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Abstract

Clouds, HPC clusters, HTC systems, and testbeds all serve different
parts of the computing ecosystem: each are designed for different
types of workloads and suited to different types of research and
commercial users. We propose that an effective way to share re-
sources among these diverse applications is to not shoehorn them
all into the same resource management framework, but to partition
a common hardware substrate among different frameworks: for
example, to have part of a cluster managed by a cloud framework
such as OpenStack, part of it managed by an HPC scheduler such as
SLURM, etc. In order to efficiently manage such a shared resource,
it must be possible to adjust the set of resources controlled by each
in an elastic manner.

While resource allocation and scheduling within each of these
types of environments are well studied, what we consider in this
paper is elasticity between them. Our goal is to enable each man-
agement framework to separately manage the resources currently
within its own domain, scheduling jobs, VMs, etc. according to
its own needs and policies. At the same time, the frameworks can
coordinate with one another so that when resources must be moved
between them, it can be done in the most fair and efficient manner
possible. We evaluate our ideas using a prototype that shares re-
sources between a testbed and an HPC cluster, and with simulations
using real workload traces. We find that with only minimal infor-
mation flow it is possible to elastically adjust resource assignments
while each framework optimizes for its own internal criteria.
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1 Introduction

Resource management frameworks for multi-tenant compute envi-
ronments are generally best-suited to the types of jobs for which
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Figure 1: Multiple environments sharing the same cluster.

they were originally designed. For example, HPC schedulers such
as SLURM [1] are specialized to schedule batch jobs of various
sizes and durations within a tightly-coupled cluster (e.g. with a
high-speed Infiniband or Ethernet network). HTC systems such
as HTCondor [2] focus on less tightly-coupled jobs. Cloud man-
agement software such as OpenStack [3] focuses on virtualization
and is primarily designed for web services, general server hosting,
and multi-tier applications. Testbeds such as those based on the
Emulab [4] framework focus on bare-metal allocation and physical
isolation between tenants.

While it is possible, to some extent, to run jobs intended for one
of these environments on top of another, the results are often sub-
optimal. For example, the virtualization overheads associated with
cloud computing often add variable overhead to the networking
stack and scheduling noise to the CPU, interfering with tightly-
coupled computations (see e.g., [5] and [6]). Other combinations are
impossible; many testbeds require users to have a level of control
that is simply not possible in a virtualized cloud environment [7].
Thus, an attractive way to share a cluster between multiple types
of workloads is to share it rather than to stack them; that is, to have
a single hardware pool, where individual compute nodes are, at
different times, controlled by a cloud management framework, an
HPC scheduler, a testbed manager, etc.

In our design, the physical cluster is divided into a number of
partitions: each physical resource is assigned to one partition at a
time. Each partition is associated with a management framework
(such as OpenStack, SLURM, HTCondor, etc.) that is responsible for
scheduling jobs on the resources that are assigned to its partition.
Each management framework manages its own policies (e.g., job pri-
orities, resource limits, preemption, autoscaling, etc.). We also refer
generically to the environment provided by a particular framework;
e.g., SLURM is said to provide an “HPC environment”. Figure 1
illustrates the logical relationships between environments and man-
agement frameworks on a cluster with two partitions. Since the
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fundamental goal of this system is to dynamically assign resources
to partitions based on time-varying demands, there must be poli-
cies regarding how to handle elasticity between the partitions: for
example, to decide when resources should be moved from the cloud
partition managed by OpenStack to the HPC partition managed
by SLURM. Each management framework has its own complex
methods for determining the “value” of a particular resource at a
particular time. For example, SLURM may know that a particular
node has been running code that is part of a long, non-preemptable
job for a long time, and much work would be wasted if the node
was removed from its control (thereby killing the job). On the other
hand, a cloud may know that a particular server is not currently
hosting any VMs, or the ones that is hosting could be easily mi-
grated, and thus there would be very little “cost” to removing it
from the cloud’s partition. The values that frameworks place on
the nodes under their control will change over time, as different
jobs start, complete, change priority, etc. Thus, it is critical that
the high-level scheduler have enough visibility into the relative val-
ues of each resource to make decisions that help each framework
optimize its own resource scheduling, without having to under-
stand the full internal details of how each computes that value. Our
hypothesis is that we can establish simple, general-purpose com-
munication between each computing framework and the overall
cluster management process, and use it to avoid wasteful behavior
on the cluster as a whole.

We have built a prototype of this system (described in Section 3),
running on one of our clusters and available to selected users, to
share resources between users of a network testbed and an HPC
cluster. In Section 2, we discuss the related work in elastically scal-
ing workloads within one compute environment, which contrasts
with our work on elasticity of resources between partitions sup-
porting diverse computing environments. In Section 4, we use a
simulator with real workload traces to look at different high-level
scheduling policies, and show that it is possible for an HPC frame-
work to optimize for metrics such as minimal wasted cycles and to
implement its own priority policies. We finish up with conclusions
and directions for future work in Section 5.

2 Background and Related Work

There is much work in the literature, e.g., [8] and [9], that looks
at dynamic scaling of individual applications. This is commonly
referred to as elasticity. As described in [10], horizontal elasticity
allows applications to “grow” or “shrink” the pools of their comput-
ing resources by adding or removing physical or virtual machines.
This is in contrast to vertical elasticity, where physical resources are
added to or removed from a single virtual machine. In this section,
we survey some of this related work. It is complementary to the
contribution of this paper, which makes clouds, compute clusters,
etc. themselves elastic.

2.1 Targeted Computing Environments

In this work, we target modern research cyberinfrastructure envi-
ronments. These take many forms, including supercomputers [11],
clusters [12], grids [13], and clouds [14]. Each of these classes of sys-
tems can be characterized by unique load characteristics, resource
allocation models, software stacks, administrative practices, etc.
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Another class of cyberinfrastructure, testbeds, which serve the re-
search community by providing access to special-purpose resources
and controlled environments, blurs the traditional class distinc-
tions. They operate much like clouds, allowing users to provision
groups of resources with software stacks. Unlike clouds, testbeds
may provide a variety of non-uniform resource types, advanced
research-driven environment pre-configuration, and controlled en-
vironments that foster reproducible research. Testbed users deploy
a wide variety of software on the same testbed, resulting in diverse
co-existing workloads. The NSF-funded testbeds established in the
last several years include CloudLab [7], GENI [15, 16], Apt [17],
Jetstream [18] and Chameleon [19].

Among the container-focused platforms, Apache Mesos [20] em-
ploys the two-level scheduling model that provides extensive sup-
port in hosting multiple computing frameworks on shared clusters.
At the lower level, it offers sets of containers to individual frame-
works, whereas at the higher level those frameworks internally
decide how to utilize them and schedule computations. However,
the lack of bare-metal provisioning makes Mesos deployments less
compatible with HPC workloads considered in this paper.

2.2 Backfill

In [21], the authors describe a mechanism called backfill for in-
creasing the utilization of clouds via opportunistic provisioning of
cloud resources for HTC workloads. Our work incorporates the
following distinctions. First, in contrast with their model with a
single backfill per environment, we allow multiple elastic partitions
to co-exist on the same system; a system-wide manager service
communicates with them and ensures fairness. Second, while they
only consider abrupt terminations of the backfilled resources, we
propose a delayed, graceful preemption where the resources being
preempted get a chance to complete their jobs within a specified
time period. Third, comparing to the backfilled virtual machines
in multiple clouds, our experiments consist of co-located physical
machines that are more suitable for running HPC workloads.

2.3 Cloud Bursting

Cloud-bursting techniques for augmenting clusters with additional
computing resources running in clouds are described in many stud-
ies, including [22], [23], and [24]. Much attention in these studies
is paid to the analysis of how quickly the resources can be provi-
sioned and configured at moments of peak utilization. In contrast,
we consider upscaling scenarios to be thoroughly investigated and
focus on downscaling, and supporting management frameworks
and workloads for which bursting is non-optimal. Specifically, we
investigate involuntary downscaling scenarios where the partition
manager “steals” resources from partitions in response to greater
demand from other partitions. This downscaling is unusual on com-
mercial clouds because of their enormous sizes and the guarantees
given to their paying customers. However, on academic clusters,
testbeds, and clouds with limited capacity, steady-state behavior
tends to be that all resources are near full utilization. In this case,
the problem becomes moving resources between compute environ-
ments in such a way as to cause minimal disruption to the jobs
managed by their associated management frameworks.
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2.4 HPC Resource Management

In the large body of research on resource management strategies
for HPC systems, the most relevant concepts are investigated in
the following studies. In [25], the authors measure quantities that
reflect the Value of Service (VoS) for each computing resource—an
individual virtual machine in their environment. They consider
such factors as completing a job within the requested wall time and
staying under the specified energy consumption limit (based on
additional information that user provides to the scheduler at job
submission); if these conditions are violated, then programmable
penalties are applied and VoS values are reduced. An importance
factor that specifies the relative significance among tasks is also
considered. Similarly, [26] describes penalty functions that are ap-
plied in situations where computing jobs are discarded or aborted.
In our work, we do not optimize scheduling algorithms in the envi-
ronments with such penalties, but rather use a common scheduling
algorithm to investigate tradeoffs between scheduling-related pre-
emption policies that influence the penalties. We will also return
to the idea of penalizing jobs that run longer than expected in our
discussion of future work.

3 Enabling Elastic Partitions

We now describe our system for sharing a single hardware clus-
ter among multiple partitions, each providing a different compute
environment. Our system has two major components that operate
as follows. First, a hosting cluster is responsible for assigning
individual compute resources to specific partitions. The software
managing the hosting cluster must be capable of bare-metal pro-
visioning, so that it can boot nodes into the hypervisor used by
cloud hosts, the software build used by an HPC cluster, etc. Second,
elastic partitions (EP) grow and shrink on demand, as they obtain
and release resources from the hosting cluster. While we do not
place any restrictions on the management framework that runs an
EP, in this work we focus on frameworks where a job scheduler,
compilers, and libraries are installed to allow users to run computa-
tional jobs of their choice. Users interacting with the EP see only
the user interface of the framework that runs within it; for example,
the SLURM job queues or the OpenStack Horizon web interface.
EP elasticity is implemented through the following three oper-
ations. First, when an EP experiences high utilization, it should
acquire additional resources from the hosting cluster to increase its
workload throughput; we refer to this as partition-driven upscaling.
Second, EPs may also react to drops in utilization with partition-
driven downscaling: being a conscious tenant of the hosting cluster
implies releasing unused resources in a proactive and timely man-
ner. The hosting cluster will reclaim these resources and make them
available to other partitions. Third, host-driven downscaling allows
the hosting cluster or its administrators to re-balance resources
between partitions, by forcibly reclaiming resources from one EP
and allowing another EP to request them. Specifically, we refer
to the desired scenario as graceful preemption: the hosting cluster
contacts an EP and gives it a fixed period of time, the Grace Period
(GP), to free up P out of N EP’s resources. After GP is exceed, P
resources will be withdrawn from the EP without further notice.
These upscaling and downscaling operations must be defined
such that they intelligently select which particular machines are
shifted between partitions. For instance, in an upscaling scenario,
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an EP may request machines of a specific type (e.g., type of pro-
cess or quantity of RAM), or with a necessary feature (GPU, high-
performance interconnect, etc.). In contrast, in host-driven down-
scaling, the magnitude of the negative impact caused by preemp-
tions may depend on which particular machines are preempted in
the EP. Therefore, it is advantageous to allow EP to periodically
report back to the hosting cluster how valuable its resources are
to its applications. Given this information, the hosting cluster can
preempt the least-valuable resources. In the following sections, we
describe how EPs report resource values to facilitate elasticity.

3.1 Architecture

Figure 2 depicts the relationship between the hosting cluster and
EPs, including the types of interactions between them. Each par-
tition is equipped with a controller: the elastic manager runs in
conjunction with the hosting cluster, and one elastic client runs
in conjunction with each EP. They interact via Remote Procedure
Calls (RPC) and frequently exchange resource values in the form of
Preemption Vectors (PVs). These vectors include (resource ID, value)
pairs for all resources under each partition’s control. (We limit the
range of these values to floats in the interval [0, 1], where 1.0 is
most-valued, and 0.0 is least, without sacrificing the expressive
power of the interface.) PVs reported by the hosting cluster reflect
the probability with which EPs can acquire specific resources; in
the simplest case, 0.0 can represent available resources (those not
currently assigned to any EP), and 1.0 can be used for resources
in use by another EP. Responsibility for providing client-side PVs
falls to the framework managing each EP, and the mechanism for
calculating them depends on the goals of compute environment
provided by that framework, and on framework-specific knowledge
of the jobs that are currently running. For example, a testbed, which
simply views resources as “allocated” or “unallocated” might use
the same binary distinction described for the hosting cluster. As we
will see in the sections below, frameworks that host long-running
compute jobs may use values that reflect how many cycles would
be “wasted” if a particular job is killed. Other frameworks may
use their own notions of job priority, preemptability, etc. to decide
which jobs—and therefore, nodes—are the most valuable.

Elastic clients use RPC or a GUI interface to create a partition,
and later invoke the AddNodes and DeleteNodes RPCs to add or
remove one or more nodes to or from their partition. They can
call the DiscoverResources RPC at any time to list the hosting
cluster’s resources and metadata, such as availability. Clients send
updated preemption vectors to the elastic manager at the hosting
cluster via SetResourceValues.
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Elastic clients also host an RPC endpoint through which the
hosting cluster’s elastic manager notifies them of its own resource
values, and resource preemption. The elastic manager invokes the
client’s NotifyDeletePending method to inform the client that
one or more of its nodes are being reclaimed by the hosting cluster.
This method is invoked every minute for a pending node reclama-
tion until either the client informs the manager that it has finished
with the node, or until the grace period has expired for node.

3.2 Implementation

Our implementation of this architecture uses the Emulab cluster-
management software [4, 27] in the role of the hosting cluster. The
API calls for exchanging PVs and moving nodes between partitions
are implemented as an extension to the ProtoGENI [28] API, one of
the RPC interfaces supported by the Emulab software, and partitions
are modeled using the “slice” abstraction that this API inherits from
the GENI [15] design. We implemented an elastic manager that
supports multiple elastic clients, and are running it in a restricted-
use mode on the Apt cluster of the CloudLab testbed [29], where it
is used to share that cluster between testbed and HPC users.

We also implemented two elastic clients: a general-purpose, ref-
erence implementation, and one that interacts with a SLURM job
scheduler in order to create PV values for the nodes it manages.
The SLURM client uses Chef for configuration management of its
nodes, and the Chef cookbooks developed in [30]. While most man-
agement frameworks are not designed to have nodes dynamically
added and removed from them, we note that most do have mech-
anisms for disabling nodes for maintenance, power savings, etc.
It is the latter mechanism that our implementation hooks into in
SLURM: we give SLURM a view of the entire hosting cluster, but
tell it that all nodes not belonging to its partition are currently “off”.
In order to downscale, we tell SLURM that the effected nodes are to
be turned off for maintenance, causing it to drain jobs from them.
To upscale, we tell SLURM that the affected nodes have been turned
back on, which makes them available for scheduling and running
new jobs from the work queue.

3.3 Policies

In our elastic client for SLURM, we developed five policies that
report client-side PVs as follows. The RANDOM policy randomly
assigns preemption values. We implement this policy to evaluate
the base case in which the hosting cluster has no knowledge of how
much the EPs value their nodes, and therefore selects arbitrarily for
downscaling. Under the FIFO (First-In, First-Out) policy, the longer
anode has been running its current job, the lower the value that gets
assigned, and therefore the more likely it is to be reclaimed during
host-driven downscaling. Under the LIFO (Last-In, First-Out) policy,
the longer a node has been running its current job, the higher the
value it gets, making it less likely to be reclaimed. For workloads
with multi-node jobs, the PAP (Parallel-Aware) policy takes into
account the number of nodes used by each job; preemption values
are calculated as products of job runtimes and node counts scaled

o [0,1]. This makes nodes running smaller jobs more likely to
be reclaimed. PAP is identical to LIFO for single-node workloads.
Finally, the PAP+ policy is an extension of PAP that weights jobs
by their priority; this policy prefers to put high PV values on nodes
that are currently running high-priority jobs.
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We use RANDOM as the baseline value, since without our PV
exchange protocol, the hosting cluster would have no way to know
what jobs are running on the each partition’s nodes and would
have no basis for making efficient or fair decisions about which
nodes to reclaim during host-driven downscaling. By comparing
the other policies to RANDOM, we can quantify the effectiveness
of exchanging information between the hosting cluster and EPs.

4 Evaluation

To study the effectiveness and efficiency with which the hosting
cluster and EPs cooperate to share compute nodes, we developed
a discrete event simulator for simulating job execution. The sim-
ulator approximates SLURM’s sched/backfill policy by using the
First-Come-First-Served job scheduling with backfilling. With sub-
tle differences in job ordering (which we consider insignificant in
this evaluation), the simulations closely resemble real-time exe-
cution experiments performed on the prototype. To draw reliable
conclusions about aggregate characteristics, we simulate the behav-
ior of EPs which stay occupied with processing jobs from realistic
scientific workloads for long periods of time. Lengthy time periods
are necessary to illustrate the behavior of developed policies in a va-
riety of situations corresponding to many mixes of simultaneously
running jobs with diverse runtimes and node counts. The simu-
lator helps us understand the behavior of the policies in multiple
system configurations, as well as evaluate fairly large EPs, without
requiring the intractable usage of the hosting cluster’s resources
which would be otherwise needed for real-time experiments with
the selected workloads.

Each run of the simulator takes as input a set of compute jobs and
treats it as a single batch submitted at the beginning of the run. It
simulates job execution until all jobs complete and records the state
of execution every time one of the jobs completes. While advancing
through the simulated time between these moments, the simulator
also records the state every T seconds; in this evaluation, we use
T = 30. Each of these recorded states is passed to the functions that
return PVs for different policies. Using these PVs along with the
information about job runtimes and used node counts, we compare
the proposed policies and their variations based on the negative
effects caused by preemptions, as described in detail in Section 4.1.
In this paper, we describe the host-driven downscaling scenarios
with N = 20 (EP node count) and P = 10 (EP nodes preempted) and
briefly mention several simulation results for larger EPs.

In our analysis, we do not explicitly model sequences of preemp-
tions followed by reductions in the EP’s capacity and job through-
put. Without access to real preemption event logs that are required
for such modeling, we would need to make assumptions about how
often and when with respect to the beginning of batch processing
the host-driven preemptions are likely to occur. We choose an alter-
native approach and focus on the analysis of a single preemption
where we accept the fact that it can happen at any time. In other
words, we treat all aforementioned execution states as the moments
at which the preemption has the same probability of occurrence. By
capturing and processing as many such execution states as possible,
we aim to characterize distributions of the policy efficiency met-
rics and, for instance, understand their ranges, the means, and the
median values. Thus, we compare the proposed policies based on
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Table 1: Parameters of the selected workloads.

Runtime, seconds

Node Count

Workload | # of Jobs | Total node-hours mean [ min | 25% [ 50% | 75% | max mean | min [ 25% [ 50% [ 75% | max
HTC 11200 1379.05 443.27 | 54.00 | 84.00 106.00 | 134.25 | 7140.00 1.0 1.0 1.0 1.0 1.0 1.0
PEREGRINE 7275 26838.58 7119.07 | 33.00 | 439.50 | 1921.00 | 6840.5 | 85945.00 | 1.42 | 1.00 | 1.00 | 1.00 | 1.00 | 16.00

their behavior during tens and hundreds of thousands of simulated
independent preemptions.

We use two traces of scientific computing workloads to drive
the simulator. We obtain and process these traces as follows. Our
HTC workload consists of short- and long-running single-node job
traces obtained from HTCondor Log Analyzer [31]; we previously
studied this trace in [32]. To prolong the simulated execution and
observe more variability in the policy behavior, we create the HTC
workload with over 11K jobs by concatenating 10 shuffled copies
of the original trace from our study in [32]. The PEREGRINE
dataset is a large volume of accurate job information from the
HPC energy efficiency research at the National Renewable Energy
Laboratory (NREL), available at [33]. We parse the dataset with
10K jobs randomly selected from two years of execution on the
NREL'’s flagship supercomputer called Peregrine and select a subset
of jobs based on the following criteria: node count < 20 (otherwise,
jobs will not run on the simulated EP), runtime < 24 hours (longer
jobs may be viewed as bad candidates for running in shrinking
environments), successfully finished and have no missing fields.
These criteria yield 7,275 jobs from 24 applications and 7 job queues.

Table 1 provides the detailed statistics for the jobs in these work-
loads. The real-time execution of PEREGRINE would require over
55 days on a 20-node HPC environment, whereas our simulator
completes the processing in several hours. Our Jupyter notebooks
with complete simulation, post-processing code, and all results are
made available at [34].

4.1 Counting Wasted Cycles

We use wasted cycles as our primary efficiency metric. When a job
is terminated before completion, the cycles spent so far on it are
wasted, and the computation must be performed again when the job
is restarted. Note that for parallel HPC jobs, if any node on which
the job is running is preempted, the entire job must be restarted, so
all cycles on all nodes running the job are considered wasted.

The simulator treats the P = 10 out of N = 20 nodes with
the lowest values in PVs as the sets of nodes recommended for
preemption by the elastic client. It counts wasted cycles (WC) for
each of the jobs j from the set of jobs J, that currently run on the
preempted nodes as:

WC; = 0, if j.remaining_time < GP,

WC; = (j.elapsed_time + GP)  j.node_count, otherwise.
The former rule corresponds to the cases where the grace period
(GP) gives jobs sufficient time to complete. In the latter cases, all
cycles spent on these jobs so far and also the future cycles within
GP are wasted because the jobs are unable to complete on time.
In theory, we could also count the cycles spent in the former case
between the job completion and the end of GP, and treat such
idle cycles as another evaluation metric. However, our prototype’s
elastic client terminates the nodes that are marked as draining (i.e.
running their last allowed job before preemption) immediately after

they become idle. Reducing the waste across the EP in this notation
can be formulated as: WC = Zje]p WC; — min.

4.2 Varying Preemption Grace Period

In engineering the waste-minimizing host-driven downscaling, we
must carefully select the preemption grace period GP, the parame-
ter that directly affects WC. It is intuitive to believe that the larger
GPs yield lower WC values as they allow more jobs to complete.
However, as we describe in the following section, this statement is
not statistically accurate. We choose specific GPs for our simula-
tions as follows: we start with GP=120s, which corresponds to the
notification period for preemption of spot instances on the AWS
cloud (referenced in [35]). We also consider GP=60s as an exam-
ple of a hosting cluster with fast preemptions. In addition to the
larger values GP=1200s (20m) and GP=1800s (30m), which can still
be considered “responsive”, we include in our analysis a range of
less responsive values between 1 and 6 hours. This responsiveness
relates to the fact that its interactive users need to wait for the
requested resources to become available when all resources are
utilized by EPs: the larger the GP, the longer the maximum waiting
time. Finding efficient combinations of GPs that are not prohibi-
tively large and the policies that minimize WC is one of the primary
goals of our evaluation and the subject of the following section.

4.3 Quantifying Tradeoffs

For each of the selected policy-GP combinations, our simulations
yield over 14K samples for HTC and 168K samples for PEREGRINE.
The distributions of the WC values that correspond to these samples
are depicted in Figure 3. These violin plots characterize the proba-
bility of the observed WC values: the width of the violins represents
the relative frequency of the corresponding y-axis values in the
collected samples, the thick vertical lines depict interquartile ranges
(IQRs), and white dots show median values (for heavily skewed
data, such as the shown distributions, the median is viewed as a
more representative measure of central tendency than the mean).
Based on these distributions, we draw the following conclusions.

For HTC, LIFO provides significant reductions in WC compared
to FIFO and RANDOM. LIFO’s GP=60s and GP=120s statistically
perform better than the larger GPs. This can be explained by the fact
that the long-running jobs will often incur penalties from premature
terminations (second rule for WC) shortly after they start running,
and the advantage of increasing the probability of job completion
does not outweigh these penalties for LIFO.

For PEREGRINE, LIFO and PAP demonstrate similar results, al-
though they are significantly more efficient than FIFO and RAN-
DOM. In fact, in more than 75% of the samples, the nodes preempted
by LIFO and PAP are the same (therefore, WC is identical in these
cases). This is due to the fact that the node rankings based on
j.elapsed_time and the product j.elapsed_time * j.node_count are
similar for PEREGRINE where over 82% of the jobs use a single
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Figure 3: Distributions of Wasted Cycles for the developed policies and selected Grace Periods.
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Figure 4: Distributions of Wasted Cycles for the developed
policies coupled with Grace Periods between 1 and 6 hours.

node. We obtained similar results in simulations of much larger
environments with N = 200 and P = 100. Since PEREGRINE is
dominated by the long-running jobs, GP is a factor with negligible
impact on WC, at least for GP < 30m.

In Figure 4, we show the impact of much larger GPs, between
1 and 6 hours, on WC for PEREGRINE simulations. The median
values for WC with FIFO and RANDOM monotonically decrease
with the growth of GP because an increasing number of jobs can
complete execution; IQRs slide towards zero. At the same time, the
WC median values for LIFO and PAP remain constant, and IQRs do
not change much. It appears that the growth of the frequencies of
the lower, near zero WC values is counterbalanced by the increased
frequencies of the larger values. In the extreme case where GP is so
large that it exceeds the majority of job runtimes, WC will approach
zero; however, such GPs are unresponsive and impractical from the
testbed perspective. We conclude that the large but practical GP
values up to 6 hours do not provide noticeable advantages in terms
of the WC’s median and IQR for workloads similar to PEREGRINE.

4.4 Improving Parallel-Aware Policy

We can enable practical optimizations in PAP if we consider relative
significance among jobs. For instance, two jobs that use the same
number of nodes and start roughly around the same time may
have drastically different values that characterize their importance:
small for cycle-scavenging, low-priority computations and much
larger for applications with strict deadlines. Similarly, the relative

importance can be expressed using job queues. In PEREGRINE, the
dataset suggests that the NREL’s system has 7 job queues. We can
view bigmem or large queue as more important than debug and
help jobs in these queues to have fewer terminations.

We developed the PAP+ policy that considers two priority classes,
but the proposed PV exchange with the [0,1] values can support an
arbitrary number of classes. To evaluate the potential tradeoffs, we
choose 76 jobs in the bigmem queue in PEREGRINE (~1% of the total
number) to be the highly valuable subset with j.priority = 10.0; for
the rest of the jobs, we assume the default class: j.priority = 1.0.
The elastic client calculates PVs as:

PV = scale(j.elapsed_time * j.node_count * j.priority),
where scale() divides vector components by their maximum value
(in contrast, PAP treats the last factor as 1.0 for all jobs).

Figure 5 shows the difference between PAP and PAP+ using
heatmaps for the PVs they return during a simulation of a fraction
of the PEREGRINE workload. We can clearly see several intervals
of time (marked with red rectangles) when the high-priority jobs
run. These jobs gain importance after they start running much
faster than other jobs and also reduce the relative importance of
the rest of the simultaneously running jobs (i.e. the rest of the red
rectangles appear mostly white, indicating little relative value).

With the same procedure for estimating WC, we compare PAP
and PAP+ based on the cumulative amount of WC. In Figure 6,
we can see how the cumulative WC values change throughout the
simulated executions and compare these values at the end of PERE-
GRINE simulations. PAP+ reduces cumulative WC for high-priority
jobs by 82.9% comparing to PAP. This happens at the expense of the
default-priority jobs: PAP+ increases cumulative WC for default-
priority jobs by 14.3% comparing to PAP. The vertical axes on the
shown plots use different scales, indicating a large contrast be-
tween the corresponding absolute differences. However, the 7.5%
growth of the combined cumulative WC is well justified by the
significant reduction of the negative impact on the high-priority
jobs. In the similar manner, PAP+ can focus on preserving jobs
that represent a particular application. In our experiments where
we assign j.priority = 10.0 to jobs with j.application = gaussian
(341 jobs, ~ 5% of total), we observe the 97.2% reduction in the
cumulative WC for high-priority jobs provided by the 7.1% increase
for default-priority jobs (only 3.8% growth in total).
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Preemption Vectors. Workload: PEREGRINE. Policy: PAP+
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(b) PAP+ policy. Red rectangles highlight the moments when the running high-
priority jobs reduce the relative importance of the running default jobs.

Figure 5: Heatmaps that visualize Preemption Vectors for a 10-node elastic partition running the PEREGRINE workload. The
darkest areas represent the nodes that are most valuable. Only a small fraction, under 15%, of the entire simulation is shown.

4.5 Discussion

Below, we discuss the limitations of our analysis and the nuances
which we must consider when moving our prototype into produc-
tion. Using a more advanced scheduler simulator such as the SLURM
simulator described in [36] can enable experimentation with sched-
ules that better represent production HPC systems with fairness
and quality-of-service optimizations. However, the referenced sys-
tem takes as input continuous SLURM event logs, and running it
on the sampled, anonymized, and formatted records published at
[33] is infeasible. To experiment with the SLURM simulator, we
will need to find alternative sources of HPC traces. Alternatively,
we can switch from simulations back to real-time execution experi-
ments on the developed prototype. It will never be practical to run
55-day experiments on our shared testbed resources, but we can
gain valuable experience with the optimized scheduling algorithms
in SLURM using modestly long experiments.

Do large Grace Periods provide any advantage? In our evaluation,
they “freeze” preempted nodes for long periods of time without
reducing the amount of wasted computations for the most efficient
policies. If this conclusion holds for other workloads — candidates
for running on elastic partitions, we may consider reducing GP to its
minimum value, on the order of several seconds. Thus, SLURM will
receive the time that is only enough to kill the currently running
jobs and mark the preempted nodes as unavailable. Such preemp-
tions will still proceed gracefully, and, from the testbed perspective,
will eliminate the need to maintain a pool of idle resources un-
available to elastic partitions. On the contrary, with larger GPs, if
their use is justified, the testbed needs to have such pool to quickly
respond to requests from its interactive users. This idle pool is likely
to reduce the overall utilization of the testbed.

Another practical concern relates to stale PVs, i.e. PVs that rep-
resent states of execution at moments in the past that are far from
the current time. Making preemption decisions based on such PVs
is likely to cause non-optimal terminations. Stale PVs may ade-
quately represent long-running jobs, but for the jobs that have
recently started running they will include faulty, unreliable val-
ues. The longer the delay between the moments when PVs are
reported and the moments when preemption actions are triggered,
the faster LIFO, PAP, and PAP+ degrade to the RANDOM policy.

Growth of Cumulative Wasted Cycles, GracePeriod=60
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(7199 jobs out of 7275)
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Figure 6: Using cumulative Wasted Cycles to compare PAP
and PAP+ that prioritizes jobs from the specified queue. At
the expense of a small growth for default-priority jobs, PAP+
significantly reduces Wasted Cycles for high-priority jobs.

In this degradation, the gains provided by these policies are dimin-
ished. Therefore, the hosting cluster needs to ensure that it indeed
uses the recently received node value information; otherwise, pre-
emptions should be delayed or aborted.

5 Conclusions and Future Work

In this work, we have investigated interactions between portions
of a shared cyberinfrastructure managed by diverse computing
frameworks, and presented a novel infrastructure for resource shar-
ing and optimization of resource usage. In our analysis, we use an
elastic prototype—a SLURM-managed elastic cluster—deployed on
the CloudLab testbed and also a discrete event simulator we devel-
oped for simulating workload traces from real HPC systems. By
simulating a trace from the Peregrine supercomputer at NREL, we
obtained insights into how these elastic compute clusters operate
under realistic HPC workloads with long-tailed distributions for
runtimes and numbers of compute nodes. In balancing their batch
and interactive workloads, we rely on a minimal information flow
based on the exchange of preemption vectors that abstractly repre-
sent environment-specific resource values. Using wasted cycles as a
metric, we demonstrated that, with this minimal information shar-
ing, we are able to give each environment the ability to optimize for
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its goals. We also found that, somewhat counter-intuitively, shorter
downscaling grace periods lead to fewer wasted cycles, as most
jobs do not finish within the grace period anyway.

Experimenting with traces from other HPC centers and char-
acterizing the behavior of the developed elastic controllers under
corresponding workloads constitute one of the directions in our
future research. We will also consider developing policies that take
into account user-requested job wall clock times. However, we are
skeptical of the accuracy of such estimates; e.g., for PEREGRINE,
they demonstrate extremely low accuracy: for over 50% of the jobs,
the requested wall clock exceeds the actual wall clock by the factor
of 19.2. While the accurate prediction of job runtimes is consid-
ered a difficult problem and, to the best of our knowledge, there is
no common practical solution, we imagine that assigning heavier
weights to the most recent jobs for each user, application, queue,
etc., and predicting whether the remaining runtimes are likely to
exceed the Grace Period or not is feasible. Another direction to fur-
ther optimize PAP+ is to introduce a job prioritization that changes
after jobs exceed their requested wall clock times. Similarly to the
scheduler configurations used at many HPC centers that terminate
such jobs, PAP+ can deprioritize such jobs, and therefore increase
the probability of preemption for the nodes on which they run.
Finally, we will continue to experiment with the prototype and the
developed simulator in order to obtain additional insights and gain
confidence in the fact that the elasticity mechanisms are reliable
and sufficiently intelligent before releasing them to the community
of users on CloudLab and related testbeds.
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