
HyPer4: Using P4 to Virtualize the Programmable
Data Plane

David Hancock
University of Utah

School of Computing
Salt Lake City, Utah, USA
dhancock@cs.utah.edu

Jacobus van der Merwe
University of Utah

School of Computing
Salt Lake City, Utah, USA

kobus@cs.utah.edu

ABSTRACT
Through virtualization, single physical data planes can
logically support multiple networking contexts. We pro-
pose HyPer4 as a portable virtualization solution. Hy-
Per4 provides a general purpose program, written in the
P4 dataplane programming language, that may be dy-
namically configured to adopt behavior that is function-
ally equivalent to other P4 programs. HyPer4 extends,
through software, the following features to diverse P4-
capable devices: the ability to logically store multiple
programs and either run them in parallel (network slic-
ing) or as hot-swappable snapshots; and virtual net-
working between programs (supporting program com-
position or multi-tenant service interaction). HyPer4
permits modifying the set of programs, as well as the
virtual network connecting them, at runtime, without
disrupting currently active programs. We show that re-
alistic ASICs-based hardware would be capable of run-
ning HyPer4 today.

CCS Concepts
•Networks → Programmable networks; Network
manageability;

Keywords
Software Defined Networking; P4; network virtualiza-
tion

1. INTRODUCTION
Recent advances in Software Defined Networking have

paved the way for dataplane programmability, which re-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12–15, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999607

sults in network devices, including hardware, that may
be reprogrammed in the field to parse custom proto-
cols and execute custom functionality. The full poten-
tial of dataplane programmability, however, (1) remains
untapped, and (2) efforts to exploit this feature are
at risk of fragmentation among a proliferating collec-
tion of software and hardware devices that provide pro-
grammable dataplanes. To the first point, we believe
virtualization opens up attractive possibilities, and to
the second point, an ideal virtualization solution should
be portable across many platforms.

OpenFlow[35] has provided a standard for programma-
bility of the network control plane and has been instru-
mental to network operators seeking more freedom and
flexibility. It leaves the network data plane, however,
“fixed” in the sense that operators are still restricted
to working with those protocols identified in the Open-
Flow specification. In response to the demand for Open-
Flow support for novel protocols, the specification has
continually expanded [11]. A truly programmable data
plane is free from such restrictions, permitting opera-
tors to reconfigure the data plane according to com-
pletely custom protocol syntax and semantics. Recent
work on a reconfigurable match table (RMT) architec-
ture proved that a programmable data plane is possible
even in ASICs hardware [12]. This result inspires tools
such as the P4 domain specific language [11] to make
this programmable data plane easily accessible in a uni-
form way on a variety of switches, from ASICs with
RMT, to FPGA-based switches, to software switches
like PISCES [40], behavioral models [5], and the net-
work data planes on edge servers [21].

Ordinarily, each programmable data plane provided
by a P4-capable device represents a single networking
context, within which one P4 program defines (1) the
collection of protocol headers and the corresponding
state machine by which all traffic is parsed ; and (2)
matches and actions by which all traffic is processed. In
order to support diverse sets of customers or to flexibly
compose virtual functions together for complex packet
processing, in many cases operators might desire more
than one context for a given network device even if this

http://dx.doi.org/10.1145/2999572.2999607

device has only one physical data plane. One answer
is virtualization. This technique permits the illusion of
multiple programmable data planes and greater flexi-
bility as to how they are used. For example, with data
plane virtualization we gain the ability to deploy mul-
tiple network functions to the device simultaneously in
various configurations, permitting:
• network slicing, to isolate sets of customers and/or

equipment (e.g., legacy vs. modern, or insecure vs.
secure), in which each slice (i.e., isolated networking
context) may be unique with respect to supported
protocol types and functionality;
• network snapshotting, storing multiple network or de-

vice configurations while a single configuration is ac-
tive at a time, and permitting quick transitions be-
tween configurations;
• virtual networking within the device, providing a so-

lution for both:
– complex compositions of packet processing programs,

allowing modular development; and
– supporting multiple tenants on the switch that may

wish to provide services to each other in a con-
trolled way;

• providing standard high level features such as pro-
gram profiling, traffic monitoring, and other func-
tions.

Such an environment calls for isolation mechanisms (§4.5)
to prevent one program from posing security threats to
other programs, to protect the device itself from poten-
tially dangerous programs, and to prevent one program
from consuming more than a fair share of resources.

We are focused on the feasibility of virtualization im-
plemented as a user-level program so that the result
may work on top of a diverse mix of underlying sys-
tem stacks. That is, we are intrigued by the possibility
that a specially designed P4 program itself may provide
the benefits of programmable data plane virtualization
by emulating other P4 programs. Of the many ways to
pursue programmable data plane virtualization, our ap-
proach is highly dynamic, such that the features listed
above may be employed and reconfigured without in-
terrupting the operation of the network device. Our
approach is also highly portable.

One concern is that virtualization in the application
layer comes at a cost. The cost, however, may be amor-
tized over many programs (i.e., functions) sharing the
same physical substrate. A second concern is that our
prototype is only portable to the extent that sufficient
hardware resources are available. Even for the most
constrained high performance ASICs-based hardware,
however, our analysis (§6) shows that a simple configu-
ration of HyPer4 could be run in a modified version of
RMT [12] today.

In the remainder of this paper, first we provide some
background (§2) on the rise of data plane programma-
bility. We then make the following contributions:
• Context: We provide the operational concept for

HyPer4 and present some example use cases for a vir-
tualized programmable data plane (§3).
• Design: We explain the design that allows HyPer4 to

emulate various aspects of P4 programs and enforce
program isolation (§4).
• Implementation: We describe the implementation

of our prototype which is deployable on an unmodified
software P4 switch (§5).
• Evaluation: We illuminate the performance and mem-

ory costs of HyPer4 and justify our claim that it could
be deployed on RMT-like ASICs hardware (§6).

2. BACKGROUND
In this section we provide background material on

data plane programmability and P4.

2.1 Data Plane Programmability
The concept of network progammability has a long

history [22]. It begins with active networking [47] [9] [42]
research, and continues with the separation of the con-
trol and data planes [49] [39] [16]. The term Soft-
ware Defined Networking is commonly understood to
describe an architecture in which the control plane and
data plane are separate, and furthermore, that the con-
trol plane is centralized, exerting control over a dis-
tributed data plane [22]. The most well known exam-
ple is the widely adopted OpenFlow, which provides an
open API and thereby defines a standard for control
plane programmability [30].

The OpenFlow model allows operators to write appli-
cations that run on a centralized controller, interacting
with devices throughout the network to insert, modify,
or remove data plane table entries in response to sig-
nificant events. The community was energized by this
ability to define new network functionality as software
running in the controller. Previously operators had to
choose between high performing but difficult to modify
hardware devices, or low performing but easy to modify
software devices. OpenFlow-capable hardware allowed
high performance and easily modifiable functionality.

The data plane itself, however, is relatively fixed in
this model, by which we mean the supported protocol
headers are explicitly identified by each version of the
OpenFlow specification [11]. Demand for extending the
flexibility of OpenFlow architecture to an ever larger set
of protocol header types has led to successive expansions
of the OpenFlow specification. Clearly, this approach
cannot easily respond to protocol innovation. Attention
has therefore turned toward extending programmability
to the data plane.

The presentation of the Reconfigurable Match Table
architecture [12] proved that a constrained but powerful
form of data plane programmability could be achieved
in the fastest ASICs-based network hardware.

2.2 The P4 language
P4, a language for Programming Protocol Indepen-

dent Packet Processors, is a recent innovation providing

an abstract model suitable for programming the net-
work data plane [11]. A P4-enabled device is protocol
independent in the sense that no inherent support for
any protocols is assumed. Rather, programs written in
P4 define packet headers and specify packet parsing and
processing behaviors.

P4 programs include these elements: (i) header def-
initions that specify the field names and widths for
protocol headers on which the program is intended to
operate; (ii) metadata, providing packet-specific state;
(iii) registers, meters, and counters, for state in-
dependent of packets; (iv) packet parser specification;
(v) match-action table specification, identifying the
packet and metatdata fields to be read and the possi-
ble actions to execute in response; (vi) actions - func-
tions that may be parameterized and that invoke one
or more primitives; (vii) control flow indicating the
table execution sequence, with support for conditional
branching.

Figure 1 depicts the basic operation of a P4-enabled
environment. Conceptually, a P4-capable device starts
with a clean-slate as in Figure 1(b). Operators configure
the device with operational functionality by first com-
piling P4 code (e.g., foo.p4 in the figure) to produce
the binary or equivalent artifact suitable for loading on
a P4 target. Once configured with the foo “persona”,
the tables in the switch can be populated via a foo spe-
cific controller at runtime as in Figure 1(c). Loading
a different program changes the persona of the P4 tar-
get and thereby changes the device functionality itself.
Such reconfigurability in the field is one of the goals of
the P4 environment.

Figure 1(a) depicts the compilation process as typi-
cally involving two steps: first, a front-end component
(such as the open source p4-hlir [7]) parses the p4 source
code to produce a high-level intermediate representation
(HLIR). A compiler back-end converts the HLIR into a
target-specific form (e.g., binary or JSON). Examples
of current P4 compiler back-end offerings include p4c-
bmv2 [8] from Barefoot Networks for the software-based
“simple switch” [6] or other targets using the behav-
ioral model framework [5], SDNet [14] for Xilinx FG-
PAs, a P4 back end for Netronome’s Network Flow C
Compiler and NFP product line [34], and two efforts
LLVM P4 [21] and P4-to-EBPF [15] that compile to
EBPF programs for the Linux network plane.

3. EXAMPLES
This section demonstrates some of the use cases for

virtualizing the programmable data plane to provide
context for the design of HyPer4 presented in §4, with a
brief explanation of HyPer4’s operational concept first.

3.1 HyPer4 Operational Concept
First, we explain the basic HyPer4 concept for virtu-

alizing the programmable data plane, which involves a
P4 program that emulates other P4 programs. This spe-

cial program is itself a new P4 target to add to the set
depicted in Figure 1(a). Figure 2 illustrates the process
for deploying and working with foo.p4 within a HyPer4
environment. As shown in Figure 2(a), we configure the
P4 target with the HyPer4 persona.

This persona program is itself configurable, endowed
with the ability to perform many distinct behaviors, but
made to execute specific behaviors through the entries
in its tables. This program now becomes the target for
configuration by foo.p4. In Figure 2(b), the HyPer4
compiler produces a set of commands for populating a
set of HyPer4 tables.

These table entries direct the persona to carry out
the behavior expressed in foo.p4. When the controller
needs to perform the equivalent of populating foo’s ta-
bles, in order to avoid modifying existing controllers we
can send the commands through a Data Plane Manage-
ment Unit (DPMU) as in Figure 2(c). The name of the
DPMU is inspired by the Memory Management Unit in
common computer architecture that translates virtual
memory addresses to physical addresses and enforces
program isolation. Similarly, the DPMU translates vir-
tual table operations (intended for foo.p4) into HyPer4
table operations.

We have written some simple network functions in
P4 and converted them into the table population com-
mands necessary to make HyPer4 emulate them:

1. A layer 2 ethernet switch;

2. An IPv4 router;

3. An ARP proxy that responds to ARP requests on
behalf of the IPv4 hosts for which the requests are
intended; and

4. A firewall that can filter traffic based on IPv4,
TCP, and UDP sources and destinations.

Using these functions, we have constructed three ex-
amples of various possibilities enabled by virtualizing
the programmable data plane.

3.2 Snapshots and Simple Composition
The first (Figure 3) demonstrates network snapshots

and composition. The network consists of three con-
nected P4 targets s1, s2, and s3, each running HyPer4
(the state of these is as in Figure 2(a)), two hosts h1 and
h2 connected to s1, and two hosts h3 and h4 connected
to s3.

At the start, HyPer4 tables are empty and the de-
vices are devoid of functionality. We then populate the
HyPer4 tables in each device such that each logically
stores all of the programs required for three network
configurations (as in Figure 2(b)).

In the first configuration, s1 and s3 each run an arp
proxy, while s2 runs a layer 2 switch. Inside s1 and
s3 in Figure 3, the dotted-outlined rectangles labeled
“A” represent the arp proxy function, while the rectan-
gle labeled “A” within s2 represents the layer 2 switch
function.

.p4 source

p4c-bmv2

P4 HLIR

SDNet
P4-EBPF

FPGAsimple
switch

other bmv2
target

Linux
network
plane

LLVM_P4
P4-NFP
→ NFCC

NPUFPGAFPGA NPUNPUother bmv2
target

other bmv2
target

compiler
front-end

compiler
back-end

P4
targets

(a) Compiling a p4 program for various targets

foo.p4

compiler

P4_target P4_target

foo
“persona”

binary etc.

time

code data

(b) Configuring a p4 target with foo.p4

controller

P4_target

foo
“persona”

foo table entries

time

(c) Populating the tables de-
fined by foo.p4

Figure 1: P4 operational environment

compiler:
p4_target

hp4.p4

P4_target

hp4
“persona”

(a) Configuring a P4
target with HyPer4

compiler:
p4_hp4

foo.p4

P4_target

hp4
“persona”

hp4 table entries

(b) Configuring Hy-
Per4 with foo.p4

data plane
management

unit

controller

P4_target

hp4
“persona”

foo table entries

hp4 table entries

(c) Populating foo’s tables
within HyPer4

Figure 2: HyPer4 operational environment

In the second configuration, s1 and s3 each run a layer
2 switch, while s2 runs a firewall. These functions are
labeled “B” in Figure 3.

In the third configuration, s1 and s3 run the same
layer 2 switch as in the second configuration, while s2
runs a composition (labeled “C” in Figure 3). Traffic
arriving at s2 is first handled by an arp proxy, which
responds to arp requests. All other traffic is passed to
the next virtual function in s2, a firewall, and any traf-
fic allowed through the firewall is handled by a router
function.

We also logically populate the tables of the virtual
functions running within the HyPer4 devices (as in Fig-
ure 2(c)):
• MAC and destination port pairs for the layer 2 switches
• IPv4 and MAC pairs for the arp proxies
• IPv4 destination address and next hop IP and MAC

address pairs for the router
• In the firewalls, we add rules to filter traffic with a

certain TCP destination port
At any given time, a single configuration is active for

each device. Changing from one active configuration to

h1

h2

h3

h4

arp_pxy l2_sw arp_pxyA:

l2_sw firewall l2_swB:

arp_pxy
firewall
router

C:

s1: s2: s3:

A

B/C

A
B
C

A

B/C

l2_sw l2_sw

Figure 3: Example One: Network Snapshots and
Composition

another is a matter of the controller sending a single
table entry modification to each HyPer4 device.

3.3 Network Slicing and Composition

h1

h2

h3

h4

ports 1-2:
l2_sw

ports 3-4:
firewall→

router

A
B

C

Figure 4: Example Two: Network Slicing and
Composition

The second example includes network slicing and com-
position. Figure 4 depicts a single P4 target s1 running
HyPer4, and four hosts h1, h2, h3, and h4 connected to
it. IP address and subnet masks are assigned such that
h3 and h4 are in separate logical networks.

We use HyPer4 to “slice” s1 such that ports 1 and 2
(for h1 and h2) appear to belong to one device, while
ports 3 and 4 (for h3 and h4) belong to another.

At start, HyPer4 tables in s1 are empty, and s1 is
devoid of functionality. We then populate the HyPer4
tables such that s1 logically stores three programs:
• Traffic on s1’s ports 1 and 2 is handled by a layer 2

switch (program A)
• Traffic on s1’s ports 3 and 4 is handled first by a

firewall (program B), and secondly, for any traffic that
passes through, by a router (program C).
We also logically populate the tables for the layer 2

switch (MAC destination and egress port pairs), the
firewall (as in the first example, filtering traffic with a
specific TCP destination port), and the router (IPv4
destination address and next hop IP and MAC address
pairs).

3.4 Virtual Networking
The third example exhibits virtual networking be-

tween virtual devices. The network consists of a single

s1

l2_s1h1

h2

h3

h4

r1

r2

r3

r4

f1

f2 l2_s2

Figure 5: Example Three: Slicing and Compo-
sition

P4 target, s1, with four hosts h1, h2, h3, and h4 con-
nected to it. Each host is assigned to a different IPv4
network.

We load eight programs into HyPer4 on s1, creating
eight virtual devices:
• a router r1 and a firewall f1 for h1
• a router r2 and a firewall f2 for h2
• a router r3 for h3
• a router r4 for h4
• two layer 2 switches l2 s1 and l2 s2 facilitating con-

nectivity in the internal network
We then populate the tables for each virtual device.

This example illustrates how s1, through HyPer4, can
support multiple tenants that may wish to provide ser-
vice to each other but apply security controls.

4. HYPER4 PERSONA DESIGN
At a high level, HyPer4 involves the persona (the

P4 program running on the network device), a com-
piler, and a data plane management unit (DPMU). Sec-
tion 3.1 and Figure 2 provide an overview. In this sec-
tion, we focus on how the P4 program forming the core
of HyPer4 can be made to emulate other P4 programs
and virtualize some of the physical resources of the pro-
grammable dataplane.

4.1 Design Overview
A P4 program defines the packet-processing struc-

ture, but during execution, runtime-changeable state in
the form of table match entries affects how packets are
processed within that structure. The aim for HyPer4 is
to define a structure general enough that we can permit
state changes that change packet processing in arbitrary
ways.

Figure 6 depicts an overview of the HyPer4 persona.
Conceptually, HyPer4 has three phases. First, the pars-
ing and setup phase receives packets and prepares Hy-
Per4 state process packets as specified by the emulated
P4 program. In the second phase, HyPer4 emulates the
target program’s sequence of match-action stages. Fi-
nally, the egress phase handles any egress-specific prim-
itives and prepares the packet for transmission.

In the following paragraphs we identify key tasks the
HyPer4 persona must handle in order to properly rep-
resent arbitrary P4 programs, and briefly describe the
techniques employed to carry out these tasks.

Metadata
ready?

Setup metadata
(parse widths)

- Header information
- Select program
- Table for first stage

y

nresubmit

Packet in

Parsing

Parse
(normalize

header)

Setup - b

Match Primitive
Setup

State
Transition

Additional
actions?

Match+Action stages

Additional
stage?

y

y

n

Setup - a

Checksum?

Multicast?

Calculate
Checksum

Multicast
Primitives

Denormalize
header

Egress

Packet out

n

n

n

y

y

Primitive
Execution

Figure 6: HyPer4 persona

Programmable parsing. The persona must be able
to extract an arbitrary number of bytes based on values
found in the packet, and it does so by traversing a parse
tree, in which each node extracts some portion of the to-
tal requirement and branches on a metadata field num-
bytes_to_extract that stores this requirement. The
HyPer4 parser is described in more detail in §4.2, but
the bottom line is that to achieve the flexibility we need,
we implement some aspects of the parser in the setup
phase in the ingress pipeline and return to the parser as
necessary. Specifically, numbytes_to_extract depends
on the virtual device associated with the packet. We
employ P4’s resubmit primitive to return the packet
back to the parser as necessary. This primitive is pow-
erful because we can pass to it a list of fields that should
retain their values (such as numbytes_to_extract). Ul-
timately, the parser extracts a stack of bytes. The re-
submit primitive could be invoked multiple times for
a given packet to accommodate the multiple headers a
given virtual device might deal with.

Field representation. The persona uses very wide
metadata fields to represent collections of fields used by
a virtual device. We define one such field to logically
store all of the data extracted from a packet (the stack
of bytes extracted by the parser), and another such field
to represent all of a virtual device’s metadata fields.

Matching. Arbitrary P4 programs match on arbi-
trary fields. The task for HyPer4 is to support arbi-
trary matches by isolating the relevant parts of the sin-
gle wide metadata fields representing a P4 program’s

defined fields. To this end HyPer4 makes heavy use of
P4’s ternary matching facility, which permits masks to
be supplied with table entries along with match values.
These masks are applied to the specified matching field
before comparing the result to the match value.

Actions. Matches in P4 programs invoke actions,
which may be complex collections of primitives. For
each supported P4 primitive, HyPer4 provides a set of
tables that collectively carry out the required behavior
as discussed in more detail in §4.3. In short, we use a
collection of metadata fields to redirect HyPer4 control
flow as necessary at every stage of packet processing.
Various match-action stages in HyPer4 read (match),
write, or read and write these metadata fields. Specify-
ing the values used for these reads and writes by sup-
plying the entries for these tables is how the operator
can invoke the relevant behaviors provided by HyPer4
required to carry out arbitrary functionality.

Virtual Networking. HyPer4 relies on P4’s recir-
culate primitive to pass packets from one virtual device
to another. This primitive marks a packet for sending
back to the parser after completing the egress pipeline.
It accepts a list of fields as a parameter. Any fields in
this list retain their values when the packet reappears
at the parser.

The HyPer4 structure is anchored by the concept of
general purpose match-action stages, in which HyPer4
state determines the type of match to peform, the se-
quences of primitives to execute in response to matches,
and the parameters to supply to each primitive. To em-
ulate another P4 program, HyPer4 requires that the tar-
get of emulation be transformed into table operations
that affect HyPer4 state accordingly. By representing
P4 programs as state, HyPer4 enables live updating of
P4 programs.

4.2 Parsing
The role of the parser in a P4 program is to identify

the structure of the first N bits of the packet as a series
of bitfields, and associate labels with each of these bit-
fields. The collection of labeled bitfields is known as the
“Parsed Representation” of the packet. The program-
mer defines header types, indicating the names, widths,
and position of bitfields within the header type, and
declares header instances of these types to use when ex-
tracting bits from the packet. To “extract” a header is
to add a collection of bitfields, structured and named
according to the header’s type, to the Parsed Repre-
sentation. Enabling the parser to decide which headers
to extract is done by making the parse graph branch
according to values found in the packet or values of
metadata fields.

HyPer4 must parse in a way that is reconfigurable
at runtime to extract sufficient data to meet the needs
of the various programs HyPer4 is emulating. In Hy-
Per4, we define a header type with a single field that is
one byte wide, and declare an array of these one-byte
headers to accommodate a variable number of bytes to

extract from the packet. We also declare a metadata
field (e.g., numbytes_to_extract). Upon receiving a
packet, the parser examines this field. A value of zero
indicates it is not prepared to guide parsing. In this
case, a default number of bytes are extracted (typically,
20), and control flow is directed to an initial setup func-
tion (Setup - a in Figure 6), which, if necessary, updates
numbytes_to_extract and resubmits the packet. The
resubmitted packet returns to the parser, but this time,
numbytes_to_extract has a meaningful value. HyPer4
traverses the parse tree by branching on this field, where
each node extracts some portion of the total.

After completing parsing, HyPer4 concatenates all
extracted bytes into a single, very wide metadata field
that represents the extracted data throughout the re-
mainder of the pipeline. The setup function (Setup - b
in Figure 6) then configures the pipeline for packet pro-
cessing. Specifically, this function sets a metadata field
indicating which of possibly several emulated programs
within HyPer4 should be executed. It also sets another
field identifying the initial table to execute (according to
the type of matching required by the first match-action
stage of the emulated program) as the packet enters the
HyPer4 match-action stage.

4.3 Match-Action
Each emulated match-action stage requires several

HyPer4 tables: one to carry out the match, and three
for every primitive that must execute in response to a
table match.

To carry out the match, we define one table for every
combination of match type (exact, ternary, valid, etc.)
and data type for every stage. HyPer4 branches on the
value of the metadata field next_table (set either in
an initial setup phase or at the end of the preceding
match-action stage) to execute the correct table from
this set.

Exact matching against extracted packet data is one
match type, for which HyPer4 employs a ternary match
against the single, very wide field representing extracted
packet data. The ternary match is useful for isolating
the bits of this field that are relevant to the match (i.e.,
to identify which of fields defined in foo.p4 are involved
in the match).

In general, ternary matching helps emulate a variety
of match types against a variety of data types because
it permits bitmasks to be supplied with table entries at
runtime (though comes at a high cost, in unit TCAM
cost and power consumption, see §6.3).

In every case, a match triggers an action that sets a
variety of metadata fields. These fields force a branch
to a control function representing the first primitive of
the emulated action. Executing a primitive involves at
least three tables: one to set the stage for primitive ex-
ecution, another to execute the primitive, and another
to perform a state transition, which includes indicating
to HyPer4 whether the action (and therefore the match-

action stage) is complete, or that more primitives must
be carried out.

4.4 Deparsing
In P4, throughout packet processing, changes may

occur to the packet’s Parsed Representation, including
not only header field values, but the structure of the
packet itself: headers may be removed from or added
to the packet. Because of this, deparsing is a necessary
step that identifies the sequence of headers to serialize
for transmission. Deparsers, however, do not appear
in P4 source code; rather, the graph specified for the
parser is once again leveraged for deparsing the packet.

Because HyPer4 uses a metadata field as a proxy for
the Parsed Representation throughout packet process-
ing, at the end of the egress pipeline it must perform
a “write back” to the actual Parsed Representation to
prepare the packet for deparsing. The Parsed Repre-
sentation consists of a stack of single-byte headers, so
preparing for deparsing involves repeatedly masking the
proxy metadata field, copying the lowest order byte to
the next header in the stack, and shifting the metadata
field to the right by one byte.

4.5 Isolation
The current design of HyPer4 isolates programs in the

sense that it prevents one program from overwriting the
code of another. It also supports memory isolation. We
explain these first and then describe how future ver-
sions HyPer4 can also support other forms of resource
isolation.

Code isolation is achieved by assigning each program
a uniquely identifying number at compile time (this
could be hash of the .p4 code or downstream compila-
tion artifact). When a packet is received, some operator-
controllable criteria (e.g., ingress port, time, network se-
curity posture, or a value within the packet itself) deter-
mines which program should handle it and accordingly
the metadata field program is set to the corresponding
program ID. This field is one of the match fields for
every match-action emulation table in the persona and
thereby distinguishes one program’s table entries from
another’s within the same shared physical table. We
refer to the emulated program as a virtual device. The
program ID functions similarly to a VLAN ID, though
the mechanism for assigning a program ID to a packet
is more dynamic. The DPMU monitors requests for
adding table entries to virtual devices and ensures the
program IDs in the entries are authorized for the re-
quester.

At the same time, the DPMU can enforce limits for
the number of table entries used by each virtual device,
assisting partially with the requirement for memory iso-
lation. Other memory requirements include support for
stateful memory objects (counters, meters, and regis-
ters). HyPer4 design calls for preallocation of sets of
such objects, where the number of sets is equal to the
number of virtual devices that can be simultaneously

supported. It is the role of the HyPer4 compiler to as-
sign these sets to virtual devices.

CPU isolation for our purposes means that no pro-
gram incurs an action that cannot be completed in a
single clock cycle. If one virtual device employs an ac-
tion that does not fit within a single clock cycle, then
for any packet it processes it will introduce stalls in the
pipeline that also delay packets behind it (which may
belong to other virtual devices). HyPer4 is not cur-
rently designed to ensure this kind of isolation. Some
of its actions include multiple interdependent primi-
tives. Future designs of HyPer4 will split these actions
across multiple tables to keep packets flowing steadily
through the pipeline regardless of which functionality is
employed by any given virtual device.

The ingress buffer is yet another resource that can
lead to interference between virtual devices. In the cur-
rent HyPer4 design, it is possible that one virtual device
might repeatedly trigger primitives that send a packet
back to the input buffer, at the possible expense of other
packets trying to enter the buffer. Such packets might
be coming from external connections or internally from
other virtual devices using the same type of primitives.
One way to address this issue would be to rely on a me-
ter in HyPer4 at the beginning of the ingress pipeline
that drops traffic above a threshold for a given virtual
device.

4.6 Virtual Networking
HyPer4 is designed with a virtual network to control

traffic exchange between virtual devices running within
the persona. Space does not permit a detailed discus-
sion, but we create virtual ports with unique IDs and
allot them to virtual devices. We can map these virtual
ports directly to physical ports or connect them to vir-
tual links, on the other end of which is a virtual port
for another virtual device.

For a packet destined for other virtual devices, Hy-
Per4 invokes P4’s recirculate primitive to send the
packet back to the parser after changing the program
ID.

We support virtual multicasting with a combination
of P4’s clone and recirculate primitives. Briefly, the
program ID is updated according to a programmable
sequence. Then one of the packet clones is sent back
to the parser and ultimately processed by the relevent
virtual device. The other packet clone is sent back to
the start of the egress pipeline, with the program ID
serving as a loop counter and triggering a packet drop
once it reaches the end of the multicast sequence.

4.7 Design Consequences
This section illuminates the resource and performance

consequences of design choices for HyPer4 as well as for
the P4 language specification. These consequences for
overhead are evaluated in §6.

First, HyPer4’s use of ternary matching to emulate
a variety of match types against arbitrary data fields

increases TCAM pressure, resulting in increased power
consumption as well as a potential TCAM scarcity ob-
stacle to deploying HyPer4 on current hardware. See
§6.3.

Second, to permit HyPer4 to emulate behaviors from
a behavioral set in arbitrary sequences of maximum length
K, HyPer4 source must declare K copies of the tables
carrying out a given behavior from the set. This is be-
cause P4 restricts a program from using a table more
than once in the processing of a specific packet. This
design choice of P4 is sensible to ensure programs are
compatible with hardware architectures like RMT [12],
which opted to connect tables in a pipeline instead of
using a crossbar due to physical wiring constraints and
because packet processing algorithms naturally involve
sequential dependencies.

Next, the use of the resubmit primitive to permit
a dynamically programmable parser cuts the through-
put. HyPer4 could avoid these resubmits with a P4
target that implements parser exceptions by repeatedly
extracting bytes until an exception occurred indicating
no more bytes available, up to a certain maximum num-
ber. Interestingly, Protocol Oblivious Forwarding [43],
unlike P4, has a parse-as-needed approach which would
also eliminate the HyPer4’s need for resubmission.

The use of recirculation for virtual networking also
incurs a throughput penalty, but this is a natural con-
sequence of making one physical device do the work of
multiple devices.

Finally, HyPer4 can send packets that are, in effect,
completely different than what it can effectively receive,
which normally is not the case for P4 programs. P4 se-
rializes the parsed representation with the rest of the
packet for transmission by using the same graph spec-
ified by the parser functions in .p4 code. The result is
that a P4 program can only send packets conforming
to a structure that it can also parse. HyPer4, however,
moves most of the parsing decision logic into the ingress
pipeline, and the actual parse graph for HyPer4 simply
extracts a specified number of bytes without any higher
level structure. Thus, HyPer4 makes an end run around
a restriction normally imposed by P4, for better or for
worse.

5. IMPLEMENTATION
This section provides implementation details. All

source code is available at our git repository [23].

5.1 Configuration
As noted in §4.7, HyPer4 must declare many copies

of the tables carrying out a specific behavior, differing
in name only, such that one copy exists for every posi-
tion in a sequence of behaviors. This results in a large
codebase with numerous examples of functionally re-
dundant code. As an example, in the source for HyPer4
one might find two tables, t1_exact_extracted and
t2_exact_extracted. They both do the same thing:

exact matching against extracted packet data. The first
table is callable in the first emulated match-action stage,
while the second table is callable in the second stage.

This redundancy in the code lends itself to using con-
figuration scripts to produce the P4 source for HyPer4.
This approach simplifies HyPer4 development and al-
lows us to tailor HyPer4 according to need and resource
availability. Configurable parameters include:
• the maximum number of match-action stages HyPer4

must be capable of emulating
• the max number of primitives per compound action
• default, maximum, and step values for the number of

bytes HyPer4 should be capable of parsing.
The configuration script (900 LoC in Python) pro-

duced the P4 source for a configuration of HyPer4 ca-
pable of executing the demonstrations in §3, support-
ing four emulated match-action stages with up to nine
primitives per action, and supporting five of P4’s 21
distinct P4 primitives. This configuration of HyPer4 is
approximately 6400 LoC. Figure 7 shows the how the
P4 codebase grows linearly in the maximum number of
match-action stages emulated and the maximum num-
ber of primitives allowed per stage. Figure 7(a) charts
the growth of the entire HyPer4 codebase, while Fig-
ure 7(b) is focused on the code required to support the
drop primitive, and Figure 7(c) pertains solely to the
code supporting the modify_field primitive. The av-
erage P4 LoC for the five primitives currently supported
by HyPer4 ranges from 128, at one stage and one primi-
tive, to 539, at five stages and nine primitives per stage.
Extrapolating for the 16 additional primitives (of P4’s
set of 21), a version of HyPer4 supporting every primi-
tive would require, in addition to the numbers reported
in Figure 7(a), from 2000 more LoC at one stage and
one primitive, to 8600 more LoC at five stages and nine
primitives per stage.

5.2 Compiling
The HyPer4 compiler is a work in progress. In the

meantime, we have manually produced files consisting
of the table commands necessary to induce HyPer4 to
emulate each of the network functions described in §3.1.

These “commands” files consist entirely of command
line interface commands in the style of bmv2 [5]. Before
producing the final commands file for a given network
function, however, it is conducive to produce an inter-
mediate artifact, which for the most part looks like the
final commands file, with two key differences:
• the intermediate commands file permits comments

and vertical whitespace for readability;
• it uses human readable tokens in the place of num-

bers wherever possible. This is partly for readability,
and partly for operational reasons. For example, the
virtual program ID as well as the numbers for the as-
signed virtual ports are not known at compile time
and will be supplied at load time.
At load time, we employ a script to convert the inter-

mediate commands file to the HyPer4-ready commands

file, substituting numbers for tokens and eliminating
comments and whitespace. Script parameters include
the program ID and virtual port assignments.

5.3 Limitations
Some of the P4 language features are not currently

covered by HyPer4, but will be in time, though the level
of coverage may vary by feature. A long term goal is
to one day support popular P4 applications like Net-
Paxos [18] and In-band Network Telemetry [26].

Stateful memory (registers, counters, meters).
It is difficult for HyPer4 to anticipate the needs of a wide
variety of programs, with respect to registers, counters,
and meters, and meet them within the limited amount
of physical resources available. The problem is com-
pounded by the fact that P4 permits different modes of
declaration for stateful memories. A stateful memory
object may be globally accessible, or statically bound
to a specific table, or furthermore statically bound to
a specific table entry. HyPer4 can preemptively de-
clare statically bound registers, counters, and meters
for every table that emulates the “match” piece of a
match-action stage, but this approach is likely to prove
infeasible for many hardware P4 targets. In particular,
registers can vary in width, which for the preemptive ap-
proach would require HyPer4 registers be declared with
sufficient width to cover the maximum need, resulting
in a lot of wasted register memory for the average case.

Match types: lpm, range. The single wide ex-
tracted_data field employed by HyPer4 to represent
extracted packet fields complicates implementation of
lpm matching, but we have at least two options. We can
insert a preparatory match-action stage that takes the
extracted_data field and copies, to a separate meta-
data field, only the bits pertaining to the represented
field of interest. The lpm match is then done against
this metadata field, which is made wide enough to ac-
commodate a variety of needs. The second option is to
use ternary matching, but have the DPMU identify and
manage the priorities of match entries.

Range matching implementation may involve a prepara-
tory copy step to break out the field of interest as in the
first option for lpm matching.

Arbitrary checksums. HyPer4 cannot easily han-
dle arbitrary checksums, by which we mean applying
a checksum algorithm to an unpredictable number of
fields. Though we can arbitrarily create a field list by
using copies, shifts, and masks to access the emulated
fields and concatenate them together into another field,
we cannot predict how wide that new field must be,
and if wider than the field list defined in the original
program, the leading (or trailing) zeros will affect the
output of many checksum algorithms, which are often
designed to distinguish between messages that are in all
ways equivalent except that one message has leading (or
trailing) zeros and the other does not [29]. We could,
however, declare one such field list-emulating field for
each of many different widths we anticipate needing to

(a) Total Lines of Code (b) Drop Lines of Code (c) Modify Field Lines of Code

Figure 7: HyPer4 Lines of Code by Number of Stages and Primitives per Stage

support, allow the user to indicate the required width
via table entry, and direct control flow accordingly to
make use of the correct field. In the meantime, we can
“cheat” by directly adding support for the checksum re-
quirements of well known protocols. This is what we
have done with the IPv4 checksum field.

Field lists. A P4 program may define field lists. A
field list is passed as a parameter to clone, resubmit,
and recirculate primitives and identifies those fields
whose values must be retained when the packet reap-
pears at the start of the appropriate pipeline. Because
HyPer4 represents all of the virtualized program’s ex-
tracted data fields in one wide field and all of the meta-
data fields in another, we can construct a universal field
list that includes the consolidated extracted data field
e, the consolidated metadata field m, and bitmasks for
each, be and bm. At the start of each pipeline, we re-
place e with e & be and m with m & bm.

Expressions and action profiles likely will never
be covered by HyPer4.

6. EVALUATION AND ANALYSIS
Our development environment for HyPer4 does not

include a P4-capable hardware device. Therefore, to
evaluate HyPer4 we examine resource and performance
differences in terms that may be used to estimate per-
formance impacts or realizability on any P4-capable de-
vice. Specifically, we compare selected native P4 pro-
grams with these same programs emulated by HyPer4
in terms of the number of table match-action stages in-
curred during operation (impacting latency), the space
requirements for tables, data, and actions (impacting
memory), and the width and frequency of ternary matches
(impacting TCAM and power).

We also directly evaluated HyPer4 performance in
terms of latency and bandwidth with the use of Bare-
foot Networks’ bmv2 software switch [5], and explain
results with discussion about the number of resubmits
and recirculations involved (impacting throughput).

Finally, we analyze the difference between RMT [12]
specifications and the hardware required to run HyPer4.

6.1 Match-action Stages
Table 1 shows the cost of HyPer4 emulation in terms

of the number of match action stages required. Each

No. Matches
Program Native HyPer4

L2 switch 2 13
Firewall 3 22
Router 4 28

Arp Proxy 4 48

Table 1: Number of matches for most complex
processing per function natively vs. in HyPer4

row of Table 1 involves a switch running a single func-
tion. Of these, HyPer4 emulation typically requires 6x
to 7x as many match-action stages, except the arp proxy,
which requires 12x as many. This is because one of the
actions of arp proxy involves nine primitives in order to
build an arp response. Note, this 12x penalty is only
incurred when an arp request is received.

6.2 Space

Figure 8: HyPer4 Tables by Number of Stages
and Primitives per Stage

Figure 8 charts the number of tables declared in Hy-
Per4 with different numbers of emulated match-action
stages and numbers of primitives allowed per stage.
Most of these tables will have no entries but exist to
meet arbitrary emulation requirements. But these empty
tables still occupy space; we expect most implementa-
tions of tables include code or function pointers for car-
rying out the match, and function pointers for actions
associated with the table. In most cases, each HyPer4
table references a single action, but for some (e.g., ta-

bles that carry out the modify_field primitive) this
can range up to 14.

The configuration used throughout HyPer4 testing
permits four match-action stages and nine primitives
per stage, and declares 346 tables.

No. Tables Shared
l2 sw arp proxy router firewall

l2 sw 19 14 17 14
arp proxy 57 23 30

router 33 21
firewall 35

Table 2: Number of tables referenced by both
programs

During execution, if HyPer4 hosts multiple programs,
many of the tables are shared. For each pair of pro-
grams, Table 2 shows the number of shared tables. The
diagonal indicates the total number of tables referenced
by each program. Not all of these tables are in the same
branch for any given program, and hence these numbers
differ from those reported in Table 1.

No. Tables Uniquely Referenced
l2 sw arp proxy router firewall

l2 sw - 5 2 5
arp proxy 43 - 34 27

router 16 10 - 12
firewall 21 5 14 -

Table 3: Number of tables referenced uniquely
in the program named at the left

Table 3 reveals the number of tables that do not share
entries for each pair of programs. Clearly, arp_proxy
has the most unique tables. This is accounted for by the
fact that this program is alone in terms of executing a
nine-primitive action in one of its stages.

In eight out of twelve cases, more tables are shared
between programs than not, suggesting that table dec-
larations is one area where the overhead of HyPer4 is
amortized over multiple emulated programs.

Storage required for table entries, however, is much
higher within HyPer4 in return for flexibility. Because
each match involving extracted packet data is done against
a single 800-bit-wide field, each match entry requires at
least 1600 bits of storage: 800 for the value and 800 for
the mask bits. Similarly, matches involving emulated
metadata are done against a single 256-bit-wide field
and require at least 512 bits per entry. The program
ID adds a few more to the required number of bits for
each entry. This is the price we pay for allowing a single
table to be used to match against any of the first 800
bits of a packet, or 256 bits of metadata.

With respect to action storage, the current incarna-
tion of HyPer4 includes 130 actions, many of which
are functionally redundant, differing only in a certain
constant that cannot be replaced by a variable (field).

For example, HyPer4 includes 80 actions that each re-
size the parsed representation to the correct size be-
tween 20 and 100 bytes (accounting for packet structure
changes, such as adding or removing headers) prior to
writing back any changes to extracted data and depars-
ing. With few exceptions, most HyPer4 actions use be-
tween one and four primitives. The 130 tally does not
change with different configurations of HyPer4; it only
changes as we add or remove fundamental functional-
ity to HyPer4 such as support for more primitives or
revisions to virtual networking.

6.3 Ternary Matches
The increased reliance on ternary matching increases

power consumption. Many efforts discuss the TCAM
power issue, including [31], [4], [44], [3]. In the future
we plan to evaluate this aspect of HyPer4 more closely,
but in the meantime provide a few numbers to give an
idea of HyPer4’s increased pressure on TCAM.

bits matched
per packet

program total active no. ternary matches
l2 sw 808 56 2

router 1224 80 4
arp proxy 1848 66 5

firewall 1928 59 6

Table 4: Ternary Match Usage in HyPer4

Table 4 shows how many bits are ternary matched
for packets incurring the most complex processing for
each program. The “total” column includes “don’t care”
or wildcard bits while the “active” column shows only
the number of bits actively involved in the match. The
number of ternary matches, resulting in the totals for
these columns, is provided in the fourth column.

6.4 Latency and Bandwidth Measurements
Here we report the results of bandwidth and latency

tests using iperf3 [19] and ping floods. We ran all tests
using bmv2 software switch [5]. All evaluations were
carried out in an Ubuntu 14.04 virtual machine running
Mininet [1]. The VM was allocated three 2.2 GHz Intel
Core i7-4770HQ CPUs and 6.15 GB of memory.

native Mbps hp4 Mbps native ms hp4 ms
µ σ µ σ µ ms σ µ ms σ

l2 sw 110.3 4.81 18.7 0.43 451 81.4 1540 31.0
firewall 63.7 3.53 7.2 0.11 483 63.0 2277 38.7
Ex. 1 B 37.7 1.24 6.3 0.10 1454 113.2 5011 90.7
Ex. 1 C 26.3 1.06 3.1 0.15 2247 235.1 8736 63.3

Table 5: Bandwidth (iperf3) and Latency (ping
-f -c 1000)

Table 5 shows the mean and standard deviation of
10 runs of each test. HyPer4 emulation incurs an 83%
bandwidth penalty for the L2 switch as measured with
iperf3, and an 89% bandwidth penalty for the firewall.

For the latency test, we sent 1000 pings using the -f
option for “flood,” in which each successive ping is sent
immediately after a response is received for the previous
ping. HyPer4-emulated L2 switch takes 3.4x as long as
the native L2 switch, while for the firewall the difference
is 4.7x.

The emulated L2 switch never invokes the resubmit
primitive, so all performance penalty is due to the in-
creased number of match-action stages. The emulated
firewall performs one resubmit for each ping, and two
resubmits for each TCP packet sent in the iperf3 test.

The next two rows involve multiple switches. “Ex. 1
B” is described in §3.2 and Figure 3: three switches (L2
switch, firewall, L2 switch) between two hosts. “Ex. 1
C”has the same topology but the middle switch runs the
sequentially composed arp proxy, firewall, and router.
When HyPer4 is loaded on each switch, the performance
drop is similar to the previous two cases: 83% band-
width penalty for “Ex. 1 B” and 88% penalty for “Ex.
1 C”. The latency test also has similar results: HyPer4
switches take 3.4x as long in “Ex. 1 B” and 3.9x as long
in “Ex. 1 C”.

For“Ex. 1 B”, each ping triggers one resubmit, while
each TCP packet requires two resubmits. For the com-
position on the middle switch of“Ex. 1 C”, pings incur a
total of two recirculations and two resubmits, while
TCP packets result in a total of two recirculations
and three resubmits.

6.5 Deploying on RMT
Implementation details for RMT [12] that determine

ability to run HyPer4 include the width of the packet
header vector (which is made available to each match-
action stage and includes bits extracted from the packet
as well as all bits used for metadata), the number of
physical match action stages available, and the maxi-
mum number of bits each stage can match against.

RMT supports a 4096-bit packet header vector. This
meets the requirement for the HyPer4 configuration eval-
uated here, which uses 3312 bits: 800 bits of extracted
packet data, 256 bits of metadata, and 2256 bits of over-
head. This overhead includes scratch space support-
ing manipulations on packet data, which affects any
decision regarding how to make use of the remaining
packet header vector bits available, whether for extract-
ing more bytes from the packet or representing more
metadata.

RMT includes 32 match-action stages in the ingress
pipeline and another 32 in egress. The single program
evaluated in this section requiring the most match-action
stages is the arp proxy, which uses 46 match action
stages in the ingress pipeline (and two in egress). RMT
cannot support this requirement, but for more preci-
sion, we compare the number of bits each RMT match-
action stage supports to the number of bits HyPer4
match-action stages require, to know in which cases we
need multiple physical stages to support a given HyPer4
match-action stage. RMT stages support matches of up

to 640 bits in SRAM and 640 bits in TCAM. Of arp
proxy’s 46 ingress stages, 44 of these can each be cov-
ered by one RMT physical stage. The other two stages
involve ternary matches against the 800 bit-wide field
representing extracted packet data, and each require
1600 bits of TCAM memory (800 for the value, 800 for
the mask). Therefore, three RMT physical stages are
required for each of these two HyPer4 stages. The final
total is 51 physical stages, or 60% more than RMT’s ca-
pacity. Note that this would meet not only arp proxy,
but arbitrary compositions including arp proxy and
any simpler programs. A variant of RMT that shifted
19 of the 32 egress match action stages to the ingress
pipeline could meet the requirement today.

7. DISCUSSION OF ALTERNATIVES
The performance penalties incurred by HyPer4 il-

luminated in § 6 warrant consideration of alternative
approaches. This section discusses alternatives to the
“full” HyPer4 solution.

7.1 Partial Virtualization
In an environment in which high performance net-

work hardware is too costly to consider spending on
HyPer4’s capabilities, it may yet be attractive to employ
partial virtualization. This approach requires fewer phys-
ical resources, or may boost performance by sacrificing
a portion of flexibility, or compensate for HyPer4’s in-
ability to emulate some P4 language feature.

The P4 programming model provides mechanisms to
program a packet parser as well as match-action tables
(§2.2). For these program elements, various combina-
tions of virtualization and direct implementation are
possible to satisfy various use cases.

Figure 9(a) depicts the “full” virtualization, in which
each column runs its own program. Each column could
be active simultaneously (network slicing), and packets
are sent to specific columns by some criteria.

Figure 9(b) illustrates the possibility of separate vir-
tual parsers attached to the same directly implemented
match-action pipeline. This pipeline will not be as dy-
namically flexible as the pipeline in the full virtualiza-
tion solution, yet may offer limited flexibility by per-
mitting runtime selectable criteria to invoke different
directly-implemented functionality based on which packet
headers have been extracted.

Conversely, as shown in Figure 9(c), a single directly
implemented parser can pass traffic to different virtual
match-action pipelines. This “fixes” the set of protocol
headers supported, but permits different, dynamically
modifiable behaviors as responses to these headers.

Figure 9(d) suggests the match-action pipeline itself
could be partially virtualized. This may be attractive
for environments in which we are willing to sacrifice dy-
namic flexibility in one layer of the protocol stack (per-
haps L2 or L3) for performance, but still need dynamic
flexibility in other layers.

parser

match-
action 1

match-
action 2

...

...

parser

match-
action 1

match-
action 2

...

(a) Full virtualiza-
tion

parser parser

match-
action 1

match-
action 2

...

...

(b) Parser only

match-
action 1

match-
action 2

...

...

parser

match-
action 1

match-
action 2

...

(c) Match-action
only

match-
action 2

...

parser

match-
action 1

match-
action 2

...

(d) Mixed match-
action

Figure 9: Possible mixes of programmable data plane virtualization

7.2 Other Alternatives
Other approaches for increasing data plane flexibility:

1. A compiler for composing functions written in P4.
This tool would produce a program with function-
ality merged from more than one P4 project. Com-
piler flags could allow the operator to indicate con-
trol flow across the set of included functions using
parallel, sequential, and branch composition op-
erators, in the same spirit as Pyretic [32]. This
approach should result in high performance, but
cannot provide the runtime reconfigurability pro-
vided by our approach.

2. Virtualization implemented below the application
layer. This approach could offer runtime recon-
figurability along with high performance, but re-
quires non-portable implementation aspects spe-
cific to each platform.

3. Directly embedding P4 programs in the network.
This technique entails loading different P4-capable
switches with different programs, and another switch
that selects the appropriate target for processing
the traffic according to the criteria that marks
a packet as belonging to one virtual network or
another. This approach should offer high perfor-
mance and the possibility of runtime reconfigura-
bility (if spare hardware is available) at the cost of
additional switches.

8. RELATED WORK
HyPer4 builds on the P4 language [11, 46]. Perhaps

most closely related to our efforts is the P4 parser for
OpenvSwitch, to enable flexible packet parsing in OVS,
such that supported protocols and fields can be recon-
figured without recompiling [37]. This effort focuses on
the header and parser elements of P4 programs and is
specific to extending OVS.

HyPer4 is also related to earlier work on data plane
programmability [27, 45, 28, 10, 33, 25, 13, 36]. This
includes the Click modular router [27] and active net-
works [45]. NetFPGA also represents earlier work that

provided data plane programmability [28]. While not
fully programmable, efforts that enabled stateful open-
flow applications to be realized also formed part of the
current move towards fully programmable switch data
planes [10, 33]. More recent efforts more closely related
to P4 include Protocol Oblivious Forwarding [43], tiny
packet programs [25] and work on programmable hard-
ware platforms [13, 36].

More broadly, HyPer4 remains related to earlier SDN
efforts such as work enabling portability in the SDN
control plane [50], and the creation of a control plane
virtualization layer [41].

HyPer4 is also related to network function virtual-
ization research [38, 2, 48, 20], particularly concerning
efficient data plane realizations [48, 24, 17].

9. CONCLUSIONS
We have described the concept, design, implementa-

tion, and evaluation of a hypervisor-like P4 program
called HyPer4. It is as yet only capable of emulating
a small subset of possible P4 programs, and typically
incurs 80% to 90% penalties in terms of performance,
in exchange for a portable solution for programmable
data plane virtualization that permits reconfigurabil-
ity at runtime. It facilitates useful modes for running
network functions in parallel or virtually networked in
complex compositions, and is a platform onto which we
can add useful modules for features like monitoring and
program verification.

Future work includes expanding HyPer4’s coverage
of P4 language features, improving HyPer4 efficiency,
completing the HyPer4 compiler, and providing a data
plane management unit.

10. ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their

valuable feedback, and our shepherd for his guidance
and encouragement. This material is supported by the
National Science Foundation under grant number 1302688.

11. REFERENCES

[1] Mininet. http://mininet.org/.

[2] OPNFV: An Open Platform to Accelerate NFV.
https://www.opnfv.org/sites/opnfv/files/pages/
files/opnfv whitepaper 092914.pdf.

[3] B. Agrawal and T. Sherwood. Modeling tcam
power for next generation network devices. In
Performance Analysis of Systems and Software,
2006 IEEE International Symposium on, pages
120–129. IEEE, 2006.

[4] S. I. Ali and M. Islam. An energy efficient design
of high-speed ternary cam using match-line
segmentation and resistive feedback in sense
amplifier. Journal of Computers, 7(3):567–577,
2012.

[5] Barefoot Networks. Behavioral Model Repository.
https://github.com/p4lang/behavioral-model.

[6] Barefoot Networks. Bmv2 Simple Switch.
https://github.com/p4lang/behavioral-model/
tree/master/targets/simple switch.

[7] Barefoot Networks. P4-hlir.
https://github.com/p4lang/p4-hlir.

[8] Barefoot Networks. P4c-bm.
https://github.com/p4lang/p4c-bm.

[9] S. Bhattacharjee, K. L. Calvert, and E. W.
Zegura. An architecture for active networking. In
Proceedings of the IFIP TC6 Seventh
International Conference on High Performance
Netwoking VII, HPN ’97, pages 265–279, London,
UK, UK, 1997. Chapman & Hall, Ltd.

[10] G. Bianchi, M. Bonola, A. Capone, and
C. Cascone. Openstate: Programming
platform-independent stateful openflow
applications inside the switch. SIGCOMM
Comput. Commun. Rev., 44(2):44–51, Apr. 2014.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, and C. Schlesinger. P4:
Programming protocol-independent packet
processors. SIGCOMM Computer Communication
Review, 44(3):87–95, 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in
hardware for sdn. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 99–110.
ACM, 2013.

[13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in
hardware for sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 99–110, New York, NY,
USA, 2013. ACM.

[14] Brebner, Gordon. P4 for an FPGA target.

http://schd.ws/hosted files/p4workshop2015/33/
GordonB-P4-Workshop-June-04-2015.pdf.

[15] Budiu, Mihai. Compiling P4 to EBPF.
https://github.com/iovisor/bcc/tree/master/src/
cc/frontends/p4.

[16] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
implementation of a routing control platform. In
Proceedings of the 2nd conference on Symposium
on Networked Systems Design &
Implementation-Volume 2, pages 15–28. USENIX
Association, 2005.

[17] I. Cerrato, M. Annarumma, and F. Risso.
Supporting fine-grained network functions
through intel dpdk. In Software Defined Networks
(EWSDN), 2014 Third European Workshop on,
pages 1–6, Sept 2014.

[18] H. T. Dang, D. Sciascia, M. Canini, F. Pedone,
and R. Soulé. Netpaxos: Consensus at network
speed. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking
Research, page 5. ACM, 2015.

[19] ESnet, Lawrence Berkeley National Laboratory.
iperf3. http://software.es.net/iperf/.

[20] ETSI. Network Functions Virtualisation (NFV);
Architectural Framework. ETSI GS NFV 002
V1.1.1 (2013-10).

[21] Fastabend, John. P4 on the Edge.
http://p4.org/p4-workshop-2016/.

[22] N. Feamster, J. Rexford, and E. Zegura. The road
to sdn: an intellectual history of programmable
networks. ACM SIGCOMM Computer
Communication Review, 44(2):87–98, 2014.

[23] Flux Research Group, University of Utah. HyPer4
Repository.
https://gitlab.flux.utah.edu/hp4/src.git.

[24] J. Hwang, K. K. Ramakrishnan, and T. Wood.
Netvm: High performance and flexible networking
using virtualization on commodity platforms. In
11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages
445–458, Seattle, WA, Apr. 2014. USENIX
Association.

[25] V. Jeyakumar, M. Alizadeh, C. Kim, and
D. Mazières. Tiny packet programs for
low-latency network control and monitoring. In
Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, HotNets-XII, pages
8:1–8:7, New York, NY, USA, 2013. ACM.

[26] C. Kim, A. Sivaraman, N. Katta, A. Bas,
A. Dixit, and L. J. Wobker. In-band network
telemetry via programmable dataplanes. In ACM
SIGCOMM Symposium on SDN Research
(SOSR), 2015.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and

http://mininet.org/
https://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_092914.pdf
https://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_092914.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch
https://github.com/p4lang/p4-hlir
https://github.com/p4lang/p4c-bm
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4
https://github.com/iovisor/bcc/tree/master/src/cc/frontends/p4
http://software.es.net/iperf/
http://p4.org/p4-workshop-2016/
https://gitlab.flux.utah.edu/hp4/src.git

M. F. Kaashoek. The click modular router. ACM
Trans. Comput. Syst., 18(3):263–297, Aug. 2000.

[28] J. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
Netfpga–an open platform for gigabit-rate
network switching and routing. In Microelectronic
Systems Education, 2007. MSE ’07. IEEE
International Conference on, pages 160–161, June
2007.

[29] H. McKee. Improved {CRC} techniques detects

erroneous leading and trailing 0âĂŹs in
transmitted data blocks. Computer Design,
14(10):102–4, 1975.

[30] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2), Mar. 2008.

[31] N. Mohan, W. Fung, D. Wright, and M. Sachdev.
A low-power ternary cam with positive-feedback
match-line sense amplifiers. Circuits and Systems
I: Regular Papers, IEEE Transactions on,
56(3):566–573, 2009.

[32] C. Monsanto, J. Reich, N. Foster, J. Rexford,
D. Walker, et al. Composing software defined
networks. In NSDI, pages 1–13, 2013.

[33] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and
R. Govindan. Flow-level state transition as a new
switch primitive for sdn. In Proceedings of the
Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 61–66,
New York, NY, USA, 2014. ACM.

[34] Netronome Systems, Inc. Programming NFP with
P4 and C.
https://netronome.com/media/redactor files/
WP Programming with P4 and C%20.pdf.

[35] Open Networking Foundation. OpenFlow Switch
Specifications. https://www.opennetworking.org/
sdn-resources/onf-specifications/openflow.

[36] R. Ozdag. Intel Ethernet Switch FM6000 Series -
Software Defined Networking.
http://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[37] Pfaff, Ben. P4 Parsing in Open vSwitch.
http://p4.org/p4-workshop/.

[38] A. Rajan, S. Gobriel, C. Maciocco, K. Ramia,
S. Kapury, A. Singhy, J. Ermanz,
V. Gopalakrishnanz, and R. Janaz. Understanding
the bottlenecks in virtualizing cellular core
network functions. In Local and Metropolitan Area
Networks (LANMAN), 2015 IEEE International
Workshop on, pages 1–6, April 2015.

[39] J. Salim, H. Khosravi, A. Kleen, and
A. Kuznetsov. Linux netlink as an ip services
protocol. RFC3549, July, 13, 2003.

[40] M. Shahbaz, S. Choi, B. Pfaff, C. Kim,
N. Feamster, N. McKeown, and J. Rexford.
Pisces: A programmable, protocol-independent
software switch. AT&T Research Academic
Summit, Bedminster, NJ, USA, 2016.

[41] R. Sherwood, G. Gibb, K.-K. Yap,
G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar. Flowvisor: A network virtualization
layer. OpenFlow Switch Consortium, Tech. Rep,
2009.

[42] J. M. Smith, D. J. Farber, C. A. Gunter, S. M.
Nettles, D. Feldmeier, and W. D. Sincoskie.
Switchware: accelerating network evolution (white
paper). Technical Report MS-CIS-96-38, CIS
Department, University of Pennsylvania, 1996.

[43] H. Song. Protocol-oblivious forwarding: Unleash
the power of sdn through a future-proof
forwarding plane. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 127–132.
ACM, 2013.

[44] S. Tabassum, F. Parveen, H.-u. Rashid, et al. Low
power high speed ternary content addressable
memory design using 8 mosfets and 4
memristors-hybrid structure. In Electrical and
Computer Engineering (ICECE), 2014
International Conference on, pages 168–171.
IEEE, 2014.

[45] D. Tennenhouse, J. Smith, W. Sincoskie,
D. Wetherall, and G. Minden. A survey of active
network research. Communications Magazine,
IEEE, 35(1):80–86, Jan 1997.

[46] The P4 Language Consortium. The P4 Language
Specification. http://p4.org/spec/.

[47] D. J. Wetherall, J. V. Guttag, and D. L.
Tennenhouse. Ants: A toolkit for building and
dynamically deploying network protocols. In Open
Architectures and Network Programming, 1998
IEEE, pages 117–129. IEEE, 1998.

[48] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu,
and W. Zhang. Toward a software-based network:
integrating software defined networking and
network function virtualization. Network, IEEE,
29(3):36–41, May 2015.

[49] L. Yang, R. Dantu, T. Anderson, and R. Gopal.
Forwarding and control element separation
(forces) framework. Technical report, RFC 3746,
April, 2004.

[50] M. Yu, A. Wundsam, and M. Raju. Nosix: A
lightweight portability layer for the sdn os.
SIGCOMM Comput. Commun. Rev., 44(2):28–35,
Apr. 2014.

https://netronome.com/media/redactor_files/WP_Programming_with_P4_and_C%20.pdf
https://netronome.com/media/redactor_files/WP_Programming_with_P4_and_C%20.pdf
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://p4.org/p4-workshop/
http://p4.org/spec/

	Introduction
	Background
	Data Plane Programmability
	The P4 language

	Examples
	HyPer4 Operational Concept
	Snapshots and Simple Composition
	Network Slicing and Composition
	Virtual Networking

	HyPer4 Persona Design
	Design Overview
	Parsing
	Match-Action
	Deparsing
	Isolation
	Virtual Networking
	Design Consequences

	Implementation
	Configuration
	Compiling
	Limitations

	Evaluation and Analysis
	Match-action Stages
	Space
	Ternary Matches
	Latency and Bandwidth Measurements
	Deploying on RMT

	Discussion of Alternatives
	Partial Virtualization
	Other Alternatives

	Related Work
	Conclusions
	Acknowledgments
	References

