

Active Learning in Performance Analysis

Dmitry Duplyakin

Jed Brown Robert Ricci

09/14/2016

dmitry.duplyakin@colorado.edu

Outline

- Motivation
- Approach
- Implementation
- Datasets and Visualizations
- Evaluation
- Summary and Future Work

Motivation

Performance Analysis:

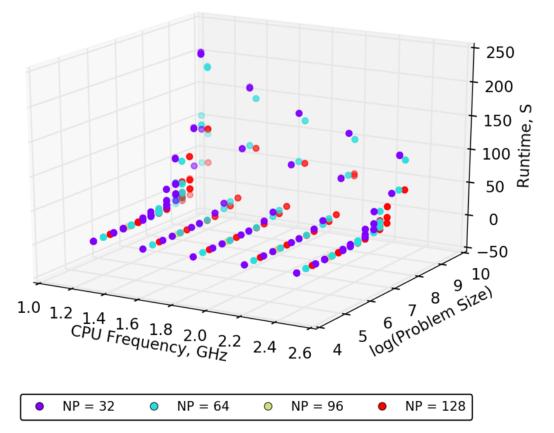
- Take a set of measurements
- Build a model
- Understand behavior of a complex system
- Predict outcomes of future experiments

Main Challenges:

- Often too many factors
- Inability to take equal number of measurements at every configuration
- Inefficient exploration of input space

Motivation: Example 1

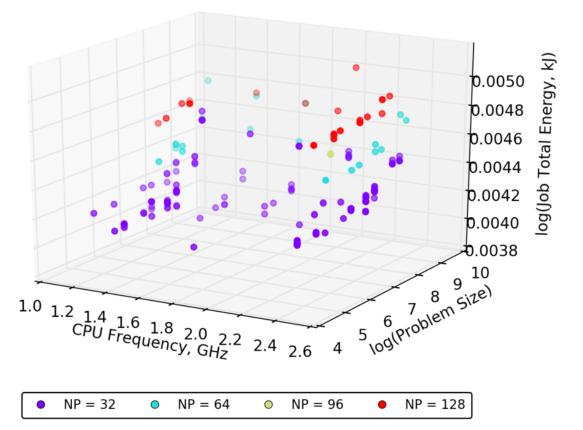
Measured Runtime of Parallel Jobs



Each point represents a run of HPGMG-FE benchmark on a 4-node cluster provisioned on CloudLab testbed

Motivation: Example 2

Estimated Energy Consumed by Parallel Jobs



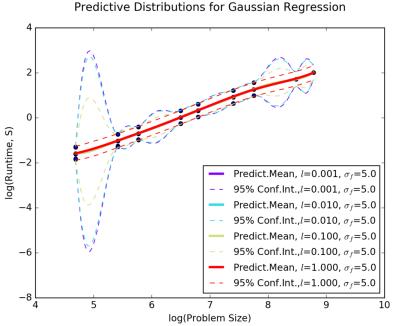
Each point represents a run of HPGMG-FE benchmark on a 4-node cluster provisioned on CloudLab testbed

Approach: Active Learning

- Use *Active Learning* (AL) -- techniques from Machine Learning where "learner" interacts with "data source"
 - 1. Train a model on a small set of measurements
 - 2. Let the model suggest a point for the next experiment
 - 3. Run the suggested experiment
 - 4. Retrain the model with the new measurement
 - 5. Go back to 2 or exit
- Sometimes called: *adaptive experiment design* and *optimal experiment design*

Approach: Gaussian Process Regression

- Use Gaussian Process Regression (GPR) -- non-parametric non-linear interpolation technique that provides best linear unbiased prediction (under suitable assumptions)
 - Build a model for f(x)
 - For every new x^* , calculate estimates of $E[f(x^*)]$ and $\sigma[f(x^*)]$
- Sometimes called: *kriging* (in geostatistics) and *Wiener–Kolmogorov prediction*
- GPR works in many dimensions



Approach: Putting it Together

• Combine AL and GPR into a 2-layer system:

• Optimization problem at each layer:

Upper: Choose "best" experiment

Lower: Choose "best" hyperparameters

Approach: Details

Upper: Choose "best" experiment

Lower: Choose "best" hyperparameters

Consider strategies:

Variance Reduction (VR): $x^* = \arg \max_x \left(\sigma[f(x)]\right)$

Cost Efficiency (CE):

$$x^* = \arg \max_x \left(\frac{\sigma[f(x)]}{f(x)}\right)$$

Use: Bayesian Model Selection

(Marginal Likelihood Maximization)

with 3 hyperparameters:

noise level, length scale, and amplitude

Implementation

- Developed a prototype in Python which supports:
 - single realizations of AL in "offline" mode*
 - batches of realizations for comparison of *Variance Reduction* and *Cost Efficiency* strategies
- GPR: used code for Gaussian Processes in *scikit-learn* (0.18.dev0)

* Note: **offline** refers to the fact that the prototype queries a database with collected data. Future work: in **online** mode, run AL alongside the computation

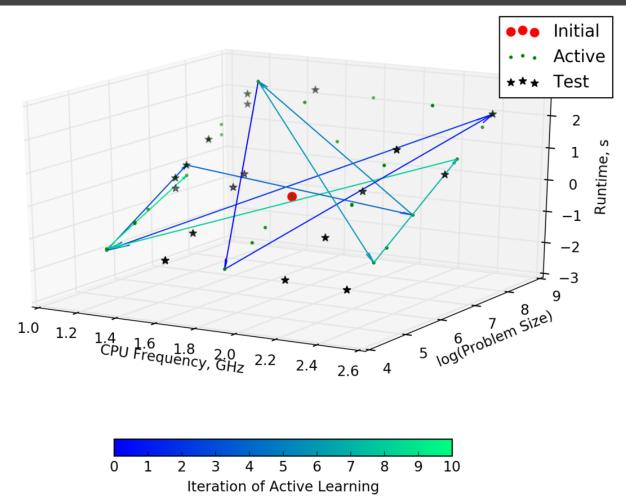
Analyzed Datasets

- Measured runtimes and estimated energy consumption for a large set of HPGMG-FE benchmark runs on a cluster provisioned on the CloudLab testbed
- Organized this data into two datasets:

	Dataset: Performance	Dataset: Power
# Jobs	3246	640
Responses	Runtime (S)	Runtime (S), Energy (J)
Runtime, S	0.005 - 458.436	0.005 - 458.436
Energy, J	-	6.4e3 - 1.1e5
Variables	Operator: poisson1,poisson2,poisson2affine	
	Global Problem Size: 1.7e3 - 1.1e9	
	NP: 1,2,4,8,16,24,32,48,64,96,128	
	CPU Frequency (GHz): 1.2,1.5,1.8,2.1,2.4	

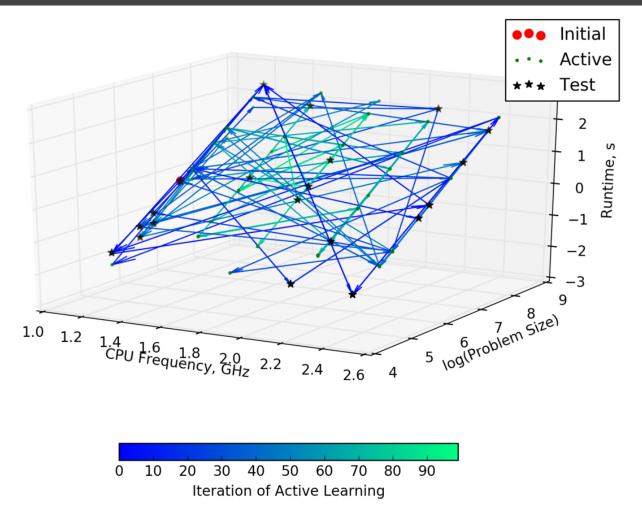
• 3d visualizations are available here

Active Learning: 10 Iterations



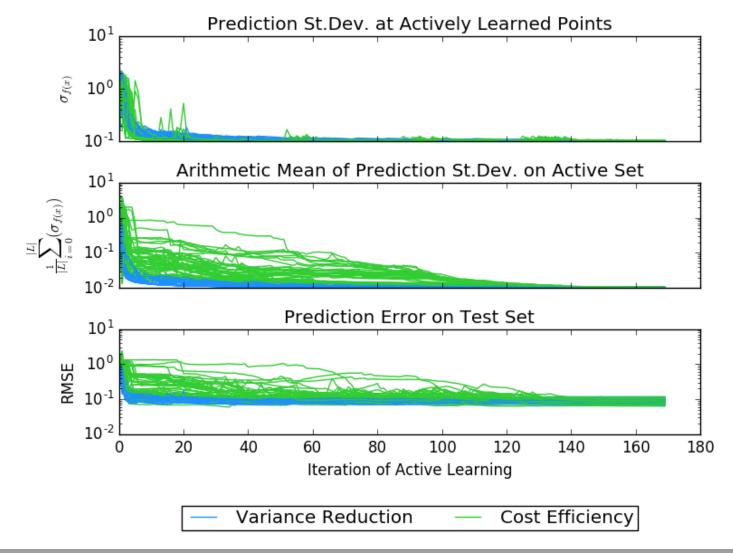
Shown points represent a subset of measurements in the **Performance** dataset; runtimes are log-transformed

Active Learning: 100 Iterations

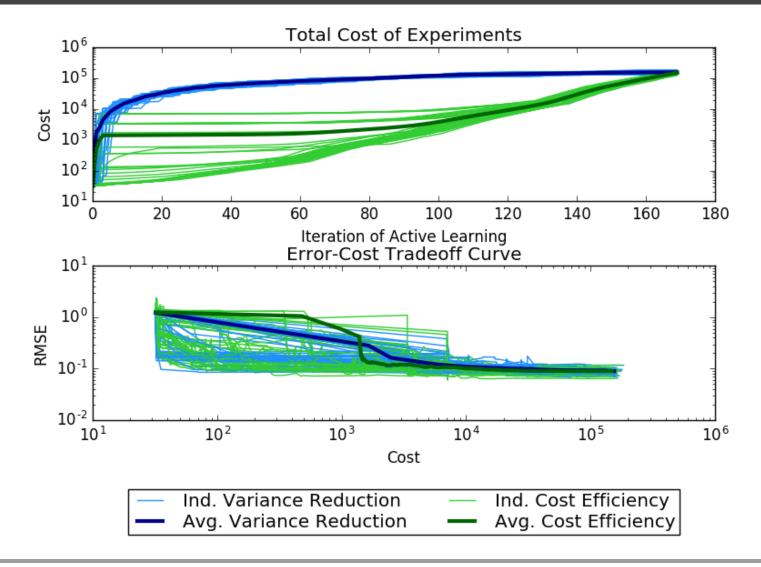


Shown points represent a subset of measurements in the **Performance** dataset; runtimes are log-transformed

Evaluation: Convergence Analysis



Evaluation: Cost Analysis



Summary and Future Work

Summary:

- Proposed using Active Learning + Gaussian Process Regression for efficient regression learning in performance analysis
- Demonstrated tradeoffs between two Active Learning algorithms, with and without adjustment for experiment cost

Future Work:

- Investigate computational requirements
- Leverage continuous optimization techniques
- Run Active Learning in the online mode

Thank you! Questions?

dmitry.duplyakin@colorado.edu