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Abstract. Wingman is a run-time monitoring system that aims to detect and
mitigate anomalies, including malware infections, within virtual appliances (VAs).
It observes the kernel state of a VA and uses an expert system to determine when
that state is anomalous. Wingman does not simply restart a compromised VA;
instead, it attempts to repair the VA, thereby minimizing potential downtime and
state loss. This paper describes Wingman and summarizes experiments in which it
detected and mitigated three types of malware within a web-server VA. For each
attack, Wingman was able to defend the VA by bringing it to an acceptable state.

1 Introduction

A virtual appliance [15], or VA, is a virtual machine that is deployed to run a specific
application or service. For example, a company might use a VA containing a “LAMP
stack”—Linux, Apache, MySQL, and PHP—to serve its web site. VAs are commonly
assembled from large software components, and even if this software is high quality,
bugs and security issues are inevitable. Research suggests that there are 6–16 bugs per
thousand lines of code [12,13], leaving VAs vulnerable to run-time failures and attacks.

The simplest way to recover a compromised VA is to completely reinitialize it.
This incurs downtime and loss of state, and in many situations, these costs may not be
acceptable to users of the VA—especially since, until the attack vector is closed, the
VA may need to be restarted continually. This paper explores an alternative recovery
strategy: online repair. The goal of online repair is to automatically bring a running but
compromised appliance to an acceptable state, one in which the VA can perform its
primary task while also satisfying administrator-specified integrity properties.

Wingman is our prototype tool that performs online VA repair. It uses virtual-machine
introspection (VMI) [6] to collect snapshots of a VA’s kernel, and it uses an expert sys-
tem [14] to determine when a snapshot represents an anomaly. Wingman’s data-collection
and expert-system components run outside the monitored VA, but to carry out repairs,
Wingman invokes a kernel module within the VA. This design eases the implementation
of complex repair actions. Wingman’s data-collection, anomaly-detection, and repair
components are reusable across many different VAs. To target Wingman to a new VA,
an administrator only needs to encode a set of facts about the VA’s application.

This paper describes Wingman’s design and implementation, and it summarizes
experiments in which we used Wingman to successfully defend a web-server VA from
three types of malware. Additional information about Wingman and its evaluation can
be found in Nayak’s thesis [11]. The Wingman tool is open-source software [7].

http://dx.doi.org/10.1007/978-3-319-67531-2_25
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Fig. 1. Wingman’s architecture. Logical components are shown as gray rounded rectangles; soft-
ware components are shown as white rectangles. Adapted from Nayak [11].

2 Design and Implementation

Figure 1 illustrates Wingman’s architecture. Its logical components are (1) state gathering,
(2) anomaly detection, and (3) recovery (repair). The state-gathering and anomaly-
detection components run in a control VM and are thus isolated from the VA being
protected. The recovery component is spread across the control VM and the VA.

The discrete software components of the architecture are shown as white rectangles
in Fig. 1. Wingman begins by taking a snapshot of the VA: the snapshot engine gathers
point-in-time state snapshots of the VA’s applications, and it encodes these snapshots
as “facts” in the knowledge store. Next, the policy engine uses those facts and inference
rules in the knowledge store to detect anomalies. The repair engine uses information
in the knowledge store to reason about an appropriate repair strategy and informs the
repair driver. Finally, the repair driver invokes one or more repair tools to carry out the
chosen repair. Wingman runs periodically, sampling the state of the VA and detecting
and repairing anomalies, and thus works to keep the appliance in an acceptable state.

Wingman is built atop Xen and Linux. The snapshot engine, knowledge store, policy
engine, and repair engine execute within the protected Xen dom0 (control VM). The
VA’s applications, along with the repair driver and tools, execute in a Xen domU running
Linux. The snapshot engine gathers state from the VA using the Stackdb [6] VMI
libraries. The policy engine is an expert system built using the open-source CLIPS [14]
framework. The recovery subsystem is implemented as a combination of a CLIPS-based
expert system running in dom0 and Linux kernel modules in domU. The communication
channel between the repair engine and the kernel-based repair driver is built with Stackdb.

2.1 State Gathering

The snapshot engine is a VMI application that collects the current state of the VA into
a “snapshot.” It executes periodically in the user space of the control VM, and is thus
isolated from possible malware or other problems inside the VA. The engine uses VMI
libraries to extract values from the VA’s kernel data structures.
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(task-struct
(comm "mysqld") (pid 663) (tgid 663) ; process name, ID, thread group ID
(used_superpriv 1) ; has superuser privileges?
(uid 108) (euid 108) (suid 108) ; real, effective, and saved user IDs
(gid 120) (egid 120) (sgid 120) ; real, effective, and saved group IDs
(fsuid 108) (fsgid 120) ; UID, GID for filesystem access
(parent_pid 1) (parent_name "init")) ; parent process ID, name

Listing 1. Example Base Fact for a mysqld Process. Adapted from Nayak [11].
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Fig. 2. Anomaly detection and recovery components. Adapted from Nayak [11].

Base facts. A snapshot contains data about each process executing in the VA: its
credentials, environment variables, scheduling priority, CPU utilization, open files and
network sockets, and loaded object files. A snapshot also contains system-wide informa-
tion, such as CPU load, system-call entry vectors, and loaded kernel modules. All this
data is encoded as a collection of records, called base facts. Listing 1 shows some of the
key fields for an example base fact: a task-struct fact representing a mysqld process.

2.2 Anomaly Detection

The policy engine and knowledge store run in the control VM. Together, they drive the
detection of problems in the VA. The policy engine is an expert system that reasons
over collections of facts about the VA—facts that represent the current state of the VA
as well as those describing its expected state. As illustrated on the left-hand side of
Fig. 2, the policy engine takes as input (1) the base facts captured by the snapshot engine,
(2) application-specific facts representing the expected state of the VA, and (3) rules that
classify observations as expected or anomalous. From these things, the policy engine
generates a set of anomaly facts that represent any unexpected state in the VA.

Application-specific facts. The knowledge store contains Wingman’s application-
specific knowledge about the VA, provided by the VA’s creator or administrator. The
application-specific facts represent the expected state of the VA in terms of kernel-visible
abstractions such as processes, files, users, sockets, loaded object files (i.e., shared
libraries), and kernel modules. Listing 2 shows an example set of facts that capture an
administrator’s knowledge that an Apache process with the given credentials, possible
parent processes, and loaded object files should be executing in the VA.

To protect a particular VA, the administrator or creator of the VA only needs to
specify an appropriate set of application-specific facts. He or she can reuse facts created
for similar VAs or create an entirely new set of facts. Due to its kernel-centric design, all
of the other parts of Wingman are application-independent and are reusable for all VAs.
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;; Declare the allowable processes in the VA.
(known-processes ... "apache2" ...)
;; Declare that Apache *must* be running in the VA.
(mandatory-process (name "apache2") (command /etc/init.d/apache2 start ...))
;; Declare the expected credentials of the Apache process.
(known-process-cred (name "apache2") (parent_name "init" "apache2")
(uid 33) (euid 33) (suid 33) (fsuid 33) (gid 33) (egid 33) (sgid 33) (fsgid 33))

;; Declare the shared objects of the Apache process.
(known-objects (name "apache2")
(object-list "apache2" "libnss_files-2.15.so" "libnss_nis-2.15.so"
"mod_uni_mem.so" "mod_rewrite.so" "mod_alias.so" ...))

Listing 2. Example Application Facts for an apache2 Process

(defrule identify-unknown-process
(task-struct (comm ?name) (pid ?pid) (parent_pid ?ppid))
(known-processes $?proclist)
(test (not (member $?name $?proclist)))
=> (assert (unknown-process (name ?name) (pid ?pid) (ppid ?ppid)))

(printout t "ANOMALY: Unknown process " ?name " found" crlf))

Listing 3. Example Rule for Identifying Unknown Processes. Adapted from Nayak [11].

Rules. Inference rules use the application-specific and base facts to validate the state
of the VA; they capture an administrator’s domain expertise and automate anomaly de-
tection. Listing 3 presents a rule that identifies all unknown processes running in the VA.
The clauses above “=>” are the premise, and those following it are the conclusion: if the
premise is true, the conclusion is executed. The example rule matches all task-struct
base facts against the known-processes application-specific fact to detect unknown
processes. The technique of comparing the VA’s dynamic kernel state (base facts) to the
properties of acceptable states (application-specific facts) allows Wingman to identify a
large and general class of anomalies, including multiple types of malware.

Anomaly facts. Rules produce new facts about observed anomalies. In Listing 3, if
any process identified by a task-struct is not also present in known-processes, the
rule creates (“asserts”) an unknown-process anomaly fact to record the problem.

2.3 Recovery

Once an anomaly has been identified by the policy engine, Wingman’s recovery compo-
nents reason about an appropriate recovery strategy and attempt to restore the VA to an
acceptable state. The recovery workflow is shown on the right-hand side of Fig. 2. The
repair engine is an expert system that executes in the control VM along with the snapshot
engine, policy engine, and knowledge store. It takes as input the anomaly facts generated
by the policy engine, passes them through a set of recovery rules, and generates a set of
recovery facts that are used to select appropriate repair tools.

Recovery rules. Recovery rules generate recovery facts from anomaly facts, and
thus suggest repairs for anomalies, but the mappings are not simply one-to-one. The
recovery rules operate over additional repair state (facts) kept by the repair engine, such
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(defrule kill-unknown-process
?f <- (unknown-process (name ?name) (pid ?pid))
(not (exists (unkn-proc-prev-action (prev_action ps_kill | ps_kill_parent)

(name ?name) (pid ?pid))))
=> (assert (recovery-action (func-name kill_process) (arg_list ?name ?pid)))
(assert (unkn-proc-prev-action (name ?name) (pid ?pid) (prev_action ps_kill)))
(retract ?f) (printout t "RECOVERY: Killing the unknown process" ?pid crlf))

(defrule kill-unknown-process_1
?f <- (unknown-process (name ?name) (pid ?pid))
?of <- (unkn-proc-prev-action (prev_action ps_kill) (name ?name))
=> (assert (recovery-action (func-name kill_parent_proc) (arglist ?pid ?name)))
(retract ?f) (retract ?of)
(assert (unkn-proc-prev-action (name ?name) (prev_action ps_kill_parent)))
(printout t "RECOVERY: Killing the process its parent" crlf))

Listing 4. Example “Kill Unknown Process” Recovery Rules. Adapted from Nayak [11].

as the history of previous occurrences of the anomaly and recovery actions already taken.
This allows the repair engine to better reason about future repair actions.

Listing 4 shows two possible recovery rules that handle unknown processes; they map
unknown-process facts to appropriate recovery actions. The kill-unknown-process
rule kills newly discovered unknown processes. The premise matches unknown pro-
cesses for which no recovery action has already been attempted. The conclusion defines
the recovery action: asserting a recovery fact that identifies the repair tool to be used
(kill_process), asserting a repair-state fact recording that this rule has been tried, and
retracting the fact that the process is unknown, since Wingman is about to kill it. It will
be rediscovered in the next state-gathering iteration if the kill_process tool fails. The
kill-unknown-process_1 rule handles unknown processes that still exist in the VA
after Wingman has tried killing them with kill-unknown-process. In this case, the
recovery action is to kill both the process and its parent.

Repair tools. Recovery facts identify individual repair tools, which are then invoked
via the repair driver. The repair driver and tools run inside the VA to simplify tool
development and make complex repairs feasible. For example, it is straightforward for a
tool within the VA’s kernel to start a new process or retrieve swapped-out pages, using
the kernel’s own code. It is practically impossible for an agent entirely outside the VA to
perform these tasks through VMI alone. Because the repair engine runs in a different
VM than the repair driver and tools (Fig. 1), tool-invocation commands are sent from the
repair engine to the driver through an inter-VM communication channel. The result is
communicated back to the repair engine through the same channel.

Wingman’s most basic tools act on processes and their attributes. The psaction tool
terminates a process by traversing the kernel’s process list to locate it, and then calling
the Linux force_sig function to deliver a SIGKILL. The ps_deescalate tool resets
a process’s credentials to specified values by modifying the process’s cred structure.
The kill_socket tool shuts down the open sockets of a process, and the close_file
tool closes its opened files. The start_process tool starts a user-space process.

Other tools perform more sophisticated repairs. The system_map_reset tool pro-
vides two functions: one to fix corrupt system-call table entries and another to fix over-
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written system-call function prologues. The trusted_load and start_process tools
work together to start processes in a controlled-boot environment. The trusted_load
tool inputs the names of blacklisted objects that are not allowed to be loaded by a process
created by start_process. This environment allows only non-blacklisted objects to
load during process startup. The tool hooks the open and mmap system calls with versions
that return an error when the process tries to load a blacklisted object.

The sled_object tool deals with malicious objects already loaded into process
memory by overwriting them. It calls the Linux get_user_pages function to load the
pages containing the code segment of an object, and overwrites all non-return instructions
with no-ops. Thus, every function in the malicious object is “nullified”: calling them
does nothing but return. This repair only works on functions with a hook-like API: i.e.,
that have a void return type and are not required to perform any action.

3 Evaluation

We deployed Wingman to monitor a web-server virtual appliance. We evaluated its
effectiveness against three different types of malicious software, including a kernel
rootkit, a user-space rootkit, and an application malware.

Experiment context. We ran a web-server VA on a server (64-bit 2.40 GHz quad-
core Xeon E5530 CPU, 12 GB RAM) running Xen 4.1.2. Both the control VM and VA
ran Ubuntu 12.04 with a Linux 3.8.0 kernel; the VA also ran the Apache 2.2 web server.

The policy in the knowledge store described the VA’s acceptable states via 103 CLIPS
facts (415 lines of code). It allowed the execution of Apache and PHP processes, MySQL,
NTP, and SSH daemons, and standard kernel processes (e.g., kworker).

Wingman’s snapshot engine pauses the VA to ensure atomic snapshots, and thus
affects VA availability. The average time to capture a complete snapshot is 140.3 ms;
during that time, no work is performed by the VA. Wingman does not otherwise affect
the VA’s availability, since the policy and repair engines run without pausing the VA.

Kernel rootkit. A kernel rootkit is a set of malicious programs that provide con-
tinuous, unauthorized root access. The Suterusu [2] rootkit provides features including
root-shell access; process, socket, and file hiding, and disabling module loading. Unlike
traditional rootkits, Suterusu does not modify the function pointers in the system-call
table; instead, it overwrites instructions in the prologues of the functions themselves.
This allows Suterusu to evade detection by most rootkit detectors.

Suterusu hides processes by hooking the proc_root_readdir function of the
/proc filesystem. (Most tools use /proc to list processes.) When run against the infected
VA, Wingman found a Suterusu-hidden rogue process because it scans the in-kernel
process list; it restored the VA to an acceptable state by killing the process. To detect
file-related malicious behaviors, our policy restricted process file access. For instance, if
a process violates the policy by opening /etc/shadow, Wingman identifies the access
and closes the corresponding file descriptor. Suterusu hooks the tcp4_seq_show and
udp4_seq_show functions (et al.) to hide TCP or UDP sockets. Since the VA’s policy
allows only specific processes to open sockets, Wingman detects and closes Suterusu-
hidden sockets. Because Suterusu hooks normal kernel functions, not system calls,
Wingman cannot fully deactivate it—but Wingman can suppress its malicious activity.
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User-space rootkit. Azazel [1] is a user-space rootkit that infects individual pro-
grams at execution time using LD_PRELOAD to ensure that its own malicious library
functions override standard library functions. This library (named libselinux.so)
provides functions to spawn root shells, hide processes, and deploy back doors.

When we applied Wingman to our infected web-server VA, it detected the malicious
library and recovered over a period of repair iterations. First, Wingman identified the
malicious shared object as an anomaly in sshd. To recover, the repair engine restarted
sshd. In the second iteration, Wingman again detected the malicious object in sshd’s
memory (because Azazel had overwritten the ld.so.preload file). This time, sshdwas
restarted in a controlled environment, but failed to run since it was not allowed to load
libselinux.so. Finally, since previous repair efforts failed, the repair engine chose to
nullify (“sled”) the object’s instructions. In subsequent iterations, if the unknown object
were detected in new sshd processes, its instructions would be nullified immediately. The
sshd process became unresponsive to connection requests after the object was “sledded.”
Its inability to respond is an undetected anomaly—the VA was in an acceptable state by
policy, but still had an anomaly. Because the back door was closed and the Apache web
server was unaffected, we argue that Wingman successfully recovered the VA.

Azazel can exploit the su command to spawn a root shell; if this occurs, Wingman
terminates the root shell. Wingman detects such privilege escalations by validating the
process lineage in the snapshot against the VA’s policy. Azazel also sets up an SSH
back door by preloading malicious objects during sshd startup. Wingman detects the
compromised sshd process and restarts it, resulting in the sshd session being terminated.

Application malware. Darkleech [9] is an Apache module that injects malicious
iframes into legitimate HTTP responses. The iframes redirect clients to malicious sites.
Darkleech is loaded at Apache startup via the LoadModule configuration file command.

To evaluate Wingman’s effectiveness against Darkleech, we created a network con-
sisting of three client hosts and our web-server VA. Each client ran a script that repeatedly
made HTTP requests and checked the responses for malicious iframes. As the clients
submitted requests, Wingman inspected the web-server VA every five seconds.

In the first iteration, Wingman detected an unknown shared object in the Apache pro-
cesses, and attempted to restart it. Because Darkleech modified the Apache configuration
to load its module at startup, the unknown module was loaded into the restarted process.
Thus, in the second iteration, Wingman again detected the unknown module in Apache.
Since the previous repair was ineffective, Wingman’s repair engine restarted Apache
in a controlled-boot environment. As the Apache threads were killed by the repair tool,
new threads were spawned by the main Apache process outside Wingman’s controlled
environment. Thus, in the final iteration, Wingman found the unknown object again.
This time, Wingman decided to “sled” the unknown object, replacing its instructions
with no-ops. Once this occurred, the responses no longer contained malicious iframes.

Summary. Table 1 summarizes our experiments. Although these malware samples
are only a handful of thousands, they are representative of common exploit techniques.
Wingman detected all anomalies introduced by these samples. Although it was unable to
clear the malicious object loaded by Azazel, it terminated its malicious actions. Wingman
successfully mitigated all the actions of the other malware samples. We conclude that
Wingman detected the anomalies in the VA and restored it to an acceptable state.
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Table 1. Malware samples mitigated by Wingman. Adapted from Nayak [11].

Experiment Mitigated Acceptable Outcome

Suterusu
Process hiding 3 3 Process detected and terminated
File access 3 3 Detected and stopped
Network access 3 3 Detected and stopped

Azazel
Unauthorized objects 3 ? Detected, mitigated, but not cleaned
su exploitation 3 3 Detected and privileges restored
SSH back door 3 3 Detected and terminated

Darkleech 3 3 Unknown object detected and nullified

4 Related Work

Several previous research projects, such as Livewire [4], have used VMI to create
intrusion-detection systems for virtual-machine guests. Livewire and Wingman both use
VMI for anomaly detection, but differ in that Wingman attempts to repair anomalies.
IntroVirt [8] uses VMI to detect past intrusions and prevent future exploits of known
vulnerabilities. IntroVirt and Wingman provide complementary styles of “stopgap” pro-
tection to VMs: however, IntroVirt does not try to repair existing damage.

Exterior [3] allows processes within a “secure VM” to observe and manipulate the
kernel state of a protected “guest VM.” Whereas Exterior enables cross-VM execution
for repair, Wingman uses a combination of VMI for detection and a kernel module for
guest VM repair, and places greater emphasis on automated detection and repair.

LKIM [10] combines measures of static data (e.g., code pages) with “contextual
inspection” to check the integrity of a kernel’s dynamic data. OSck [5] enforces control-
flow integrity through means such as write-protecting the kernel’s code pages and
analyzing the targets of dynamic control-flow transfers. Wingman is similar to these
systems in that they all inspect the dynamic data within a VM’s kernel and look for
integrity violations. Unlike both LKIM and OSck, Wingman attempts to repair violations.

Nayak’s thesis [11] presents a more detailed discussion of work related to Wingman.

5 Conclusion

Our Wingman prototype tool demonstrates that automatic, online anomaly detection and
repair can help to maintain an acceptable level of integrity within a virtual appliance
over time. This is useful when it is important to run a VA continuously, with minimal
downtime and state loss. Our evaluation showed that Wingman was able to detect and
mitigate three different types of malware within a web-server VA. Although Wingman did
not remove the malicious software in our experiments, it substantially and automatically
reduced the malware’s harmful effects, bringing the VA back to an acceptable state
without needing a human to initiate repair.
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