
ECHO: A reliable distributed cellular core network for

public clouds

Binh Nguyen?, Tian Zhang?, Bozidar Radunovic‡, Ryan Stutsman?

Thomas Karagiannis‡, Jakub Kocur†, Jacobus Van der Merwe?

?University of Utah ‡Microsoft Research †Core Network Dynamics

ABSTRACT
Economies of scale associated with public cloud platforms
offer flexibility and cost-effectiveness, resulting in various
services and businesses moving to the cloud. One area with
little progress is cellular core networks. A cellular core net-
work manages states of cellular clients; it is essentially a
large distributed state machine with very different virtualiza-
tion challenges compared to typical cloud services. In this
paper we present a novel cellular core network architecture,
called ECHO1, particularly suited to public cloud deploy-
ments, where the availability guarantees might be an order
of magnitude worse compared to existing (redundant) hard-
ware platforms. We present the design and implementation of
our approach and evaluate its functionality on a public cloud
platform.

1. INTRODUCTION
Recent years have seen a tremendous uptake of cloud com-

puting. More and more companies move their services to
the public cloud to take advantage of the economies of scale,
the resource elasticity and scalability that the cloud offers.
In stark contrast, the telco industry today faces major chal-
lenges in equipment upgrading, scaling, and introducing new
services [18]. Cellular core networks are largely still based
on custom-built hardware mandated by the strict reliability
requirements posed by running a mobile core network.

To alleviate these challenges, telcos and cellular operators
are attempting to virtualize their core networks through net-
work function virtualization (NFV) [7]. Typically, this is in
the form of a move to a private-cloud setting, where the telco
provider has full control of the infrastructure and can optimize
the whole stack for its particular services. Indeed, owning
the whole cloud stack can provide specialized additional for
fault tolerance and management – open source cloud soft-
ware stack OpenStack and its OpNFV layer provide such
services (e.g., see Vitrage [38] and Doctor [39]). However,
such a deployment model still cannot take full advantage of
the economies of scale a public deployment can offer. Telco
providers will have to manage and maintain the new private

1After “Echo, the Nymph of Steady Reply” from Greek mythology.

cloud deployments, while at the same time, super-optimized
cloud stacks for a particular core service might not be able to
scale to the size of a public cloud, and may be at odds with
the requirements of a new service to be introduced.

Instead, the question we address is whether it is feasible to
implement a cellular core network on top of a public cloud,
such as Amazon AWS or Microsoft Azure. To achieve this,
one has to address two main challenges. First, reliability -
a cellular core network today requires “five 9s” reliability
(i.e., availability of 99.999%) [16, 37]. Typical public cloud
availability SLAs are four 9s or less, which means an order
of magnitude more expected outages. Second, service ab-
stractions mismatch. Naturally, public clouds are optimized
for general workloads, offering basic network abstractions
such as a network node, a private network, or a load balancer.
Cellular core networks are complex, with multiple different
components implementing distributed state machines that
will need to be redesigned atop the cloud’s abstractions.

In this paper, we introduce ECHO, a distributed cellular
network architecture for the public cloud. We focus on the
evolved packet core (EPC) [1], which is a key component
of a cellular network without which a network cannot run.
EPC manages user devices (Section 2.1) and provides core
network control and data plane functionality for all cellular
radio technologies (2G, 3G and 4G/LTE). ECHO is specifi-
cally designed as a distributed EPC cloud-based architecture.
While operator networks consist of the EPC and middleboxes,
ECHO focuses on the core EPC which is fundamentally differ-
ent than other middle-boxes as it requires consistency across
multiple types of network components and end-user devices.
Although much effort has already been devoted to virtual-
izing conventional middleboxes [21, 46, 20, 44], these do
not address the main EPC design challenges in distributed
environments.

ECHO provides the same properties that EPC guarantees,
but it also remains correct and available under failures. To
make EPC safe against failures, ECHO must ensure the state
machine remains consistent in spite of potential component
and network failures. To do this, ECHO must ensure two prop-
erties: (i) a state change across multiple distributed functional
components and mobile devices must appear to be atomic –

1

the distributed state machine must be either in a “before” or
“after” state; and (ii) the distributed components must appear
to execute requests in the order that the requests are generated
by the user’s mobile device. In contrast, conventional mid-
dleboxes typically share state only across multiple instances
of the same functional component.

Implementing a generic distributed state machine is a chal-
lenging task. ECHO proposes a novel architecture that is
specifically taylored for EPC and thus much simpler. To
achieve atomicity across distributed components, ECHO lever-
ages the “necessary” reliability of access points - mobile
devices are only connected to the network as long as their
associated access points are operational. ECHO introduces a
thin software layer (entry point agent) on access points which
ensures the eventual completion of each request - the entry
point agent keeps sending a request over and over until all
of the distributed components in the core network agree on a
state before it moves to the next request. If a core component
instance crashes in a middle of an execution, another instance
can safely recover from another retry from the agent. ECHO
also guarantees in-order execution of requests generated by
the user’s mobile device.

Our contributions can be summarized as follows:
• We propose ECHO, a distributed EPC architecture for the
public cloud. ECHO uses conventional distributed systems
techniques like stateless redundant components, external state
storage, and load balancing for high availability and scala-
bility but with a focus on correctness. Its key contribution is
that it uses the unmodified EPC protocol while eliminating
correctness issues and edge cases that otherwise result from
unreliable and redundant components.

• The core of ECHO is an end-to-end distributed state machine
replication protocol for a software-based LTE/EPC network
running on an unreliable infrastructure. ECHO ensures atomic
and in order execution of side-effects across distributed com-
ponents using a necessarily reliable agent, an atomic and
in-order execution on cloud components. Cloud components
in ECHO are always non-blocking to ensure performance and
availability.

• We demonstrate the feasibility of the proposed architecture
by implementing it in full. We implement the entry-point
agent software and deploy it on a COTS LTE small cell [26].
Additionally, we implement the required EPC modifications
into OpenEPC [15] and deploy ECHO on Azure.

• We perform an extensive evaluation of the system using
real mobile phones as well as synthetic workloads. We show
that ECHO is able to cope with host and network failures,
including several data-center component failures, without
end-clients noticing it. ECHO shows performance compa-
rable to commercial cellular networks today. Compared to
a local deployment, ECHO’s added reliability introduces an
overhead of less than 10% to latency and throughput of con-
trol procedures when replicated within one data center.

To the best of our knowledge, ECHO is the first attempt to

run an EPC on a public cloud and the first attempt to replicate
the LTE/EPC state machines in an NFV environment. ECHO
is a step toward relieving telcos from the burden of managing
their own infrastructure. We hope it will help inspire the next
generation of 5G cellular networks, which will require greater
scale and decentralization than the current architecture.

2. BACKGROUND
This section presents a brief overview of today’s mobile

core architectures and makes the observation that, effectively,
the network core implements multiple distributed state ma-
chines, one per user.

2.1 Mobile Core Network Architecture
A cellular network consists of a wireless radio access net-

work and a wired mobile core network. The core network
consists of a control plane and a data plane.

Control Plane: The main component of the control plane
in LTE/EPC is the Mobility Management Entity (MME)
which is responsible for handling registration/authentication,
connection setup, device mobility, etc., for mobile clients
(also called User Equipment – UE). MMEs do not participate
in packet forwarding but only modify routing entries in the
gateways on the data plane.

Data Plane: The data plane consists of a Serving Gateway
(SGW) and a Packet Gateway (PGW). They are responsible
for routing and forwarding the data packets from the UEs to
and from an external IP network (e.g., the Internet). When it
receives a connection set up request from the control plane
(MME), a data plane gateway installs a state locally and in
some cases, triggers requests to other gateways, that in turn
create local state associated with the request.

UE context: The MME keeps track of a UE context for
each attached UE. The UE context consists of subscriber
information (authentication key, UE’s capability), the current
state (connected or idle), and the data connection information
the UE has on the data plane. The UE context on the MME
reflects the “real-world” states on the data plane gateways - it
contains a data connection profile (called a Evolved Packet
System bearer or EPS bearer) that consists of QoS profile,
end-point IDs that are set up on-demand.

Most of the UE context information is created and ex-
changed between the MME and the UE the first time the UE
attaches to the network. However, the UE context can change
after attachment depending on whether the UE is active or
not; when the UE is idle for a certain amount of time (e.g.,
half a minute), the eNodeB releases its radio resource and
triggers a resource release procedure on the gateways. If the
UE has data to send, it requests the MME to re-create the data
connection again via a Service Request procedure (Figure 1).
Note that in all cases, it is required that the UE context be
updated to match the actual states on the data plane.

2.2 Mobile core as a distributed state machine
The cellular control plane implements a distributed state

2

UE eNodeB MME SGW PGW

RRC setup
1.Service Request

2.Modify Bearer Req.

6.Modify Bearer Rsp.
7.Modify Bearer Rsp.

8.ERAB setup Req.
ERAB setup

9.ERAB setup Rsp.

X
4.Modify Bearer Req.

5.Modify Bearer Req.

3.Modify Bearer Req.

Figure 1: Service Request procedure in LTE/EPC. Once a control channel
has been established across the Radio Access Network (RAN) (i.e., RRC
setup), a request from the UE - Service Request - triggers the MME to make
changes to the UE context and sends a Modify Bearer Request (MBR) as a
side effect request to a Serving Gateway (SGW). This side effect message
requests to set up a data bearer for the UE on the SGW. When it receives
the MBR, the SGW sends another MBR to Packet Data Gateway (PGW) to
set up a tunnel endpoint for the UE on PGW. If this request fails, a timer
on the MME expires and as a result the MME retries (message #3,4). If the
retry goes through successfully, the PGW acknowledges the SGW which
acknowledges the MME. At this point, the MME knows that a data bearer
is created for the UE (messages #6,7). The MME then informs the eNodeB
with information of the data bearer (message #8.) The eNodeB then sets up
a E-UTRAN Radio Access Bearer (ERAB) with the UE acknowledges the
MME (message #9) when the ERAB is created.

Component 1Request

Reply

Request

Reply}
Side effect (stateful change)

Request

ReplyLocal
State/Timers

Component 2
Local

State/Timers

Component 3
Local

State/Timers}
Side effect (stateful change)

Client/
Mobile
Device

Figure 2: Distributed state in core mobile network. Components 1, 2 and 3
map to the MME, the SGW and the PGW in Figure 1.

machine for each UE, as illustrated on the Service Request
example in Figure 1. The state machine is distributed across
multiple components and a transition may involve communi-
cations and state changes across multiple other components.
The control plane runs many such state machines in parallel,
one for each UE. A generalized depiction of this distributed
state machine, which is common across all mobile core oper-
ations and components, is depicted in Figure 2.

Specifically, the distributed state machine deals with the
following events and messages:

Request from UE: Most of the changes in the state ma-
chine are triggered by a client or mobile device. For example,
when an idle UE has data to send, it sends a Service Request
(message #1 in Figure 1)) to the MME.

Side effect request: Upon receiving a request from a UE,
the MME may alter the states at other components. In the Ser-
vice Request example above, the MME must set up a bearer
in the data plane. The MME sends a bearer setup request to
the SGW (message #2), which sends a bearer setup request
to the PGW (message #3). We call these two messages side
effect requests. They are generated by components in the cel-
lular core; they are indirectly triggered by the main request
that originated in the UE.

Timers: A state transition can also be triggered by a time-
out. For example, if a SGW does not respond to the bearer

setup request, the MME will trigger a retry when its timer
expires (message #4). This retry generates another side effect
request to the system. A timer can be set and triggered by
any component, if so required by the protocol.

Control messages: Components in the system commu-
nicate through various control messages, such as messages
that trigger requests, ACKs, NACKs and other state update
messages (message #1 – #9 in Figure 1).

3. RELIABILITY IN A CLOUD-BASED EPC
Through examples, we highlight the strict reliability re-

quirements of the cellular core network. We then present the
state of the art of reliability in the current mobile core net-
work using hardware. We contrast today’s cloud availability
with hardware reliability by a 3-month long study.

3.1 Mobile network reliability requirements
We conducted experiments with a real mobile device (Nexus

5), an LTE eNodeB (IP.Access smallcell) and the OpenEPC
core network to demonstrate the core network’s sensitivity to
failures and its reliability needs. The results motivate ECHO’s
key design requirements (§4).
High availability: An MME outage would immediately
cause a service outage on many UEs. Moreover, a service
outage on an MME would also be interpreted as a congested
mobile network, so UEs are required to back-off from the
network. We demonstrate this with an example scenario in
which, after 5 unsuccessful Attach attempts lasting 1 minute
in total, the UE entered silent state for 12 minutes before
it retries to attach again. Hence, a short MME outages can
result in disproportionate experienced outages in UEs. To
illustrate this behavior, we triggered the UE to attach to the
LTE network and left a bug in the MME so that the UE failed
to attach. Figure 3a shows the MME’s log with timestamps
illustrating this experiment. This suggests the network must
be highly available.
Persistent state: The UE context exchanged during the
attach procedure is kept in the MME. If this context is lost,
the MME cannot process UE requests, leading to a service
outage for the UE. We show experimentally that when the
MME loses the UE context, the UE loses connectivity for 54
mins!

Figure 3b shows the MME’s log with timestamps when the
MME loses context for an attached UE. The UE attached to
the network (17:05:26), and after a period of inactivity, the
UE released a portion of the connection (at 17:06:14, note
that the UE context should be kept by the MME). After this
the MME crashed and the UE context was lost. The UE then
requested service (i.e., it had data to send) but did not get
any service (from 17:10:01 to 17:54:03). Approximately 54
mins after the Attach, the UE performed a periodic Tracking
Area Update (TAU) procedure (18:00:15). This TAU also
failed because the MME does not have any context of the
UE. The TAU timed-out after 15 seconds. The result of this
unsuccessful TAU is that the UE is moved to the EMM dereg-

3

13:09:47mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
13:09:58mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
13:10:10mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
13:10:21mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
13:10:33mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
{UE4slept4for4124mins.}
13:22:34mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>
13:22:45mme_selection_pgw():331>4Looking4for4[test.apn.epc]4<failed>

(a)

17:05:26mme_sm():1725>-[1:NAS__Attach_complete]------
17:06:14mme_sm():1746>-[59:S1__UE_CONTEXT_RELEASE_COMPLETE]------
{MME-crashed,-UE’s-state-on-MME-was-lost.}
17:10:01mme_sm():1925>-[09:EMM__SERVICE_REQUEST]----------<failed>------
...------
17:54:03mme_sm():1925>-[09:EMM__SERVICE_REQUEST]----------<failed>
{Periodical-Tracking-Area-Update-timer-(T3412)
triggered-after-54-mins-from-the-last-Attach-Request.}------
18:00:15mme_sm():1725>-[16:NAS__Tracking_area_update_req]
{Tracking-Area-Update-request-timed\out.}
18:00:30mme_sm():1725>-[2:NAS__Attach_request]------
18:00:31mme_sm():1725>-[1:NAS__Attach_complete]-------
18:02:05mme_sm():1925>-[09:EMM__SERVICE_REQUEST]-----------<OK>

(b)

11:01:57mme_sm():1725>-[2:NAS__Attach_request]------
11:01:58mme_sm():1725>-[1:NAS__Attach_complete]------
{UE-attached.}------
11:03:45mme_sm():1725>-[6:NAS__Detach_request]------------------------------<delayed-60s>--
11:03:45mme_sm():1746>-[60:S1__UE_CONTEXT_RELEASE_REQUEST]<delayed-60s>------
{Detach-Request-is-delayed-for-60s-by-MME-thread-1.}----
11:03:58mme_sm():1725>-[2:NAS__Attach_request]------
11:03:59mme_sm():1725>-[1:NAS__Attach_complete]------
{Attach-Request-was-processed-successfully-by-MME-thread-2.}
11:04:45mme_sm():1739>-[46:GTPC__DELETE_SESSION]<old-Detach-Req.-processed>------
11:04:45mme_sm():1725>-[6:NAS__Detach_accept]------
11:04:45mme_sm():1746>-[59:S1__UE_CONTEXT_RELEASE_COMPLETE]---------
11:06:05mme_sm():1925>-[09:EMM__SERVICE_REQUEST]---------------------<failed>------
{54[minute-outage-on-the-UE.}

(c)
Figure 3: Examples of real-world outages caused by reliability issues: (a) 5 consecutive Attach failures caused UE to sleep for 12 mins; (b) UE did not have
service for 54 minutes because MME crashed and UE context was lost; (c) Violation of FIFO order execution caused state inconsistency and 54 minutes outage.

istered state and as defined in the protocol [2] it performed
a new Attach Request (18:00:30). This Attach Request was
performed successfully and the UE exchanged its context
with the MME. After having the UE context, the MME was
able to serve the UE as normal (18:02:05). This suggests
that the EPC network must persist UE’s state to guarantee
continuous operation.
In-order message delivery and execution: To maintain
state consistency, requests from the same UE should be ex-
ecuted in First-In-First-Out (FIFO) order on the MME. We
demonstrate this with an experiment which shows an exam-
ple where the FIFO execution is violated, resulting in state
inconsistency and service outage for the UE. In the experi-
ment, a sequence of requests hR1,R2i of the same UE arrive
at the MME. However, request R1 was delayed and executed
after R2. The result was that the stale request R1 overwrote
the effect of request R2 which causes inconsistency between
MME’s state and UE’s state. Figure 3c shows the MME’s log
with timestamps describing this experiment.

In this experiment, after attaching to the network, the ra-
dio interface of the UE was turned off to trigger a detach
(11:03:45). That detach was processed by a MME1 thread
which is a slow MME thread. We intentionally caused a delay
of 60s on this thread through a sleep timer while at the same
time releasing the session lock. Later the Nexus 5 was turned
on to trigger another attach request which arrived at MME2
thread (11:03:58), updating the state of the UE Context with
the Attached state. This was successfully verified by the
MME2 and replied to (11:03:59). However, the slow MME1
thread later was executed and updated the UE Context with
Detached state (11:04:45). The Detached Accept message
was ignored by the UE. At this point, the UE state recorded
in the UE Context and the actual UE state is inconsistent:
recorded Detached, while the actual state is Attached. This
caused a UE outage of 54 mins as in our previous experiment.
This suggests that the EPC network must execute requests in
the order that they are generated from the UE.
Summary: The above experiments imply that the mobile
network must be highly available, must persist UE context
(state), and must maintain state consistencies both between
components and between the mobile device and components.

The state consistencies mean that the core network must en-
sure (i) in order execution per mobile device - the distributed
components must appear to process the requests in order
from the mobile device’s perspective (see example 3c) and
(ii) atomic execution - the distributed components must be in
either a “before” or “after” state.

3.2 Reliable EPC: state of the art
The conventional way to maintain high availability is to

introduce redundancy in hardware. Telecom-grade reliable
hardware is built with N +M redundancy (N active blades
have M back up blades) [16, 36, 50]. Active-standby tech-
niques [30] allow for state synchronization (e.g., UE context)
between the active and standby instances with the active one
switching over to the standby one in case of a failure. This
technique is extended to an NFV setting where a resource
scheduler can quickly detect a fault and migrate service from
a faulty component [38, 39].

Further redundancy is introduced at the protocol layer. The
standard EPC architecture supports a pool of MMEs [4]. An
eNodeB can connect to any of the MME instance in the pool.
The MME instances share a common Session Restoration
Server (SRS) [32, 31] which acts as persistent storage for UE
context in real time. If one MME instance fails, the eNodeB
will notice that its Stream Control Transmission Protocol
(SCTP) connection to MME is broken. It will then attempt to
reconnect, and will be connected to another MME instance.

To maintain atomic and in order execution, there is an
SCTP connection between the eNodeB and the MME that
provides retransmission, de-duplication, and request order-
ing. The reliable MME then maintains a FIFO queue of the
requests and executes them in order, one at a time until the
states are consistent across EPC components. In order for
the MME pool mechanism to work, the failed MME instance
must crash cleanly - after the SCTP connection is broken, all
of the requests that are already in the crashed MME’s queue
are completely discarded so that no stale requests exist.

There are several aspects of the existing designs which do
not map well to the public cloud infrastructure. Unlike public
cloud, hardware appliances and VNFs offer a fine-grain avail-
ability information and scheduling control (active standby or

4

service migration). This allows for almost instantaneous fault
isolation and repair, which is impossible in a public cloud
(c.f. [24]). A public cloud EPC deployment has to deal with
failures proactively, before the software is certain that a fault
has occurred, as we illustrate with public cloud measurements
in the next section. Furthermore, due to higher inherent re-
liability of conventional nodes, the types of faults that can
occur are different. Public clouds run all software on VMs
that can delay executions (e.g., due to an upgrade), causing
stale requests and inconsistent side-requests (as explained in
the examples above). Again, a public cloud EPC deployment
has to deal with these issues in software, as most of today’s
distributed systems deployed in the cloud do.

3.3 What does public cloud provide?
Typical telco appliances like the ones described in the

previous section provide availability of 99.999% [37], also
referred to as “five 9s” availability. With five 9s availability an
appliance would experience an overall outage of 1 minute in
two months. Instead, cloud offerings today, such as AWS and
Azure, advertise VM availabilities of “four 9s”, or outages
of 1 minute every week – an order of magnitude larger total
outage compared to reliable hardware architectures.

Besides the overall availability in the number of 9s, the
state machine reliability requirements outlined in Section 3.1
highlight that the duration of an outage can be critical. For
example, the system may be able to recover from many short
1-second outages using transport or other mechanisms, but
a few outages lasting minutes can be catastrophic. It is thus
crucial to understand the availability properties (total outage
instances and their duration) of public clouds in practice,
beyond advertised SLAs.

To this end, we perform a 3-month long measurement study
in a major public cloud provider. We expect our findings to
be indicative of other providers as well. We monitor the
VM uptimes as well as the reachability of VMs at multiple
levels: data center (DC) cluster, single DC, and across DCs.
A DC cluster consists of three VMs in different availability
zones behind a load-balancer within the same regional data
center. There are two clusters per DC. In total, we use 3 DCs,
two in Europe and one in the US and perform TCP pings
every 1 second from each VM to all other VMs. Further, we
use Azure’s Application Insights service [35] to monitor the
reachability of our VMs from the public Internet. The service
initiates web request to all VMs every 10 minutes from 10
locations across 4 continents. The cloud is available if at
least one VM in a cluster is available.
Results: Our results are summarized in Table 1. Each row
in the table shows the observed availability constrained on
an outage duration (e.g., in row > 1 min we only account
for outages that are longer than 1 min; at least some of these
cannot be handled by MME retransmissions, as illustrated in
example 3a in §3.1). We observe that the advertised SLAs of
four 9s are generally met by the cloud. Most of the outages
are very short, and can possibly be attributed to network

Outage duration [s]
100 101 102 103 104

C
D

F

0

0.5

1

Same LB
Same DC
Other DC
World-wide

Figure 4: Outage duration distribution across all pairs of VMs

congestion, or other instantaneous problems. We observed
intra-cloud outages of more than 1 second, 2,400 times during
our study. The Cumulative Distribution Function (CDF) of
the durations of such outages longer than 1-second is depicted
in Figure 4. In all, there are 7 outages that last more than 1
minute and they can all be attributed to VM failures. However,
VMs in the same DC cluster do not tend to fail at the same
time.

The picture is significantly different as observed from hosts
in the Internet (“World-wide” in Table 1). Availability is
roughly an order of magnitude less compared to intra-DC
measurements, implying that most “outages” are due to pub-
lic Internet connectivity problems reaching the cloud. The
CDF of the durations of the outages longer than 10 minutes
(measurement interval) is depicted in Figure 4, and we can
see that more than 20% of them last 20 minutes or more.
Implications: In summary, taking into account the limited
duration of our study, we observe that our key requirements
(high availability and state persistency) can be achieved with
five 9s only if the service is replicated across multiple VMs
across availability zones in a single DC; additionally, coping
with public Internet reachability problems requires service
presence across multiple regional data centers unless a ded-
icated connectivity service to the cloud [5, 34] is deployed
which can incur extra cost.

We also note that other studies, such as [23] that gives
account of public cloud reliability over a seven year period,
point out that a median reliability across all public clouds (32
public clouds studied) is below 99.9% and that the median
duration of an outage varies between 1.5 and 24 hours, de-
pending on the type of failure. This reinforces the need for
software replication and proactively dealing with faults.

4. ECHO DESIGN

MME

SGW PGW
Internet

(“regular”)

HSS

PCRF

SGWSGW PGWPGW

PCRFPCRFMMEMME

HSSHSS

Public'Cloud

Internet

(access:“backhaul”)

Figure 5: ECHO components at a high level.

Figure 5 presents a high-level depiction of ECHO’s oper-

5

Cloud World-wide
Outage type VM DC Cluster DC Across DCs VM DC Cluster DC Across DCs
All 99.9947% 99.9998% 99.9999% 100% 99.988% 99.991% 99.9921% 100%
> 10 sec 99.9947% 99.9998% 99.9999% 100% 99.988% 99.991% 99.9921% 100%
> 1 min 99.9948% 99.9998% 99.9999% 100% 99.988% 99.991% 99.9921% 100%

Table 1: Inter-DC availability in a major cloud provider

1

n

LB

Highly
Available
Persistent

Storage

Component 1

Component 2

{Stateless
processing {

State

{Idempotent
side effects

Base
station

entry point

{"Necessary reliable"
device proxy

Mobile
Device

Component 3

Figure 6: ECHO Overview

ation. ECHO moves the main components of EPC into the
cloud, replicating them for reliability while connectivity to
the UEs is through the base stations which implement our
entry point serialization. Existing public cloud load-balancers
provide load-balanced connectivity to the “regular” Internet
and to the Internet-based access “backhaul” between base
stations and the public cloud.

We now discuss in more details the problem space, ECHO’s
architecture, operation and a proof of correctness.

4.1 Problem space
As discussed in §2.2, the EPC can be viewed as a dis-

tributed state machine comprising multiple components. Each
component stores state for each user. ECHO must assume
nodes and the connections between them can fail; the VM or
container hosting a component could crash and restart or it
could be arbitrarily slow, and connectivity between compo-
nents is not reliable. Alternatively a node might reply with a
correct response, but the replies could be late or lost.

ECHO must continue operation despite these failures while
producing the same results as the original core network that
assumes components are reliable; ECHO must appear to exe-
cute requests atomically and in the order that the (per-device)
requests arrive at the base station. ECHO must also scale to
support a large number of users. Moreover, the EPC proto-
cols are complex and constantly evolving; we must avoid
modifying the protocols or relying on its implicit semantics
for correctness. Finally, a particular challenge is that one of
the component that stores the state is a user’s mobile device,
which cannot be modified.

4.2 ECHO Architecture Overview
Figure 6 depicts an overview of ECHO. Each control plane

component (Components 1, 2 and 3) is replicated (instances
1 to n) behind a data center load balancer (LB) [40, 33].
Each component instance is refactored into a stateless pro-
cessing frontend paired with a high availability persistent

Entry point
Clients

Component 1

Component 2

Component 3

1 3

4 6

5

11

2

10
9 7

8

queue

Figure 7: ECHO request example. (1) request from client, queued at entry
point; (2) request forwarded to MME (but fails to be processed); (3) resent
after timeout; (4,5) side effects triggered by (3); (6) side effect triggered by
(4); (7,8) ack for (5) and (6); (9) ack for (4); (10) ack for (1); (11) EPC-level
timeout triggered by Component 2.

storage backend that maintains state for all replicas (and all
components). This allows quick replacement of a malfunc-
tioning component and scaling based on demand. At each
base station, i.e., eNodeB in LTE/EPC parlance, there is a
“necessarily reliable” entry point. This entry point is the to
ECHO’s availability and correctness (§4.3).

In ECHO, each request originates at the UE and is proxied
by the entry point at the base station or access point (Figure 7).
Each request gets a unique, sequential ID from the entry point,
and it is queued until completion. The sequence ID captures
the order that the requests arrive at the eNodeB from the
mobile device. A component n acknowledges a request to a
previous component n-1 once all of its downstream requests
(requests to components n+1,n+2,...) are acknowledged. An
acknowledgment to the entry point means the request from
the mobile device has been applied at all components. After
a timeout, the entry point retransmits the request until it is
acknowledged, only after which will it move to the next
request.

4.3 Necessarily reliable entry point
The necessarily reliable entry point relies on the fact that

the base station (eNodeB) is a necessarily reliable component.
Because the network connectivity of a mobile device relies
on wireless access to the base station, connectivity is lost
if the base station crashes; there is no point designing the
system to deal with base station failures. Therefore, since
the entry point is as reliable as the base station, it is seen as
a “reliable” component of the system. Moreover, note that
because the number of users served by each entry point is
limited by its wireless resources, its scalability constraints
are different from core network components.

The entry point is a thin software layer deployed on a base
station. It is similar to a sequencer in other distributed sys-
tems [49] with an additional eventual completeness property.
Moreover, placing the entry point at the base station elimi-
nates the need to enhance its reliability (e.g., by using the

6

state machine replication). Its API provides the following.
Sequential request IDs: The entry point assigns a sequential
ID to each request from a given UE; different UEs have
independent ID sequences. The request is queued locally
and forwarded to the next component (the MME). The entry
point serializes the requests using a FIFO queue: the oldest
unacknowledged request is resent until it is acknowledged
and removed from the queue. The sequential IDs are used to
ensure that requests are processed at components in the same
order as the UE issued them.
Eventual completeness: After queuing a request, the entry
point persistently retries until the request is acknowledged
before moving to the next one. This ensures a component
failure in the cloud won’t be visible to the mobile device; if an
instance of a component crashes in the middle of an operation,
the entry point transparently issues a retry and the retry will
reach another instance of that component to recover from
the crash. As the entry point is the “reliable” component,
its retries ensure a request is eventually processed and is
processed by all core components regardless of failures.
Reliable timers: As in other protocols, components in EPC
must set a timer whenever they receive a request. However,
if components crash timers could be lost. In ECHO, since
the entry point is considered reliable, components’ timers
are maintained and triggered by the entry point instead of
by the components; after receiving a request, the component
creates the timer event by sending a set timer request to the
entry point. The set timer request includes an unique ID of
the mobile device that the timer applies to, a unique timer ID,
and a timeout value; the request ID of the event is returned.
To cancel a timer event, the component sends a cancel timer
request with the user ID and the previously returned request
ID of the timer event.
State coordination with clients: Since request IDs are added
(and removed) at the entry point, unlike components, client
devices cannot rely on them to reliably receive correctly or-
dered responses. A failed state update at a component may
produce a message that is sent to a client, and a retry may
produce another copy of the same message. This must be
handled by the entry point. Each client-bound reply is labeled
with a request ID and the sequence number of the message
within the request. The entry point ignores replies that have
already been forwarded to the client. Retries always produce
the same responses, but it is important that one and only
one gets forwarded. Necessarily reliability means the client
and the entry point can be expected to maintain a single,
ordered, reliable connection (e.g., TCP connection), which
safely deals with message loss on the last hop as long as the
entry point correctly orders replies.
Handovers: Occasionally, a client moves between two eN-
odeBs and requires a handover. Another entry point must
handle the client’s operations, so state must be transferred
between the entry points. This state is very light; it consists
of the contents and ID of the last processed request and any
registered timers or control packets. The handover procedure

is augmented so the old entry point sends the context to the
new entry point, which becomes the anchor for the client
once the procedure is finished.

4.4 Non-blocking cloud components
Given the requests with monotonic request IDs, ECHO

needs to guarantee atomicity and in-order execution prop-
erties on each component and across components. ECHO’s
operation is different from distributed ACID transactions
because it enhances both atomicity and in-order execution
(linearizability). Also, ECHO cannot simply use the state ma-
chine replication technique [43] because ECHO’s operation is
not atomic and deterministic; components induce side effects
on other components, making determinism hard to guarantee.

Algorithm 1 shows how an ECHO component processes
a request. Note that the algorithm describes two types of
components, with and without side effects (as explained in
§2.2), in a single algorithm. The algorithm is designed to
dovetail with required processing in conventional EPC com-
ponents; the red lines (14, 17, 18, 19) already exist in EPC
components. Note, the algorithm is non-blocking; multiple
stateless instances of a component can execute the algorithm
in parallel without causing any stall on other instances.

Algorithm 1 Non-blocking cloud component
Input event: Receive a request from eNodeB’s entry point (agent) R, with
UE’s ID (R.UE) and request ID (R.ID).
Output event: Send reply and timeout message to eNodeB’s agent.
1: Fetch session from storage: (session, version) = read(R.UE), where

version is version number of znode.
2: if session not found in storage then
3: Create a session locally. Set session.ID = R.ID
4: Go to step 14.
5: end if
6: if R.ID < session.ID-1 then
7: {Received an obsolete request}
8: Return
9: end if

10: if session.reply and session.timer exist then
11: (Re)send session.reply and session.timer
12: Return.
13: end if
14: Update session.
15: Increment request ID: session.ID += 1
16: Set request ID in side effect msg: session.side_effect.ID=R.ID.
17: Send side effect message: session.side_effect.
18: Receive side effect reply.
19: Update session.
20: Prepare reply message: session.reply, set request ID in reply message

session.reply.ID = R.ID
21: Prepare timeout message: session.timer, set request ID in timeout

message session.timer.ID = R.ID
22: Write session to storage: write(session, version)
23: If write OK: Send reply and timeout messages: session.reply, ses-

sion.timer

Component’s atomicity: Replication of components in ECHO
and retries from the entry point mean that a single request
could be processed by multiple instances of the same compo-
nent. To prevent inconsistency caused by interleaved process-
ing of the same request across instances, ECHO uses atomic
conditional writes provided by the persistent storage (we

7

discuss our persistent storage implementation in Section 5).
When committing changes to the reliable storage (line 22
in the algorithm), each component instance ensures that the
stored UE context (session) remained unmodified while it
was processing the request by checking the version number
of the session. If the conditional write fails, then another
component instance has already processed the request, so
this instance discards the local session state and backs off.
This assures even though multiple component instances can
process the same request, only one instance is able to commit
the changes at step 22, guaranteeing atomicity.

Component’s monotonicity (in order execution): Each
component in ECHO needs to execute requests in the order
that they arrive at the entry point. However, concurrent retries
of a request issued by the entry point can cause processing
of an obsolete message at a component instance. Without
care, this could cause the state in the session store to regress,
leading to inconsistency, as illustrated in example 3c in §2.

A component in ECHO uses the monotonic request IDs
to filter out obsolete requests. As in line 6 in the algorithm,
before processing a request, the component instance checks
if the request ID of the request is less than the last executed
request ID (which is stored in the persistent storage). If it is,
then the request is obsolete and is discarded. When updating
the persistent storage, the component increments the request
ID of the session (line 15) and acknowledges the request ID
to the entry point (line 20).

For example, in the example 3c, the stale Detach Request at
11:04:45 would have been discarded as its request ID would
have been lower than the request ID of the Attach Request
that is last processed at 11:03:58.

ECHO’s atomicity and monotonicity: Given each single
component operates atomically and in order as described,
ECHO needs to ensure atomicity and in order execution across
its distributed components.

A side effect is triggered when one component processes
a request that generates a message to another component.
Consistency must be maintained across components despite
side effects, but retries from the entry point can create mul-
tiple duplicated side effect requests, and slow instances can
generate stale side effect requests. Without care, duplicated
and stale side effect requests could cause inconsistency.

Service Requests (Figure 1) illustrate the inconsistency
that can arise from duplicated side effect requests. Suppose
an MME instance A receives a Service Request. In step 17 of
algorithm 1, it sends a Modify Bearer Request (request #1) to
the SGW component. An SGW instance receives the request
#1, creates and installs a tunnel endpoint TEID1, stores it in
persistent storage and replies to the MME with the informa-
tion. Meanwhile, suppose that the entry point times out and
retransmits the Service Request. Another MME instance B
receives the retry and sends a duplicated Modify Bearer Re-
quest (request #2) in step 17. Later a SGW instance receives
the request #2, and it overwrites and replaces TEID1 with a
new tunnel endpoint TEID2 and replies. The MME compo-

nent ignores the second reply because it already moved to a
new state when the first reply arrived. In the end, the MME
component (and the UE) contains TEID1 while the SGW
records TEID2; this inconsistency breaks the data plane.

To keep multiple duplicated side effect requests from mu-
tating component state, retries of a side effect must induce
the same effect on the target component (i.e., side effects
must be idempotent). Algorithm 1 enforces this. When a
message is processed, the response is recorded in the session
store with its corresponding request ID, so lost responses can
be reproduced without repeating execution. If an instance
receives a request and the committed session in the persistent
storage contains a reply, then another component instance
has already executed the transaction, and it only needs to
reply (lines 10, 11, 12). Since responses are recorded in the
persistent storage, they can be obtained by other instances, in
case the current instance crashes before replying.

To solve the inconsistency problem caused by stale side ef-
fect requests, a component also passes the request ID of
received requests to the side effect requests it generates
(line 16). The target component then ensures the side effect
requests are executed in the order specified by the request
ID. This happens at every ECHO component, so no stale side
effect requests are processed.

4.5 Correctness
ECHO is equivalent to the unmodified LTE/EPC network

running on reliable hardwares even though components are
redundant and non-blocking under failure. Please refer to
appendix A for the full proof.

5. IMPLEMENTATION
Section 4 outlines general design principles ECHO uses to

provide safety and reliability. Here we discuss specifically
how this design applies to a cellular control plane and a
public cloud. The summary of changes to the standard EPC
architecture is illustrated in Figure 8.

ECHO agents: ECHO’s agents are lightweight software proxy
agents that provide entry-point functionality on eNodeB and
an interface between eNodeB and MME. There are two
agents, one that resides on eNodeB and one on MME, as
illustrated in Figure 8. The eNodeB’s agent is implemented
as a separate user-mode daemon written in standard C, de-
ployed on top of embedded Linux running on a commodity
small cell [26]. This allows us to easily port it to any COTS
eNodeB without affecting the time-critical LTE radio code.
The MME’s agent is integrated in the source code of the
S1AP processing module of OpenEPC [15].

One of the agent’s functions is to proxy S1AP control
messages. 3GPP eNodeB and MME use SCTP protocol for
S1AP messages. However, Azure and other public clouds do
not support SCTP protocol, so we implement a proxy agent
that replaces SCTP by TCP. The ECHO agent on eNodeB
opens an SCTP connection to the rest of eNodeB software
stack on one side (which is unmodified and unaware of the

8

MME Agent

S1AP

TCP

UE-ID ReqID Timer

ZK-client ZK
cluster

eNodeB Agent

eNodeB's
state

machine

S1AP

SCTP

S1AP payload

ECHO MME
(in the cloud)

SCTP TCP

ECHO eNodeB
(on access point hardware)

MME's state
machine

ECHO-alg.

Figure 8: Modifications of ECHO in LTE/EPC

agent’s existence) and a TCP connection to an ECHO MME
agent on the other side. The eNodeB agent relays messages
between the two connections. The agent reestablishes the
TCP connection on a failure, in order to attach to a new MME
instance (in the same DC or a different DC).

Furthermore, the agent implements the entry point design,
described in Section 4.3. The agent adds an extra network
layer (ECHO or agent layer) into the LTE/EPC control net-
work stack, as shown in Figure 8. The ECHO layer header
consists of the Request ID; a UE-ID, a unique identifier of
the UE, composed of tunnel identifiers readily available from
S1AP messages; and a Timer value, used to set up timers and
to inform components about timer expiry.

Stateless EPC components: We have augmented the most
important EPC components (MME, SGW and PGW) in
OpenEPC [15] with ECHO functionality. In the example
of MME, our implementation preserved the original imple-
mentation that extracts information from a received S1AP
message, generates side effects and updates the client’s state
(e.g., steps 14, 17, 19 in the algorithm). We extended handlers
to accept request IDs from the ECHO layer and to add dupli-
cate/stale request checks that adapt processing accordingly
(step 6). When the original MME code finishes processing
a request, ECHO sends an acknowledgment to the eNodeB
agent together with an S1AP reply. We made SGW/PGW op-
erations idempotent by making the SGW reply with a stored
message (i.e., with the same bearer information) for duplicate
requests from the MME (so, the duplicates don’t forward
effects to the PGW). In all, ECHO’s extensions to OpenEPC
required changing 1,410 lines in 12 files.

We added two additional blocks to the conventional EPC:
an agent (described previously) and a ZooKeeper client (ZK-
client). The ZK-client provides a read/write/delete interface
to a ZooKeeper [25] (ZK) cluster that acts as a reliable, per-
sistent storage. ZooKeeper is a reasonable choice of storage
because of its consistency guarantees, small amount of stored
information (a few KBs per UE context) and relatively low
request rate. The UE context (which is extended to include
UE replies) is stored as a binary string in a znode in ZK.
ECHO uses the version number of a znode in ZK to realize an
atomic state update at step 22 of the algorithm; ZK only al-
lows updating the znode if the version number hasn’t changed
since the beginning of the request.

Cloud deployment: Multiple instances of the same compo-
nent are deployed in a private network in Azure behind a
load balancer. The load balancer performs consistent hashing
on the connection’s 5-tuple, so a connection sticks with the
same instance unless there is a failure or a new instance is
added. When ECHO is deployed across multiple data centers,
requests that time out a few times are retransmitted to another
data center by the ECHO agent on the eNodeB.

6. EVALUATION
We evaluate ECHO in the Azure public cloud across several

dimensions. In particular, we examine the correctness of our
implementation, the potential latency introduced across vari-
ous components of the architecture, the observed throughput
and simulate potential failure scenarios. Our main findings
can be summarized as follows:
• We demonstrate that our cloud-based implementation cor-
rectly services 6,720 requests over one week without any
failures in the ECHO system.
• ECHO introduces reasonable overheads as a trade-off for a
public-cloud reliable deployment. When replication within a
single data center is used, the response latency is increased by
less than 10% and there is no visible drop in throughput. Even
in more extreme deployments, we show that total latency
is well below standard 3GPP timeouts and would not be
noticeable by the users. The result shows user-perceived
latency is similar in ECHO and T-mobile.
• By emulating typical data center failures, we show that
ECHO gracefully handles all such cases without noticeable
user experience impact.
Evaluation setup. Our base deployment is given in Figure 9.
It consists of radio equipment (a UE - Nexus 5, LTE eNodeB
- IP.Access small-cell) in PhantomNet [8] and an EPC core
(MME pool with 2 MMEs, a ZooKeeper ensemble with 3
nodes, and other EPC components - SGW, PGW, HSS) in
Azure. Each node is a Standard_DS3 VM with 4 cores. We
also use a local OpenEPC deployment in PhantomNet to
compare ECHO’s performance.

Reliability options. We consider two availability options.
One is a single data center deployment, in which all ZooKeeper
(ZK) nodes are collocated in the same data center. The other
is a ZooKeeper deployment across multiple data centers, as
depicted in Figure 9. The network latency between the eN-
odeB and Azure is around 22 ms round-trip. The 3 Azure
DCs are 20 ms round-trip away from each other. A single DC
deployment provides less reliability but also lower latency
than a multi-DC deployment. We evaluate both of them as
both can be relevant for different application scenarios.

The reliability also depends on ZooKeeper operational
parameters. We evaluated three ZK logging configurations:
synchronous disk (Disk), asynchronous disk logging (Disk-
nFC, no force sync) and logging to ramdisk (Ramdisk). Syn-
chronous disk logging is the most robust and quickest to
recover, but introduces most latency. Ramdisk and Disk-nFC

9

ZK2
MME2

LB

ZK3

ZK1
Public

IP

Azure - DC1

Agent
proxy

PhantomNet
MME1

SGW PGW

HSS

Azure - DC1

Azure - DC3

Azure - DC2

Zookeeper

LTE small cellNexus
5

MME pool

Figure 9: ECHO evaluation topology set up

(log to disc but don’t wait before acknowledging) are two
trade-offs that reduce latency but also slightly reduce the
ability and speed of recovery. Table 2 shows the deploy-
ment options and failure scenarios that they can tolerate. We
compared ECHO with OpenEPC which stores UE context
in memory. We also compared user perceived performance
of ECHO and T-mobile. We introduced node crashes to the
prototype and illustrate ECHO is robust against failure events.

Table 2: ZK configurations and cloud deployment options in ECHO eval-
uation with their latency and reliability profiles: Disk-nFC and Ramdisk
configurations have smaller latency while 3DCs cloud deployment could
tolerate 1 DC failure.

Option Latency Robust against failures
Node Avail. Zone DC

OpenEPC Low No No No
1DC,Disk Moderate Yes Yes No

1DC,Disk-nFC Low Yes Yes No
1DC,Ramdisk Low Yes Yes No

3DCs,Disk-nFC High Yes Yes Yes

Correctness. We deployed ECHO on one Azure data center
and ran it for 7 days. We generated 6,720 Service and Context
Release requests (20,160 messages) from a Nexus 5 device
attached to a eNodeB. The system remained stable and all
requests were correctly processed. We next randomly intro-
duced node reboot and process crash events on 1% of control
messages; ECHO recovered from crashes and all messages
were correctly processed.

Latency. Figures 10a shows latency of entire Attach (top)
and Service Request (bottom) procedures with different ZK
configurations running in a DC. The latency is broken down
into EPC core network - the latency between EPC compo-
nents (including ZK); Network time - network round-trip
time between eNodeB and Azure; and Radio - latency to
set up radio bearers on UE and eNodeB hardware. Over-
all, ECHO introduces about 7% (70 ms) more latency for an
Attach compared to OpenEPC which stores UE context in
memory, which is almost negligible. The overall latency is
dominated by radio bearer configuration between UE and
eNodeB.

Individual message overheads. Figure 10b shows the la-
tency overhead ECHO introduced to each message exchanged
between UE and MME in an Attach (left part) and Service Re-
quest Procedure (right part). The odd-numbered messages (1-
Attach Request, 3-Authentication Response, 5-Security Mode

Complete, 7-UE Information Response, 1-Service Request)
are sent by the UE and are processed by ECHO. The even-
numbered messages (2-Authentication Request, 4-Security
Mode Command, 5-UE Information Request, 8-Attach Ac-
cept, 2-Context Setup Request) are sent by ECHO and pro-
cessed by the UE. The results confirm that radio setup and
authentication processing on UE (msgs. 2-left, 8, 2-right)
dominate the total procedure latency. Looking at ECHO la-
tency (i.e., msgs. 1-left, 3, 5, 7, 1-right) we can see a clear
latency overhead trend among ECHO-Disk, ECHO-nFC and
OpenEPC. Overall, using disk logging incurs the most la-
tency overhead while using disk without force sync (Disk-
nFC) incurs less latency. The per message overhead ECHO
introduced is small but noticeable, about 40%.

Reliability vs. Latency trade-off. Figure 10c shows latency
of an Attach Procedure with ZK deployed in a single DC and
3 DCs. ECHO with multiple-DC deployments will survive
DC failures (Table 2) yet incur higher latency because of
network latency between ZK nodes (40% or 400 ms more
for attach procedure). Depending on the response time and
reliability characteristics required, one may favor one option
over the other. For example, public Internet outages can
simply be relayed from reachable data centers if this is a
viable option for a particular deployment. However, even
with the most extreme deployment, ECHO incurred overhead
is still tolerable for UE operating 3GPP protocols. We further
probe into this by showing a CDF of the latency of each ZK
write (Figure 11a) and each message on ECHO MME in an
Attach procedure (Figure 11b). Replication to 3 DCs can
incur 10⇥ messaging latency as it may invoke several ZK
writes. Yet, this is still only a fraction of the total latency
and well below the smallest timeout value of an UE – 5s for
T3417 (see section 10.2 in 3GPP NAS timers [2], 3GPP S1AP
timers [3].) In future, this could be improved by using closer
data centers or closer integration of a consensus protocol into
Algorithm 1 to reduce the number of writes.

UE-perceived latency. Figure 11c shows the latencies of
Attach and Service Request procedures perceived by a UE
on ECHO and T-mobile. Since we can’t capture T-mobile
control messages inside their proprietary EPC deployment,
we measured the latency by triggering Attach and Service
Request on the Nexus 5, using the same methodology on
both platforms for a fair comparison. To trigger an Attach
we toggle the airplane mode in the Nexus 5. To trigger an
Server Request we let the device idle to make sure it releases
radio connection, and trigger a Ping request from it to the
Internet. We then measure the time it takes for the Nexus 5 to
be network-available (from the trigger-time to the first Ping
packet gets through.) As these latencies include phone-level
overheads, they correspond to end-user perceived latencies,
and they are much larger than network measured latencies
(Figure 10). Overall, ECHO control procedure latency on one
DC is comparable to T-mobile, but worse on 3 DCs. However,
control events are infrequent, so we expect that this will not
affect end-user experience.

10

0 100 200

Disk
Disk-nFC
Ramdisk
OpenEPC

Latency (ms)

0 200 400 600 800 1000

Disk
Disk-nFC
Ramdisk
OpenEPC

EPC core network Radio time Network time

(a)

50

100

150

200

1.Atch
-R

eq.

2.Auth-R
eq.

3.Auth-R
es.

4.Secu
r-C

md.

5.Secu
r-C

mp.

6.In
fo-R

eq.

7.In
fo-R

es.

8.Atch
-ok.

1.Ser-R
eq.

2.Cntx-
Req.

La
te

nc
y (

m
s)

Disk
Disk-nFC

OpenEPC

(495,491,498)

(b)

0
200
400
600
800

1000
1200
1400
1600

La
te
nc
y.(
m
s)

EPC.core.network Radio.time
Network.time

(c)

Figure 10: Latency overhead of ECHO: (a) Attach (top) and Service Request (bottom) procedures latency on 1DC deployment, observed on eNodeB; (b) Latency
of each individual message in an Attach (left part) and Service Request (right part) procedures on 1DC deployment; (c) Latency for attach procedure on 1DC
and 3DC deployments.

(a)

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

C
D

F

Time in EPC to process each msg. (ms)

OpenEPC
ECHO-1DC

ECHO-3DCs-nFC
ECHO-3DCs-Disk

T3417-5s

(b)

T-mobile
OpenEPC

ECHO-1DC
ECHO-3DCs

0 1000 2000 3000 4000 5000 6000 7000

T-mobile
OpenEPC

ECHO-1DC
ECHO-3DCs

0 100 200 300 400 500 600 700

Latency (ms)

Attach Procedure

Service Request

(c)
Figure 11: Latency vs. reliability trade-off: (a) Network latency CDF for ZooKeeper write. Baremetal shows optimal, non-virtualized performance; (b) Network
latency CDF for attach procedure; (c) UE-perceived latency for attach procedure (top) and UE-perceived latency for service procedure (bottom)

Throughput. Figure 12a shows ECHO’s peak throughput on
1 DC and 3 DCs for Attach and Service Requests. ECHO
throughput is comparable to OpenEPC. Even though the
throughput does not look very high, notice that each proce-
dure consists of multiple messages exchanged (e.g., 8 mes-
sages for an Attach), and it is comparable with throughput
reported in other papers [9].

Failure scenarios. Figures 12b and 12c show OpenEPC and
ECHO operation when an MME crashes. The UE attached
to OpenEPC was not able to use the network for 54 minutes
because of the crash, whereas with ECHO the UE continued
to use the network without disruption. In figure 12b, the
UE attached and successfully requested services (via Service
Requests) between 0-20 mins. At minute 23rd, the MME
restarted. The UE was not able to use the network for 22
mins after the restart (red crosses denotes failed Service Re-
quest) until a failed periodical Tracking Area Update (at
55th minute) which triggered a re-attach (similar to exam-
ple 3b). On the other hand, as in figure 12b, there were 2
MME instances in ECHO. At minute 11 the MME1 instance
restarted, the eNodeB reestablished the S1AP connection
after the crash, the UE’s requests were load balanced to the
MME2 instance and were processed successfully (blue dots
after 11th minute). Note that the 1st attach request on MME2
experienced a slightly higher latency because MME2 had to
contact ZK for the UE’s Context. This illustrates the advan-
tage of ECHO over OpenEPC in term of reliability against

node crashes.

eNodeB client. We deployed our eNodeB’s ECHO client im-
plementation on IP Access E40 eNodeB [26] as a user-mode
daemon. We configured four mobile nodes to perform data
transfers and then sleep over periods of 1 minute, generating
8 requests per minute. A typical small cell can support up
to 64 active users, so this represents a typical load. The in-
duced CPU load was not noticeable on the embedded Linux
monitor.

7. RELATED WORK
Our work is related to efforts in network function virtu-

alization in general [21, 52, 51, 19, 17], as well as more
closely related virtualized mobile network efforts focused on
resource management and scalability [41, 42], orchestration
of virtualized core network functions [47], and virtualizing
specific core network components [10]. Perhaps most closely
related to ECHO are the virtualized MME architectures pro-
posed in SCALE [9] and DMME [6]. SCALE and DMME
proposed to horizontally scale the MME using load balancing
and state replication. However, SCALE and DMME focus
only on scalability of a single (MME) component and do not
deal with out-of-order execution if an MME instance is slow
or crashes.

Various studies have dealt with availability and reliability
concerns of cloud platforms [22, 23, 12, 11]. Alternative
approaches to our work to address these concerns include

11

 0

 50

 100

 150

 200

O
penE

P
C

E
C
H
O
-1D

C

E
C
H
O
-3D

C
s

T
h

ro
u

g
h

p
u

t
(p

ro
c
e

d
u

re
/s

)

Attach
Service Request

(a)

1

10

100

1000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
s)

Time (minute)

S1-setup
Attach

Service Request
Failed Service Request

TAU (Rejected)

MME restarts

UE recovers service

(b)

10

100

1000

10000

0 5 10 15 20 25

La
te

nc
y

(m
s)

Time (minute)

S1 setup
Attach

Service Request

MME1 crashes

(c)

Figure 12: (a) Throughput of Attach and Service Request; (b) Unmodified OpenEPC MME crash results in an outage; (c) ECHO MME crash avoids outages.

mechanisms to make clouds inherently more reliable [48],
service abstractions to hide the complexities of dealing with
cloud failures from application developers [27] and attempts
to add specialized cloud features to deal with cloud fault toler-
ance [38, 39]. ECHO took a different approach to assume the
cloud infrastructure is not reliable and instead used software
and protocols to enhance availability.

ECHO’s replication strategies relate to state machine repli-
cation (SMR) [43], a well-known approach to building fault-
tolerant, highly available services [25, 14]. However, as
in § 4.4, naively reimplementing MME logic in replicated
state machines does not work. It also intertwines scaling,
partitioning and fault-tolerance, since state machines are
stateful. SMR plays a role in ECHO, but in the form of
ZooKeeper’s [25] fault-tolerant atomic broadcast protocol,
Zab [28].

ECHO’s enforcement of FIFO and atomicity is similar to
virtually synchronous CBCAST from the ISIS toolkit [13].
However, ECHO is the first to combine atomic and FIFO
processing over distributed components in a cellular network.
The key challenge is in minimizing changes to the existing
EPC protocol and in interactions with the outside UE, which
cannot be modified. Others observed this issue with clients
in other contexts [29]. The necessary reliability between
the UE and its eNodeB simplify this, since the radio control
link offers a reliable, ordered connection with the UE. Setty
et. al. [45] proposed “locks with intent” for building fault-
tolerant systems on cloud storage. In ECHO, each client only
affects its own state, which eliminates the need for intents.

8. CONCLUSIONS
Virtualization of cellular core network protocols onto a

public cloud introduces new and different challenges. In this
paper we present and evaluate ECHO, a scalable and reliable
architecture that can easily be implemented on top of existing
core networks. ECHO is provenly correct while significantly
improves mobile core networks reliability when deployed in
a public cloud.

9. REFERENCES
[1] 3GPP. 3GPP TS 23.002 - Network architecture.

[2] 3GPP. Non-Access-Stratum (NAS) protocol for
Evolved Packet System (EPS). http://www.etsi.
org/deliver/etsi_ts/124300_124399/124301/
10.03.00_60/ts_124301v100300p.pdf.

[3] 3GPP. S1 Application Protocol (S1AP)(Release 12) -
Network, Evolved Universal Terrestrial Radio Access,
2011.

[4] 3GPP. 3GPP TS 23.401 - General Packet Radio
Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access.
http://www.etsi.org/deliver/etsi_ts/
123400_123499/123401/08.14.00_60/ts_
123401v081400p.pdf, 2015.

[5] AMAZON. AWS Direct Connect.
https://aws.amazon.com/directconnect/.

[6] AN, X., PIANESE, F., WIDJAJA, I., AND
GüNAY ACER, U. Dmme: A distributed lte
mobility management entity. Bell Lab. Tech. J. 17, 2
(Sept. 2012), 97–120.

[7] AT&T. AT&T Domain 2.0 Vision White Paper.
https://www.att.com/Common/about_us/pdf/
AT&TDomain2.0VisionWhitePaper.pdf, 2013.

[8] BANERJEE, A., CHO, J., EIDE, E., DUERIG, J.,
NGUYEN, B., RICCI, R., VAN DER MERWE, J.,
WEBB, K., AND WONG, G. Phantomnet: Research
infrastructure for mobile networking, cloud computing
and software-defined networking. GetMobile: Mobile
Computing and Communications 19, 2 (2015), 28–33.

[9] BANERJEE, A., MAHINDRA, R., SUNDARESAN, K.,
KASERA, S., VAN DER MERWE, K., AND
RANGARAJAN, S. Scaling the lte control-plane for
future mobile access. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies (New York, NY, USA, 2015), CoNEXT
’15, ACM, pp. 19:1–19:13.

[10] BASTA, A., KELLERER, W., HOFFMANN, M.,
HOFFMANN, K., AND SCHMIDT, E. D. A virtual
sdn-enabled lte epc architecture: A case study for
s-/p-gateways functions. In 2013 IEEE SDN for Future
Networks and Services (SDN4FNS) (Nov 2013),
pp. 1–7.

12

[11] BENSON, T., SAHU, S., AKELLA, A., AND SHAIKH,
A. A first look at problems in the cloud. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing (Berkeley, CA, USA, 2010), HotCloud’10,
USENIX Association, pp. 15–15.

[12] BIRKE, R., GIURGIU, I., CHEN, L. Y., WIESMANN,
D., AND ENGBERSEN, T. Failure analysis of virtual
and physical machines: Patterns, causes and
characteristics. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (June 2014), pp. 1–12.

[13] BIRMAN, K., SCHIPER, A., AND STEPHENSON, P.
Lightweight Causal and Atomic Group Multicast. ACM
Transactions on Computer Systems (TOCS) 9, 3 (1991),
272–314.

[14] BURROWS, M. The Chubby Lock Service for
Loosely-coupled Distributed Systems. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2006), OSDI
’06, USENIX Association, pp. 335–350.

[15] CND. OpenEPC - Core Network Dynamics.
http://www.corenetdynamics.com/.

[16] ERICSSON. High Availability is more than five nines.
https://www.ericsson.com/
real-performance/wp-content/uploads/
sites/3/2014/07/high-avaialbility.pdf.

[17] ETSI. Network Functions Virtualisation (NFV);
Management and Orchestration. ETSI GS NFV-MAN
001 V1.1.1 (2014-12).

[18] ETSI. NFV White Paper. https:
//portal.etsi.org/nfv/nfv_white_paper.pdf.

[19] ETSI. Network Functions Virtualisation (NFV);
Architectural Framework. ETSI GS NFV 002 V1.1.1
(2013-10), 2013.

[20] FAYAZBAKHSH, S. K., REITER, M. K., AND SEKAR,
V. Verifiable network function outsourcing:
Requirements, challenges, and roadmap. In
Proceedings of the 2013 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization
(New York, NY, USA, 2013), HotMiddlebox ’13, ACM,
pp. 25–30.

[21] GEMBER-JACOBSON, A., VISWANATHAN, R.,
PRAKASH, C., GRANDL, R., KHALID, J., DAS, S.,
AND AKELLA, A. Opennf: Enabling innovation in
network function control. In Proceedings of the 2014
ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, ACM, pp. 163–174.

[22] GILL, P., JAIN, N., AND NAGAPPAN, N.
Understanding network failures in data centers:
Measurement, analysis, and implications. SIGCOMM
Comput. Commun. Rev. 41, 4 (Aug. 2011), 350–361.

[23] GUNAWI, H. S., HAO, M., SUMINTO, R. O.,
LAKSONO, A., SATRIA, A. D., ADITYATAMA, J.,
AND ELIAZAR, K. J. Why does the cloud stop
computing?: Lessons from hundreds of service outages.

In Proceedings of the Seventh ACM Symposium on
Cloud Computing (New York, NY, USA, 2016), SoCC
’16, ACM, pp. 1–16.

[24] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG,
R., MALTZ, D., LIU, Z., WANG, V., PANG, B.,
CHEN, H., LIN, Z.-W., AND KURIEN, V. Pingmesh:
A large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication (New York, NY, USA, 2015),
SIGCOMM ’15, ACM, pp. 139–152.

[25] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND
REED, B. Zookeeper: Wait-free coordination for
internet-scale systems. In USENIX Annual Technical
Conference (2010), vol. 8, p. 9.

[26] IP ACCESS. E-40 Access point.
[27] JHAWAR, R., PIURI, V., AND SANTAMBROGIO, M.

Fault tolerance management in cloud computing: A
system-level perspective. IEEE Systems Journal 7, 2
(June 2013), 288–297.

[28] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M.
Zab: High-performance broadcast for primary-backup
systems. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN)
(2011), IEEE, pp. 245–256.

[29] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITA,
S., AND OUSTERHOUT, J. Implementing
Linearizability at Large Scale and Low Latency. In
Proceedings of the 25th Symposium on Operating
Systems Principles (New York, NY, USA, 2015), SOSP
’15, ACM, pp. 71–86.

[30] LEUNG, K. K. Mobile ip mobility agent standby
protocol, Feb. 27 2001. US Patent 6,195,705.

[31] LUCENT, A. LTE Subscriber Service Restoration -
Application Note. http://www.tmcnet.com/tmc/
whitepapers/documents/whitepapers/2014/
10085-lte-subscriber-service-restoration.
pdf.

[32] LUCENT, A. Study of EPC Nodes Restoration -
technical report. ftp://ftp.3gpp.org/specs/
archive/23_series/23.857/23857-140.zip.

[33] MICROSOFT. Azure Load Balancer overview.
https://docs.microsoft.com/en-us/azure/load-
balancer/load-balancer-overview.

[34] MICROSOFT. ExpressRoute.
https://azure.microsoft.com/en-us/
services/expressroute/.

[35] MICROSOFT. Monitor availability and responsiveness
of any web site. https://docs.microsoft.com/
en-us/azure/application-insights/
app-insights-monitor-web-app-availability.

[36] NOKIA. Nokia 7750 Service Router - Mobile Gateway -
Data Sheet. http://resources.alcatel-lucent.
com/?cid=141247.

13

[37] NOKIA. Nokia 9471 Wireless Mobility Manager
Mobility Management Entity/Serving GPRS Support
Node - Data Sheet. https://resources.
alcatel-lucent.com/theStore/files/Nokia_
9471_WMM_MME_SGSN_WM9_Data_Sheet_EN.pdf.

[38] OPENSTACK. Vitrage.
https://wiki.openstack.org/wiki/Vitrage.

[39] OPNFV. Doctor. https://wiki.opnfv.org/
display/doctor/Doctor+Home.

[40] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A.,
GREENBERG, A., MALTZ, D. A., KERN, R., KUMAR,
H., ZIKOS, M., WU, H., KIM, C., AND KARRI, N.
Ananta: Cloud scale load balancing. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM
(New York, NY, USA, 2013), SIGCOMM ’13, ACM,
pp. 207–218.

[41] QAZI, Z. A., PENUMARTHI, P. K., SEKAR, V.,
GOPALAKRISHNAN, V., JOSHI, K., AND DAS, S. R.
Klein: A minimally disruptive design for an elastic
cellular core. In Proceedings of the Symposium on SDN
Research (New York, NY, USA, 2016), SOSR ’16,
ACM, pp. 2:1–2:12.

[42] RAJAN, A., GOBRIEL, S., MACIOCCO, C., RAMIA,
K., KAPURY, S., SINGHY, A., ERMANZ, J.,
GOPALAKRISHNANZ, V., AND JANAZ, R.
Understanding the bottlenecks in virtualizing cellular
core network functions. In Local and Metropolitan
Area Networks (LANMAN), 2015 IEEE International
Workshop on (Apr. 2015), pp. 1–6.

[43] SCHNEIDER, F. B. Implementing Fault-tolerant
Services Using the State Machine Approach: A
Tutorial. ACM Computing Surveys 22, 4 (Dec. 1990),
299–319.

[44] SEKAR, V., EGI, N., RATNASAMY, S., REITER,
M. K., AND SHI, G. Design and implementation of a
consolidated middlebox architecture. In Proceedings of
the 9th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA,
2012), NSDI’12, USENIX Association, pp. 24–24.

[45] SETTY, S., SU, C., LORCH, J. R., ZHOU, L., CHEN,
H., PATEL, P., AND REN, J. Realizing the
Fault-tolerance Promise of Cloud Storage Using Locks
with Intent. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (2016).

[46] SHERRY, J., HASAN, S., SCOTT, C.,
KRISHNAMURTHY, A., RATNASAMY, S., AND
SEKAR, V. Making middleboxes someone else’s
problem: Network processing as a cloud service. In
Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 13–24.

[47] SYED, A., AND VAN DER MERWE, J. Proteus: A
network service control platform for service evolution

in a mobile software defined infrastructure. In
International Conference on Mobile Computing and
Networking (MobiCom) (2016).

[48] TALEB, T. Toward carrier cloud: Potential, challenges,
and solutions. IEEE Wireless Communications 21, 3
(June 2014), 80–91.

[49] THOMSON, A., DIAMOND, T., WENG, S.-C., REN,
K., SHAO, P., AND ABADI, D. J. Calvin: fast
distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data
(2012), ACM, pp. 1–12.

[50] WALE, K. Implementing ATCA Serving Gateways for
LTE Networks.
http://go.radisys.com/rs/radisys/images/
paper-atca-implementing.pdf.

[51] WOOD, T., RAMAKRISHNAN, K., HWANG, J., LIU,
G., AND ZHANG, W. Toward a software-based
network: integrating software defined networking and
network function virtualization. Network, IEEE 29, 3
(May 2015), 36–41.

[52] XILOURIS, G., TROUVA, E., LOBILLO, F., SOARES,
J., CARAPINHA, J., MCGRATH, M., GARDIKIS, G.,
PAGLIERANI, P., PALLIS, E., ZUCCARO, L., REBAHI,
Y., AND KOURTIS, A. T-NOVA: A marketplace for
virtualized network functions. In Networks and
Communications (EuCNC), 2014 European Conference
on (June 2014), pp. 1–5.

APPENDIX
A. APPENDIX: ECHO’S PROOF OF COR-

RECTNESS

Component
2

Component
1 (leaf)

Write OK

State
Storage

Reply n+1

Request n+1

... Write(n+1, version v) Before: (n),
version (v)

After: (n+1),
version (v+1)

Step 22

Step 23

1

2

Figure 13: ECHO’s leaf instance is linearizable.

Here we give a sketch of why ECHO is safe even though
components are redundant and non-blocking under failure.
Showing that ECHO appears to process operations atomically,
in mobile device’s FIFO order (client’s FIFO order), one-at-
a-time demonstrates safety.

First, we show that a leaf component (a component that
does not trigger side effects to other components) operates

14

Component
M+1

Component
M

side effect reply n+1

Side effect n+1

...

Request n+1

Reply n+1

Atomic FIFO

Write (n+1, v)

Write OK

Before

After

State

1

2

Figure 14: ECHO’s components operate atomically and in client’s FIFO
order.

linearizably (in an order consistent with some total order of
the client operations). Next, we show that the total order
it is consistent with is the client’s FIFO order. Then, using
leaf components as the base case, it can be shown that all
components appear to process operations atomically in client
FIFO order.

LEMMA 1 (LEAF INSTANCE LINEARIZABILITY). Each
leaf component instance appears to process requests atom-
ically in an order consistent with client invocation and re-
sponse.

Proof. Figure 13 shows the processing steps of a component
instance handling a request. The compare-and-swap on the
shared storage acts as a linearization point: before it no (lo-
cal) effect of the component instance can be perceived, after
it all its (local) effects are guaranteed to persist. Each pro-
cessed request with ID n+1 results in one of four outcomes:
1) aborted-the component is not in state n or n+ 1, so the
request is invalid and ignored; 2) successful-the operation
completes successfully, the component instance updates the
state storage, moves the component from state n to n+1 at
step 22 and replies; 3) crashed before update-the operation
fails in 1 before updating the state leaving the component
in state n; or 4) crashed after update-the operation fails in 2
after updating the state leaving the component in state n+1.

In case 3, because of the eventual completeness of the entry
point, there must be a retry arrived at another instance that
progresses to either case 4 (in-completed) or case 2 (com-
pleted). In case 4, when a component instance receives a
retry, it simply replies with the recorded reply which eventu-
ally results in case 2. Therefore, a component only executes
requests in the specified order, either completely successful
or completely failed.

Because each compare-and-swap is issued from a natural
number n to n+1, only one instance of any component can
achieve a successful outcome in the above proof, so Lemma 1
can be strengthened:

LEMMA 2 (LEAF COMPONENT LINEARIZABILITY). Each
leaf component appears to process requests atomically in an
order consistent with client invocation and response.

Finally, because the entry point only issues request n+
1 after the successful acknowledgment of request n (that
is, operations are synchronous), no component instance can
attempt to apply n+ 1 to shared storage while the state in
storage is tagged with a request number less than n. This
strengthens Lemma 2 to:

LEMMA 3 (ATOMIC FIFO LEAF COMPONENTS). Every
leaf component in ECHO processes requests atomically in the
(FIFO) order client issued them to the entry point.

Given Lemma 3 as a base case, components that make
nested calls to other components can be shown to be atomic
and FIFO as well using induction.

LEMMA 4 (ATOMIC FIFO COMPONENTS). Every com-
ponent in ECHO processes requests atomically in the (FIFO)
order client issued them to the entry point.

Proof. Non-leaf components are identical to leaf components
except that they may send requests and wait for responses
just before attempting to update shared storage. Let M be
the height of a component, which is the number of nested
requests that must succeed before a leaf component is reached.
Leaf components have M = 1.

Induction hypothesis: Assuming a component at height M
operates atomically in client FIFO order, then a component
at height M+1 operates atomically and in client FIFO order.

Base case: Lemma 3 proves the case for M = 1.
Consider an request arriving at a component at height

M+1. Similar to the leaf component proof above, the request
has 4 outcomes: 1-aborted, 2-successful, 3-crashed before
update and 4-crashed after update. The crashed after update
outcome eventually results in the successful case as in the
proof in lemma 2. In the crashed before update case, the
component instance crashes in 1 and leaves the component
M +1 in state n. Eventually, there is a retry n+1 from the
entry point that arrives at another component instance and
triggers the side effect again. If there are multiple retries that
trigger multiple side effects to component M, the effect on
component M is still atomic and in client FIFO order by the
induction hypothesis. Therefore, case 4 eventually results in
case 2 or 3 (which eventually results in case 2). Therefore,
component M+1 operates requests atomically in client FIFO
order.

Finally, since the ordinary, unreplicated protocol precisely
processes messages atomically, in mobile device’s FIFO or-
der, one-at-a-time, this gives the essential safety property:

PROPERTY 1 (ECHO SAFETY PROPERTY). The set of
states observed by ECHO clients is equivalent to the unrepli-
cated protocol.

15

