be fine with its user accessing gaming sites but it need not tolerate allowing porn
access to its users. Similarly consider the case Figure 13b, where Policies B and C differ from
A by one addition. Eventhough they both differ by one addition, the remote school can prefer
Policy B since it only allows gaming sites and not Policy C which allows media sites. So in both
the cases, if there was an administrator looking at the policies, they would rate Policy B closer
to Policy A instead of Policy C in both the cases. We want to achieve the same in our system
but without the help of an administrator at runtime. Hence we have introduced a component

14

School A - Policy A

● BlockList
○ URL = .*porn.*
○ URL = .*games.*
○ URL = .*media.*

School B - Policy B

● BlockList
○ URL = .*games.*
○ URL = .*media.*

School B - Policy C

● BlockList
○ URL = .*porn.*
○ URL = .*media.*

(a) Policies with an entry, missing

School A - Policy A

● AllowList
○ URL = .*.edu
○ URL = .*.gov

School B - Policy B

● AllowList
○ URL = .*.edu
○ URL = .*.gov
○ URL = .*games.*

School B - Policy C

● AllowList
○ URL = .*.edu
○ URL = .*.gov
○ URL = .*media.*

(b) Policies with an entry, added

Figure 13: Sample Policies

called Acceptance Policy, which the administrator can use to configure the network’s preference
on how the difference should be evaluated. This is a one time configuration activity and once
the Acceptance Policy is created, then the Policy Evaluator will use this Acceptance Policy while
evaluating the differences and find which Policy is acceptable by the network.

6.2.2 ACCEPTANCE POLICY

Figure 14b shows the syntax of the Acceptance Policy. <Config File> field specifies what type of
config it is, like AllowList, BlockList, Categories, Keywords and so on. The Operations can be
Addition/Deletion. Each entry under an operation, consists of 4 values. Field contains the value,
which refers to the field in the difference, this rule should be matched on. In our example its
the URL field in the difference. The value field contains the regexp which should be applied on
the value of the matched field. If the regexp matches the value, then this rule is a hit and the
appropriate penalty value should be added to the total penalty in the policy evaluation process.
The priority determines what is the priority of this acceptance rule. The lower the priority value,
the higher its priority. This helps us to solve conflict when two acceptance policy rules matches a
difference. If two rules with the same priority matches a difference, the rule with higher penalty
takes the preference. Now lets apply the sample acceptance policy shown in Figure 14a over the
policies in 13a. The Difference Evaluator will say Policy B differs Policy A by a penalty of 1000
whereas Policy C differs Policy A by a penalty of 10. Thus with the help of Acceptance Policy,

15

➢ BlockList
○ Operation - Delete

■ Field - URL, Value - .*porn.*, penalty - 1000, priority - 1
■ Field - URL, Value - .*games.*, penalty - 10, priority - 1
■ Field - URL, Value - .*media.*, penalty - 10, priority - 1

○ Operation - Add
■ Field - URL, Value - .*, penalty - 1, priority - 1

➢ AllowList
○ Operation - Add

■ Field - URL, Value - .*porn.*, penalty - 1000, priority - 1
■ Field - URL, Value - .*games.*, penalty - 10, priority - 1
■ Field - URL, Value - .*media.*, penalty - 10, priority - 1

○ Operation - Delete
■ Field - URL, Value - .*, penalty - 1, priority - 1

(a) Sample Acceptance Policy

➢ <Config File1>
○ <Operation1>

■ Field - <Xpath>, Value - <regexp>, penalty - <value>, priority - <value>
■ …...
■ ……

○ <Operation2>
■ ……
■ ……

○ …...
➢ <Config File2>

○ ……
■ ……
■ ……

○ ……
■ ……
■ ……

➢ …...

(b) Acceptance Policy Syntax

Figure 14: Acceptance Policy

16

Difference Evaluator can evaluate the differences in a way personalized to the network.

7 POLICY COMPONENTS

RADIUS

Policy Server

Policy
Authenticator

Policy Client
(As Home)

Policy Client
(As Remote)

ContentF
ilter

Policies

Content Filtering
Device

Content Filter
Policy Fetcher

F.P Difference
Calculator

F.P Difference
Evaluator

School
Acceptance

Policy

Connection
Request from
Policy Client(As
Remote)

Check
Policy

Connection
Request to
Policy Server

Find the “diff”
between the configs

Calculate the
acceptance value of

the “diffs”

Ever Running Process

API / Modules

Dynamic Threads

Static File

Generated file

Uses/Invokes

Generates

Over Network Sockets

Includes/Import

Config
Change
Update

Dump
Content Filter
Policies

Initiate
Policy

Exchange

Initiate
Policy

Exchange

Figure 15: Policy Components and their Interactions

Figure 15 shows the all the components of the Policy Exchange Framework. The components
are explained in detail in the sections below.

7.1 CONTENT FILTER POLICY FETCHER

It is a process which monitors the content filtering device. Whenever the configs in the device are
modified, it fetches the updated configs and updates the cache (Content Filter Policies). Instead
of making this a process and continuously monitoring the device, the device can be configured
to trigger this process whenever there is an update on the device’s config.

17

7.2 CONTENT FILTER POLICIES

This is the cache of filter configs configured in the content filter device.

7.3 POLICY DIFFERENCE CALCULATOR

Given two Content Filter Policies, this module calculates the difference (diff) between the two
policies. Since there can be different types of content filtering device, their policies will have
varying format and hence this module will also differ based on the type of policy.

7.4 ACCEPTANCE POLICY

This represents the network’s high level policy regarding content filtering. It has details regarding
which of the content filter configs are mandatory ones(no social media, no porn) and which are
not mandatory but preferred (no games, no sports). There is penalty values associated with each
of the preferred configs. Higher the value the more preferred it is. The mandatory configs will
have the highest penalty value possible in the system.

7.5 POLICY DIFFERENCE EVALUATOR

This module works on the policy diff provided by the appropriate Policy Difference Calculator.
It looks into the policy diff and evaluates the diff based on the acceptance policy. At the end of
the evaluation process, if this policy diff’s penalty value is greater than the acceptance threshold
of the network, it is not in accordance with the Acceptance Policy, else it is preferred by the
network but with a penalty score associated with this difference. At the end of all the difference
evaluation, returns the policy with the lowest penalty score as the negotiated policy.

7.6 POLICY AUTHENTICATOR

This is the module which will be hooked to the Radius’ User Authentication flow. So whenever
an authentication request from the user is posted to the Radius server, this module will be
triggered. If the authentication request was from the local network, then the module will return
immediately with a success message. If the authentication request was from a remote network, it
will fetch the Policy Server Ip of the source network from the Proxy State Attribute in the request
message, and spawns the Policy Client process in Remote mode. When the Policy Client returns,
based on its return value, will either reply success or failure. If this module’s reply is a failure,
Radius will fail the user’s authentication request.

7.7 POLICY CLIENT(AS REMOTE)

This process is spawn by the Policy Authenticator, whenever it receives authentication from
a remote network for a local user. The process is instantiated with the user details and the Ip

18

Address of the local network’s Policy Server. It initiates the policy exchange protocol with the
local network’s policy server

7.8 POLICY SERVER

A server listening on a particular port, waiting for connections from Policy Client(Remote Mode).
When a connection request is received, accepts the connection, spawns a Policy Client in Local
Mode and passes the connection handle. It then goes back to listen for connections while the
Policy Clients communicate within themselves.

7.9 POLICY CLIENT(AS LOCAL)

This process is spawn by the Policy Server upon request from a Remote Policy Client. Once
spawn, it parses the message queue to see if the policy exchange protocol was initiated by the
remote policy client. If so, it starts to perform the policy exchange protocol with the remote
policy client.

8 IMPLEMENTATION

Current implementation supports only one vendor iboss. Iboss stores all its configurations files
in the form of json. And hence the Policy Differentiator and Policy Evaluator modules are tailored
to work on json objects. Have implemented the system in python and the code is available in
https://gitlab.flux.utah.edu/guru/content-filter. Please utilize README and the comments in
the code base to navigate the code.

8.1 CHANGES IN RADIUS

1. Add ’Policy Server Ip’ in the proxy state attribute. Since we want to add ’Policy Server
Ip’ only for proxied requests, we will use the pre-proxy section. Enable the files option
under pre-proxy section in both the default and inner-tunnel config file. Then in ’mods-
config/files/pre-proxy’ file, add the below config

DEFAULT [Realm == 'test.com']

Proxy-State += '%{Policy-Server-Ip}'

The ’+=’ will add a new proxy-state attribute in the request with the ’Policy Server Ip’. If the
’Realm’ value is set to some domain name, then the proxy state is set only when requests are
proxied to that particular server. This will be helpful, if we want to maintain different policy
server for different realms, else this field can be ignored and the ’proxy-state’ attribute will
be set for all the proxied requests. If the proxy-state is being currently used for different
purpose, we will have to add a delimiter(id) in the values and based on the delimiter the
processing of proxy-state should be determined.

19

2. To enable the python module in the radius authentication process, follow the steps present
in https://wiki.freeradius.org/modules/Rlm_python. Then instead of the default
example.py, use the example.py from the git.

3. To add the python module in the authentication process, in the authorize section present
in sites-enabled/default, add a line ’python’ at the end. If there is already a python module
present in the middle of the authorize section, comment that line. We should have the
python module at the end because, we want the policy negotiation to start only if the user
is successfully authenticated.

9 EVALUATION

If the system should be deployed, it should be able to negotiate the policies before the authenti-
cation times out. Default Radius Authentication timeout is 30 seconds(can be extended upto
300 seconds) and hence our negotiation process should complete within 30-300 seconds. In
our system, only the evaluation of differences is a significant operation since it depends on
two variables - difference size and acceptance policy size. The policy difference size is directly
dependent on the Variable Sized Configs like allowList and blockList. Hence for this evaluation,
we calculated the time taken by policy evaluator for varying difference size and acceptance policy
size. We got actual content filtering policies used by a school which had around 60 allowList,
blockList combined. Using these entries and fortune 500 company urls, we created 2800 policies
whose allowList,blockList size varied from 1 to 560. So the difference between the policies can
vary between 0 to 560 entries. Then we came up with 4 acceptance policies with rule sizes 2, 4,
8 and 16. We then ran the difference evaluation across all the polcies for different acceptance
policies. The result of the experiment is shown in figure 16. From the figure, we can find that
as the policy difference size increases, the increase in time taken is linear. Similarly for a given
difference, increase in the acceptance policies leads to linear increase in the time taken. Its
only when both the difference and acceptance policy size increases the time taken increases
exponentially. In our experiment the maximum time was taken for 506-560 differences with 16
acceptance rules is around 0.45 seconds which is well below 30 seconds. And hence deployment
of our system is feasible.

10 CONTRIBUTION

• Adding a capability based policy exchange process during the authentication phase.

• Instead of assuming policies can be instantiated in the local network, a policy negotiation
process which finds policy similar to user’s policy in the local network.

• An implementation and evaluation which shows that our system is feasible and can be
deployed in real time networks.

20

https://wiki.freeradius.org/modules/Rlm_python

2-56 58-112 114-168 170-224 226-280 282-336 338-392 394-448 450-504 506-560
No. of differences between Policies

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
T

ak
en

 t
o
 e

v
al

u
at

e
th

e
d
if
fe

re
n
ce

(i
n
 S

ec
on

d
s)

Acceptance Rule Count - 2

Acceptance Rule Count - 4

Acceptance Rule Count - 8

Acceptance Rule Count - 16

Figure 16: Evaluation Results

11 FUTURE WORK

Should add support for multiple vendors. This can be done in two ways

• Add a driver layer for each vendor which can understand other vendors and convert the
policies.

• Add a driver layer which will convert a vendor config to vendor agnostic format and vice
versa. This can lead to loosing granular configs during the conversion.

12 ACKNOWLEDGEMENT

I thank my advisor Jacobus Van Der Merwe for guiding me throughout the Master’s program,
without whom this project would not have been possible. I also thank Joseph R Breen III and
Pete Kruckenberg for their ideas, suggestions and feedback which helped me a lot towards this
project.

This project is based upon work supported by the National Science Foundation under award
#1642158

21

REFERENCES

[1] Aruba clearpass - an overview. http://www.arubanetworks.com/assets/so/SO_ClearPass.pdf,
2017.

[2] Packetfence - an overview. https://packetfence.org/about.html#/overview, 2017.

[3] BHATTI, R., BERTINO, E., AND GHAFOOR, A. X-federate: a policy engineering framework for federated
access management. IEEE Transactions on Software Engineering 32, 5 (2006), 330–346.

[4] EL KALAM, A. A., AND DESWARTE, Y. Multi-orbac: A new access control model for distributed,
heterogeneous and collaborative systems. In 8th IEEE International Symposium on Systems and
Information Security (2006), p. 1.

[5] RIGNEY, C., AND WILLENS, S. Remote Authentication Dial In User Service (RADIUS). RFC 2865, June
2000.

22

http://www.arubanetworks.com/assets/so/SO_ClearPass.pdf
https://packetfence.org/about.html#/overview

	Problem Statement
	Naive Solution
	Related Work
	Our Solution
	Background
	Content Filter Policies
	Federated Authentication
	Radius Interaction
	Radius with Policy Exchange

	Policy Exchange Protocol
	Capabilities
	Policy Negotiation Process (Policy Diff Capability)
	Difference Evaluation
	Acceptance Policy

	Policy Components
	Content Filter Policy Fetcher
	Content Filter Policies
	Policy Difference Calculator
	Acceptance Policy
	Policy Difference Evaluator
	Policy Authenticator
	Policy Client(As Remote)
	Policy Server
	Policy Client(As Local)

	Implementation
	Changes in Radius

	Evaluation
	Contribution
	Future Work
	Acknowledgement

