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Performance Analysis: Main Challenges:

e Take a set of
measurements
e Build a model

e Understand behavior

e Often too many factors

¢ [nability to take equal

number of

of a complex system configuration

e Predict outcomes of

future experiments Input space
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measurements at every

e |nefficient exploration of
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Motivation: Example 1

Measured Runtime of Parallel Jobs
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Each point represents a run of HPGMG-FE benchmark on a 4-node cluster provisioned on CloudLab testbed
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Motivation: Example 2

Estimated Energy Consumed by Parallel Jobs
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Each point represents a run of HPGMG-FE benchmark on a 4-node cluster provisioned on CloudLab testbed
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Approach: Active Learning

e Use Active Learning (AL) -- techniques from Machine Learning

where "learner" interacts with "data source"

1. Train a model on a small set of measurements

2. Let the model suggest a point for the next experiment
3. Run the suggested experiment

4. Retrain the model with the new measurement

5. Go back to 2 or exit

e Sometimes called: adaptive experiment design
and optimal experiment design
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Approach:; Gaussian Process Regression

e Use Gaussian Process Regression (GPR) -- non-parametric
non-linear interpolation technique that provides best linear
unbiased prediction (under suitable assumptions)
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e GPR works in many dimensions
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Approach: Putting it Together

e Combine AL and GPR into a 2-layer system:

Upper: AL

Lower: GPR

e Optimization problem at each layer:

Upper: Choose "best" experiment

Lower: Choose "best" hyperparameters
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Approach: Details

Upper: Choose "best" experiment

Lower: Choose "best" hyperparameters

T

Consider strategies:

Variance Reduction (VR): z* = arg max, (o
(o)

z)

)

r* = arg max, 5«(

Cost Efficiency (CE):

f(z)])
fgc ])
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Use: Bayesian Model Selection
(Marginal Likelihood Maximization)

with 3 hyperparameters:

noise level, length scale, and amplitude
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Implementation

e Developed a prototype in Python which supports:

= single realizations of AL in "offline" mode*
= batches of realizations for comparison of Variance Reduction and
Cost Efficiency strategies

e GPR: used code for Gaussian Processes in scikit-learn (0.18.dev0)

* Note: offline refers to the fact that the prototype queries a database with

collected data. Future work: in online mode, run AL alongside the computation
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Analyzed Datasets

e Measured runtimes and estimated energy consumption

for a large set of HPGMG-FE benchmark runs

on a cluster provisioned on the CloudLab testbed

e Organized this data into two datasets:

Global Problem Size:

CPU Frequency (GHz) :

Dataset: Performance Dataset: Power
# Jobs 3246 640
Responses Runtime (S) Runtime (S), Energy (J)
Runtime, S 0.005 - 458.436 0.005 - 458.436
Enerqgy, J - 6.4e3 — 1.1leb
Variables Operator: poissonl,poisson2,poissonZaffine

1.7¢e3 = 1.1e9
NP: 1,2,4,8,16,24,32,48,64,96,128
1.2,1.5,1.8,2.1,2.4

e 3d visualizations are available here

Dmitry Duplyakin, University of Colorado Active Learning in Performance Analysis

09/14/2016


https://hpgmg.org/fe/
http://cloudlab.us/
http://dmitry.duplyakin.org/p/ieee-cluster16-demo/

Active Learning: 10 Iterations
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Shown points represent a subset of measurements in the Performance dataset; runtimes are log-transformed
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Active Learning: 100 Iterations
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Evaluation: Convergence Analysis
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Evaluation: Cost Analysis

Total Cost of Experiments

Cost
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Summary and Future Work

Summary:

e Proposed using Active Learning + Gaussian Process Regression
for efficient regression learning in performance analysis
e Demonstrated tradeoffs between two Active Learning algorithms,

with and without adjustment for experiment cost

Future Work:

e |nvestigate computational requirements
e [everage continuous optimization techniques

e Run Active Learning in the online mode
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Thank you!

Questions?

dmitry.duplyakin@colorado.edu
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