
Proteus: A Network Service Control Platform for
Service Evolution in a Mobile Software Defined Infrastructure

∗

Aisha Syed
School of Computing, University of Utah

Salt Lake City, Utah
aisha.syed@utah.edu

Jacobus Van der Merwe
School of Computing, University of Utah

Salt Lake City, Utah
kobus@cs.utah.edu

ABSTRACT
We present Proteus, a mobile network service control plat-
form to enable safe and rapid evolution of services in a mo-
bile software defined infrastructure (SDI). Proteus allows
for network service and network component functionality to
be specified in templates. These templates are used by the
Proteus orchestrator to realize and modify service instances
based on the specifics of a service creation request and the
availability of resources in the mobile SDI and allows for ser-
vice specific policies to be implemented. We evaluate our
Proteus prototype in a realistic mobile networking testbed
illustrating its ability to support service evolution.

CCS Concepts
•Networks→Mobile networks; Network management; Net-
work manageability; Programmable networks;

Keywords Software Defined Infrastructure; Service Evolu-
tion; Orchestration; Data Centric; Templates; Mobile Net-
works

1. INTRODUCTION
Cloud computing platforms have revolutionized the manner
and rate at which web-based services and applications are
designed, deployed and evolved. “As-a-service” cloud offer-
ings continue to proliferate and large scale web based ser-
vices have famously developed systems and mechanisms that
allow them to introduce new services or service features on a
daily basis [44, 51].

In contrast, in the networking domain, service deployment
and evolution move at a glacial pace. Historically, mobile
networking companies and standards bodies produce a new
generation of services (i.e., a new “G,” 2G, 3G, etc.) approx-
imately every ten years [48]. We argue that future mobile

∗Instructions for accessing the Proteus code and using it
in the PhantomNet testbed are available here: https://wiki.
phantomnet.org/wiki/phantomnet/proteus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom’16, October 03-07, 2016, New York City, NY, USA
© 2016 ACM. ISBN 978-1-4503-4226-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973757

networks will not be able to meet the varied application de-
mands without having more varied service offerings and being
fundamentally more evolvable. In the context of this paper
we define a network service as the collection of protocols,
mechanisms and network elements that realize well defined
functionality that is being offered to and/or used by cus-
tomers, end-users and applications. Future mobile networks
will almost certainly still provide the kinds of services we
use today, i.e., broadband access, voice and data services, etc.
In addition, however, demands from the continued growth
in machine-to-machine communication [30], the emergence
of Internet of things (IoT) [29], and anticipated low laten-
cy/high reliability tactile services [42, 4], e.g., vehicle safety,
augmented reality, industrial automation, and the prolifera-
tion of wearable devices, will unlikely be satisfied by a single
monolithic service abstraction. Compared to current mobile
network services, future services might have very different
network requirements and dynamically changing and varied
coverage needs. For example, future mobile networks will
need to support a large number of IoT devices [9]: around
26 billion by 2020, according to some estimates [26]. The
massive number of devices and the fact that IoT communica-
tion patterns are expected to be quite different from today’s
human-to-human and human-to-machine type communica-
tion, suggests that fundamental changes in the service ab-
stractions supported by future mobile networks might be
needed. Conversely, augmented reality applications might
have very different needs. For example, an augmented re-
ality application in use by a national retail store [32] might
require high bandwidth, low latency access to compute re-
sources at the network edge and would require the enabling
network service to be available at store locations across the
country (i.e., broad coverage). However, if the augmented re-
ality application is only enabled inside the retail stores, the
actual service coverage needed might be quite sparse. Simi-
larly, a geo-aware inter-vehicle safety application [4], even if
it is deployed to have broad coverage, will require very low
latency vehicle-to-vehicle and vehicle-to-cloud communica-
tion. However, the resulting communication patterns would
be “localized” and changing very rapidly as determined by
the set of vehicles in a small geographic area.

We argue that the only way in which these diverse and
evolving needs of future mobile network can be realized is
through the adoption of various “soft” technologies—e.g.,
software defined networking, cloud computing, and network
function virtualization so that the mobile infrastructure can
become a software defined infrastructure (SDI). The success of
a mobile SDI will critically depend on the ability of the con-

trol platform of the infrastructure to deal with the complex,
mobile-specific needs of this environment. Toward this end,
in this paper we present our work on the Proteus platform.
Proteus is a mobile network service control platform to en-
able safe and rapid deployment and evolution of services in
a mobile network. The role of the Proteus platform is to al-
low the creation and evolution of services within a mobile
SDI. With Proteus, service designers specify the details of
network services in service templates. A service template cap-
tures the network components involved in realizing the ser-
vice, the relationships between such components, the way
these components need to be configured and managed, and
service specific policies associated with the service. In Pro-

teus, network components are realized as virtualized network
functions, the capabilities, dependencies and functionality of
which are similarly defined in component templates. Given
this base functionality, network service instances can be dy-
namically instantiated. Specifically, the Proteus orchestra-
tor uses service and component templates and combines that
with resource availability in the infrastructure and a specifi-
cation of the desired characteristics of a service instance, e.g.,
in terms of scale and coverage, to dynamically realize service
instances.

The dynamic nature of this environment has a number of
important consequences. First, much like in a cloud plat-
form, Proteus allows for different instances of a service to
be instantiated in parallel [13]. Second, because different ser-
vice instances can be executing in parallel, Proteus makes it
possible to instantiate variants of the same service, or indeed
radically different service instances. For example, a network
service capable of supporting real time vehicle safety appli-
cations [4] might require specialized handover and group
communication mechanisms, which might warrant its real-
ization in a network service instance (or slice) separate from
(regular) mobile broadband access services. Third, Proteus
allows the current single mobile provider environment to
be “opened up.” Specifically, Proteus enables third-party
service and application providers to readily deploy services
and applications on the mobile SDI, i.e., a hosted mobile ser-
vice environment. Fourth, Proteus inherently supports the
evolution of network services and features. A new service
or service feature might involve modifying a service tem-
plate to change the configuration of a component, or provid-
ing a new network component or replacement implementa-
tion of a component and updating the service template to
make use of it. For example, a basic mobile broadband ac-
cess service might be enhanced to provide offloading func-
tionality to a cloud platform for selective low-latency appli-
cations [14, 23]. Another example might involve replacing
a network component, e.g., a mobile network control plane
element like the mobility management entity, with a refac-
tored implementation that is inherently more amenable to a
dynamic SDI environment [16].

Our goal with Proteus is to enable the realization of di-
verse mobile network services as well as the service evolu-
tion and changes required by a future mobile network en-
vironment. As such, in the first instance, Proteus is analo-
gous to the cloud control software, e.g., OpenStack [6], that
turns a datacenter into a cloud platform. That is, having a
cloud-like control stack being applied to a mobile SDI would
enable multiple network service instances, as well as spe-
cialized service instances, to be deployed and would enable
the multi-player environment described above. While cloud-

like, the Proteus control platform is different from exist-
ing cloud platforms. First, Proteus deals with mobile net-
work services, providing the means to specify and instanti-
ate network services, with the implied protocol and compo-
nent dependencies and providing mobile specific primitives
and mechanisms. Second, Proteus operates across a mo-
bile SDI that is geographically highly distributed [3] and in-
volves dealing with different underlying technologies. (Some
of these technologies are not readily virtualizable, e.g., base
stations, implying that placement decisions in Proteus needs
to be service, location and network element aware.) More
importantly, however, as described above, Proteus needs to
accommodate the evolution of mobile network service in-
stances. This is particularly challenging. In Proteus we
deal with this by requiring virtualized network components
to expose management primitives that the Proteus orchestra-
tor can invoke to facilitate change. Specifically, Proteus net-
work components are equipped with lifecycle management
functions to allow the components to be dynamically de-
ployed, decommissioned or migrated, or scaled up or down
according to service needs.

We make the following contributions:

•We present an architecture and prototype implementation
of the Proteus platform. Proteus allows for network service
and network component functionality to be specified in tem-
plates and follows a data-centric approach whereby services
can dynamically adapt based on network or service condi-
tions. Specifically, the generic Proteus orchestrator uses ser-
vice and component templates and information from the data
store to instantiate service instances based on the specifics of
a service creation request and the availability of resources in
the mobile SDI.

• We illustrate the feasibility of our approach to dynami-
cally deploying network services by realizing three differ-
ent services with Proteus, namely a broadband mobile net-
work service based on the standards-based evolved packet
core (EPC) [40], a selective mobile offloading service [23]
and a personalized mobile-aware cloud service [52]. Pro-

teus allows for the automated instantiation, configuration
and modification of these services. Proteus can instanti-
ate multiple standalone instances of these services (with in-
stance specific scale and coverage), and can safely evolve an
existing service (e.g., provide selective offloading of traffic in
an existing broadband service) allowing for the sharing of
network elements between compatible services.

•We evaluate our Proteus implementation in a realistic mo-
bile networking testbed [15]. We perform both end-to-end
and component level performance evaluations of the Pro-

teus prototype and perform a functional evaluation of Pro-
teus’ ability to support hosted service instantiation, manage-
ment and evolution.

2. CONTEXT AND RELATED WORK
2.1 Proteus Overview
Mobile software-defined infrastructure. With Proteus we as-
sume a future mobile infrastructure that will be fully software-
defined. Figure 1 depicts such a mobile software-defined
infrastructure (SDI). Specifically, we assume a core network
infrastructure that will consist of sets of distributed cloud
computing platforms interconnected with SDN-enabled net-
works. Such a software-defined core infrastructure can be

combined with a “conventional” RAN consisting of mobile
devices and base stations. However, the increasing popular-
ity of cloud-RAN approaches [21], where remote radio heads
(RRHs) feed baseband signals to a pool of cloud-based base-
band processing units (BBUs), would be synergistic with a
mobile SDI approach, allowing shared use of cloud resources
for core or radio access network functions. Ultimately we ex-
pect the software-defined nature of such an infrastructure to
extend into the radio access network (RAN), e.g., as software
defined radio (SDR) functionality, allowing great flexibility
in both mobile devices and base stations. For the purposes of
the work reported here, however, we will assume a conven-
tional RAN and concentrate on a mobile core network real-
ized on SDI.

SDN-enabled
Network

SDN-enabled
Network

SDN-enabled
Network

Software Defined Core Infrastructure

ComputeComputeCompute/
NFV

Cloud Platform

ComputeComputeCompute/
NFV

Cloud Platform

ComputeComputeCompute/
NFV/BBU

Cloud Platform

ComputeComputeCompute/
NFV

Cloud Platform

ComputeComputeCompute/
NFV

Cloud Platform

ComputeComputeCompute/
NFV/BBU

Cloud Platform

SDR-enabled
Mobile Device

SDR-enabled
Base Station

SDR-enabled
Mobile DeviceMobile Device SDR-enabled

Base StationBase Station

Radio Access Network

SDR-enabled
Mobile Device

SDR-enabled
Mobile DeviceMobile Device

Cloud Radio Access Network

RRHRRHRRH

SDR-enabled
Mobile Device

SDR-enabled
Mobile Device

SDR-enabled
Mobile Device

Software Defined Radio Access Network

RRH/SDR Base
Station

RRH/SDR Base
Station

RRH/SDR Base
Station

Figure 1: Mobile software-defined infrastructure (SDI)

Services in a mobile SDI. Given a mobile SDI, the most basic
purpose of Proteus is to realize mobile network services on
the infrastructure. Figure 2 illustrates this with a number
of example services. (We use nomenclature associated with
current long term evolution (LTE)/evolved packet core (EPC)
mobile networks.)

First, Figure 2(a) shows the base case of realizing a vanilla
LTE/EPC mobile broadband service [40]. With Proteus, a
service template will capture the mobile network-specific com-
ponents involved (i.e., eNodeB, MME, SGW and PGW), the
fact that some of these components (the eNodeBs or base
stations) are physical devices (associated with cell towers in
specific physical locations), while other components can be
realized via NFV instances, the fact that the mobile specific
components are to be connected via an IP network, etc. Fig-
ure 2(a) also depicts the fact that in a mobile SDI, multiple
separate instances of a mobile network service might be op-
erational, each in its own logical “slice.”

Figure 2(b) shows an example where the same basic mo-
bile broadband service is realized. However, in this case,
one of the mobile network components—the MME—is be-
ing replaced by an alternative realization, MME’. For exam-
ple, previous work described the refactoring of an MME into
a more elastic NFV realization involving an MME load bal-
ancer (MLB), which maintained the existing protocol inter-
action with the other mobile network components and used
a pool of MME processing entities (MMP) to achieve elas-
ticity [16]. Such a refactored component might expose new
primitives (e.g., associated with its load balancing function-
ality) that would be captured in its component template.

In Figure 2(c) we show a configuration where the IP sub-
strate component is replaced with an SDN-enabled network
fabric to enable offloading to an in-mobile-network cloud
platform. Such a mobile edge computing infrastructure is
attracting significant industry attention and can enable new
mobile network services [1, 43]. Realizing such services in
Proteus would again involve the introduction of new com-

eNodeB

eNodeB

IP
Substrate SGW PGW

MME

eNodeB

eNodeB

IP
Substrate SGW PGW

MLB

MME-PEMME-PEMMP

eNodeB

eNodeB
SGW PGW

MME

MME'

SDNSDNSDN

IP Substrate'

SGW PGW

MME

SDNSDNSDN

UEUEUE

UEUEUE

UEUEUE

IoT
Device

IoT
Device

IoT
Device

(a)

(b)

(c)

(d)

Radio Access Network
Core Mobile Network

eNodeB

eNodeB
IP Substrate'

Low-latency
App

Edge Cloud
Offloaded

traffic
Regular
traffic

IoT app Edge Cloud

IoT group
communication

eNodeB

eNodeB

IP
Substrate SGW PGW

MME
eNodeB

eNodeB

IP
Substrate SGW PGW

MME

Figure 2: Example mobile services

ponent implementations, i.e., the SDN fabric and the cloud
platform, and the need to create new service and compo-
nent templates that describe the new service and its rela-
tionship with existing mobile network components. Because
offloading services will need to work with and share compo-
nents (and resources) associated with existing services, ser-
vice templates for such services will need to describe poli-
cies and mechanisms that will allow new services to be in-
troduced safely.

Finally, Figure 2(d) shows a hypothetical example network
service specialized for IoT devices. For example, automotive
safety applications might require ultra low-latency [38], so-
phisticated group communication [24, 36] and increased re-
liability [19]. Overlaying such a service abstraction on top
of the existing human-to-machine mobile network service
might not be feasible and expected IoT traffic patterns have
been shown to be detrimental to current mobile network con-
trol and data plane functions [17]. As suggested by Fig-
ure 2(d), such a specialized IoT network service would be
best realized in a mobile SDI as a separate network service
“slice,” existing in a parallel with existing network services.

As mentioned earlier, for our work we consider a network
service to be the collection of protocols, mechanisms and
network elements that realize functionality that is used by
customers, end-users and applications. Network services are
therefore different from applications (or application services)
that might be implemented on a cloud platform. For cloud
application services, network functionality (e.g., best-effort
connectivity) is assumed, and the application service builds
its logic on this base. In a Proteus mobile SDI, the SDI
is used to create this basic network functionality, and further
provide novel network service abstractions (beyond best-effort
connectivity) to better suit the needs of future mobile ap-
plications and application services. (The needs associated
with mobile networking and especially the needs of antici-
pated future mobile network applications also differentiate
our work from related efforts in the wired network domain.
We highlight the mobile specific challenges in § 2.2 and con-
sider related work in § 2.3.)

Proteus role players. Services like those described above
could be instantiated by a single service provider to mimic
today’s single provider environments. However, we reason
that the real power of a mobile SDI and the Proteus service
control platform comes from the ability to allow different
service providers to offer services on the same infrastructure,
i.e., a hosted mobile service environment. As such we iden-
tify different role players in our environment. First, the in-
frastructure provider owns and operates the mobile SDI and
the Proteus service control platform to manage and con-
trol the deployment of services on it. Service providers of-
fer services on the infrastructure based on service templates
registered with the platform. Application service providers
make use of the services instantiated on the platform. For
example, our hypothetical IoT-specific service might be pro-
vided by a third-party service provider, using the mobile SDI
operated by an infrastructure provider and application ser-
vice providers might deploy different IoT applications on the
edge cloud using the IoT service.

Component
Implementation
& Specifiction

Component
Implementation
& Specifiction

Component
Implementation
& Specifiction

Component
Implementation
& Specifiction

Service
Abstraction
Composition

& Specification

Service
Operation,

Management
& Maintenance

Action

Actors - Vendors,
- Component Developers

- Service provider
- Infrastructure provider
- Third party service
provider

- Proteus platform
- Service provider
- Infrastructure provider
- Third party service
provider
- Application service provider

Example
(depiction)

SCALE MME

Lifecycle: ...
Policy: ...

Function: MME

Management: ...

eNB SGW PGW

MME

eNB SGW PGW

SCALE
MME

MLB MMP
eNB

SGW PGW

SCALE
MME

Proteus
runtime

eNB

SCALE
MME

PGWSGW

Component
Template

Service
Abstraction
Template

Figure 3: Proteus workflow

Proteus workflow. Deploying a service with Proteus in-
volves a three step workflow. As shown in Figure 3, the
first step involves developing the technology to implement
the (new) network components to be introduced. The result-
ing component template would include a specification of the
function of the component and how it relates to other com-
ponents, lifecycle and management primitives as well as any
component specific policies. With a component template in
hand, the next step involves developing a service template
that specifies how the new component can be used, together
with other components, to realize the new service. These first
two steps are performed offline and the resulting service (and
component) templates are provided to the Proteus runtime
system, which can then be used to realize services based on
the template.

Example services in Proteus. To illustrate the feasibility of
our approach, we extend three existing network services to
work within Proteus. Specifically, we use:

•Standard LTE/EPC: An NFV-based realization of a standard
LTE/EPC broadband access service [40] forms an interesting
base case for our purposes.

•SMORE: SMORE is an edge cloud offloading architecture for
mobile networks [23]. SMORE makes use of an SDN sub-
strate at an aggregation point between the EPC core and the
RAN to realize offloading. This service example raises chal-
lenges for Proteus related to overall management, resource
placement optimization and scaling up or down in the pres-
ence of multiple clouds.

•MobiScud: MobiScud is an offloading architecture that re-
alizes a personalized cloudlet-like service [52, 49]. In sup-
port of augmented reality applications, e.g., cognitive assis-
tance applications [22], a personalized virtual server [50] is
associated with users of the application. To maintain the
low-latency requirements of this environment, in MobiScud,
the personal virtual server is migrated from one edge-cloud
to another, in concert with a user’s mobility in the physical
world. This coordination between the mobile network (deal-
ing with user mobility) and the service (migrating the virtual
server to “follow” the user) represents challenging interac-
tions between the role-players in a Proteus environment.

2.2 Design Principles, Challenges, Solutions
Design principles. The fundamental design principle we em-
ploy in Proteus is strong separation and clean abstractions be-
tween the service-agnostic functionality provided by Pro-

teus and the mobile SDI, and the service-specific functional-
ity that can be realized on that. As we outline below, variants
of this basic design principle are manifested in addressing
the Proteus challenges by carefully combining service spe-
cific and service agnostic mechanisms and primitives.

Hosted service multiplicity and diversity: The most fun-
damental challenge for Proteus is how to allow the instan-
tiation of multiple, potentially radically different services by
one or more service providers, and to do that in a rapid and
safe manner.

Proteus addresses this challenge by providing service ag-
nostic automated orchestration in the platform itself, while
capturing service specific details in service and component tem-
plates, which are used by the orchestrator to realize the ser-
vices. This partitioning of functionality strikes a delicate
balance between designing a template specification that can
capture the service and components completely, and an or-
chestrator, which, although it is service agnostic, still needs
to manage resources in the infrastructure on behalf of ser-
vices.

Diversity in implementation and requirements: A re-
lated set of challenges involves the diversity of possible im-
plementations of network components and the diverse needs
of service instances. In a mobile SDI network, elements can
be realized as conventional dedicated hardware components,
as virtualized network functions, as a collection of virtual-
ized components, or as a combination of these. Similarly, dif-
ferent service instances, even of the same base service, might
have very different requirements in terms of coverage, delay
and network capacity. For example, the placement of an off-
loading server for a low latency application would naturally
want to minimize the latency between users and the server.
In a mobile SDI, these problems are exacerbated by the fact
that the environment is distributed and not homogeneous.

We address these challenges through a number Proteus

solutions. First, we employ polymorphic templates for both
component and service specification. Templates are taken as
types and allow inheritance and specialization, such that, for
example, both a physical and virtual eNodeB inherit from a
generic eNodeB template type. Second, we enable sophisti-
cated resource placement by having the Proteus platform be
inherently data centric in that it employs a knowledge cen-
tric datastore that captures the current and past status of
the infrastructure. Data from the datastore is exposed to
services to enable dynamic data centric service specification.
Specifically, the datastore exposes a query interface that can

be used by service templates to define resource placement
constraints, that can also take into consideration variables
that represent current infrastructure status contained in the
infrastructure datastore. We maintain Proteus’ service ag-
nostic orchestration in the face of service-specific constraints
through a generic constraint solving layer as part of the or-
chestration that provides service agnostic resource placement
functionality. For example, this functionality allows a ser-
vice template to specify that the compute server it gets al-
located should be located close (e.g., in terms of round-trip-
time (RTT) measurements retrieved from the datastore) to
the eNodeB that has had the largest number of its customers
for the past two days (based on traffic measurement analyses
retrieved from the datastore).

Mobility specific requirements: Dealing with mobile spe-
cific requirements represent another set of challenges. Com-
pared to data center and other wired networks, mobile net-
works are inherently more complex, dealing with both wire-
less (in the RAN) and wired (in the core) networks. First,
mobile networks have a greater variety of network elements
with specialized functionality and with a myriad of protocols
(in both control and data plane) tying the components to-
gether. Second, current mobile network architectures main-
tain significantly more state, including device and/or user
specific state. Third, mobile network infrastructures repre-
sent a superset of wired network deployments: central offices
(similar to data center networks), wide area core mobile net-
work (often built as an “overlay” on regular packet wide area
networks), highly distributed “edge” networks in the form of
the radio access network.

We employ a variant of our basic design principle to ad-
dress these challenges, by carefully combining service specific
and infrastructure specific mobility aware mechanisms. Specifi-
cally, Proteus’ service templates allows logical service specific
topologies to be specified, capturing dependencies between
mobile network components and their constituent protocol
interactions. Proteus’ orchestrator takes these logical service-
specific (but generic) specifications and maps them to realiz-
able infrastructure specific actual service instances in the SDI.
(This might take into account data-centric placement direc-
tives described earlier.) Once mapped, the orchestrator em-
ploys a service specific realization plan from the service/com-
ponent template to instantiate and configure the service.

Safe service evolution: A key requirement (and challenge)
for Proteus is the need to enable service evolution with min-
imal disruption. Of particular concern in a mobile network-
ing environment is that some services might enhance and de-
pend on other services, e.g., a traffic offloading service that
offloads some of the traffic associated with a standard mo-
bile access service.

We address these challenges through Proteus’ data centric
service management. Specifically, we employ a combination
of generic redirection primitives in the infrastructure, service
specific migration and other life-cycle primitives in the mo-
bile network components and a data-centric runtime system,
which, while it is service agnostic, nonetheless is service-
aware, allowing for resource sharing between service instances.
For example, Proteus allows for a service template to spec-
ify sharing of resources with some existing service instance.
The data centric nature of Proteus service templates enables
this sharing by allowing the new templates to be dynami-
cally parameterized with references to existing instances of
components that the new template wants to reuse.

2.3 Related Work
The possibility of using software defined technologies to re-
alize future networks has received broad attention from both
industry [11, 12, 41, 7] and academia [54, 27, 45, 35, 33]. Var-
ious industry players are collaborating on “re-architecting
central offices as data centers” [41]. Also, efforts are under-
way to realize an open, well engineered NFV platform [7].
These efforts are primarily aimed at the engineering aspects
of software defined platforms and further focus on wired (as
opposed to mobile) networks. Our work specifically aligns
with AT&T’s proposed ECOMP architecture [12]. Unlike Pro-
teus, however, this work has not addressed service evolu-
tion or mobile networking concerns. More closely related
to our own work are efforts to bring software defined ap-
proaches to the mobile networking environment [45, 35, 33].
Of these, the KLEIN system [45] proposes an orchestration
framework for a software defined mobile core network and
is most closely related to our own work. The KLEIN work
is, however, mostly focused on resource management in a
“regular” standards compliant mobile core network. In con-
trast with these earlier efforts, our focus is on using SDI as
an agent for service evolution.

Proteus’ traffic redirection and migration primitives are
related to earlier efforts involving packet processing with vir-
tualized network functions [27, 46, 47]. Like the Proteus

primitives, these earlier efforts deal with state both in net-
work components and in the network itself. These efforts
dealt with scaling of middlebox functions in a network, whereas
Proteus focuses on using these primitives to enable the evolv-
ability of mobile network services through the composition
and configuration of virtualized network functions.

Proteus’ template based approach is related to earlier work
on template based configuration management [25], resource
specification in networking testbeds [53, 2] and more recent
cloud orchestration efforts [8, 20]. Presto composed “con-
figlets” to realize network services and service options [25].
Emulab ns files [53] and GENI RSpecs [2] have been used to
specify the set of network resources associated with dynamic
network experiments. TOSCA follows a template based ap-
proach to allow for the orchestration of cloud applications.
Our work incorporates aspects of these earlier efforts and ex-
tends them to enable mobile network service evolution.

Our work also relates to earlier efforts associated with vir-
tualizing the radio access network, i.e., cloud RAN efforts [21]
as well as more recent proposals to establish generalized cloud
platforms close to the mobile edge [1, 43]. Cloud RAN ef-
forts are limited to the RAN and would naturally form part
of a comprehensive mobile SDI. Similarly, efforts related to
mobile edge cloud would enable the mobile SDI required by
Proteus. These efforts are complementary to Proteus.

The need for a rich set of new services is particularly evi-
dent in efforts related to 5G, the next generation mobile ar-
chitecture [48, 10, 9, 38]. Our vision of a future mobile net-
work being realized on a software defined infrastructure is
shared by these works [10]. To our knowledge, however, our
work on Proteus is the first practical mobile service control
platform that enables mobile service evolution.

The notion of allowing third party service providers on a
common platform is well entrenched in cloud computing.
Opening up the network in the same manner has been pro-
posed, although not in a mobile networking context [31, 18,
28]. These efforts have met with limited success. We argue
that this is due, at least in part, to a lack in these earlier

efforts of the clean abstractions and automation offered by
Proteus.

3. Proteus ARCHITECTURE
Proteus is a service control platform, i.e., a software stack
run by an infrastructure provider on a mobile software-defined
infrastructure, to enable service providers to instantiate and
operate services on the infrastructure. A high-level depiction
of the Proteus architecture is shown in Figure 4.

Service Provider

Infrastructure
Datastore

Manager

Service/Component
Developer

Service
Registration

Interface

Orchestrator

Application Provider

Logical
Service

Instances
ID_N

Templates
repository

Service
Creation
Interface

Service
Management

Interface

Infrastructure
management

services

Actual
InstancesID_NPhysical

infrastructure

Figure 4: High-level architecture

Proteus provides a service registration interface that can be
used by component and service developers to register new
or modified templates with the framework by placing them
within the templates repository. The service creation interface
can then be used by service providers (often on behalf of
their application provider customers) to instantiate instances
of the registered service templates, where each service in
turn may be composed of instances of registered component
templates.

Once a service creation request has been placed, the or-
chestrator is responsible for catering to the request by orches-
trating a logical service instance based on the relevant tem-
plates imported from the templates repository and template-
specific parameters input to the orchestrator as part of the
service creation request. A logical service instance does not
consume any real resources in the infrastructure. Rather,
during its creation the orchestrator sorts out any dependen-
cies and determines whether the service could be instanti-
ated if resources are available. To enable the creation of
actual service instances, the orchestrator contains resource
placement logic which finds appropriate physical resource
mappings for the logical components in the service. The
orchestrator has access to physical resource availability and
connectivity information contained within the infrastructure
datastore. Each service template contains a service realization
plan, i.e., a set of commands used by the orchestrator to cre-
ate the actual service and component instances by configur-
ing physical resources in the SDI. Generic infrastructure man-
agement services are responsible for populating the infras-
tructure datastore with information about the mobile SDI.
This includes information about the topology and health and
performance metrics of the infrastructure. The orchestrator
also has a networking controller that provides implementa-
tions for primitives supported by Proteus (such as migration
and traffic redirection primitives for continuous location-aware

resource placement and seamless service evolution).
Once the actual service instance is realized, the service man-

agement interface can be used to invoke lifecycle management
primitives on the service. Such service management opera-
tions might result in a modification of existing components
or addition of new components in the service instance, in
which case some components may need to be re-orchestrated
or new components may need to be added to the instance.

The following subsections describe the important pieces of
the architecture in more detail.

3.1 Infrastructure Datastore
The Proteus data-centric approach is enabled by a logically
centralized infrastructure datastore. The datastore contains
network infrastructure information and status, network man-
agement data (e.g., monitoring and performance measure-
ments) and data produced by network analysis tools. The
datastore plays a key role in supporting various tasks during
orchestration and management of services and the infras-
tructure components: e.g., finding physical resource map-
pings that satisfy the constraints for services being orches-
trated, or retrieving current network and resource status for
data centric management of services and the infrastructure.

Proteus follows a knowledge centric approach by real-
izing the infrastructure datastore as a knowledge graph. A
knowledge graph captures data using basic, low-level rela-
tions. It simplifies complex reasoning over data connected
by relationships, and it also facilitates the inference of undis-
covered relationships by walking over the paths formed by
relationships between data elements.

Data in a knowledge graph is represented as “facts,” which
are triplets of the form [entity1]-[relation]-[entity2]. To al-
low Proteus components, including service and component
templates, to make use of information in the datastore, it
exports an interface with insert, delete, query and subscribe
primitives. The latter two are of particular interest to enable
Proteus functionality:

Query takes as input a subgraph made up of facts that may
contain variables or constants. The subgraph is matched against
the datastore graph and all matching subgraphs (that is, those
that have the same pattern) are returned. For example, con-
sider a graph datastore with the following contents.

pc1 isA Compute

pc1 hasLocation SF

pc2 isA Compute

pc2 hasLocation SF

pc3 isA Compute

pc3 hasLocation NY

Then the following is an example of a query to retrieve all
the Compute node names that are located in SF. “X_” terms
represent variables while others are constant.

X_PC isA Compute

X_PC hasLocation SF

The query primitive will essentially run a subgraph match-
ing algorithm over the graph datastore and return matches
for this query subgraph. The resulting matches for our cur-
rent datastore graph will be as follows.

results = [

[pc1 isA Compute; pc1 hasLocation SF],

[pc2 isA Compute; pc2 hasLocation SF]

]

Subscribe takes as input a query subgraph similar to the
query primitive but instead of a one-time query, subscribe also
allows the application or service to get new results of the
query as they become available by providing one more in-
put, a callback function to be notified of new results.

3.2 Service and Component Templates
A Proteus template acts as a model of the component or
service it represents and contains all the pieces of informa-
tion needed to realize an instance of it, customized based on
user-supplied parameters. Our component and service mod-
eling and template design is inspired by object-oriented pro-
gramming principles, abstraction, inheritance, and polymor-
phism and was further influenced by existing cloud orches-
tration platforms [8].

Inheritance and polymorphism are conceptually natural
choices for template specification and allow the orchestra-
tor great flexibility in realizing a service. For example, if a
service requires compute capabilities, this can be provided
either through a physical host (or PC) or a virtual machine
(VM). In Proteus we capture this with both PC and VM com-
ponents inheriting from a generic Compute component. The
approach generalizes to more sophisticated components. For
example, in Section 2.1 we described an elastic NFV-based
refactoring of an MME [16], which would similarly inherit
from a generic EPC MME component in our model.

A template package for a component or service contains
the following.

Properties. These are attributes or state variables associated
with the component or service. For instance, for a PGW com-
ponent, location, isRunning, and migrationEnabled could be
properties. For an EPC service that may consist of multiple
S/PGWs, numPGWs and numSGWs could be possible prop-
erties.

Input parameters. These are service or component specific
parameters used to customize the template: for example, the
number of constituent components of each type in an EPC
service and desired deployment location information.

Lifecycle management functions. These make up the man-
agement interface for the component or service. Since a ser-
vice is composed of components, the service implementation
can abstract away the underlying component interfaces as
needed and expose only a service interface that is based on a
combination of the component interfaces. The service inter-
face is then made accessible to the orchestrator, and it is also
made accessible to the relevant service providers through the
service management interface. Start, stop, scale-up, scale-down,
and migration are example lifecycle management primitives.

Constraints. These are specified as one or more functions
that each check constraints on the values of variables(s) that
could be a template property or dynamically calculated based
on user-input parameters and current service and compo-
nent status. If a management or configuration primitive ex-
ecuted on a component or service will result in a state that
violates any of the constraints then it is not executed. For ex-
ample, component- or service-level constraints could be de-
fined on the user-input parameters used to instantiate the
template. An example constraint for an EPC service could
be that the numPGWs cannot be specified to be less than one
(since it is a core component).

Policy functions. These provide a way to explicitly export a
service- or component-level policy. This involves subscrib-
ing to the values of variables, providing thresholds and a
corresponding operator function for comparing the values of
variables with the thresholds, and actions to undertake if the
thresholds are violated. For example, an EPC service tem-
plate has a sub-component PGW, so a simple elastic scaling
policy could subscribe to the value of PGW.load (variable) in
the monitoring logs datastore. When it is seen to be greater
than (operator) 80%, continuously for 5 minutes (threshold),
then the PGW.scale-up function tries to remedy it (action).

Service topology specification. This describes the service’s
constituent compute and network resources and associated
requirements or constraints. During orchestration, the spec-
ification is dynamically converted into a query that is exe-
cuted by the orchestrator on the datastore to find possible
physical resource mappings for the service topology. Be-
ing able to generate the query at runtime is important since
the requested topology in the query will typically depend
on user-supplied parameters and resource availability at the
time. We provide more details on this process in Section 3.3.

Implementation artifacts. These are any OS images, code,
configuration files, or similar items that might be needed
during orchestration. These are either added to the template
package or their publicly accessible location is specified.

Service/component plans. A plan is a workflow that takes
management and lifecycle primitives defined in service and
component templates as building blocks. A plan composes
them in appropriate (execution) sequences that can be used
to (dictate) instantiate and manage the service. This offers
flexibility by allowing composition in different ways rather
than having one rigid workflow. Service behavior can be
changed only by modifying the workflow (and attaching new
policies to it). The plans can be specified in a standard such
as BPEL [39] or could be implemented as a script in lan-
guages such as Python or Java.

(i) Service realization plan. This is a service or component-
specific sequence of actions that need to be taken in order to
realize a new instance or re-orchestrate an existing instance
based on parameters input to the template. For example, a
plan may be the sequence of functions to invoke on a com-
ponent in order to configure and set up an instance, such as
installPackages → setupDatabases → config → start. The se-
quence description can include control statements such as
if-else or loops to make the orchestration more flexible and
dynamic (for example, based on values of user-supplied pa-
rameters or the current states of physical resources).

(ii) Component migration plan. The specific sequence and
timing of actions for migration is component specific and
may also be altered based on service policies. The migra-
tion plan is the generic workflow specification that ties all the
component migration actions together, including reconfigu-
ration of other dependent components in the service. The
plan allows specification of conditional if-else or loop state-
ments for greater flexibility, e.g., for specifying conditional
retry or rollback loops when failure is observed during a mi-
gration step. The plan is used by Proteus for orchestrating
migration and is parameterized at runtime with the compo-
nent instance being migrated.

Import/export state functions. These are invoked to per-
form state transfer during component migration.

Flow specifier. During migration, if traffic needs to be redi-
rected to the target, then a flow specifier is needed to redirect
appropriate flows. For example, when an SGW is being mi-
grated, all of its traffic will be defined using the flow specifier
and will be redirected. It may also be that for some compo-
nents, only certain sessions are being migrated. In that case,
the flow specifier would be used to specify traffic belonging
to only those sessions.

3.3 Orchestration and Re-orchestration
The Proteus orchestrator receives orchestration requests from
the Service Creation Interface via its ORCH_IN queue (Fig-
ure 5). The orchestrator dequeues requests from ORCH_IN

and execute the following steps for each request.

Actual
InstancesID_NPhysical

infrastructure

Orch_IN
queue

Service Creation Interface

Service Provider

Infrastructure
Datastores

Manager

Orchestrator

1

3

2

5

4

5

5

ID,
input
params

input
params

Constraints
solver

Resource Placement Module

Local caches

Compute PGW MME …

Component Realizers

5

Orchestrator
Workers

Service_ptrs

.ID_N Logical
ServiceID_N

Instances

Component
Templates

Service
Templates

0

Network
Controller

Figure 5: Service orchestration

Import templates. The orchestrator starts by importing the
relevant template from the framework’s template repository
in order to orchestrate the type of service or service features
requested by the user.

Parameterize. The imported template is then parameterized
with the user input received as part of the request. The abil-
ity to parameterize generic templates allows the orchestra-
tion of instances that are customized to the user’s require-
ments and also enables data-driven parameterization, where
relevant data is retrieved from the datastore.

As an example, consider the case of a request for instan-
tiating an EPC service. Input parameters that can be used
to customize the service can include the number of various
components such as the S/PGWs, the scaling policy thresh-
olds for the service, and the locations where coverage needs
to be provided. The parameters can of course be simple con-
stant values, e.g., location=[SF]. However, they can also be
dynamically calculated based on values of various variables
that depict the current network status, e.g., location=[X where
X is a location where service provider SP has the greatest number
of customers]. In this way, the initial service resource place-
ment can include functions to dynamically calculate the value
of the variable num_of_customers_of_SP in a given location,
based on the current monitored network status, and pick a
location that has the highest value for this variable.

Resource placement. Next, the orchestrator retrieves the
logical service topology from the parameterized service tem-
plate. During orchestration, this topology specification is
converted into a service topology query by the resource place-
ment logic in the orchestrator. The resource placement logic
then uses a constraint solver and physical topology and re-
source availability information from the datastore to find phys-
ical node assignments that satisfy the query and its constraints.

Generating a service topology query. The service topology is
a specification that describes the number and type of compo-
nents needed to create the service, their specific connectivity
with each other and any constraints associated with the com-
ponents. The exact service topology query is dynamically
generated from the template at runtime.

As an example, a potential topology specification for a SMORE
service instance with one instance of type eNodeB, one in-
stance of type Compute for the SMORE server and one Com-
pute instance each for the other types to run as VNFs (S/PGW,
MME) might look like the one shown in Figure 6. Each node
in the figure can have constraints attached to it, e.g., location
or type of node or connections to other nodes. All boxes in
the figure represent variables with associated constraints.

X_ENB1	

X_MME1

X_SGW1 X_PGW1

Type:	Compute
Memory:	>=	4GB…

Type:	eNodeB
Location:	SF
…

X_Network1

Type:	IP_Net

Type:	IP_NetType:	IP_Net Type:	Compute Type:	Compute

Type:	IP_Net
…

X_Switch1

Type:	
SMORE_Switch

Type:	Compute

X_SMORE_Server1

Type:	IP_Net

X_Network2 X_Network4

X_Network3

X_Network5

Figure 6: Example service topology specification generated
from a SMORE service template

A partial query generated from this specification will look
like the one shown below.

X_ENB1 isA eNodeB

X_ENB1 hasLocation SF

X_ENB1 isConnectedTo X_Network2

X_Network2 isA IP_Network

X_Switch1 isA SMORE_Switch

X_Switch1 isConnectedTo X_Network2

X_Switch1 isConnectedTo X_Network5

X_Network5 isA IP_Network

X_SMORE_Server1 isA Compute

X_SMORE_Server1 isConnectedTo X_Network5

X_ENB1 isConnectedTo X_Network1

X_Network1 isA IP_Network

X_SGW1 isA Compute

X_SGW1 hasMemoryGB X_SGW1_MS

X_SGW1_MS >= 4

X_SGW1 isConnectedTo X_Network2

...

The “X_" terms are taken as variables so that when the
query finishes execution over a given datastore (e.g., a datas-
tore with physical resource information), the variables will
have been assigned zero or more values (i.e., physical re-
source assignments) that fit the specified constraints (such
as location or specific network connectivity constraints).

Resource placement. The resource placement module (RPM)
in the orchestrator uses the service topology query for re-
source placement decision-making and reservation of com-
patible physical resources by executing it over the infrastruc-
ture datastore.

The query primitive can itself result in the application of
various constraints, but the query primitive supported by
the infrastructure datastore cannot be used to specify con-
straints containing comparison operators (e.g., greater than,
less than, etc.) and minimization or maximization goals (e.g.,
selecting resources in a way that minimizes the total cost). To
remedy this, the RPM in the orchestrator has a generic con-
straint solver that can apply further constraints over the re-
sults received in response to the query executed over the in-
frastructure datastore. Specifically, the presence of the con-
straint solver in the orchestrator allows comparison operators
and minimize and maximize objective functions to be used for
the service topology specification in the service template.

For example, consider a small service template with a ser-
vice topology that consists of only one Compute node such
that it has 4 or more CPU units. Since there can be many
nodes that fit this criterion, the service topology in the tem-
plate further specifies that out of all the nodes that satisfy
the CPU constraint, it would be preferable to select nodes
with the lowest cost (assuming there is a cost attached to ev-
ery Compute node). This objective can be specified using the
minimize function. The entire service topology specified in
terms of a query would then look like the following.

X_PC isA Compute

X_PC hasNumCPU X_PC_CPU

X_PC_CPU >= 4 // (extension)

X_PC hasCost X_PC_Cost

\minimize(X_PC_Cost) // (extension)

The RPM divides the service topology query into two parts,
(1) the base query supported by the infrastructure datastore
and (2) the extensions supported by the RPM. The RPM
inputs part (1) to the query interface of the infrastructure
datastore and then executes part (2) itself over the results
returned from the datastore. The results obtained after ex-
ecuting both query parts will contain resources that fits all
the constraints specified by the service topology. If such re-
sources are successfully found, the RPM then reserves them
for the service instance being orchestrated. The reservation
information is also inserted in the infrastructure datastore.

Instance realization in the SDI. Once a result is found by
the RPM logic in the orchestrator and physical resources have
been reserved, the orchestrator retrieves the service realiza-
tion plan from the parameterized template. The plan is es-
sentially a sequence of steps with possible if-else and loop
constructs that specifies exactly how to compose the compo-
nents to orchestrate the service instance from them. Using
this, the orchestrator can start to realize the physical service
instance.

Finalize. Once the service instance creation is successfully
done, the orchestrator adds the mappings of service compo-
nent IDs for component instances created during orchestra-
tion to the infrastructure datastore in order to keep service
and component instances persistent. Finally the orchestrator
returns a service ID to the orchestration requester, which can
be used to invoke management lifecycle functions on the ser-
vice instance via the Proteus service management interface. In
case of a failure, an error hierarchy is implemented in order

to help debug the error or provide more information to the
orchestration requesters. The orchestrator also has to undo
the resource reservation step and do cleanup.

The Proteus orchestrator supports re-orchestration in two
scenarios.

First, the topology of an active service instance might need
to be modified over time, either explicitly initiated by the ser-
vice provider through the service management interface (e.g.,
a decision to scale-up an EPC service to expand coverage to a
new location) or by implicit triggers from within the frame-
work. As an example of the latter, an EPC service might have
a policy function that subscribes to monitored resource usage
measurements for its PGW component. The service might
then dynamically invoke the scale-up management primitive
of the PGW component if the observed measurements cross
a given threshold. In such cases, the service will need to have
new components orchestrated. The orchestrator will essen-
tially follow all the steps mentioned earlier for orchestration,
except in this case resource placement and instance realiza-
tion only happens for the new component, within the context
of the existing service.

The second re-orchestration scenario occurs when a ser-
vice template requires the “reuse” of component instances
from an existing service instance—for example, when a ser-
vice such as SMORE adds new components (SDN and some
compute servers) to the EPC architecture. A SMORE service
template can specify that the SMORE service should reuse
all the component instances of an existing EPC instance and
only request the orchestration of the SMORE-specific com-
ponents. The orchestrator will follow the same orchestration
steps as mentioned earlier, but during the parameterization
phase the service template will be populated to allow the
SMORE service instance to be associated with the existing
EPC instance.

3.4 Redirection and Migration Primitives
We emphasize two primitives provided by the network con-
troller in Proteus (Figure 5) that specifically help with our
goals of minimally disruptive service evolution and data-
centric resource placement.

Traffic redirection. With the availability of software-defined
infrastructure serving as an enabler, Proteus provides a generic
traffic redirection mechanism that helps with seamless data-
path migration. This is useful in various scenarios, such as,
for traffic redirection when migrating a live component from
one location to another, or when interposing a new or evolved
component or functionality within an existing service instance,
e.g., during SMORE or MobiScud augmentation with an EPC
instance.

Component migration. The generic migration primitive en-
ables live migration of components with help from the traf-
fic redirection mechanism, and support from the migration
functionality implemented within component templates. It
provides a generic way for state migration between compo-
nents with varying implementations as long as they support
the specification of their internal state in a standard way.
The primitive thus enables live migration from source to tar-
get where the source and target can be different in terms
of implementation (e.g., virtual or physical, different ven-
dors, etc.). This facilitates evolution from one component
instance to another, e.g., from a traditional MME implemen-

tation to an elastic MME [16]. It is also essential for en-
abling data-centric resource placement once the service is
active. For example, a service may have requested its SGW
nodes to be placed in a location that is closest to the eNodeBs
that serve most of its customers. This variable “most of the
services’ customers” can dynamically change based on new
measurements fed into Proteus by monitoring applications
and would thus require Proteus to provide transparent mi-
gration of the SGW nodes to enforce the requested placement
policy. Migrating the entire VM holding the SGW function is
a heavyweight operation and will result in higher periods of
unavailability. Also, a fine grained approach to migration is
more attractive since it can be extended to allow migration of
individual sessions (e.g., for load balancing purposes) which
is generic enough to also be used with hardware resources in
addition to virtualized functions.

The migration primitive depends on the components being
migratable. Components are considered migratable if they
implement the required API for migration and have under-
lying mechanisms behind the API that implement compo-
nent specific migration functionality. Components such as
S/PGWs, MME, and CDF can be made to support migration
and plugged into the generic primitive. Alternatively, exist-
ing handover functionality provided by components such as
MME or eNodeB can be utilized by the respective compo-
nents to realize the underlying support for migration. This
is an implementation choice for the components. The migra-
tion primitive itself is generic and does not care whether the
underlying migration support is implemented by the compo-
nents using already-existing handover mechanisms or some
other way. It only requires the standard migration API be
implemented.

That is, to realize service migration, service specific func-
tionality supported by the network component combines with
generic migration mechanisms supported by the Proteus plat-
form.

Support API needed from templates for migration. Func-
tions for exporting/importing component state in a compat-
ible format; specification of a flow specifier that can be used
as a filter to get this component’s traffic that will need to be
redirected from source to target during migration; lifecycle
functions such as initialize, start, stop, various configura-
tion functions (e.g., a MME template would have functions
to configure SGW IPs that will be connecting to it), and func-
tions related to migration operations such as exportState, im-
portState; and a migration plan.

Support provided byProteus as part of its migration prim-
itive. Using the migration plans it initiates the orchestra-
tion and configuration of target component by copying over
source configuration; network state migration (GTP tunnels,
bearer information, IP layer, ARP and MAC setup, depend-
ing on component); export, transfer and import of compo-
nent state; redirection for traffic that fits the flow specifier
specified by the component for its traffic; final teardown or-
chestration for the source; and any needed reconfiguration
of other components in the service.

4. IMPLEMENTATION
We implemented a Proteus prototype in Python. We used
PuLP [34] to implement some constraint solving tasks in the
resource placement module. We used neo4j [37], a graph
database, for our datastore and built a simple subscription

primitive on top of it. (Neo4j already supports other datas-
tore primitive such as insert, query, and delete.)

We acquired access to implementations for an EPC service
(specifically the OpenEPC stack [5]), as well as the SMORE
and MobiScud services. We refactored these to fit our tem-
plate model. Our prototype includes service templates for
EPC, SMORE, and MobiScud, as well as the component tem-
plates needed to compose these services. These component
abstractions include components such as Compute, SDN switch,
PGW, SGW, MME, and other EPC enabler components such
as HSS, CDF, and ANDSF. The templates are implemented as
classes in Python and the additions or modifications to adapt
the SMORE, MobiScud, and the OpenEPC components for
Proteus make up over 10K lines of code.

We implemented a basic network controller in the orches-
trator to input high level parameters for traffic redirection
and generate Openflow commands to install appropriate flows
in switches. The orchestrator dictates the timing of redirec-
tion operations based on the component migration plan.

As a migration use case, we used OpenEPC’s PGW and cre-
ated a migration plan as part of its template. The Proteus

migration primitive using SDN-based redirection and sup-
port from the PGW template then allows seamless migration
of the datapath by creating a duplicate PGW instance and
then shutting down the first one. There is no downtime due
to the PGW being migrated, since there is always at least one
active in the network. The export and import of state and
target PGW orchestration on a compute node and prepara-
tion for migration (copying over PGW configuration param-
eters, IP addresses, GTP tunnel and bearer information, and
networking set up) do not affect traffic, since no traffic has
been redirected yet during preparation. Once the target is
ready to receive traffic, the flow setup by the Proteus redi-
rection primitive starts to redirect the traffic identified by
the flow specifier in the template. This step is independent
of the number of UEs or flows. At this time, the new PGW re-
ceives traffic and processes it and the old PGW is shut down.
Since EPC components use GTP tunnels over UDP, we did
not implement a migrate mechanism for the transport pro-
tocol layer (i.e., TCP).

5. EVALUATION
We evaluated our Proteus prototype in the PhantomNet [15]
mobility testbed. In this context, the testbed serves as the
mobile SDI environment that Proteus can configure as needed
to run services. Our base SDI topology in PhantomNet is
shown in Figure 7. It consists of an emulated RAN and close
to 300 compute resources that Proteus can configure to var-
ious roles as needed. To emulate a more realistic mobile
SDI, we divided and tagged the resources into multiple “lo-
cations” with varying RTTs. We used variants of this setup
for all evaluations.

UE

UE

eNodeB

eNodeB

.

.

.

RAN

LTE

.

.

.

CHI Compute

SDN

NY Compute

…

…

SF Compute

…

Figure 7: Mobile SDI topology in PhantomNet

We demonstrate Proteus’ data-centric service management
by dynamically adding service features to an existing service
instance and enable data-driven policy-based actions. Next
we evaluate Proteus by instantiating an EPC instance, then
modifying it to add functioning SMORE and MobiScud in-
stances. Finally, we consider Proteus’ scalability in terms of
end-to-end orchestration request completion time and show
that the orchestrator running time increases linearly with
the number of components that need to be orchestrated as
part of the request. Note that in performing these evalua-
tions we also illustrate Proteus’ basic ability to instantiate
multiple instances of the same type of service (with differ-
ent constraints applied), as well as its ability to instantiate
completely different service instances.

Data-centric service management. The following example
use cases demonstrate the ability of Proteus to allow dynam-
ically changing a service instance’s behavior by triggering the
invocation of its lifecycle functions.

Handling bursts of UE attachments. To illustrate data-driven
performance management through templates, we periodically
insert the current average number of UE attachments in an
SGW into the Proteus datastore. A policy function can then
be defined to make use of this information in service tem-
plates that have an SGW component. We define one such
function in the EPC template that subscribes to the value of
the number-of-UEs variable and requests orchestration of a
new SGW in case an increasing pattern of UE attachments is
observed. If a burst turns out to be temporary, then an oppo-
site policy requests for the deletion of the unneeded SGW(s).
Figure 8 shows the addition (T1) and subsequent deletion
(T2) of SGW2 to share the burden of UE attachments when
the existing SGW1 was seen to be overwhelmed. (The thresh-
old was set to 15 attachments.) To illustrate these policies,
we created a UE attachments burst and then made it disap-
pear. For the first half of the experiment, we picked a ran-
dom number in range 1 to 4 every minute and triggered that
many UEs to attach. Then for the second half we picked a
number and detached that many UEs every minute.

Migrating to a new location. We request orchestration for an
EPC containing two SGWs and one PGW such that the place-
ment policy is set to have the PGW close to both SGWs in
terms of RTT measurements collected in the datastore. Later,
we remove one SGW from this EPC and so Proteus has to mi-
grate the PGW to be closer to the only existing SGW to satisfy
the placement policy. Figure 10 shows RTT seen by parallel
Ping flows (1 packet every 10ms) from 25 EPC subscribers to
the Internet. At T0, Proteus starts transparently migrating
the PGW. The Proteus migration primitive allows seamless
migration of the datapath by creating a duplicate PGW in-
stance and then shutting down the first one so no downtime
has to happen. The export and import of PGW state, tar-
get PGW orchestration on a new compute node, and other
preparation for migration finishes in close to 5s (the period

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (min)

SGW1
SGW2

T1 T2

Nu
m

be
r o

f U
E

at
ta

ch
m

en
ts

Figure 8: Dynamic scaling of SGW in an EPC instance

between T0 and T1), but this does not affect traffic since it is
still going through the old PGW. Once the target is ready to
receive traffic, the flow setup for redirection starts and takes
0.41s (right before T1); it is independent of the number of
UEs or flows. Finally at T1, migration ends and the old PGW
is shut down.

Figure 9 shows TCP window scaling for a large file down-
load by a UE through the same EPC instance, once before
PGW migration and once after migration. T0 marks the mi-
gration event and a consequent faster increase in window
size for the flow going through the migrated PGW because
of a reduction in end-to-end RTT as a result of migrating the
PGW and reducing the delay in the core mobile network.

Service evolution. We instantiate two instances of EPC ser-
vice, E1 and E2, in parallel but with different placements. In
Figure 11, the flows labeled E1F1 and E2F1 show the RTTs
seen by parallel Ping flows (1 packet every 10ms and a total
of 25 UEs creating background traffic) when two different UE
subscribers, one from each EPC, ping to the same Internet
server through their respective EPC networks. The difference
in time is caused by the different locations of the compute
nodes hosting their EPC core components. We demonstrate
service evolution with this setup by augmenting E1 and E2,
respectively, with a SMORE service instance and a MobiScud
service instance.

We use the service management interface to instantiate and
seamlessly augment E1 with a SMORE instance, which re-
sults in offloading functionality being orchestrated between
the RAN and the E1 core. The orchestration finishes in less
than a minute. Once instantiated, we use the management
interface of the SMORE instance to add a customer UE to
the SMORE subscribers database. This results in selective off-
loading of some of this UE’s traffic (flow E1F2 starting at T1),
such that the traffic destined for the IP address chosen by the
SMORE service provider is offloaded to its compute instance
located close to the E1 core. As expected, a lower RTT to the
SMORE cloud server is observed by SMORE flow E1F2 (com-
pared to RTT seen from pinging the Internet server seen by
E1F1). Note that the other ongoing flows using the EPC (e.g.,
E1F1) are unaffected, since SMORE does selective offloading.

0 3 6 9 12 15 18
15

45

75

105

W
in

do
w

 S
iz

e
(K

B
)

Time (s)

With migration
Without migrationT0

Figure 9: TCP window scaling with and w/o PGW migration.

10

20

30

40

1467.6799 1467.6799 1467.6799 1467.6799

RT
T

(m
s)

Time (s)
10 20 300

T0 T1

Figure 10: PGW migration

0

10

20

30

40

0 2 4 6 8 10

RT
T

(m
s)

Time (s)

E1F1
E2F1

E1F2

E2F2

T2 T3

T1

T4

Figure 11: Evolution

0

200

400

600

800

20 60 100 140 180 220 260 300

Ti
m

e
(s

)

Number of components

Total time(s)
Resource placement
Realizing actual instance

(a)

0

10

20

30

40

50

60

0 10 20 30 40 50

Ti
m

e
(s

)

Number of parallel service requests
(b)

Component Avg. Time (s)
eNodeB 3.52
MME 2.12
SGW 3.40
PGW 4.18
ANDSF 7.51
CDF 2.12
HSS 3.35

(c)

Figure 12: Orchestration time when scaling (a) components in serial requests, (b) parallel requests. (c) Individual times.

Figure 11 shows a similar scenario where E2 is augmented
with a MobiScud instance at T1. We request a UE to be added
to the MobiScud database as a subscriber, and so it is as-
signed a personal compute instance (PVM) located such that
it is close to the RAN in terms of RTT (the constrained re-
source placement step in the orchestration). MobiScud does
selective offloading for its UE’s traffic such that all its flows
headed toward the service provider’s chosen IP address are
offloaded to the UE’s PVM. As expected, a lower RTT is ob-
served for E2F2 flow starting at T1, a Ping flow started by
the MobiScud subscriber UE and destined toward the Mo-
biScud IP. At T2, the UE’s movement towards another eN-
odeB causes a handover event, and orchestration for this UE’s
PVM migration begins and continues until T4. First, the RTT
goes up as the UE’s traffic is forwarded from the target eN-
odeB (i.e., the eNodeB where the UE is, after handover) to the
source eNodeB (i.e., the eNodeB from which UE has moved
away, but its PVM is still within this eNodeB’s edge cloud).
At T3, Xen VM migration starts and a brief gap in RTT line
shows packet loss since the VM cannot receive any packets.
At T4, migration ends and RTT drops back, since the VM
has now moved to the target eNodeB’s edge cloud. Proteus’
orchestrator does the compute allocation at the target edge
cloud and flow setup to redirect traffic to the PVM, which
does not cause any downtime. The only downtime is due to
the unoptimized Xen VM migration implementation we use.
End-to-end orchestration request completion time. An or-
chestration request’s completion time depends on the num-
ber of components requested (e.g., compute instances, or vir-
tualized functions such as an SGW). Since most mobile net-
work services are specialized architectures based on EPC, we
picked the EPC service as the base to measure the effect of
number of components in a service orchestration request on
Proteus’ runtime. Figure 12(a) shows the request comple-
tion time as a function of EPC request size (i.e. by requesting
EPC instances composed of an increasing number of compo-
nents such as S/PGWs). As seen from the graph, the runtime
increases slowly and the confidence intervals are tight. The
first major step in an orchestration request is the resource
placement query’s subgraph matching and constraint solv-
ing step. In each of our EPC requests, each component has
at least 5 constraints associated with it: as the number of
components is increased, the number of attached constraints
in the EPC request also increases linearly and affects the run-
time. The second major step in orchestration is the execution
of the realization plan. This involves generating configura-
tions and instantiating the actual instances in the infrastruc-
ture. Since physical layer commands are often time consum-
ing, this also becomes a factor in the increase in runtime.
While we parallelize the configuration of components that
do not have dependencies, there is still some overhead due
to service-specific dependencies. Figure 12(a) also shows the

total request completion time divided into these two steps.
The resource placement module is the main user of the

datastore when orchestrating new services or modifying ex-
isting ones (such as when scaling up, doing migration, or
PVM allocation in MobiScud). So the resource placement
scalability as the number of components in service request
is increased (which in turn results in increase in query size
and subsequent graph search time) is a realistic indicator of
the datastore design’s scalability. The resource placement
time involves both creating and evaluating queries against
the datastore to search for and reserve resources. Also, the
datastore component in Proteus’ architecture is logically cen-
tralized but can physically consist of multiple datastores at
various levels: for example, infrastructure inventory, mea-
surement logs, etc.

Orchestration time for individual components. Table 12(c)
shows the average orchestration and realization times for in-
dividual components that make up the base for most mobile
network services. These times involve both data-centric re-
source placement for the components using the datastore as
well as configuration by the orchestrator in the infrastruc-
ture for actual realization of the component instance.

End-to-end parallel orchestration request completion time.
Figure 12(b) shows request completion time as a function of
number of parallel orchestration requests of a basic EPC ser-
vice. As seen from the figure, the completion time increases
slowly. The resource reservation and placement step, which
is the main bottleneck, is able to respond quickly even when
faced with multiple parallel resource placement queries.

6. CONCLUSION
We presented our work on a mobile network service con-
trol platform, called Proteus. Proteus is a software stack
operating on a mobile software defined infrastructure, built
to dynamically instantiate and manage mobile network ser-
vices. In particular, Proteus allows for service evolution by
enabling new services and network components to be intro-
duced to the platform via templates. The Proteus orches-
trator makes use of these templates to dynamically instan-
tiate and modify mobile services. We developed a proto-
type implementation of Proteus and evaluated it on a mo-
bile testbed.

7. ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers and shep-
herd for their valuable comments. We are indebted to Vijay
Gopalakrishnan for many insightful discussions on orches-
tration in a mobile network environment. This material is
based upon work supported by the National Science Foun-
dation under grant numbers 1305384 and 1302688.

8. REFERENCES
[1] Mobile-Edge Computing (MEC) Technical

Requirements (Draft ETSI GS MEC 002 v0.4.2).
https://docbox.etsi.org/ISG/MEC/Open/
MECGS-002_Draft_techreqv042.pdf.

[2] Resource Specification (RSpec) Documents in GENI.
http://groups.geni.net/geni/wiki/GENIExperimenter/
RSpecs.

[3] Why distribution is important in NFV?
http://tinyurl.com/kyewvqq.

[4] The tactile Internet - ITU-T technology watch report.
http://www.itu.int/dms_pub/itu-t/oth/23/01/
T23010000230001PDFE.pdf, Aug. 2014.

[5] OpenEPC. http://www.openepc.com/, 2015.
[6] OpenStack. https://www.openstack.org, 2015.
[7] OPNFV: An Open Platform to Accelerate NFV.

https://www.opnfv.org/sites/opnfv/files/pages/files/
opnfv_whitepaper_092914.pdf, 2015.

[8] Topology and Orchestration Specification for Cloud
Applications (TOSCA) Primer Version 1.0.
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/
cnd01/tosca-primer-v1.0-cnd01.pdf, 2015.

[9] 5GPPP. 5G Vision - The 5G Infrastructure Public
Private Partnership: the next generation of
communication networks and services.
https://5g-ppp.eu/wp-content/uploads/2015/02/
5G-Vision-Brochure-v1.pdf, 2015.

[10] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano,
A. Soong, and J. Zhang. What will 5G be? Selected
Areas in Communications, IEEE Journal on, 2014.

[11] AT&T. AT&T Domain 2.0 Vision White Paper.
https://www.att.com/Common/about_us/pdf/AT&
TDomain2.0VisionWhitePaper.pdf, 2013.

[12] AT&T Inc. ECOMP (Enhanced Control, Orchestration,
Management & Policy) Architecture White Paper. http:
//about.att.com/content/dam/snrdocs/ecomp.pdf.

[13] A. Baliga, X. Chen, B. Coskun, G. de los Reyes, S. Lee,
S. Mathur, and J. E. Van der Merwe. VPMN: Virtual
private mobile network towards mobility-as-a-service.
In Proceedings of the Second International Workshop on
Mobile Cloud Computing and Services, MCS ’11, 2011.

[14] A. Banerjee, X. Chen, J. Erman, V. Gopalakrishnan,
S. Lee, and J. Van Der Merwe. Moca: A lightweight
mobile cloud offloading architecture. In Proceedings of
the 8th ACM International Workshop on Mobility in the
Evolving Internet Architecture, MobiArch ’13, 2013.

[15] A. Banerjee, J. Cho, E. Eide, J. Duerig, B. Nguyen,
R. Ricci, J. Van der Merwe, K. Webb, and G. Wong.
PhantomNet: Research infrastructure for mobile
networking, cloud computing and software-defined
networking. GetMobile: Mobile Computing and
Communications, 19(2):28–33, 2015.

[16] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera,
and J. Van der Merwe and Sampath Rangarajan.
Scaling the LTE control-plane for future mobile access.
In Proceedings of the 11th ACM International Conference
on Emerging Networking EXperiments and Technologies
(CoNEXT), Dec. 2015.

[17] A. Banerjee, B. Nguyen, V. Gopalakrishnan, S. K.
Kasera, S. Lee, and J. Van der Merwe. Efficient,
adaptive and scalable device activation for M2M
communications. In IEEE SECON, 2015.

[18] R. Battiti, R. Lo Cigno, F. Orava, and B. Pehrson. Global
growth of open access networks: from warchalking
and connection sharing to sustainable business. In
Proceedings of the 1st ACM international workshop on
Wireless mobile applications and services on WLAN
hotspots, pages 19–28. ACM, 2003.

[19] K. Benson. Enabling resilience in the Internet of
Things. In Pervasive Computing and Communication
Workshops (PerCom Workshops), 2015 IEEE

International Conference on, pages 230–232, Mar. 2015.
[20] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp,

F. Leymann, A. Nowak, and S. Wagner. OpenTOSCA –
a runtime for TOSCA-based cloud applications. In 11th
International Conference on Service-Oriented Computing,
LNCS. Springer, 2013.

[21] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari,
G. Kardaras, M. S. Berger, and L. Dittmann. Cloud
RAN for mobile networks—a technology overview.
IEEE Communications Surveys Tutorials, 17(1):405–426,
Firstquarter 2015.

[22] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai,
A. Hauptmann, and M. Satyanarayanan. Early
implementation experience with wearable cognitive
assistance applications. In Proceedings of the 2015
Workshop on Wearable Systems and Applications,
WearSys ’15, pages 33–38, New York, NY, USA, 2015.
ACM.

[23] J. Cho, B. Nguyen, A. Banerjee, R. Ricci, J. Van der
Merwe, and K. Webb. SMORE: software-defined
networking mobile offloading architecture. In
Proceedings of the 4th Workshop on All Things Cellular:
Operations, Applications, & Challenges, pages 21–26.
ACM, 2014.

[24] G. Cugola and J. de Cote. On introducing location
awareness in publish-subscribe middleware. In
Distributed Computing Systems Workshops, 2005. 25th
IEEE International Conference on, pages 377–382, June
2005.

[25] W. Enck, T. Moyer, P. McDaniel, S. Sen, P. Sebos,
S. Spoerel, A. Greenberg, Y. W. E. Sung, S. Rao, and
W. Aiello. Configuration management at massive scale:
system design and experience. IEEE Journal on Selected
Areas in Communications, 27(3):323–335, Apr. 2009.

[26] Gartner. Gartner Says the Internet of Things Installed
Base Will Grow to 26 Billion Units By 2020.
http://www.gartner.com/newsroom/id/2636073,
2013.

[27] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 163–174, New York, NY, USA,
2014. ACM.

[28] A. González, A. Vergara, A. Moral, and J. Pérez.
Prospects on FTTH/EP2P open access models. In
Federation of Telecommunications Engineers of the
European Union (FITCE) 49th Congress, 2010.

[29] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660, 2013.

[30] M. Hatton. The Global M2M Market in 2013. Machina
Research White Paper, Jan. 2013.
http://tinyurl.com/opovu8a.

[31] M. Hayashi, N. Matsumoto, K. Nishimura, and
H. Tanaka. Design of network resource federation
towards future open access networking. In AICT 2011,
The Seventh Advanced International Conference on
Telecommunications, pages 130–134, 2011.

[32] P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay:
Practical mobile augmented reality. In Proceedings of
the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages
331–344, New York, NY, USA, 2015. ACM.

[33] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Softcell:
Scalable and flexible cellular core network
architecture. In Proceedings of the 9th ACM Conference
on Emerging Networking Experiments and Technologies,
pages 163–174. ACM, 2013.

[34] S. Mitchell, M. O’Sullivan, and I. Dunning. PuLP: A
linear programming toolkit for Python. The University

of Auckland, Auckland, New Zealand, 2011. http://www.
optimization-online.org/DB_FILE/2011/09/3178.pdf.

[35] M. Moradi, L. E. Li, and Z. M. Mao. SoftMoW: A
dynamic and scalable software defined architecture for
cellular WANs. In Proceedings of the 3rd Workshop on
Hot Topics in Software Defined Networking, HotSDN ’14,
2014.

[36] G. Muhl and A. Ulbrich. Disseminating information to
mobile clients using publish-subscribe. Internet
Computing, IEEE, 8(3):46–53, May 2004.

[37] Neo4j Developers. Neo4j. Graph NoSQL Database
[online], 2012.

[38] NGMN Alliance. 5G white paper-executive version.
White Paper, December, 2014.

[39] OASIS. OASIS Web Services Business Process
Execution Language (WSBPEL) TC.
https://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wsbpel.

[40] M. Olsson, S. Rommer, C. Mulligan, S. Sultana, and
L. Frid. SAE and the Evolved Packet Core: Driving the
mobile broadband revolution. Academic Press, 2009.

[41] On.Lab. CORD: The Central Office Re-architected as
DataCenter. http://onosproject.org/wp-content/
uploads/2015/06/PoC_CORD.pdf, 2015.

[42] M. Patel, Y. Hu, P. Hédé, J. Joubert, C. Thornton,
B. Naughton, J. R. Ramos, C. Chan, V. Young, S. J. Tan,
D. Lynch, N. Sprecher, T. Musiol, C. Manzanares,
U. Rauschenbach, S. Abeta, L. Chen, K. Shimizu,
A. Neal, P. Cosimini, A. Pollard, and G. Klas.
Mobile-Edge Computing.
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/
Mobile-edge_Computing_-_Introductory_Technical_
White_Paper_V1%2018-09-14.pdf, Sept. 2014.

[43] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta,
A. Neal, et al. Mobile-edge computing introductory
technical white paper. White Paper, Mobile-edge
Computing (MEC) industry initiative, 2014.

[44] R. Paul. Exclusive: a behind-the-scenes look at
Facebook release engineering.
http://tinyurl.com/6lsfg26, 2012.

[45] Z. A. Qazi, P. K. Penumarthi, V. Sekar,
V. Gopalakrishnan, K. Joshi, and S. R. Das. KLEIN: A
minimally disruptive design for an elastic cellular core.

In ACM Symposium on SDN Research (SOSR), 2016.
[46] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico

replication: A high availability framework for
middleboxes. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages
1:1–1:15, New York, NY, USA, 2013. ACM.

[47] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In Presented as part of
the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 227–240,
Lombard, IL, 2013. USENIX.

[48] J. Rodriguez, editor. Fundamentals of 5G Mobile
Networks. John Wiley & Sons, 2015.

[49] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The case for VM-based cloudlets in mobile computing.
IEEE Pervasive Computing, 8(4):14–23, Oct. 2009.

[50] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li,
D. Liu, and A. Varshavsky. Vis-a-vis:
Privacy-preserving online social networking via virtual
individual servers. In Communication Systems and
Networks (COMSNETS), 2011 Third International
Conference on, pages 1–10, Jan. 2011.

[51] J. Thones. Microservices. Software, IEEE,
32(1):116–116, Jan. 2015.

[52] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der
Merwe, and K. Webb. MobiScud: A fast moving
personal cloud in the mobile network. In Proceedings of
the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges, AllThingsCellular ’15,
2015.

[53] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. of the Fifth Symposium
on Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX.

[54] G. Xilouris, E. Trouva, F. Lobillo, J. Soares,
J. Carapinha, M. McGrath, G. Gardikis, P. Paglierani,
E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kourtis.
T-NOVA: A marketplace for virtualized network
functions. In Networks and Communications (EuCNC),
2014 European Conference on, pages 1–5, June 2014.

