
DEIDTECT - DISTRIBUTED ELASTIC INTRUSION

DETECTION ARCHITECTURE

by

Praveen Kumar Shanmugam

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

May 2016

Copyright c© Praveen Kumar Shanmugam 2016

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Praveen Kumar Shanmugam

has been approved by the following supervisory committee members:

Jacobus Van Der Merwe , Chair 9/15/2015

Date Approved

Sneha Kumar Kasera , Member 9/15/2015

Date Approved

Joseph R Breen III , Member 9/15/2015

Date Approved

and by Ross T. Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Current Intrusion Detection Systems (IDS) in a typical enterprise or campus network are limited

by having a number of static monitoring points and static IDS resources deployed. The monitoring

points are typically deployed using hardware optical taps or span ports which are directly fed into the

IDS. The IDS system is a compute resource requiring dedicated-server-grade hardware, and these are

statically configured when installing the network for an enterprise or campus.

We designed a framework for making a distributed elastic Intrusion Detection System (IDS) for a

Software Defined Network (SDN) capable network, called Distributed Elastic Intrusion DeTECTion

(DEIDtect). We combine the flexibility of SDN and the elastic resource usage of a cloud infrastructure

with a DEIDtect orchestrating controller to achieve an elastic IDS framework. DEIDtect enables

simple and more dynamic management of IDS systems. The flexibility of our approach also enables

new IDS use cases and deployment strategies.

For my Mom, Dad, Sister, and Friends

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1
1.1 Thesis Statement . 2
1.2 Thesis Contributions . 2
1.3 Thesis Overview . 3

2. DEIDTECT ARCHITECTURE AND DESIGN . 4
2.1 Overview . 4

2.1.1 DEIDtect Dynamic and Comprehensive Network Tapping 4
2.1.2 DEIDtect Elastic Security Compute Platform . 4
2.1.3 DEIDtect Distributed Network Security Functions . 5

2.2 DEIDtect Architecture . 5
2.2.1 DEIDtect System . 6

2.3 DEIDtect Network System Module . 7
2.3.1 Adaptive Load Balancing (ALB) . 9

2.4 DEIDtect Cloud System Module . 13
2.4.1 ALB - Adaptive IDS Scaling . 15

3. DEIDTECT USE CASES . 16

4. RELATED WORK . 19
4.1 SDN in Cloud Networking . 19
4.2 SDN in Security . 19
4.3 Scalability of Network Security Tools . 20
4.4 IDS in Cloud . 20
4.5 SDN - Adaptive Load Balancing . 20

5. DEIDTECT IMPLEMENTATION . 21
5.1 DEIDtect Core . 21

5.1.1 DEIDtect Core - Local Tap Work Flow . 21
5.1.2 DEIDtect Core - Remote Tap Work Flow . 22

5.2 DEIDtect Network System . 22
5.2.1 ryu-Tap Manager . 24

5.2.2 ryu-Adaptive Rate Limiter . 25
5.2.3 ryu-Whitelisting . 25
5.2.4 ryu-Bandwidth Monitor . 25

5.3 DEIDtect Cloud System . 25
5.3.1 DEIDtect Cloud Controller . 26
5.3.2 DEIDtect Network Helper . 28
5.3.3 DEIDtect Compute Helper . 29

6. DEIDTECT EVALUATION . 31
6.1 Questions answered by this evaluation . 31
6.2 Experimental Setup . 31

6.2.1 Tools Used . 34
6.3 DEIDtect End-to-End - Local Tap . 34

6.3.1 Test and Result . 34
6.4 DEIDtect End-to-End - Remote Tap . 36

6.4.1 Test and Result . 37
6.5 DEIDtect Ease Of Use . 37

6.5.1 Examples . 39
6.6 DEIDtect Cloud IDS Detection . 39

6.6.1 Metrics . 39
6.6.2 Test and Result . 39

6.7 Mininet - CPqD User Space Switch Benchmark . 40
6.7.1 Metrics . 40
6.7.2 Test and Result . 40

6.8 Bandwidth Management for Tap Traffic . 41
6.8.1 Metrics . 41
6.8.2 Test and Result . 42

6.9 DEIDtect granularity of tap . 44
6.9.1 Test and Result . 44

6.10 Whitelisting for Tap Traffic . 45
6.10.1 Test and Result . 45

6.11 DEIDtect ALB - IDS scaling . 46
6.11.1 Metrics . 47
6.11.2 Test and Result . 47

6.12 Data Loss in IDS . 48
6.12.1 Test and Result . 49

6.13 Summary of Results . 52

7. PRACTICAL CHALLENGES AND FUTURE WORK . 55
7.1 Challenges . 55

7.1.1 Enterprise Network Features . 55
7.1.2 Cloud Network Access . 56
7.1.3 Inter-Domain Access . 57

7.2 Future Work . 57

8. CONCLUSION . 58

REFERENCES . 59

vi

LIST OF FIGURES

2.1 DEIDtect Architecture . 6

2.2 DEIDtect System . 7

2.3 DEIDtect Enterprise Network Modules . 8

2.4 DEIDtect: Flow Tables Modification . 9

2.5 DEIDtect: Adaptive Load Balancing . 11

2.6 DEIDtect Cloud System Modules . 13

3.1 DEIDtect Network Functionality . 17

5.1 DEIDtect Local Tap Request - Work Flow . 21

5.2 DEIDtect Remote Tap Request - Work Flow . 23

5.3 DEIDtect Network System - Enterprise Domain . 24

5.4 DEIDtect Cloud System - OpenStack . 26

5.5 DEIDtect Cloud System - Communication Path . 27

5.6 OpenStack Network Node - OpenVSwitch Bridges . 28

5.7 OpenStack Network Node - OpenVSwitch Under The Hood . 29

5.8 OpenStack Compute Node - OpenVSwitch Bridges . 30

5.9 OpenStack Compute Node - OpenVSwitch Under The Hood . 30

6.1 EMULAB Physical (Datapath) Testbed Topology . 32

6.2 DEIDtect Logical Testbed Topology . 33

6.3 DEIDtect Local Tap - Topology . 34

6.4 DEIDtect Local Tap Event Graph . 35

6.5 DEIDtect Remote Tap - Topology . 36

6.6 DEIDtect Remote Tap Event Graph . 38

6.7 Bro IDS Detection Test Topology . 40

6.8 CpQD Benchmark Topology . 41

6.9 (i) CPQD - Performance Results . 42

6.10 (ii) CPQD - Performance Results . 43

6.11 DEIDtect ALB - rate limiting . 44

6.12 DEIDtect - TCP Tap . 46

6.13 DEIDtect - UDP Tap . 47

6.14 DEIDtect - ALB Whitelist . 48

6.15 DEIDtect IDS Scaling Cpu Usage . 49

6.16 DEIDtect Tap Traffic Packet Loss Topology . 50

6.17 Ground Truth - IDS Detection Traffic Graph . 51

6.18 DEIDtect Nonwhitelist - IDS Detection Traffic Graph . 53

6.19 DEIDtect Whitelist - IDS Detection Traffic Graph . 54

7.1 Safe Tapping using Group Tables . 56

viii

LIST OF TABLES

6.1 Bro Detection Results . 40

6.2 Ground Truth Result -Trace Summary . 52

6.3 Nonwhitelist Result - Trace Summary . 53

6.4 Whitelist Result - Trace Summary . 54

ACKNOWLEDGMENTS

First and foremost I thank my Adviser Kobus for guiding me from day one of my Master’s

program in the right direction. Thanks to Joe for co-advising me all the way.

Thanks to Corey, Sneha, Rob, and David for their valuable feedback and guidance in achieving

the milestone.

I thank all my friends in Flux for helping me out in any technical questions towards my thesis.

And I thank all my friends who have played a big part in my grad school life.

This material is based upon work supported by the National Science Foundation under Grant No.

58501934 and 58501880.

CHAPTER 1

INTRODUCTION

Intrusion detection and prevention systems (IDS/IPS) are widely deployed as critical tools in

the toolkit of security professionals. For example, among the open source IDS/IPS systems, Snort

boasts millions of downloads and approximately 400,000 registered users, while it is estimated that

as many as 10,000 organizations make use of Bro [1, 25]. Despite its widespread use, current

IDS/IPS deployments are plagued by a number of practical concerns that limit their utility. First,

the compute and network resources required to effectively run an IDS/IPS often present problematic

cost versus functionality tradeoffs: Compute requirements for an IDS/IPS system vary over time,

depending on the volume of traffic and the type of analysis that security personnel are performing.

For example, a developing security event might require more detailed deep packet inspection, which

would demand running an IDS/IPS instance configured for this purpose. In practice this results

in two undesirable options: Either compute resources are deployed to accommodate anticipated

peak requirements, leading to over provisioning during off-peak times; or more typically, compute

resources are knowingly underprovisioned. Underprovisioning results in a loss of visibility during

peak times, which, in instances like a Distributed Denial of Service (DDoS) attack, might be when

intelligence is most needed.

Network requirements for IDS/IPS deployment involve a tap point in the network infrastructure

and sufficient capacity from the tap point to the compute resources hosting the IDS/IPS. A network

tap is typically realized using an optical splitter or, in smaller deployments, a switch span/monitoring

port. Both approaches are highly inflexible: Once deployed, monitoring is constrained to the chosen

tap location, which is typically deployed at the ingress/egress point of a campus or enterprise network.

The implication is that intrusions that remain within the enterprise network might go undetected.

A more fundamental concern is that current IDS/IPS deployments are typically strictly local

concerns. (This remains true in practice despite various earlier efforts towards distributed intrusion

detection systems [14, 17, 29].) Specifically, while security professionals at different organizations

readily exchange intelligence through personal communication, there is no systematic way to follow

a lead to a remote location to investigate the potential source of an attack. Furthermore, it is typically

2

not possible to utilize remote expertise or resources to investigate a local problem.

A final concern is the fact that managing an IDS/IPS system is quite complex. For example,

setting up a small scale Snort/Bro instance is a well-documented activity, typically well within reach

for a competent system administrator. However, performing the same activity to scale to campus

or enterprise environments quickly becomes a significant engineering challenge [20]. Furthermore,

systems like Bro provide more flexibility, customization, and analysis capabilities. However, it is

significantly more involved to set up and requires ongoing management by domain experts.

We argue that the inflexibility associated with the compute and network resources needed for

IDS/IPS is the root cause for these concerns and prevents rich cross-domain security models and

investigation.

Combining the flexibility of SDN and the elastic resource usage of a cloud infrastructure with a

DEIDtect orchestrating controller, we achieve an elastic IDS framework.

The initial design work of DEIDtect was presented at the ACM SIGCOMM Workshop on Dis-

tributed Cloud Computing (DCC) 2014 and titled “DEIDtect: Towards Distributed Elastic Intrusion

Detection” [27].

1.1 Thesis Statement
Our thesis is that Software Defined Network (SDN) and Cloud Technology will be used to create

a framework which has flexible network monitoring and elastic Intrusion Detection System (IDS)

deployment with cross-domain capability, enabling new IDS use cases.

1.2 Thesis Contributions
• We present the DEIDtect architecture which provides a distributed elastic framework for cross-

site security functions.

• We present a detailed design of the networking component of DEIDtect which involves: (i)

SDN primitives for safely tapping arbitrary traffic at arbitrary locations in an enterprise net-

work, (ii) cloud abstractions for the precise distribution of traffic in a cloud environment, (iii) a

number of interdomain SDN interactions, including security specific intersite communication.

• We present the implementation of our design and evaluate it in an emulated multiple-enterprise

SDN site environment and a real Cloud environment.

• We present the tap traffic management feature of DEIDtect framework, which rate-limits tap

traffic dynamically based upon the service traffic rate and, also whitelists tap traffic based upon

the IDS Virtual Machine Feedback. It also scales the IDS systems in the cloud based upon the

IDS Virtual Machine (VM) processor usage. This is called Adaptive Load Balancing (ALB).

3

• We evaluate ALB in both local and distributed deployment of DEIDtect to show how (1) the

tap traffic is controlled at different service traffic rates, (2) how Whitelisting cuts down the drop

rate of the tunnel traffic, and (3) the IDS will be scaled up based upon the IDS Virtual Machine

(VM) processor usage.

1.3 Thesis Overview
The rest of the thesis is organized as follows. We describe the DEIDtect architecture and design

in Chapter 2. Chapter 3 details the use cases of DEIDtect. Chapter 4 covers all the work related to

DEIDtect. The implementation of the DEIDtect is detailed in Chapter 5, followed by the evaluation

in Chapter 6. In Chapter 7 we talk about the challenges faced in building the DEIDtect framework

prototype, along with the future work. Chapter 8 concludes this thesis.

CHAPTER 2

DEIDtect ARCHITECTURE AND DESIGN

2.1 Overview
In this chapter, we present the DEIDtect architecture and design methodology. The DEIDtect

framework addresses the fundamental security deployment concerns by exploiting software-defined

networking and cloud computing. The DEIDtect approach effectively enables decoupling of the

location of the network being monitored/protected and the location of the security tools performing

security functions. The DEIDtect approach also enables rapid scaling of security resources during a

security event. This flexibility provides the opportunity to explore new distributed network security

functionality and potentially enable better visibility and coordination among partnered organizations.

2.1.1 DEIDtect Dynamic and Comprehensive Network Tapping
DEIDtect exploits SDN functionality to allow the network and system administrators to tap at

any point in the network, and feeds the tapped traffic stream to the security collectors and analyzers.

Though limited to the bandwidth of the aggregate links, administrators can implement tap points

rapidly at arbitrary points in the network. With a fully instrumented network, administrators can

deploy taps anywhere at the access edge, distribution, core, or internet border. With a partially

instrumented network, administrators can leverage SDN taps in a flexible manner and optical taps

and SPAN/mirror ports at traditional key areas. DEIDtect also allows fine-grained tapping of specific

traffic.

2.1.2 DEIDtect Elastic Security Compute Platform
The DEIDtect approach allows security and network administrators to leverage cloud resources

to create virtual or ‘bare metal’ images of security tools. DEIDtect adds the capability to the normal

cloud orchestration architecture to create the virtual image and to create a network path from the

border of the cloud to the specific host with the security image. By leveraging this technique,

DEIDtect can balance tapped traffic flows across multiple security images quickly in order to scale.

5

2.1.3 DEIDtect Distributed Network Security Functions
DEIDtect’s flexible resource usage enables distributed network security functions. One possible

scenario could involve a cloud vendor or a large entity, such as a university, company, or government

with a large private internal cloud, offering elastic cloud-based security functions to internal or

external customers. Assuming a fully DEIDtect-enabled network and cloud, i.e., DEIDtect controlled

SDN in both enterprise and cloud, internal customers can be readily served by dynamically exposing

selected tap points to cloud-based security tools. Serving external customers will be possible by

similarly deploying DEIDtect technology in the customer network and utilizing wide-area SDN

infrastructure (or at least semistatic predefined circuits) between the customer network and the cloud

location.

Another scenario might involve a university or company with a number of remote sites, i.e., small

campus sites, field stations or clinics. With the current set of security tools, security administrators

rarely have the ability to deploy tap infrastructure with a dedicated feed into the central campus

security tool suite. With a DEIDtect-enabled network and cloud, this scenario becomes feasible.

A corollary scenario might involve a university or entity that has “sister” sites or smaller campuses

with a tight business, academic, research, or healthcare association. These discrete sites may wish

to leverage common computational resources, security tools, or expertise. This arrangement would

allow for greater visibility into emerging security concerns, thus providing a foundation for detecting

more subtle attacks.

2.2 DEIDtect Architecture
DEIDtect exploits two current trends, namely, the increased use of cloud computing technologies

to consolidate compute resources and the increasing deployment of software-defined networking

(SDN) technology in enterprise, cloud, and wide area networks. DEIDtect uses cloud computing

resources to flexibly and efficiently deal with the computing needs of security tools, like IDS and

IPS, while SDN is utilized to flexibly and safely tap and distribute network traffic between monitored

networks and IDS/IPS instances.

A high-level view of DEIDtect architecture is depicted in Figure 2.1. The figure shows three

campus or enterprise networks, i.e., Sites A, B, and C, of which sites A and C also have their own

cloud computing platforms. The different sites are interconnected via a wide-area network (WAN).

For ease of exposition, we assume that all networks in question are SDN enabled, although hybrid

deployments, e.g., with static or dynamic WAN circuits, would certainly be feasible. We note that

the sites could be distributed locations of the same institution, such as a university, or they could

be associated with different organizations that have a collaboration or business arrangement to work

together on security functions.

6

WAN

DEIDtect

DEIDtect

DEIDtect

Site A

Site B

Site C

Compute node
Network node
Other endpoint

Cloud Platform
Campus Network Cloud Interaction

Network Interaction

Inter- DEIDtectIDS Interaction

1

2
3

4

5

Figure 2.1: DEIDtect Architecture

Given this underlying physical infrastructure, DEIDtect architecture involves DEIDtect systems

deployed at each site. As shown in Figure 2.1, the DEIDtect system at each site is involved with

five types of interactions. DEIDtect interacts with: (1) The campus or enterprise network to realize

network taps and to transfer tapped traffic towards the IDS/IPS systems in the cloud infrastructure.

(2) The cloud computing platform to realize IDS/IPS instances and to manipulate the distribution of

tapped traffic towards these instances. (3) The IDS/IPS instances in the cloud to control their intrusion

detection and prevention functionality. (4) Remote DEIDtect systems to request and manipulate

cloud, network, and IDS/IPS resources at remote sites. (5) The wide-area network to realize intersite

connectivity.

2.2.1 DEIDtect System
A system level view of DEIDtect is depicted in Figure 2.2. At the center of the system is the DEI-

Dtect Core Module, which interacts with and orchestrates actions across other system components.

Specifically, as shown in Figure 2.1 and described earlier, the Core Module interacts with five other

components in the system: (1) the Enterprise SDN Network to create tap points in the network and

to deliver monitored traffic to the cloud, (2) the Cloud Computing Platform to instantiate cloud-based

IDS/IPS instances and to route traffic from the network to the appropriate IDS/IPS instance, (3) the

instantiated IDS/IPS instances to orchestrate intrusion detection and prevention, (4) remote DEIDtect

systems to enable distributed security functions, and (5) the WAN SDN network to allow delivery of

7

DEIDtect Core
Module

DEIDtect
Application

DEIDtect
Network Module

Network
Applications
& Services

 SDN Control API

DEIDtect
Cloud Module

 SDN Control API

Cloud Network
Functions

Other
Cloud

Resources

Cloud Control

Cloud SDN Network

Cloud Computing Platform

DEIDtect

Enterprise SDN Network

DEIDtect Core
Module

Cloud Network
IDS/IPS

Cloud based IDS/IPS

IDS/IPSIDS/IPS

Remote DEIDtect

WAN SDN

DEIDtect API

1

2

3

4

5

Figure 2.2: DEIDtect System

tapped network traffic between distributed locations.

Figure 2.2 also shows how DEIDtect components (shaded boxes) integrate with existing systems,

specifically the cloud computing platform and the enterprise SDN network. As shown in the figure,

a DEIDtect Network System module associated with the enterprise SDN network allows DEIDtect

to tap the enterprise network. Similarly, the DEIDtect Cloud System module allows DEIDtect to

distribute tapped traffic to appropriate IDS/IPS instances in the cloud.

2.3 DEIDtect Network System Module
We assume that the enterprise network in question is SDN enabled and specifically supports

OpenFlow version 1.1 (or higher). Figure 2.3 shows a more detailed view of the submodules, which

is composed in DEIDtect Network System module. It consists of (a) SafeTap module to safely tap

arbitrary network traffic at arbitrary points in the network, (b) Bandwidth Monitor module to calculate

the real time usage of the tap ports, (c) White Listing module to install drop rules based upon the

feedback from the IDS and (d) Rate Limiter module to increase/decrease the rate of tap traffic being

sent from the port based upon the current rate of service traffic at that port. This will be discussed in

more detail in the coming sections.

A key DEIDtect requirement is to be able to safely tap arbitrary network traffic at arbitrary points

8

DEIDtect
Network Module

Network
Applications
& Services

 SDN Control API

White Listing

SafeTap

Rate Limiter

Bandwidth
Monitor

Enterprise SDN Network

a b

c d

Figure 2.3: DEIDtect Enterprise Network Modules

in the network without impacting existing traffic flows. Further, tapped traffic needs to be transpar-

ently transported to the cloud platform for processing by the IDS/IPS. Transparent transportation of

tapped traffic in DEIDtect is achieved by adding a tunneling tag (e.g., a VLAN tag) to tapped traffic

at the tap switch, and by routing the tagged traffic to the cloud platform. DEIDtect takes advantage

of the multitable functionality available in OpenFlow version 1.1 (or higher) to achieve safe tapping.

Specifically, for flows to be tapped, the normal (existing) flow entry is augmented so that in addition

to the existing flow actions, the flows are also routed to an IDS-specific flow table, which adds the

tunneling tag and forwards the packet towards the cloud platform.

Figure 2.4 shows a single-switch tapping example. The top part of the figure shows an existing

flow entry that forwards packets received on port 5 out on port 3. The bottom part of the figure shows

the modified existing flow entry which continues to output packets on port 3, but also copies the

packet for processing to the IDS table goto IDS table. The IDS table entry, in turn, adds a VLAN tag

and sends the packet out on port 2 to complete the tapping action.

Algorithm 1 shows the pseudo-code associated with flow table manipulation to realize tapping.

The egressSafeTap function applies the safe-tap flow modification for the specified switch and out

port to be monitored. The algorithm goes through all the tables in the switch and finds all the flows

which have the specified out port in its action field. It then adds the goto IDS table instruction in

the flow to create a copy of packets, and creates a flow in the IDS table with the same match and

action instructions, along with VLAN add instruction, and it pushes the packet out via the computed

9

Network Switch
Table 0

Match

inport = 5

Action

Output = 3, goto IDS_table

Table : IDS

Match

inport = 5

Action

push_vlan = 100, output = 2

Port 5

Port 3

Port 2

Network Switch
Table 0

Match

inport = 5

Action

Output = 3

Table : IDS

Match

-

Action

-

Port 5

Port 3

Port 2

Existing flow entry

Modified flow entry and tapped flow

Existing Traffic Tap Traffic

Figure 2.4: DEIDtect: Flow Tables Modification

path to send towards the IDS in the cloud. The flows created in the IDS table are associated with a

rate-limiting meter entry created for the specified port for rate limiting the tap traffic. The intermediate

switches in the computed path are installed with pass-through flows for the newly created VLAN, and

packets are forwarded towards the IDS in the cloud. This basic approach can be readily extended to

allow more specific traffic to be delivered to the IDS by specifying more refined match instructions in

the IDS table flows.

2.3.1 Adaptive Load Balancing (ALB)
The installation of a ‘tap point’ is referred to as a monitoring instance. The monitoring instance

is comprised of the Enterprise network flows installed in each of the switches and the Cloud instance

associated with the ‘tap point’. The DEIDtect safe tapping is done using the same network as the

network services of the Enterprise network, following a shared network approach to send the ‘tap

traffic’ to the IDS instance. In order to handle the rate of tap traffic being delivered, DEIDtect requires

the following complementary approaches: (1) decrease/increase the traffic sent from network to the

IDS (Adaptive Rate Limiting), (2) increase the number of IDS instances to handle the increased traffic

load (Adaptive IDS Scaling).

Adaptive Load Balancing (ALB) is comprised of the following mechanisms. (1) ALB rate-

10

Algorithm 1 Tap flow table manipulation

1: procedure EGRESSSAFETAP(tapTable, srcSwitch, srcPort, dstSwitch, flowLabel)
2: path← findPath(srcSwitch, dstSwitch)
3: while node in path do
4: if node == srcSwitch then
5: flowEntries← srcSwitch[Table = ALL]
6: for i, 1→ n do
7: if flowEntries[i].action[output] == srcPort then
8: meterID ← create mete(drop band) . rate-limiting TAP flow
9: add flow(goto table(,tapTable)

10: add flow(match:flowEntries[i].match,meter:meterID,
action:(push label(flowLabel),output:(node.nextPort)))

11: end if
12: end for
13: else if node == dstSwitch then
14: add flow(match:flowLabel,action:(pop label(flowLabel),

output:(node.nextPort))
15: else
16: add flow(match:flowLabel,output:(node.nextPort)
17: end if
18: end while
19: end procedure

limiting to increase or decrease the tap traffic rate as per the service traffic rate, (2) ALB-Whitelisting

creates a drop rule for a flow in the tap traffic which is classified as normal traffic by the IDS, (3)

ALB-IDS scaling which creates more IDS VM to handle more traffic for analysis.

The ALB-Rate-limiting and Whitelisting are explained using Figure 2.5. As shown in Fig-

ure 2.5 (a), there are many monitoring instances installed, highlighted in different colors. Higher

number of monitoring instances cause the links to get congested quickly, causing the Enterprise

service disruptions labeled as ”Congestion” in the figure which is depicted as thick lines to show

higher tap-traffic rate. DEIDtect ALB-Rate-limiting runs in a periodic way to adjust the tap traffic

rate and ALB-Whitelisting controls the congestion of the IDS traffic from the IDS feedback. The IDS

executing in the Cloud platform (1) sends feedback to DEIDtect with the Whitelisting traffic and the

current load on the IDS instance. This is processed by the DEIDtect controller which (2) installs the

appropriate drop rules in the enterprise network. Figure 2.5 (b) illustrates the resulting reduction in

bandwidth usage of the Enterprise network after ALB takes place, which is labeled as ”Congestion

Free”, depicted as thin lines to show reduced tap-traffic rate.

2.3.1.1 ALB - Adaptive Rate Limiting
The DEIDtect has the flexibility to install many monitoring instances in the Enterprise network.

This can consume the network bandwidth at a higher rate, causing congestion. The monitoring

11

WAN

IDS2

IDS1

DEIDtect

Cloud
Control

Enterprise
Network
Control

Remote Site

Additional tap
point

IDS3

Additional tap
point

Congestion

(a)

1

2

WAN

IDS2

IDS1

DEIDtect

Cloud
Control

Enterprise
Network
Control

Remote Site

Additional tap
point

IDS3

Additional tap
point

Congestion Free

(b)

Figure 2.5: DEIDtect: Adaptive Load Balancing

instance allocates only a portion of the network bandwidth using the OpenFlow Metering feature,

and makes sure that there is no impact on existing service traffic. The monitoring instance traffic rate

is set as per the current traffic rate in the ‘tap point’, subtracting the monitoring instance metering

value, and the new value is calculated based upon Algorithm 2.

2.3.1.2 Additive Increase and Multiplicative Decrease - Link
Sharing

The algorithm monitors the bandwidth usage at each of the monitoring ports, and if the usage

is between threshold min and threshold max percentage, the meter table’s rate limit is reduced in a

multiplicative way, and if it is less than threshold min, the rate limit of the meter table is increased in

an additive way. This allows the service traffic to be forwarded without impact. The additive increase

and multiplicative decrease approach was inspired by the TCP congestion control Algorithm [9]. We

have used this approach to have fairness in the link sharing between service and tap traffic. And

also we want to be cautious about increasing the tap traffic rate, which can disrupt the service traffic.

Hence we have followed the Additive Increase and Multiplicative Decrease model.

12

Algorithm 2 Adaptive Traffic Reduction - Rate Limiting

1: procedure RATELIMIT(switch,meterID, bandwidth, usedBW, percentageInc)
2: maxRateLimit← bandwidth/2 . 50% of the bandwidth
3: rateInc← bandwidth ∗ percentageInc
4: rateLimit← OF.getMeterConfig(switch, meterID) . Openflow query to get meter drop

limit
5: if threshold min ≤ usedBW ≥ threshold max then
6: newLimit← rateLimit/2 . Multiplicative Decrease
7: else
8: if rateLimit = maxRateLimit then
9: return . Do nothing

10: end if
11: newLimit← rateLimit+ rateInc . Additive Increase
12: if newLimit ≥ maxRateLimit then
13: newLimit← maxRateLimit
14: end if
15: end if
16: OF.meterMod(switch, meterID, newLimit)
17: end procedure

2.3.1.3 ALB - Whitelisting
This metering table rate-limiting feature drops the packet as per the switch implementation and

hence we do not have any control over how the packet is dropped. But DEIDtect can reduce tap traffic

volume in a smarter way. The ‘tap traffic’ for each monitoring instance is comprised of both normal

and abnormal traffic. Since we have the IDS, it is possible to identify the normal traffic. The normal

traffic identification is supported by most of the IDSes, and this is used by DEIDtect to accomplish

the way the traffic is dropped in the Enterprise network for the monitoring instance. The IDS is

configured to send drop request to DEIDtect to drop selected normal traffic at the ‘tap point’ which

ensures that the packets which go past the rate-limiter are part of the abnormal traffic rather than the

normal/whitelist traffic. This is referred to as traffic Whitelisting. The pseudo-code to facilitate the

traffic throttling via Whitelisting is given in Algorithm 3.

The algorithm installs a drop rule with the traffic type in the safe tapping IDS table, as in Fig-

ure 2.4, which results in unwanted traffic being dropped before the metering could be applied. Drop-

ping packets in this manner at the tap point ensures that only nonwhite-listed traffic is being sent to

the IDS. These Whitelisting drop rules are set with a timeout to resume normal operation again, and

Algorithm 3 Adaptive Traffic Reduction - Whitelisting

1: procedure WHITELISTTRAFFIC(switch, whitelist type)
2: InstallDropRule(switch,table=tapTable,

match=(whitelist type), timeout = safeTapTimeout) . configurable timeout
3: end procedure

13

if the IDS picks up the whitelist traffic again, the drop rules are installed. This timeout is to make sure

that the drop rule does not cause the traffic type to forever remain whitelisted.

2.4 DEIDtect Cloud System Module
We assume that the enterprise network in question is SDN enabled. The DEIDtect Cloud System

module has the following functionality: (1) to create an IDS instance for a monitoring instance, (2) to

deliver the traffic from the cloud gateway to the associated IDS instance, and (3) to increase/decrease

IDS instances associated with monitoring instance. Figure 2.6 shows the module level details of

DEIDtect Cloud System: (a) DEIDtect Cloud Controller module to create the IDS instance, (b)

DEIDtect Cloud Network module to create tunnel path for the tap traffic, and (c) DEIDtect ALB

IDS scaling module to scale up/down the number of IDS instances based upon the VM processor

usage.

DEIDtect Cloud System module creates an IDS VM with Whitelisting and cpu usage reporting

configuration using the DEIDtect Cloud Controller module. DEIDtect Cloud Network module sets

up the tap traffic delivery by finding the topology of the cloud network and finding the shortest path

between the cloud gateway and the IDS instance, and installing the required flows. The flow instal-

lation procedure checks for existing flows and splits the traffic at the lowest possible subtree. This

also takes into consideration that the Virtual Machine’s (VM) existing traffic must not be disrupted.

DEIDtect ALB-IDS scaling monitors the IDS usage and scales up/down the number of IDS instances

to handle the traffic for the associated monitoring instance. The Whitelisting request from the IDS are

DEIDtect System Cloud Module

 SDN Control API

Cloud
Network

FunctionsOther
Cloud

Resources

Cloud Control

Cloud SDN Network

Cloud Computing Platform

DEIDtect API

DEIDtect
Cloud

Controller

DEIDtect
Cloud

Network

DEIDtect
ALB - IDS

scaling
a b c

Figure 2.6: DEIDtect Cloud System Modules

14

sent to the DEIDtect Core module and that delegates it to the associated DEIDtect Network module

in local/remote site based upon the monitoring instance information.

As described in Section 2.2, the DEIDtect Cloud System module forms part of and extends the

functionality of an SDN-capable cloud computing platform. We abstracted DEIDtect Cloud Network

System module functionality into a higher level API that a cloud control architecture would expose

to allow DEIDtect to orchestrate cloud network functionality:

1. createTrafficRoute(tunnel id, traffic type, VM instance) tells the cloud controller to create an

isolated tunnel flow between the cloud gateway switch and the VM instance. Traffic tagged with

tunnel id in the cloud gateway, with the particular traffic type delivered to the VM instance.

2. removeTrafficRoute(tunnel id, VM instance) removes all the flow entries which were installed

for createTrafficRoute API for the particular VM instance identified by the tunnel id.

3. removeAllRoutes(VM instance) removes all the flow entries associated with that VM instance.

In other words, removes all flows installed for createTrafficRoute API calls, which are associ-

ated with VM instance.

The above given higher level DEIDtect cloud API maps to the lower level API of the Cloud

System module, which is part of the cloud SDN network as shown in Figure 2.2. The lower level API

exposes the following functions:

1. tapTunnelEntry(src switch id, dst switch id, dst port, vlan id): This creates a tunnel from the

source switch to the destination switch with the given vlan id. The dst port specifies the port

which is connected to the VM with respect to the cloud environment, and at the destination

switch the vlan id tag is removed and the traffic is delivered as it is seen by the actual destina-

tion.

2. tapTunnelDelEntry(src switch id, dst switch id, dst port, vlan id): This removes the tunnel

created by tapTunnelEntry.

3. splitTunnelEntry(src switch id, dst switch id, dst port, vlan id, traffic type): This splits the

traffic tagged with vlan id from the source switch and pushes the specified type of traffic type

to the destination switch via the dst port.

4. splitTunnelDelEntry(src switch id, dst switch id, dst port, vlan id, traffic type): This removes

the changes done by splitTunnelEntry.

15

2.4.1 ALB - Adaptive IDS Scaling
The traffic rate-limiting and Whitelisting are two of the actions taken by DEIDtect’s ALB. Another

action is the AutoScaling of IDS instances. This is used in scenarios where the bandwidth availability

in the Enterprise Network is sufficient for a monitoring instance but the IDS instance associated

with it gets overloaded by processing all the tapped traffic. The monitoring instance requires more

computing resources to handle the traffic. DEIDtect have the capability to provision such needs of

adding more worker nodes to the IDS cluster architecture as a part of this work. The pseudo-code to

facilitate the auto scale is given in Algorithm 4.

The algorithm increases the number of worker nodes along with the network topology for a cluster

IDS setup if the VM processor utilization is higher than cpu threshold.

Algorithm 4 ALB - Dynamic Auto Scaling

1: procedure AUTOSCALING(TAPID, currentUtilization)
2: if currentUtilization ≥ cpu threshold then
3: nodes← getCloudInstance(TAPID).nodeCount()
4: workerInfo← updateCloudInstance(TAPID,workers = nodes+ 1)
5: updateMonitorInstanceInfo(workInfo)
6: end if
7: end procedure

CHAPTER 3

DEIDtect USE CASES

Different scenarios enabled by DEIDtect are depicted in Figure 3.1. Figure 3.1 (a) shows the

default case that mimics current common practice. As shown in the figure, an IDS instance is assumed

to be operational in the (general purpose) cloud environment. This IDS is fed by a single tap point

at the network ingress/egress. A key difference between DEIDtect and conventional deployments is

depicted in Figure 3.1 (b), where a security professional, or the system by itself, determines the need

to realize another tap point inside the campus network and create another IDS instance (IDS2) in

the cloud platform to monitor this new tap point. Finally, Figure 3.1 (c) depicts an intersite scenario

whereby another IDS instance (IDS3) is realized in the cloud, and in this case traffic from a network

tap at a remote site is being monitored by the new IDS instance.

The setup in the last scenario accommodates several different use cases. For example, the security

administrator of a remote site may wish to have traffic from its network be analyzed by a more sophis-

ticated setup elsewhere. E.g., site B in Figure 2.1, which does not have its own cloud infrastructure,

might routinely outsource the security functions of its network to sites A or C. Or site C might run

its own Snort instance, but might have a need to perform more detailed analysis using a Bro instance

administered at site A. Alternatively, the security administrator of site A in Figure 2.1 might want to

investigate an attack originating from site B, and since site B does not have a cloud platform to allow

dynamic instantiation of IDS instances, the remote tap traffic is relayed back to site A.

Note that the scenarios illustrated in Figure 3.1 and discussed here are example configurations.

A key strength of DEIDtect is its flexible use and manipulation of distributed resources related to

security which enables many alternative scenarios.

From an SDN perspective the DEIDtect architecture involves several types of inter-SDN domain

interactions. First, within each site the cloud platform and campus network represent two separate

SDN domains. As shown in Figure 3.1 (a), the campus network is directed by an enterprise network

controller to realize the functionality and policies associated with such an environment. The cloud

network, on the other hand, is controlled by a cloud control architecture to realize cloud-specific

functionality. The inter-SDN requirement here involves DEIDtect coordinating with both the network

17

WAN

IDS2IDS1

DEIDtect

Cloud
Control

Enterprise
Network
Control

WAN

IDS2

IDS1

DEIDtect

Cloud
Control

Enterprise
Network
Control

Remote Site

Remote Site

(a)

(b)

Tap point

In cloud
distribution

WAN

IDS3

IDS2

IDS1

DEIDtect

Cloud
Control

Enterprise
Network
Control

Remote Site

(c)

WAN
Network
Control

Additional tap
point

DEIDtect

Remote DEIDtect
instance

Figure 3.1: DEIDtect Network Functionality

18

control and cloud control entities, i.e., across two different domains, to realize distributed elastic

detection. Specifically, this includes creating tapping resources in the campus network, creating

distribution resources in the cloud network, and finally, orchestrating the interconnection of these

resources between the two domains. This is depicted in Figure 3.1 (a), with the solid line intercon-

necting the tap resources in the campus network with the distribution resources in the cloud platform,

respectively depicted as different types of dotted lines.

A similar set of inter-SDN domain interactions are involved with the intersite DEIDtect function-

ality depicted in Figure 3.1 (c). First, the DEIDtect systems in each site need to interact to realize

the required functionality, e.g., setting up a (possibly remote) network tap or instantiating a local

or remote IDS instance. Following these application-specific interactions, DEIDtect again needs to

orchestrate the connection of these sets of resources to realize end-to-end functionality. In this case,

however, the orchestration would typically involve interaction with a network controller responsible

for interconnecting the distributed sites across the WAN.

CHAPTER 4

RELATED WORK

DEIDtect combines cloud computing and software-defined networking across a variety of do-

mains to realize a distributed network security framework. We touch upon the most relevant related

work below.

4.1 SDN in Cloud Networking
The use of OpenFlow to develop a networking infrastructure for the cloud which can support

millions of IP and MAC addresses by virtualizing layer 2 network has been proposed [22] . The

Cloud Broker work [16] uses OpenFlow to connect multiple data centers via flow-based networking.

Support for SDN in the popular OpenStack cloud has also been developed [8]. The Inter-Cloud

Network Gateway [24] provides network control and configuration capabilities over a network of

distributed cloud resources. CloudWatcher [28] uses OpenFlow to provides monitoring services for

large and dynamic cloud networks. In contrast to these works, DEIDtect exposes an SDN cloud

abstraction to allow control of the delivery of network traffic to specific virtual machine instances in

the cloud.

4.2 SDN in Security
SDN has also been used in the context of enterprise security functionality. Microsoft’s De-

mon [12] does the traffic monitoring using OpenFlow but requires hardware to be installed, whereas

the goal of DEIDtect is to avoid the installation of special hardware for monitoring. OpenFlow capa-

bilities have been used for the distribution of traffic load from routers into multiple IDS instances [20].

This approach uses SDN in localized fashion with a static set of IDS resources, lacking DEIDtect’s

network-wide tapping and elastic compute capabilities. Perhaps most related to DEIDtect’s enterprise

and cloud interworking, the use of SDN to enable communication between enterprise and cloud plat-

forms and to enable intercloud workflow is suggested in [7]. DEIDtect realizes a framework to enable

a security-related workflow that spans across distributed cloud and enterprise instances. To enable

the wide-area part of our architecture, DEIDtect also assumes the use of interdomain “stitching”

protocols, either using SDN technology [18] or more conventional dynamic circuit establishment [13].

20

DEIDtect also follows in the footsteps of a variety of distributed security efforts over a long

period of time. Dshield [5] is part of the SANS’ Internet Storm Center program, allowing firewall

users to share intrusion detection information so as to analyze and make it publicly available. Snapp et

al. [11] demonstrated a prototype of Distributed IDS (DIDS) that combines distributed monitoring and

data reduction with centralized data analysis (through the DIDS Director). A Distributed Intrusion

Prevention System (DIPS) has been proposed by Sproull et al. [29]. Our work is complementary

to these approaches, focusing on the flexible use of network and cloud resources across different

domains to realize security functions in a distributed setting.

4.3 Scalability of Network Security Tools
The scalability of security tools has been addressed by a number of earlier works. For example,

IDS clusters to improve the scalability of intrusion detection have been proposed [14, 30]. In [14] a

load balancing system is proposed which splits responsibilities of a node to others, replicates traffic

to NIDS clusters and aggregate results to split expensive processing at the NIDS. The NIDS cluster

work [30] realizes highly scalable intrusion detection by running individual IDS instances in a cluster,

exchanging low-level information among instances. With a complete DEIDtect realization we expect

to use similar approaches for the DEIDtect cloud-based IDS instances.

4.4 IDS in Cloud
IDS/IPS in the cloud has been proposed to provide security for cloud tenants [21, 23]. A cooper-

ative IDS network is proposed in [21] to prevent DDOS attacks on the cloud. The integration of an

IDS into a cloud environment was demonstrated using Eucalyptus [23]. The focus of these existing

approaches is on providing cloud security. In contrast, DEIDtect uses the elastic properties of cloud

for the security of enterprise networks.

4.5 SDN - Adaptive Load Balancing
SciPass [6] proposes a reactive approach of installing white-listing flows sent towards Firewall

from IDS response. DEIDtect’s ALB uses the similar approach to realize the throttling feature on

a broader scale rather than at a single point of the network. It is done in a distributed environment

across domains, which gives much more control on the traffic management towards the IDS.

CHAPTER 5

DEIDtect IMPLEMENTATION

5.1 DEIDtect Core
The DEIDtect Core is the heart of DEIDtect framework and is responsible for orchestration of

the DEIDtect Enterprise Controller and DEIDtect Cloud Controller, which dispatches the necessary

actions for adding or removing monitoring instances. It listens for any remote requests to allocate

resources in the local cloud domain, and issues remote request.

5.1.1 DEIDtect Core - Local Tap Work Flow
Figure 5.1 shows the workflow for a local monitoring instance add request handling in DEIDtect.

It also shows all the submodules in each of the domain systems and all the interactions that are done

for a monitoring instance creation.

For a Local Site, the “User Tap Request” to DEIDtect Core initiates a “Create VM” request to

the DEIDtect Cloud System via the DEIDtect Cloud API module. DEIDtect Cloud API requests the

DEIDtect Cloud Helper to create the IDS VM with all the necessary configurations for the Whitelist

and CPU usage reporting to the DEIDtect Core framework. It also sets up the tunnel for the tap

DEIDtect Network
System DEIDtect Core DEIDtect Cloud

System

TAP Manager Bandwidth
Rate Limiter

White-List
Manager

DEIDtect
Cloud API

DEIDtect
Cloud Helper

DEIDtect
Cloud Controller

DEIDtect
Network Helper

DEIDtect
Compute Helper

VM

User Tap
Request

Start Tap

Register
Meter

Create
Tap VM Create

IDS VM

Tunnel Entry
Setup

Tunnel & iptable
 End Setup

WhiteList(traffic_type)
Install Drop Rule

Figure 5.1: DEIDtect Local Tap Request - Work Flow

22

traffic by sending requests to the DEIDtect Network Helper and DEIDtect Compute Helper. After

the IDS VM and the tunnel are set up in the Cloud, DEIDtect Core initiates a “Start Tap” request

to the DEIDtect Network System’s Tap Manager submodule. The Tap Manager submodule starts

the Bandwidth Rate Limited request to manage the tap traffic. This completes a single “User Tap

Request.” The IDS VM reports the traffic to whitelist to the DEIDtect Core whenever it detects a

normal traffic flow, which initiates an “Install Drop Rule” to the Whitelist Manager submodule in the

corresponding DEIDtect Network System.

5.1.2 DEIDtect Core - Remote Tap Work Flow
Figure 5.2 shows the workflow for a remote monitoring instance add request handling in DEID-

tect.

In case of a Remote Site, the “User Tap Request” to a DEIDtect Core (remote) initiates a “Remote

Request” to the DEIDtect Core (local) for Cloud Resource allocation. Then the IDS VM creation

follows the same work flow as the “Local User Tap Request.” The DEIDtect Core (local) initiates a

“Create VM” request to DEIDtect Cloud System via DEIDtect Cloud API module. DEIDtect Cloud

API issues a request to the DEIDtect Cloud Helper. DEIDtect Cloud Helper creates the IDS VM

with all the necessary configurations for the Whitelist and CPU usage reporting to the DEIDtect

framework. It also sets up the tunnel for the tap traffic by sending a request to the DEIDtect Network

Helper and DEIDtect Compute Helper. After the IDS VM and the tunnel are set up in the Cloud,

DEIDtect Core (remote) initiates a “WAN tunnel request” to the WAN Controller to setup the tunnel

between the Remote Site gateway node and the Local Site Cloud Network Node, and a “Start Tap”

request to the DEIDtect Network System’s Tap Manager submodule. The Tap Manager submodule

starts the Bandwidth Rate Limited request to manage the tap traffic, which completes a single remote

“User Tap Request.” The IDS VM reports the traffic to whitelist to the DEIDtect Core (local).

Whenever this is detected, this is relayed to the DEIDtect Core (remote). Which in turn initiates

an “Install Drop Rule” to the Whitelist Manager submodule in the corresponding DEIDtect Network

System.

The event graph in Figures 5.1 and 5.2 shows the events that are taking place in each of the

modules of DEIDtect framework to service a single user request for a local and remote site monitoring

instance creation/deletion. The traffic evaluation graph is shown in Sections 6.3 and 6.4.

5.2 DEIDtect Network System
The DEIDtect Network System has been built as a ryu application module. The assumptions and

required configuration are that the ryu controller has the basic simple switch application enabled to

apply the initial flows between the hosts in the enterprise network. The DEIDtect Network System

23

D
EI

D
te

ct
 N

et
w

or
k

Sy
st

em
(R

em
ot

e)
D

EI
D

te
ct

 C
or

e
(L

oc
al

)
D

EI
D

te
ct

 C
lo

ud
Sy

st
em

(L
oc

al
)

TA
P

M
an

ag
er

Ba
nd

w
id

th
R

at
e

Li
m

ite
r

W
hi

te
-L

is
t

M
an

ag
er

D
EI

D
te

ct

C
lo

ud
 A

PI
D

EI
D

te
ct

C

lo
ud

 H
el

pe
r

D
EI

D
te

ct

C
lo

ud
 C

on
tro

lle
r

D
EI

D
te

ct

N
et

w
or

k
H

el
pe

r
D

EI
D

te
ct

C

om
pu

te
 H

el
pe

r

VM

St
ar

t T
ap

R
eg

is
te

r
M

et
er

C
re

at
e

Ta
p

VM
C

re
at

e
ID

S
VM

Tu
nn

el
 E

nt
ry

Se

tu
p

Tu
nn

el
 &

 ip
ta

bl
e

 E
nd

 S
et

up

W
hi

te
Li

st
(tr

af
fic

_t
yp

e)
R

el
ay

 D
ro

p
R

ul
e

D
EI

D
te

ct
 C

or
e

(R
em

ot
e)

U
se

r T
ap

R

eq
ue

st

R
em

ot
e

R
eq

ue
st

In
st

al
l D

ro
p

R
ul

e

Lo
ca

l S
ite

R
em

ot
e

Si
te

W
AN

 C
on

tro
lle

r

W
AN

 tu
nn

el

re
qu

es
t

Fi
gu

re
5.

2:
D

E
ID

te
ct

R
em

ot
e

Ta
p

R
eq

ue
st

-W
or

k
Fl

ow

24

requires initial configurations of the hosts connected to the switches and the local/remote gateway

switch to which the tap traffic is to be tunneled. This is used to find out the tunnel path from the

switch where the tap is to be setup to the local/remote gateway switch to which the traffic is to be

delivered. DEIDtect Network System module takes the topology information from a configuration file

along with the connected host, cloud gateway, or remote DEIDtect information. It can be extended to

get the network topology by running the topology discovery application which comes along with ryu

as a native application. This is just to keep things simple in terms of the implementation and does not

change any of the claims made for DEIDtect framework.

The DEIDtect Network System is written as a set of ryu application modules. Figure 5.3, shows

the DEIDtect Network System in a sample Enterprise environment, with its core components shown

in grey boxes (1) Tap Manager - Creates duplicate traffic of specified flows with VLAN tag. (2)

Adaptive Rate Limiter - for rate limiting the tap traffic. (3) Whitelisting Module - Installs drop rules

of whitelist traffic from IDS VM (feedback loop). (4) Bandwidth Monitor - Calculates the bandwidth

usage of the tap port for the Adaptive Rate Limiter module.

5.2.1 ryu-Tap Manager
The ryu Tap-Manager application is the core module responsible for creating the safe tap modifi-

cation of the flows as per the request. The implementation requires initial flows to be present to create

safe tap flows. The tap flow can be installed to monitor an entire port traffic or a specific traffic type on

the specified port of the switch. The module communicates with the DEIDtect Core System module

via the REST interface in public IP space. For each monitoring instance an associated Drop Meter

(OpenFlow metering) is created for rate-limiting the ‘tap traffic’ alone. The meter table serves as the

way to rate-limit the amount of traffic being sent to the IDS VM in the cloud. But this rate-limiting

Enterprise Network

Host 2

Switch1

Host 1

Host 3 Switch2

Switch3

DEIDtect Network
System

(1) ryu-TapManager

(2) ryu-RateLimiter

(3) ryu-WhiteListing

(4) ryu-Bandwidth
Monitor

Figure 5.3: DEIDtect Network System - Enterprise Domain

25

is purely switch-dependent, and there is always high chance of losing useful traffic being sent to the

IDS. This will be addressed by the Whitelisting module in the section below. The management of the

Drop Meter is done by the Adaptive Rate Limiter module, explained in the upcoming section.

5.2.2 ryu-Adaptive Rate Limiter
The ryu Adaptive Rate Limiter application comes into play when there is an active monitoring

instance. It runs periodically to check whether the service traffic usage is higher or lower than the

tap traffic usage. Based upon the usage, it either increases the tap traffic rate in case of low service

traffic usage or decreases the tap traffic rate in case of high service traffic usage. The traffic dropped

by the metering is purely switch-based and one does not have any control over the kind of traffic that

is dropped. This is a key factor, as the current IDSes requires all the data possible for proper detection

of intrusions. Hence we have the Whitelisting module as part of DEIDtect Network System module,

which tries to push as much useful ‘tap traffic’ for IDS analysis.

5.2.3 ryu-Whitelisting
The DEIDtect feedback loop from the IDS VM is used to accomplish the Whitelisting of traffic

towards the IDS. This ensures that the traffic being rate-limited by the meter table is useful for the IDS

to detect anomalies. The ryu Whitelisting application has a REST interface which accepts the type

of flow to be dropped for the specified tap port. The feedback loop greatly helps to achieve greater

accuracy of IDS detection in the restricted resource environment of DEIDtect. The Whitelisting

requests are sent by the DEIDtect Core System module as described in the design of the framework,

as the IDS VM cannot directly contact the associated DEIDtect Network System module because of

the different domains they reside in. The Whitelist request from IDS is sent to the DEIDtect Core and

relayed to the DEIDtect Network System if it is a local system or Remote DEIDtect Core instance of

the associated monitoring instance.

5.2.4 ryu-Bandwidth Monitor
The ryu Bandwidth Monitor application is used to poll for switch port statistics to calculate traffic

being sent out on the switch ports. This is used to calculate the amount of service traffic that is being

sent to that port, and the rest of the unused bandwidth can be used to send the tap traffic. Since this

information is only required when there is an active tap port, the bandwidth monitoring is done only

when there is an active monitoring instance.

5.3 DEIDtect Cloud System
The cloud environment being used for DEIDtect is OpenStack [26]. The deployment information

is shown in Figure 5.4.

26

Cloud Network

DEIDtect Cloud
Controller

OpenStack
Network Node

OpenStack
Compute Node

LAN
Switch

(1) DEIDtect Cloud
API

(2) DEIDtect Cloud
Controller

(3) DEIDtect Cloud
Network Helper

(4) DEIDtect Cloud
Compute Helper

OpenStack
Compute Node

(4) DEIDtect Cloud
Compute Helper

OpenStack
Compute Node

(4) DEIDtect Cloud
Compute Helper

OpenStack
Cloud Controller Node

Figure 5.4: DEIDtect Cloud System - OpenStack

The OpenStack is deployed using the Open-VSwitch plugin to have the SDN environment in

cloud and uses Generic Routing Encapsulation (GRE) network isolation type. The OpenStack cloud

deployment for DEIDtect Cloud System is shown in Figure 5.4, for which the primary function is

to create/delete IDS VMs in the cloud and create a tunnel from the cloud gateway to the specific

VM created for the tap port. The way it accomplishes this is described in the sections below. The

communication between these modules happen on the OpenStack management network is shown in

Figure 5.5 for keeping the access within the local domain. Only the DEIDtect Cloud Controller can

be accessed by the DEIDtect Core module.

The OpenStack deployment consists of a Cloud Controller Node, a Network Node, and a set

of Compute Nodes, as shown in Figure 5.4. The figure shows only the datapath connection of the

network, but the deployment also has another LAN for the management network, which is not shown.

The DEIDtect Cloud System consists of the DEIDtect Cloud Controller comprising (1) the DEI-

Dtect Cloud API layer to enable external access to the DEIDtect Cloud System APIs (2) the DEIDtect

Cloud Controller Helper to orchestrate the underlying modules to accomplish the tunnel creation/dele-

tion and IDS VM instance creation/deletion, (3) the DEIDtect Cloud Network Helper to add/remove

OpenFlow rules for tunnel creation/deletion in the OpenStack Network Node and (4) the DEIDtect

Cloud Compute Helper to add/remove OpenFlow rules for tunnel creation/deletion in the OpenStack

Compute Node along with iptable rule installations.

5.3.1 DEIDtect Cloud Controller
This is a python module running on the OpenStack Cloud Controller Node which comprises

two sub modules DEIDtect Cloud API layer and DEIDtect Cloud Controller Helper, as show

27

 DEIDtect Cloud
Network Helper

Cloud Network
Functions

Cloud Compute
Functions

 DEIDtect Cloud
Compute Helper

Other
Cloud

Resources

Cloud SDN Network

Cloud Computing Platform

Cloud Control
 DEIDtect Cloud
Controller Helper

DEIDtect
Cloud API Native Cloud

API

1 2

3 4

REST interface on Management LAN

API interaction

Figure 5.5: DEIDtect Cloud System - Communication Path

in Figure 5.4 blocks labeled (1)&(2). The DEIDtect Cloud API layer, in Figure 5.4 (1) is a python

REST API layer for inter module communication. The DEIDtect Cloud Controller module uses

the OpenStack API to manage the instance creation, security group rule management for the IDS,

and interface configurations for it. The DEIDtect Cloud Controller module shown in Figure 5.4 (2)

creates a tunnel path from the OpenStack Network Node to the corresponding OpenStack Compute

Node where the VM is hosted. The OpenStack API provides rich capabilities to find the virtual (not

physical) network path through which the tunnel needs to be created. This is used by DEIDtect Cloud

Controller to install OpenFlow rules to create a tunnel path for tap traffic and modify iptables at the

compute node to allow all traffic to VM. The iptables custom rule is to allow tap traffic to be delivered

to the interface as the destination IP is not the IDS VM’s IP. The DEIDtect Cloud Controller module

(2) communicates with DEIDtect Cloud Network module (3) and DEIDtect Cloud Compute module

(4) to orchestrate the IDS and tunneling.

The IDS VM created has two different virtual network interfaces attached to it, one for VM

access via internet using the floating IP associated with the interface, and the second one for the ‘tap

traffic’ to be delivered to the VM. These two interfaces are part of different virtual networks created

in OpenStack.

The image used by the DEIDtect Cloud Controller to create the VM is preconfigured with BRO

IDS listening on second ethernet interface (eth1). The DEIDtect Cloud Controller also passes on

the cloud-init script to configure the BRO IDS in standalone/cluster mode depending upon the user

request. The cloud-init script is dynamically created as per the request, and it also has the DEIDtect

Network System module IP and the switch Data Path ID (DPID) for the Whitelisting module in the

28

VM to send the Whitelisting request to.

The communication between these modules happens over the OpenStack Management network,

making it accessible only within the closed network.

5.3.2 DEIDtect Network Helper
This is a python module, as shown in Figure 5.4 in the block labeled (3), which runs on the Open-

Stack Network Node and has a REST interface listening on the management network of OpenStack.

The OpenStack Network Node has three ovs-bridges br-ex, br-int, br-tun connected via veth pair

bridges called patch-ports as shown in Figure 5.6.

To create the cloud network tunnel for the tap traffic the flows are installed in all the three bridges

which are tagged with the VLAN ‘X’ seen in br-ex, and forwarded to br-int and onto br-tun. The

br-tun has all the GRE port end points connected to all OpenStack Compute Nodes. The GRE out

port is found using the destination IP of the destination OpenStack Compute Node. The VLAN tag

is removed and a tunnel ID ‘Y’ is set to send it via the GRE port. The VLAN is later used in the

OpenStack Compute Node to again recover the traffic after it is obtained from the GRE tunnel port

based on the tunnel ID. So each ‘tap traffic’ requires two distinct IDs, the tunnel ID and VLAN ID as

per the OpenStack’s current design for proper traffic delivery to the VM in the DEIDtect framework.

The OpenFlow rules installed for creating the tunnel to deliver the tap traffic to the Compute Node at

each of the ovs-bridges in the Network Node are shown in Figure 5.7. The deletion of the tunnel is

the removal of all the associated flows in each of the bridges.

eth0

To Public Network

br-ex

br-int

phy-br-ex

int-br-ex

veth pair

Open
vSwitch

br-tun

int-br-eth

phy-br-eth

eth1

internal
port

Figure 5.6: OpenStack Network Node - OpenVSwitch Bridges

29

deid0 eth0

Enterprise Cloud
Gateway (GRE) To Public Network

br-ex

br-int

phy-br-ex

int-br-ex

veth pair Open
vSwitch

br-tun

int-br-eth

phy-br-eth

TAP Traffic is forwarded to br-int
dl_vlan:’X’ => output:phy-br-ex

TAP Traffic VLAN ID is converted to
TUN ID and sent to corresponding

Compute Host GRE port
dl_vlan:’X’ => strip_vlan,set_tunnel:’Y’,

output:compute_gre_port

TAP Traffic is forwarded to br-tun
dl_vlan:’X’ => output:int-br-eth

eth1

internal
port

Figure 5.7: OpenStack Network Node - OpenVSwitch Under The Hood

5.3.3 DEIDtect Compute Helper
This is again a python module as in the Figure 5.4 block labeled (4), which runs on each of the

OpenStack Compute Node with a REST interface on the management network of OpenStack. The

OpenStack Compute Node has two ovs-bridges br-tun, br-int connected via veth pair bridges called

patch-ports, as shown in Figure 5.8.

As per the request from the DEIDtect Cloud Controller, the openflow rules are pushed to the

br-tun, and br-int. The br-tun consists of all the GRE port end points between OpenStack Compute

Node and OpenStack Network Node. The tunnel rules are installed in br-tun to forward the traffic

of the specified tunnel ID ‘Y’ and add the VLAN ‘X’ back to it and send it to the br-int. The br-int

then pops the VLAN tag and forwards it to the port on which the IDS VM is attached (eth1). The

OpenFlow rules installed for the tunnel traffic delivery to the VM at each of the ovs-bridges in the

Compute Node are shown in Figure 5.9. The deletion of the tunnel is the removal of all the associated

flows in each of the bridges.

The module also installs iptable rules associated with the interface. Though the controller has

created the necessary rules to allow all traffic to the IDS from any sources, the traffic has to be destined

to the IDS. The traffic with a different destination address will not be allowed to get delivered to the

VM. Hence the DEIDtect Compute Helper installs necessary iptables. This ensures that the interface

is put in promiscuous mode and all the tunnel traffic is sent to the IDS without the firewall drops.

Also, the VM’s iptables are to be configured to allow all ingress traffic in the monitoring interface

and deny all egress traffic. Cloud-init can be used during initial boot up of VM.

30

vm-eth0

VM

br-int
phy-br-ex

br-tun

phy-br-eth

eth1

eth0

veth pair

Open
vSwitch

internal
port

Figure 5.8: OpenStack Compute Node - OpenVSwitch Bridges

vm-eth0 vm-eth1

IDS VM

br-int
phy-br-ex

veth pair Open
vSwitch

br-tun

phy-br-eth

TAP Traffic is forwarded to br-int
stripping the VLAN ID
dl_vlan:’X’ => strip_vlan,

output:vm-eth1

TAP Traffic TUN ID is converted
back to VLAN ID and forwarded to

br-int
tun_id:’Y’ => mod_vlan_vid:’X’,

output:phy-br-etheth1

internal
portpublic

interface
BRO

interface

Figure 5.9: OpenStack Compute Node - OpenVSwitch Under The Hood

CHAPTER 6

DEIDtect EVALUATION

6.1 Questions answered by this evaluation
These are the questions we answer through this evaluation.

• How easy is it to setup a monitoring instance for a local site and a remote site?

• Does the IDS VM detect the anomalies using the tunnel traffic?

• How is bandwidth of tap traffic being managed at different service traffic rates?

• How does the Whitelisting feature of the framework act based upon Bro script and whitelist

target traffic?

• How does IDS scaling happen at different IDS VM usage?

• What is the impact of traffic rate limiting on IDS detection?

6.2 Experimental Setup
The testbed depicted in Figure 6.1 has been deployed in Emulab [15]. This figure shows the

assumed physical topology. The logical view of the testbed is shown in Figure 6.2. The local

and remote enterprise networks are emulated using Mininet [19] with CPqD [10] software switches.

The testbed comprises (a) Remote Enterprise Network, (b) External node which acts as Wide Area

Network (WAN), (c) Local Enterprise Network, and (d) OpenStack Cloud Environment.

The hardware switches supporting OpenFlow 1.3 protocol which were available for this work

did not support multitable and meter table, which are primary requirements in an enterprise network

environment for DEIDtect deployment. Hence we used the software switch which had the required

features for the enterprise network. The software switch was not used in Emulab nodes, as the

experiments in the testbed were isolated using VLANs, but DEIDtect also requires VLANs for its

isolation. Hence we used Emulab nodes to emulate an enterprise network using Mininet. Mininet has

the capability to attach physical interface bridges to the emulated network switches, which is how the

enterprise network is connected to the physical gateway interface.

32

Remote
Enterprise

Network

Local
Enterprise

Network

External
Node

Compute
Node

Compute
Node

Openstack Environemnt

GRE P2P Tunnel GRE LAN

a b

c dCloud
Controller

Node

Compute
Node

Network
Node

Figure 6.1: EMULAB Physical (Datapath) Testbed Topology

The cloud software used for the deployment is OpenStack [26] deployed in Emulab. This is open

source software which integrates OpenFlow-based software-defined networking (SDN), enabling

automation and provisioning of network services. OpenStack deployment for DEIDtect uses the Open

vSwitch plug-in and GRE tunneling network options for isolation. The reason to use GRE tunneling

instead of VxLAN is that the deployment is on top of Emulab. Since Open vSwitch is the only option

available in the OpenStack to enable SDN for network management, DEIDtect implementation could

not have metering support in the Cloud domain. The DEIDtect test-bed’s OpenStack deployment

has (1) a cloud controller node, (2) a network node, (3) three compute nodes connected in two LAN

networks. One of the LANs is for management traffic and the other is for datapath. The network node

is connected to an external node (in OpenStack terms) or WAN controller in the DEIDtect testbed

environment, which is for external internet access to the cloud VMs using floating IPs.

OpenStack manages virtual networks in the Cloud, which is done using Open vSwitch on the

nodes. Figures 5.6 and 5.8 show the bridges created and maintained by OpenStack for virtual network

management for VMs. To deal with scalability issues, recent releases of OpenStack uses an OpenFlow

Agents rather than a centralized controller to install flow entries, create logical ports, and complete

other Open vSwitch operations. Hence OpenStack deployment assumes connectivity between the

different nodes as show in Figure 6.1 “OpenStack Environment.” The current OpenStack does not

have any knowledge about the underlying network device and the topology deployed of the physical

access to the network devices.

Without the details of network topology of the devices in the cloud environment we cannot

implement the tap traffic rate-limiting in the cloud as done in enterprise network with metering.

33

DEIDtect Controller (REMOTE)

Mininet Enterprise Network (LOCAL)

Cloud Network
(LOCAL)

DEIDtect Controller (LOCAL)

InternetDEIDtect
Network
System

Host 2
Switch1

Host 1

Host 3 Switch2

Gateway Link

DEIDtect
Cloud

System
In

te
rn

et
 L

in
k

OS Ext
Node

Network
Node

Compute
Node

Compute
Node

Compute
Node

Switch3

REST API

REST API REST API

REST API
LAN

Switch

Mininet Enterprise Network (Remote)
DEIDtect
Network
System

Host 2
Switch1

Host 1

Host 3 Switch2

Switch3

Gateway Link

WAN
Controller

REST API

REST API

REST API

REST API

Local Site

Remote Site

Figure 6.2: DEIDtect Logical Testbed Topology

In a scenario where the same tap traffic is to be delivered to different set of IDS having different

monitoring tasks, the traffic cannot be split at the lowest possible network subtree (to avoid traffic

duplication). Hence the tap traffic management is restricted to the enterprise network domain of

DEIDtect architecture. This is not a limitation of the DEIDtect design but rather of the OpenStack.

The enterprise network node’s gateway link is connected to the OpenStack network node via a

GRE tunnel in case of a local site, as labeled in Figure 6.2. In case of a remote site, the enterprise

gateway GRE link is connected to the external node, which is considered logical Wide-Area Network

(WAN). The WAN controller runs in the external node and the external node is connected to the

OpenStack network node via GRE tunnel.

34

6.2.1 Tools Used
For generating UDP traffic, mausezahn (mz) and iperf are used. For Secure Ftp server, very

secure FTP daemon (vsftpd) is used. For traffic monitoring, the Bandwidth Monitor NG (bwm-ng)

tool is used. The CPU usage stats are obtained from th VM using Collection Daemon (collectd).

6.3 DEIDtect End-to-End - Local Tap
This section shows the end-to-end traffic flow when a local tap is created. We evaluate the end-

to-end working of framework for a local tap in the topology shown in Figure 6.3., i.e., a subset of the

evaluation setup shown in Figure 6.2.

6.3.1 Test and Result
The traffic is being monitored at each of the links labeled in Figure 6.3: (a) Service traffic

from Host 1 (H1) towards Host 3 (H3), (b) Service traffic towards Host 3, (c) Tap traffic towards

cloud gateway, (d) Tap traffic received by the OpenStack Network node, (e) Tap traffic sent to the

corresponding IDS VM on the OpenStack Compute Nodes. Figure 6.4 shows the network activity

graph of the labels (a) to (e) seen in Figure 6.3.

Figure 6.4 shows a number of time series events corresponding to the creation of a local tap point

on Switch 1 (S1) to monitor all traffic sent out on port 3 through the topology.

Mininet Enterprise Network (LOCAL)

Cloud Network
(LOCAL)

DEIDtect Controller (LOCAL)

DEIDtect
Network
System

Host 2
Switch1

Host 1

Host 3 Switch2

Gateway Link

DEIDtect
Cloud

System

Network
Node

Compute
Node

Compute
Node

Compute
Node

Switch3

REST API

REST API REST API

REST API
LAN

Switch

Local Site

a

b

c d

e

a

b

c

d

e

Service Traffic Source

Service Traffic Destination

Tap Traffic at Gateway

Tap Traffic at Cloud Network Node

Tap Traffic to IDS VM

Figure 6.3: DEIDtect Local Tap - Topology

35

 0

 1

 2

 3

 4

 5

 6

 200 300 400

M
b
/s

 o
u
t

(a) Source Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 200 300 400

M
b
/s

 o
u
t

(b) Destination Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 200 300 400

M
b
/s

 o
u
t

(c) Enterprise Network Gateway Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 200 300 400

M
b
/s

 o
u
t

(d) OpenStack Cloud - Network Node Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 200 300 400

M
b
/s

 o
u
t

Time

(e) OpenStack Cloud - Compute Node Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

Figure 6.4: DEIDtect Local Tap Event Graph

36

We now describe each event shown in the figure: (1) Traffic sent from H1 to H3. Figure 6.4 (a)

shows the traffic sent from H1. (b) shows traffic received on H3, (2) Create Tap point on S1 port

3, Figure 6.4 (c) shows tap traffic out of the gateway node, (d) shows tap traffic received by the

OpenStack Network Node and (e) shows tap traffic sent to the IDS VM created for the corresponding

tap point.

From the results we can see how the tap traffic is tunneled towards the IDS VM for a local tap by

DEIDtect, as per the workflow in Figure 5.1.

6.4 DEIDtect End-to-End - Remote Tap
This section shows the end-to-end traffic flow when a remote tap is created. We evaluate the

end-to-end working of framework for a local tap in the topology shown in Figure 6.5.

DEIDtect Controller (REMOTE)

Cloud Network
(LOCAL)

DEIDtect Controller (LOCAL)

Internet

DEIDtect
Cloud

System

In
te

rn
et

 L
in

k

OS Ext
Node

Network
Node

Compute
Node

Compute
Node

Compute
Node

REST API

REST API
LAN

Switch

Mininet Enterprise Network (Remote)
DEIDtect
Network
System

Host 2
Switch1

Host 1

Host 3 Switch2

Switch3

Gateway Link

WAN
Controller

REST API

REST API

REST API

REST API

Local Site

Remote Site

a

b

c

d

e

Service Traffic Source

Service Traffic Destination

Tap Traffic at Gateway

Tap Traffic at Cloud Network Node

Tap Traffic to IDS VMf

Tap Traffic at WAN Node

a

b

c

d

e

f

Figure 6.5: DEIDtect Remote Tap - Topology

37

6.4.1 Test and Result
The traffic is being monitored at each of the links labeled in Figure 6.5: (a) Service traffic from

Host 1 (H1) towards Host 3 (H3), (b) Service traffic towards Host 3, (c) Tap traffic towards cloud

gateway, (d) Tap traffic received by the WAN node, (e) Tap traffic received by the OpenStack Network

node, (f) Tap traffic sent to the corresponding IDS VM on the OpenStack Compute Nodes. Figure 6.6

shows the network activity graph of the labels (a) to (f) seen in Figure 6.5.

Figure 6.6 shows a number of time series events corresponding to the creation of a remote tap

point on Switch 1 (S1) to monitor all traffic sent out on port 3 through the topology. We now describe

each event shown in the figure: (1) Traffic sent from H1 to H3. Figure 6.6 (a) shows the traffic sent

from H1. (b) shows traffic received on H3, (2) Create Tap point on S1 port 3, Figure 6.6 (c) shows tap

traffic out of the gateway node, (d) shows tap traffic received by the WAN node, (e) shows tap traffic

received by the OpenStack Network Node and (f) shows tap traffic sent to the IDS VM created for

the corresponding tap point.

From the results we can see how the tap traffic is tunneled towards the IDS VM for a remote tap

by DEIDtect, as per the workflow in Figure 5.2.

6.5 DEIDtect Ease Of Use
We illustrate DEIDtect’s ease of use by showing how DEIDtect provides a high-level abstraction

to the underlying tedious process in creating/destroying a monitoring instance.

The creation or deletion of a tap using DEIDtect is done by a single REST request to the DEIDtect

framework.

The general REST request format for the current implementation is shown below.

curl http://{DEIDTECT_IP}:120/deidtect/{add/del}/{IDS VM name}/
{switch DPID}/{port to monitor}/{vlan ID}/{tunnel ID}

This can be further simplified by managing the VLAN, TUNNEL ID and a dynamic tap name

allocation which will require only the create/delete action sent along with the switch name and switch

port to DEIDtect Core. The simplified version in case of managing the IDs and name is shown below.

[Managed] curl http://{DEIDTECT_IP}:120/deidtect/{add/del}/
{switch DPID}/{port to monitor}

38

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

(a) Source Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

(b) Destination Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

(c) Enterprise Network Gateway Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

(d) WAN Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

(e) OpenStack Cloud - Network Node Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150

M
b

/s
 o

u
t

Time

(f) OpenStack Cloud - Compute Node Traffic Activity

Event 1 Event 2

out
in

error-out
error-in

Figure 6.6: DEIDtect Remote Tap Event Graph

39

6.5.1 Examples
Adding and deleting a monitoring point for DEIDtect running on “155.98.38.103” in a local

Enterprise Network with DPID ‘0000000000000001’ on port 3, using isolation Vlan ID 100 and

Tunnel ID 7 and naming the newly created monitoring IDS monpt, is done by the following curl

request.

[ADD] curl http://155.98.38.103:120/deidtect/add/
monpt/0000000000000001/3/100/7

[DEL] curl http://155.98.38.103:120/deidtect/del/
monpt/0000000000000001/3/100/7

The State-of-the-art monitoring setup requires manual effort to setup the optical taps at the net-

work device links and the corresponding IDS system, which is guaranteed to take significantly longer

to realize compared to the usage of DEIDtect.

6.6 DEIDtect Cloud IDS Detection
DEIDtect is built on the insight that traffic monitoring can be done by replicating traffic and

delivering the replicated traffic using tunneling protocols like VLAN, MPLS, or GRE. In this section

we show that the tunneled traffic can be used for monitoring using the IDS.

In this section we evaluate two cases of IDS detection: one where attack traffic is sent directly to

the IDS system and another where attack traffic is replicated using the DEIDtect framework.

6.6.1 Metrics
The metric being used is the detection in direct traffic vs DEIDtect tunneled traffic.

6.6.2 Test and Result
To test the Bro detection in a direct traffic scenario, we have setup two pc3000 nodes directly

connected in Emulab, as shown in Figure 6.7. The “attacker system” sends the below listed traffic

directly to the “Bro system”:

• Port scan

• File transfer

• TCP syn attack

The test result is successful when the detections are the same with the “direct” and the “tunneled”

traffic. This is sufficient to prove that the tunneled traffic can be used to detect anomalies.

40

Emulab Bro Test Network

bro
system

attacker
system

1. ftp server
2. bro IDS

1. nmap
2. ftp request
3. hping - TCP syn
attack

Figure 6.7: Bro IDS Detection Test Topology

For the tunnel traffic scenario, we use the same testbed as shown in Figure 6.2, creating a moni-

toring point in local enterprise network Switch S1 and port 3. The attacker is the Host 1 (H1) and the

destination is Host 3 (H3). Creating a monitoring point only monitors the traffic going out of port 3,

and if we want to monitor the ingress traffic, then we have to create a monitoring point in Switch S2

and port 1. In this experiment we monitored the outgoing traffic at S1 and port 3.

Table 6.1 shows the tests performed on each setup, and their results. The result shows that the

tunneled traffic can be used for detecting the anomalies using IDS.

6.7 Mininet - CPqD User Space Switch Benchmark
To establish a baseline in this section we show the base performance of the CPqD switch used in

the mininet environment for Enterprise Network Environment.

6.7.1 Metrics
The metric being used is the traffic throughput achieved at different traffic rates when using VLAN

actions.

6.7.2 Test and Result
The experiment is performed in the simple test topology, which has Host 1 (H1) connected to

Switch 1 (S1) connected to Host 2 (H2) via Switch 2 (S2), shown in Figure 6.8.

Table 6.1: Bro Detection Results

S.No Test
Detection Result

Bro System Bro IDS VM
1 Port Scan Yes Yes
2 FTP Yes Yes
3 TCP Syn attack Yes Yes

41

Mininet Enterprise Network

Host 2

Switch1Host 1

Switch2

Figure 6.8: CpQD Benchmark Topology

UDP traffic is generated from Host 1 (H1) to Host 2 (H2). The flows from H1 to H2 in Switch 1

(S1) and Switch 2 (S2) are manually configured to add VLAN 100 at S1 for all the traffic from H1,

S2 pops the VLAN tag and forwards to H2. The flow rules for each switch are shown below.

[Switch 1] dpctl unix:/tmp/s1 flow-mod cmd=add,table=0 in_port=1
apply:push_vlan=0x8100,set_field=vlan_vid:100,output=2

[Switch 2] dpctl unix:/tmp/s2 flow-mod cmd=add,table=0 vlan_vid=100
apply:pop_vlan,output=2

Figures 6.9 and 6.10 show the throughput achieved at different traffic rates. The destination shows

a slightly higher traffic rate, which is the effect of adding VLAN header on top of it. The results show

that the CPqD user switch performs well for traffic rates up to 4 Mbps, after that the throughput is

unpredictable, with many drops and the maximum output to be approximately 5.5 Mbps, even at 8

Mbps of input traffic.

From the experiment, the CPqD user switch operating range in the given topology without traffic

rate loss is up to 4 Mbps. This will be the range used for the rest of the experiments.

6.8 Bandwidth Management for Tap Traffic
In this section we evaluate ALB rate-limiting of DEIDtect framework. The rate-limiting is a

dynamically controlled sliding window-like mechanism to allow service traffic to be minimally im-

pacted by tap traffic. This evaluation shows how the tap traffic is getting rate-limited to different rates

compared to the current service traffic rates, which reside in the same path of the tap traffic. Though

the networks are usually overprovisioned to accomodate higher rates of traffic than expected, using

DEIDtect in such networks makes good use of the available bandwidth for traffic monitoring. This is

done in a more controlled way by the DEIDtect ALB rate-limiting feature.

6.8.1 Metrics
The metric being used is the different service traffic rate vs tap traffic rate-limit.

42

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(a) Service Traffic @ 3 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Destination Traffic @ 3 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Service Traffic @ 4 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Destination Traffic @ 4 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(e) Service Traffic @ 5 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(f) Destination Traffic @ 5 Mpbs

Figure 6.9: (i) CPQD - Performance Results

6.8.2 Test and Result
The experiment is performed in the testbed shown in Figure 6.2 marked as Local Site. The

DEIDtect Local Site’s Enterprise Network is configured with switch S3’s port 2 as its gateway port,

which is connected to the Cloud environment of DEIDtect.

The Enterprise network is emulated using Mininet. The experiment creates a minimal number of

hosts and switches to demonstrate the framework’s capability.

UDP traffic is sent from Host 1 (H1) to Host 3 (H3), and a monitoring tap is installed at switch

S1’s output port 3 after 20s of the traffic generation. This creates tap traffic to be sent from switch

43

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(a) Service Traffic @ 6 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Destination Traffic @ 6 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Service Traffic @ 7 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Destination Traffic @ 7 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(e) Service Traffic @ 8 Mpbs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 20 40 60 80 100 120 140

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(f) Destination Traffic @ 8 Mpbs

Figure 6.10: (ii) CPQD - Performance Results

S1’s output port 3 towards the gateway. This scenario creates both service traffic and tap traffic in the

switch S1 port 3. The tap traffic has to be regulated by the ALB rate-limiting feature of DEIDtect to

reduce or increase depending upon the increase and decrease of service traffic.

Figure 6.11 shows the source service traffic graph in the first column, and destination service

traffic graph delivered at the destination Host H3 in the second column of the graph, and the corre-

sponding tap traffic graph delivered at the gateway port, which is switch S3 port 2, in the last column.

The traffic rates used to evaluate are 1, 2, and 3 Mbps of service traffic sent from H1 to H3.

As we can see the tap traffic increases slowly when there is enough bandwidth to accomodate

44

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(a) Service Source Traffic @ 1 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Service Traffic @ 1 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Tap Traffic @ 1 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Service Source Traffic @ 2 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(e) Service Traffic @ 2 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(f) Tap Traffic @ 2 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(g) Service Source Traffic @ 3 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(h) Service Traffic @ 3 Mpbs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(i) Tap Traffic @ 3 Mpbs

Figure 6.11: DEIDtect ALB - rate limiting

both service and tap traffic, and decreases rapidly in case of service traffic disruption for each of the

traffic rates. This shows that DEIDtect regulates the tap traffic as designed to keep the service traffic

disruption as minimal as possible.

The tap traffic graph shows a number of spiked drops. These are the points where the rate-limit is

being updated. The rate-limit update to the metering table causes this drop, which is a function of the

switch implementation.

6.9 DEIDtect granularity of tap
This evaluation shows that the monitoring tap can be created for specific type of traffic in DEID-

tect against state-of-the-art systems that capture all traffic being monitored.

6.9.1 Test and Result
The experiment is performed in the testbed shown in Figure 6.2 marked as Local Site. The

DEIDtect Local Site’s Enterprise Network configured with switch S3’s port 2 as its gateway port,

which is connected to the Cloud environment of DEIDtect.

45

TCP traffic is sent from Host 1 (H1) to Host 3 (H3) @ 2 Mbps throughout the experiment, TCP

traffic is sent from Host 2 (H2) to H3 @ 8 Mbps for 120 seconds. A monitoring tap is installed at

switch S2’s output port 2 at 20th second of the traffic generation.

Figure 6.12 shows the tap traffic in case of TCP filtering. From the graph it can be seen that

once the TCP source stops sending traffic at 120s, the tap traffic also stops, hence illustrating that the

monitoring tap is only for TCP traffic. This shows how the ALB Rate-Limiting is applied on the tap

traffic.

Figure 6.13 shows the tap traffic in case of UDP filtering. As the UDP traffic is sent throughout,

the tap traffic is seen throughout, even after the TCP source has stopped, illustrating that the monitor-

ing tap is only for UDP traffic. As before, this shows how the ALB Rate-Limiting is applied on the

tap traffic.

The results show the granularity of the DEIDtect framework.

6.10 Whitelisting for Tap Traffic
This evaluation is to show the effect of ALB-Whitelisting on the tap traffic, and to show how it

helps deliver traffic of interest to the IDS against traffic which is not necessary for the IDS which is

classified as normal traffic.

6.10.1 Test and Result
The experiment is performed in the testbed shown in Figure 6.2 marked as Local Site. The

monitoring tap is created in switch S2 to monitor traffic towards port 2 in Figure 6.2 in the local

enterprise site. In this experiment the IDS VM has already been created to detect the Whitelisting

traffic.

Figure 6.14 shows TCP traffic is sent from H1 to H3 @ 2 Mbps throughout the experiment, and

at “event 1” an FTP get request is sent from H1 to H3. TCP traffic is sent from H2 to H3 @ 2 Mbps

for 60 seconds of the experiment. Host H3 hosts a secure FTP server. The monitoring point is created

at 20 seconds to tunnel the traffic towards the existing IDS VM.

The IDS VM issues a Whitelisting request in the event of a successful file transfer. Once this

request is sent to DEIDtect Core, it is relayed to the corresponding Enterprise DEIDtect Network

System and pushes the corresponding drop rules of the specified traffic.

Figure 6.14 shows the traffic delivery at each of the monitoring ports. Figure 6.14 (d) shows the

whitelist window for traffic from H1 to H3 because of the “event 1.” Hence the traffic between H1

and H3 is not seen in the gateway. This is illustrated, as the H2 traffic generation has been stopped at

60 seconds. The whitelist drops the traffic for 60 seconds as per the current implementation, and after

the “whitelist window,” the traffic is resumed, as seen in the graph after 135 seconds.

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(a) Host 1 to Host 3 UDP Service Traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Host 2 to Host 3 TCP Traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Host 3 : Service Traffic Delivery

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Tap Traffic - TCP filter

Figure 6.12: DEIDtect - TCP Tap

Thus ALB-Whitelisting plays an important role in regulating the traffic towards the IDS in a smart

way in cases where there are many monitoring points which share the same link giving way for the

tap traffic which the IDS wants to analyze.

6.11 DEIDtect ALB - IDS scaling
In this section we evaluate ALB - IDS scaling framework. Scaling happens when the current

configuration of the IDS is not able to handle the load which is directly proportional to the CPU load

on that VM. In such a scenario DEIDtect is able to scale the IDS VM to handle the load.

We will evaluate the scaling of IDS based upon the IDS VM usage. Depending on the amount of

traffic being diverted to the IDS, the CPU usage will vary, and this is used to evaluate how the scaling

occurs in these cases.

As mentioned before, the network topology information is not available in the current OpenStack

version. Hence the flow distribution using network topology placement to make the necessary cluster

arrangement as in Bro Cluster Topology Setup [4] is not possible. For the current implementation

DEIDtect uses Host-based IDS load balancing for Bro cluster mode to handle more traffic than in

standalone mode.

47

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(a) Host 1 to Host 3 : UDP Service Traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Host 2 to Host 3 : TCP Traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Host 3 : Service Traffic Delivery

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Tap Traffic - UDP filter

Figure 6.13: DEIDtect - UDP Tap

This is done using Linux PF RING, which is a means of distributing packets from the NIC

to multiple applications simultaneously. By having multiple workers in each thread in a multicore

system, a Bro Host-based cluster can be configured to handle high rate of traffic.

We will only evaluate the CPU usage, as the packets processing has already been studied for the

cluster-based setup by Weaver in Stress Testing Cluster Bro [31].

6.11.1 Metrics
The metrics analyzed is the IDS VM CPU usage between Standalone and Cluster mode.

6.11.2 Test and Result
The IDS VM created by DEIDtect will be reporting the CPU usage periodically to the DEIDtect

framework. Based upon this usage, DEIDtect will request the DEIDtect Cloud System to scale the

IDS. But with the current limitation of the unavailability of the physical network topology informa-

tion, DEIDtect requests the IDS itself to move from standalone to cluster mode. The cluster mode

will be running a manager, a proxy and four workers pinned to each of the cores of the IDS VM. The

current IDS VM flavor is four VCPUs, 8GB RAM, and 80GB of hard disk size.

48

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

Event 1

(a) Host 1 to Host 3 : TCP Traffic For 225s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(b) Host 2 to Host 3 : UDP Traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350

M
b

p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(c) Host 3 : Service Traffic Delivery

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350

M
b
p
s

Time Series

Event Series Graph

out
in

error-out
error-in

(d) Tap Traffic - whitelist H1 to H3

Figure 6.14: DEIDtect - ALB Whitelist

Figure 6.15 shows the CPU usage over the span of the experiment. With the mininet environment,

we could not saturate the link to the IDS VM, hence for testing we simulated an event trigger where

the VM is made to report a higher CPU usage against the actual CPU. Figure 6.15 “Event 1” shows

the transition from standalone to cluster mode, where all the cores become active to handle more

traffic load. The packet handling is not studied for the same reason mentioned above, but this has

been studied and published by Weaver in Stress Testing Cluster Bro [31].

From the results we can see that DEIDtect ALB - IDS scaling works as claimed.

6.12 Data Loss in IDS
DEIDtect regulates the tap traffic by Adaptive Load Balancing which comprises two ways of

limiting. Rate-limiting is a blind rate limit of packets based upon the service traffic rate at each

monitoring port. These packets are dropped by the switch based upon the firmware implementation.

DEIDtect has no control of how these are dropped, while Whitelisting drops flows which are classified

as normal traffic by the IDS.

In this section, we analyze the effect of packet loss of the tap traffic being made by the rate-limiter

and how ALB-Whitelisting plays a role in such scenarios.

49

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e

Time (s)

(a) cpu 0

Event 1
user
sys

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e

Time (s)

(c) cpu 2

Event 1
user
sys

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e

Time (s)

(b) cpu 1

Event 1
user
sys

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e

Time (s)

(d) cpu 3

Event 1
user
sys

Figure 6.15: DEIDtect IDS Scaling Cpu Usage

The experiment is performed in the testbed shown in Figure 6.16 marked as Local Site. The

PCAP file should be real-time enterprise traffic. Since http://digitalcorpora.org packet traces offer

such traces over weeks, we will be using once such small trace for our experiment.

6.12.1 Test and Result
Figure 6.16 comprises labeled points (a) TCP traffic from H1 to H3 @ 2 Mbps, (b) PCAP replay

traffic from http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/net/net-2009-11-14-09:24.

pcap.gz sent towards H3 @ 1 Mbps, (c) Destination port and the Tap port in a 4 Mbps link, and (d)

Tap traffic for the corresponding Tap (Max Tap traffic rate configured @ 2 Mbps).

http://digitalcorpora.org
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/net/net-2009-11-14-09:24.pcap.gz
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/net/net-2009-11-14-09:24.pcap.gz

50

Mininet Enterprise Network (LOCAL)
DEIDtect
Network
System

Host 2
Switch1

Host 1

Host 3 Switch2

Switch3

Gateway Link

a

c

d

b

Figure 6.16: DEIDtect Tap Traffic Packet Loss Topology

All the traffic activity graphs shown will show the traffic activity at each of the labeled points.

The traffic activity graph has event labels in it. Event: (1) TCP traffic sent from H1 to H3, (2)

TAP installed in Switch 2 port 2 Figure 6.16 (c), and (3) PCAP replay traffic from H2 to H3. The

label WhiteStart and WhiteEnd shows the time-line event where the TCP traffic from H1 to H3 is

Whitelisted by DEIDtect.

The final packet capture is done only for traffic other than between H1 to H3, which is the PCAP

traffic being replayed. The trace-summary given based upon the packet capture at the IDS is obtained

to analyze the effect of packet loss in IDS detection. The PCAP traffic source is started well after

DEIDtect ALB-Rate-limiting has warmed up to its maximum rate-limiting state.

6.12.1.1 Ground Truth Detection Results
For the ground truth about the detection, we capture the PCAP traffic without data loss in the

IDS for the same topology. Figure 6.17 shows a number of time-series events corresponding to IDS

detection: (1) No TCP traffic is sent, (2) Create Tap point on S2 port 2, (3) play PCAP file. The

resulting traffic activity is shown in Figure 6.17. The IDS host was able to receive 628 packets from

the PCAP trace.

Without any data loss to the tap traffic, the respective trace summary which consists of number of

source and destination IP detected, is shown in Table 6.2. This serves as the baseline for the evaluation

of DEIDtect with and without Whitelisting in terms of detection on account of traffic loss.

6.12.1.2 DEIDtect Nonwhitelist - Detection Results
Without any Whitelisting for the same experimental setup, IDS captures the traffic from H2 alone

which is the PCAP replay traffic. Figure 6.18 shows a number of time-series events corresponding to

IDS detection: (1) Send UDP traffic from H1 to H3 @ 2 Mbps, (2) Create Tap point on S2 port 2,

51

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(a) TCP Source Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(b) PCAP Replay Source Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(c) Destination Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

Time

(d) Enterprise Network Gateway Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

Figure 6.17: Ground Truth - IDS Detection Traffic Graph

(3) play PCAP file. The resulting traffic activity is shown in Figure 6.18. The IDS host was able to

receive 446 packets from the PCAP trace.

The graph shows that once all the traffic sources start sending traffic, a total of 3 Mbps of traffic

is being sent to H3, but the Tap traffic is capped at 2 Mbps from the 4 Mbps link, hence 1 Mbps of

traffic is lost. This loss causes the PCAP replay traffic packet capture in the IDS to be less accurate.

As shown in Table 6.3, IDS VM was able to detect only a few connections from the PCAP trace.

52

Table 6.2: Ground Truth Result -Trace Summary

S.No Source Detected Destination Detected
1. 192.168.1.103 192.168.1.255
2. 192.168.1.102 192.168.1.1
3. 192.168.1.104 207.46.232.182
4. 192.168.1.150 192.101.21.1
5. 192.43.244.18
6. 4.2.2.4
7. 4.2.2.3
8. 255.255.255.255

6.12.1.3 DEIDtect Whitelist - Detection Results
For the same experimental setup, in the Whitelisting period which drops traffic from H1 to H3 to

be discarded in the tap, traffic is shown in Figure 6.19. The IDS host was able to receive 585 packets

from the PCAP trace.

This results in a better detection, as shown in Table 6.4. Though this shows all the detection to

be the same as the ground truth results, this summary is obtained from the smaller number of packets

compared against the “Ground Truth,” which may lead to detection degradation if any packet loss is

incurred.

This evaluation shows that ALB-Whitelisting helps in terms of IDS detection accuracy.

6.13 Summary of Results
A summary of our results is presented below.

• We show that DEIDtect is able to monitor traffic at any point of an enterprise network with

great ease in “local” and “remote” sites.

• DEIDtect is able to detect anamolies with the tunnel traffic approach with IDS in the cloud.

• DEIDtect is able to dynamically manage the Tap traffic rate with minimal disruption to service

traffic.

• DEIDtect is able to Tap specific type of traffic, giving fine-grained control of what is being

monitored.

• DEIDtect is able to drop packets in a smart way using Whitelisting.

• The combined effect of rate-limiting and Whitelisting delivers packets of interest to the IDS,

which helps detect anamolies.

• DEIDtect is able to dynamically scale up/down based upon the load of the IDS in cloud.

53

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(a) TCP Source Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(b) PCAP Replay Source Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(c) Destination Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

Time

(d) Enterprise Network Gateway Traffic Activity

Event 1 Event 2 Event 3

out
in

error-out
error-in

Figure 6.18: DEIDtect Nonwhitelist - IDS Detection Traffic Graph

Table 6.3: Nonwhitelist Result - Trace Summary

S.No Source Detected Destination Detected
1. 192.168.1.103 192.168.1.255
2. 192.168.1.102 255.255.255.255
3. 192.168.1.104

54

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(a) TCP Source Traffic Activity

Event 1 Event 2 Event 3

WhiteStart WhiteEnd

60 sec

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(b) PCAP Replay Source Traffic Activity

Event 1 Event 2 Event 3

WhiteStart WhiteEnd

60 sec

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

(c) Destination Traffic Activity

Event 1 Event 2 Event 3

WhiteStart WhiteEnd

60 sec

out
in

error-out
error-in

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
b
/s

 o
u
t

Time

(d) Enterprise Network Gateway Traffic Activity

Event 1 Event 2 Event 3

WhiteStart WhiteEnd
60 sec

out
in

error-out
error-in

Figure 6.19: DEIDtect Whitelist - IDS Detection Traffic Graph

Table 6.4: Whitelist Result - Trace Summary

S.No Source Detected Destination Detected
1. 192.168.1.103 192.168.1.255
2. 192.168.1.102 192.168.1.1
3. 192.168.1.104 207.46.232.182
4. 192.168.1.150 192.101.21.1
5. 192.43.244.18
6. 4.2.2.4
7. 4.2.2.3
8. 255.255.255.255

CHAPTER 7

PRACTICAL CHALLENGES AND FUTURE

WORK

7.1 Challenges
This section talks about the challenges towards the deployment of DEIDtect in the real world, and

potential future work.

7.1.1 Enterprise Network Features
The DEIDtect framework relies on OF’s multiple-flow table support for the safe tapping of the

traffic. Multiple-flow tables are being supported from OF 1.1 and up. This gives the flexibility to

extend the packet-processing pipeline to multiple levels, as opposed to the single-table support in

OpenFlow version 1.0. Multiple-flow tables give the flexibility to have fine-grained control of traffic

of interest at each level of the pipeline. Figure 2.4 shows the pipeline for two table. The flexibility of

having multiple levels of match on the pipeline is a critical requirement for DEIDtect.

We investigated an alternative way to replicate safe tapping without using multiple tables. The

group table which is supported in all OF versions was a viable solution. The group tables give the

flexibility to take multiple actions for a set of matching flows. Figure 7.1 shows this functionality for

one flow having two actions. The limitation of this approach is that it does not provide the granularity

of the multiple-flow table feature.

In Figure 2.4, if we want to have only TCP flows sent out of port 3, the corresponding pipeline

match will have the TCP match in the IDS flow table. But this is not possible in the group table

approach. All the actions operate on one copy of the packet. Despite this limitation, it is possible to

realize fine-grained safe tapping with the group table by having fine-grained flow differentiation in

the next-hop switch.

A major OF 1.0 restriction was that metering features are supported from OF 1.1 onwards, which

is crucial for ALB’s functionality. Hence DEIDtect requires OF 1.1+ as the minimum requirement

for deployment.

For DEIDtect the switch has to have the following capabilities:

56

Network Switch
Table 0

Match

inport = 5

Action

group:Y

Group Table : ALL(type)

ID

Y

Bucket
bucket=out_port:3

Port 5

Port 3

Network Switch
Table 0

Match

inport = 5

Action

Output = 3

Port 5

Port 3

Port 2

Existing flow entry

Modified flow entry and tapped flow

bucket=set_vlan=100,Outp
ut = 3

Port 2

Group Table : ALL(type)

ID

Y

Bucket

Figure 7.1: Safe Tapping using Group Tables

1. Hardware Multi-Table support - if there is only software multi-table support we might as well

use software switching.

2. Meter-Table supporting Drop band type - for rate limiting of traffic.

3. Flow Table with VLAN PUSH,VLAN MOD and VLAN POP actions are crucial for isolation

enforcement.

4. Flow Table Match flexibility is required to allow targeting of specific tap traffic. As such match

fields with few constrains on usage is desirable.

7.1.2 Cloud Network Access
In a cloud environment there are many ways of deployment in different network topology settings

based upon requirements and demand. This is decided by the cloud administrators. Some cloud

softwares capable of managing the network devices, and some assume connectivity between nodes,

as in OpenStack [26].

The cloud-deployment software provides a rich programming interface to interact with the cloud

to enable third-party application development. But many of the core administration tasks are kept

isolated from external access. DEIDtect requires flow installation capability in an SDN-enabled cloud

environment to manage the tap traffic rate in the cloud network, as well. This is possible only when

we have access to the underlying network devices. And the firewall settings should be accessed by

DEIDtect, as the IDS requires all types of traffic to be delivered to it, which is most likely to set off

the firewall in the cloud to kick in, which is an undesirable effect. DEIDtect also requires some of

the configurations to be pushed to the VM, which are to be created for IDS for the Whitelisting and

57

dynamic scaling. The Cloud software is required to have dynamic data injection or configuration-

management support like Cloud-init [2] or Chef [3].

7.1.3 Inter-Domain Access
The DEIDtect framework has different domains to make the whole orchestration happen, and

hence requires access to the domains by some means to control the Enterprise and the Cloud environ-

ment, as described in Section 2.

7.2 Future Work
The DEIDtect framework provides the ability to deploy a monitoring point in an enterprise or a

campus network, and functions across domains in a distributed way which opens up new use cases,

as described in Chapter 3.

We want to provide a way to make use of this framework to write applications on top of it to make

use of the interdomain distributed capability, which has never been deployed before to create new

opportunities for the security administrators.

With the knowledge about the physical network topology, the tapping can be optimized to reduce

the duplicate traffic within the network.

With DEIDtect we have more information about the traffic such as the switch in which the traffic

is originating along, with the information from the IDS detection results. This can be helpful for the

security administrator to identify the problem quickly.

CHAPTER 8

CONCLUSION

This thesis aims to address the challenge of ease and flexibility and scalability to the Network

Intrusion Detection deployment. We presented our work on DEIDtect architecture which exploits in-

creased cloud- and software-defined networking deployments to realize an elastic distributed intrusion

detection framework. DEIDtect effectively decouples the location of a network being protected from

the location of the security tools performing security functions. This flexibility enables DEIDtect to

realize new distributed security functions between partnered organizations. We presented the detailed

design and implementation of DEIDtect and illustrated its functionality using emulated enterprise

environment and OpenStack cloud environment. To realize the full potential of DEIDtect, our future

work includes developing security applications that can exploit the unique cross-domain functionality

of DEIDtect.

REFERENCES

[1] www.snort.org.

[2] https://cloudinit.readthedocs.org/en/latest/.

[3] https://www.chef.io/solutions/configuration-management/.

[4] Bro cluster setup. https://www.bro.org/sphinx-git/cluster/index.html.

[5] Dshield - Internet Storm Center. http://www.dshield.org/howto.html.

[6] Scipass - secure openflow based sciencedmz. http://globalnoc.iu.edu/sdn/scipass.html.

[7] AZODOLMOLKY, S., WIEDER, P., AND YAHYAPOUR, R. Cloud computing networking:
challenges and opportunities for innovations. IEEE Communications Magazine 51, 7 (July
2013), 54–62.

[8] BAUCKE, S., MESTERY, K., SHAIKH, A., AND WRIGHT, C. Opendaylight: An open source
sdn for your openstack cloud. An Open-Stack Summit, Hong Kong (2013).

[9] CHIU, D.-M., AND JAIN, R. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput. Netw. ISDN Syst. 17, 1 (June 1989), 1–14.

[10] CPQD. OpenFlow 1.3 Software Switch. http://cpqd.github.io/ofsoftswitch13.

[11] GRANCE, M. The dids (distributed intrusion detection system) prototype. In Proceedings of
the Summer USENIX Conference, pp. 227–233.

[12] GROVES, R., AND BENETTI, B. Microsofts demon-datacenter scale distributed ethernet
monitoring appliance. Presented during Sharkfest, Berkeley, CA (June 2012).

[13] GUOK, C., LAKE, A., KRZYWANIA, R., AND BALKCERKIEWICZ, M. Inter-domain controller
(idc) protocol specification.

[14] HEORHIADI, V., REITER, M. K., AND SEKAR, V. New opportunities for load balancing in
network-wide intrusion detection systems. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies (2012), ACM, pp. 361–372.

[15] HIBLER, M., RICCI, R., STOLLER, L., DUERIG, J., GURUPRASAD, S., STACK, T., WEBB,
K., AND LEPREAU, J. Large-scale virtualization in the emulab network testbed. In USENIX
Annual Technical Conference (2008), pp. 113–128.

[16] HOUIDI, I., MECHTRI, M., LOUATI, W., AND ZEGHLACHE, D. Cloud service delivery across
multiple cloud platforms. In Services Computing (SCC), 2011 IEEE International Conference
on (2011), IEEE, pp. 741–742.

www.snort.org
https://cloudinit.readthedocs.org/en/latest/
https://www.chef.io/solutions/configuration-management/
https://www.bro.org/sphinx-git/cluster/index.html
http://www.dshield.org/howto.html
http://globalnoc.iu.edu/sdn/scipass.html
http://cpqd.github.io/ofsoftswitch13

60

[17] JANAKIRAMAN, R., WALDVOGEL, M., AND ZHANG, Q. Indra: A peer-to-peer approach
to network intrusion detection and prevention. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International
Workshops on (2003), IEEE, pp. 226–231.

[18] KISSEL, E., FERNANDES, G., JAFFEE, M., SWANY, M., AND ZHANG, M. Driving software
defined networks with xsp. In Communications (ICC), 2012 IEEE International Conference on
(2012), IEEE, pp. 6616–6621.

[19] LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in a laptop: Rapid prototyping for
software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks (New York, NY, USA, 2010), Hotnets-IX, ACM, pp. 19:1–19:6.

[20] LEHIGH, K., AND KHALFAN, A. Multi-Gigabit Intrusion Detection with OpenFlow and Com-
modity Clusters. www.openflowhub.org/download/attachments/3244813/SPC-Present.pdf.

[21] LO, C.-C., HUANG, C.-C., AND KU, J. A cooperative intrusion detection system framework
for cloud computing networks. In Parallel processing workshops (ICPPW), 2010 39th interna-
tional conference on (2010), IEEE, pp. 280–284.

[22] MATIAS, J., JACOB, E., SANCHEZ, D., AND DEMCHENKO, Y. An openflow based network
virtualization framework for the cloud. In Cloud Computing Technology and Science (Cloud-
Com), 2011 IEEE Third International Conference on (2011), IEEE, pp. 672–678.

[23] MAZZARIELLO, C., BIFULCO, R., AND CANONICO, R. Integrating a network ids into an open
source cloud computing environment. In Information Assurance and Security (IAS), 2010 Sixth
International Conference on (2010), IEEE, pp. 265–270.

[24] MECHTRI, M., ZEGHLACHE, D., ZEKRI, E., AND MARSHALL, I. Inter-cloud networking
gateway architecture. In Cloud Computing Technology and Science (CloudCom), 2013 IEEE
5th International Conference on (Dec 2013), vol. 2, pp. 188–194.

[25] MESSMER, E. Start-up morphs open-source security system for research networks into com-
mercial platform. http://www.networkworld.com/news/2013/071613-broala-271856.html.

[26] OPENSTACK. Openstack - Open source software for creating private and public clouds. https:
//www.openstack.org/.

[27] SHANMUGAM, P. K., SUBRAMANYAM, N. D., BREEN, J., ROACH, C., AND DER MERWE,
J. V. Deidtect: Towards distributed elastic intrusion detection. In Proceedings of the ACM
SIGCOMM Workshop on Distributed Cloud Computing (Aug. 2014).

[28] SHIN, S., AND GU, G. Cloudwatcher: Network security monitoring using openflow in dynamic
cloud networks (or: How to provide security monitoring as a service in clouds?). In Network
Protocols (ICNP), 2012 20th IEEE International Conference on (Oct 2012), pp. 1–6.

[29] SPROULL, T., AND LOCKWOOD, J. Distributed instrusion prevention in active and extensible
networks. In Active Networks. Springer, 2004, pp. 54–65.

[30] VALLENTIN, M., SOMMER, R., LEE, J., LERES, C., PAXSON, V., AND TIERNEY, B. The
nids cluster: Scalable, stateful network intrusion detection on commodity hardware. In Recent
Advances in Intrusion Detection (2007), Springer, pp. 107–126.

[31] WEAVER, N., AND SOMMER, R. Stress testing cluster bro. In DETER (2007).

www.openflowhub.org/download/attachments/3244813/SPC-Present.pdf
http://www.networkworld.com/news/2013/071613-broala-271856.html
https://www.openstack.org/
https://www.openstack.org/

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgments
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Thesis Statement
	Thesis Contributions
	Thesis Overview

	=10000=10000=0DEIDtect Architecture and Design
	-22pt
	Overview
	DEIDtect Dynamic and Comprehensive Network Tapping
	DEIDtect Elastic Security Compute Platform
	DEIDtect Distributed Network Security Functions

	DEIDtect Architecture
	DEIDtect System

	DEIDtect Network System Module
	Adaptive Load Balancing (ALB)
	ALB - Adaptive Rate Limiting
	Additive Increase and Multiplicative Decrease - Link Sharing
	ALB - Whitelisting

	DEIDtect Cloud System Module
	ALB - Adaptive IDS Scaling

	=10000=10000=0DEIDtect Use Cases
	-22pt
	=10000=10000=0Related Work
	-22pt
	SDN in Cloud Networking
	SDN in Security
	Scalability of Network Security Tools
	IDS in Cloud
	SDN - Adaptive Load Balancing

	=10000=10000=0DEIDtect Implementation
	-22pt
	DEIDtect Core
	DEIDtect Core - Local Tap Work Flow
	DEIDtect Core - Remote Tap Work Flow

	DEIDtect Network System
	ryu-Tap Manager
	ryu-Adaptive Rate Limiter
	ryu-Whitelisting
	ryu-Bandwidth Monitor

	DEIDtect Cloud System
	DEIDtect Cloud Controller
	DEIDtect Network Helper
	DEIDtect Compute Helper

	=10000=10000=0DEIDtect Evaluation
	-22pt
	Questions answered by this evaluation
	Experimental Setup
	Tools Used

	DEIDtect End-to-End - Local Tap
	Test and Result

	DEIDtect End-to-End - Remote Tap
	Test and Result

	DEIDtect Ease Of Use
	Examples

	DEIDtect Cloud IDS Detection
	Metrics
	Test and Result

	Mininet - CPqD User Space Switch Benchmark
	Metrics
	Test and Result

	Bandwidth Management for Tap Traffic
	Metrics
	Test and Result

	DEIDtect granularity of tap
	Test and Result

	Whitelisting for Tap Traffic
	Test and Result

	DEIDtect ALB - IDS scaling
	Metrics
	Test and Result

	Data Loss in IDS
	Test and Result
	Ground Truth Detection Results
	DEIDtect Nonwhitelist - Detection Results
	DEIDtect Whitelist - Detection Results

	Summary of Results

	=10000=10000=0Practical Challenges and Future Work
	-22pt
	Challenges
	Enterprise Network Features
	Cloud Network Access
	Inter-Domain Access

	Future Work

	=10000=10000=0Conclusion

	-22pt
	REFERENCES

