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Abstract—Active Learning (AL) is a methodology from ma-
chine learning in which the learner interacts with the data source.
In this paper, we investigate application of AL techniques to a
new domain: regression problems in performance analysis. For
computational systems with many factors, each of which can
take on many levels, fixed experiment designs can require many
experiments, and can explore the problem space inefficiently.
We address these problems with a dynamic, adaptive experi-
ment design, using AL in conjunction with Gaussian Process
Regression (GPR). The performance analysis process is “seeded”
with a small number of initial experiments, then GPR provides
estimates of regression confidence across the full input space. AL
is used to suggest follow-up experiments to run; in general, it
will suggest experiments in areas where the GRP model indicates
low confidence, and through repeated experiments, the process
eventually achieves high confidence throughout the input space.
We apply this approach to the problem of estimating performance
and energy usage of HPGMG-FE, and create good-quality
predictive models for the quantities of interest, with low error and
reduced cost, using only a modest number of experiments. Our
analysis shows that the error reduction achieved from replacing
the basic AL algorithm with a cost-aware algorithm can be
significant, reaching up to 38% for the same computational cost
of experiments.

Index Terms—Active Learning, Performance Analysis, Gaus-
sian Process Regression, Prediction Confidence

I. INTRODUCTION

Active Learning (AL) is a set of Machine Learning tech-
niques in which the learner interacts with the source of data
being learned [1]. One use of AL is to query a human
or run an “expensive” algorithm to label a datapoint for
which correct labeling is difficult to predict. Intuitively, the
learning algorithm makes decisions about which parts of the
space it does not “know enough”, and selectively invokes the
expensive process to gather more supporting data to make
predictions in that area. This type of learning is typically
applied to classification problems, as described in [1]. The
authors of [2] emphasize that only a limited number of studies
have investigated AL applied to regression problems.

In this study, we apply techniques from AL to regression
problems, creating regression models for performance and en-
ergy consumption data from parallel computing experiments.
In this setting, our goal is to take data from existing empirical
studies of the performance of HPC codes and perform regres-
sion analysis to discover the relationships between controlled
variables (such as the size of the problem, the number and
the speed of the used CPU, etc.) and the performance of
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the computation measured using such common metrics as
runtime (in seconds) and total amount of consumed energy
(in Joules). The constructed regression models can be used to
predict the amount of time, energy, etc. that will be needed to
run future computations, or as part of a performance model
for a larger system. Depending on the complexity of the
computation, each experiment might take seconds, minutes,
or hours. Therefore, it might be infeasible to use experiment
designs that run all or most of the combinations of variables
(which can number in the hundreds, thousands, or more),
making iterative designs that selectively run experiments that
will yield the most information attractive. This is particularly
true when the benchmarking budget is limited: for instance,
there exists a fixed allocation on an HPC machine or a fixed
maximum budget in a cloud environment.

To apply AL to regression analysis in performance studies,
we need a process that both (a) produces regression models for
datasets with multiple controlled and response variables and
(b) produces estimates of the uncertainty associated with any
point in the input space. We use Gaussian Progress Regression
(GPR), also known as kriging in literature on geostatistics,
for this purpose since it comes with a posterior probability
distribution for predictions. With GPR, we can obtain the
mean and the variance of the predictive distribution at every
input point. The former is used to assess the quality of
the investigated computational algorithm, while the latter is
used in AL to select a sequence of points where the code
associated with algorithm needs to run (we also investigate an
AL algorithm which uses both for point selection).

We apply the selected AL techniques to a specific per-
formance analysis problem where the performance of the
HPGMG-FE benchmark [3], [4] is investigated. In this analy-
sis, an impact of several controlled variables on performance
metrics is studied based on measurements of performance
and energy usage across a number of CPU and problem-
size settings. We look at two different algorithms for guiding
experiment selection: one that seeks to run experiments that
are expected to purely reduce prediction uncertainty, and
another one that weights experiments by the predicted cost
(completion time) in order to learn the most information in the
shortest amount of time. In the process of running these AL
algorithms on a fixed dataset (which we collected by running
a series of HPGMG-FE runs on available testbed hardware),
we analyze the properties of the involved mathematical and



algorithmic components to ensure that the resulting system
demonstrates reliability and optimality.
The main contributions of this study are:

o We propose a new framework for performance analysis
based on Active Learning and Gaussian Process Regres-
sions. This framework helps identify optimal sequences
of experiments for reducing uncertainty about various
quantities of interest.

o Under this framework, we develop a prototype which can
be used to construct a number of diverse performance
models, including models for application runtime, energy
consumption, memory usage, and many others. We show
how one can efficiently learn relationships between these
metrics and multiple controlled variables.

o Using a dataset of measurements from over 3K parallel
jobs, we compare the performance of two AL strategies,
as well as their ability to reduce the prediction uncertainty
for a given cumulative execution time. We confirm that
the basic AL algorithm with no adjustment for the experi-
ment cost can help efficiently construct regression models
using only a modest number of experiments. However, the
proposed cost-aware AL algorithm can provide significant
advantages: for a range of total cost values, it will greatly
reduce prediction errors, with the maximum reduction of
38% observed on the selected datasets.

The remainder of the paper is organized as follows: In
Section II, we provide a brief summary of the related work.
Section III introduces the model that we use to construct GPRs
over sets of measurement points, and Section IV describes
the particular technologies that we leverage to implement
the model and also collect experimental performance and
energy consumption data. Section V presents our application
of several compelling AL algorithms to the collected datasets.
We pay special attention to the AL “progress”, and describe
several metrics which help track how AL algorithms converge
as the number of experiments increases. We conclude the paper
and propose directions future work in Section VI.

II. RELATED WORK
A. Active Learning and Regression Training

AL is also sometimes referred to as optimal experimental
design. In [1], the author summarizes existing approaches
in AL, primarily in the context of classification problems.
The existing AL methods are referred to as Query Synthesis,
Stream-based Sampling, and Pool-based Sampling.

In [5], the authors develop an AL system for learning
regressions in studies where remote sensing data is analyzed
to provide insights about biophysical parameters.

Regression analysis is typically used to fit a curve — linear,
quadratic, cubic, etc. — through a dataset to predict future
data. It is often assumed that the dependent variable, also
known as reponse, behaves roughly according to one of these
types of relationships with respect to controlled variables
(sometimes called features). GPR provides a finer approach
to regression learning where no such assumption is made and

this relationship might be more complex (e.g., linear in one
region of the input space and non-linear in adjacent regions). In
GPR theory, the learning of a regressor is formulated in terms
of a Bayesian estimation problem (summarized in Section III).

B. Performance Analysis

Raj Jain in [6] lays the foundation for experimental design
in computer and network performance studies. The following
classes of designs are described: simple designs (vary one
factor at a time), 2F full factorial design, and 2k=P fractional
factorial designs. Fractional factorial designs present a way
to run less than the full number of possible experiments,
but, unlike our work, do so in a static way: the set of
desired experiments is determined a prioi from the factors
and their levels. These designs do not change as measurements
become available. The advantage to this type of design is that
experiments can be arranged to specifically test for the effects
(or lack of effect) of individual factors and combinations of
factors, and multiple experiments can run in parallel. The
downside is that the number of experiments does not typically
represent the variation present in empirical data, and the
selected experiment points do not necessarily represent the
most “interesting” parts of the input space in terms of deviating
from expected behavior. It is also difficult to create designs for
factors that have more than two or three levels, and especially
difficult when different factors have different numbers of level.
The approach described in this paper is much easier to apply to
experiments with many factor levels and is naturally adapted
to running fewer experiments in situations where there is less
variation in the results.

C. Response Surface Method

In [7], the authors introduce the Response Surface Method
(RSM), which is also a type of “optimal experiment design”
that is related to our work in that it helps choose future
experiments based on the measurements recorded so far.
However, it fundamentally differs from our work: we seek
to characterize the entire problem space with reasonably high
accuracy, while RSM is designed to search for combinations
of factors that allow reaching specified goals. In this respect,
it resembles an optimization process, where “sampling” from
the space corresponds to running more (possibly expensive)
experiments.

III. GENERAL FORMULATION FOR NON-DETERMINISTIC
ACTIVE LEARNING

In [2], the authors provide a foundation for AL in regression
problems. They introduce the Expected Model Change Max-
imization (EMCM) scheme which is based on the following
selection criterion:
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This formula uses differences between f(x), the values pre-

dicted using the primary regression model learned from the

data, and fy(z), the predictions obtained using k “weak”



learners, at points z. Functions f(z) and fi(«) differ in the
amount of training data they utilize: f(z) is trained using all
of the available data, while the ensemble {f;(z)}r=1.x is
trained with K subsets of the data generated via random sam-
pling (with replacement). That study shows that the expression
being maximized in (1) approximates the “model change” —
the change of the regression parameters 6 which occurs after
a new datapoint x is added to the dataset and the model is
retrained (where the model is fit to the data by minimizing
the sum of squared differences between measurements and
predictions).

Below we provide our analysis of EMCM and list the
potential shortcomings of the method. It is difficult to use
this method, as it is described, in performance studies for the
following reasons:

o The quality of the learned regression models is evaluated

using the widely-used Root Mean Squared Error (RMSE)
metric:
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where |T| denotes the size of the test set and y; is
the ground truth of the example x;. This evaluation, in
principle, implies a single prediction f(x;) and a single
ground truth value y; for every value of z;. A more
general approach is required for problems where the
regression learning algorithm produces a distribution of
predictions (i.e. predicts the probability density function
pz;) and where the algorithm needs to be compatible
with datasets with multiple y values for the same =z,
representing repeated measurements of a noisy function.

e Once a point (z;,y;) is added to the training set, it is
excluded from the pool of potential future candidates for
AL. In contrast, when noisy functions are studied, AL
algorithms need to be able to return to points already
included in the dataset and recommend obtaining addi-
tional measurements if the variance observed or predicted
at those points is high.

These limitations make it difficult to run EMCM on a
wide range of datasets with measurements of performance,
energy consumption, memory usage, and similar quantites.
In many cases, the non-deterministic nature of computer
and network performance requires obtaining repeated, often
numerous, measurements in order to draw reliable conclusions.
Moreover, the EMCM’s K weak learners effectively provide
a Monte Carlo estimate of variance, which is especially noisy
when the training set is small.

An attractive alternative is documented in [5]. The authors
leverage Gaussian Process Regression (GPR) for selecting the
most “difficult” samples. That study relies on the Bayesian
principle for estimating the posterior distribution of predictions
given a simple prior for regression parameters. In that process,
the authors pay special attention to hyperparameters — the
parameters that define the prior distribution and characterize
the noise in the data. Those hyperparameters have a significant

impact on how GPR-based models are created, and influence
what experiments are selected for learning in AL algorithms.
However, that paper does not explain what algorithms can be
used to find optimal values of GPR hyperparameters.

Chapter 5 in [8] provides a detailed description of opti-
mization techniques for “model selection”, which refers to
the process of fitting hyperparameters. Two approaches are
considered: the Bayesian inference with marginal likelihood
and the cross-validation (CV) with pseudo-likelihood. While
the former attempts to maximize the probability of the obser-
vations given the assumptions of the model, the latter typically
uses the leave-one-out scheme (LOO-CV) and the squared
error loss function. In its approach, the latter greatly resembles
the EMCM method which constructs an ensemble of weak
learners. Below we summarize the Bayesian hyperparameter
fitting, the method we choose to focus on in this study (we
leave the empirical comparison of the two methods for our
future work).

Let X and y be the design matrix (where the columns are
the vectors of input values) and the vector of the response
measurements, respectively. The objective is to an find the
underlying function f(x) which best “explaines” the measure-
ments which are assumed to include Gaussian noise:
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where o2 is the variance of the noise. For an unknown input
vector x,, the posterior distribution for individual predictions
f(z4) takes form of a multivariate Gaussian distribution:

p(f(w)|2s, X, y) ~ N (M*,chz*) ) 4)
where
e = kK ty, (5)
02 =kyw — k] K, K, (6)
K,=K+o.l ©)

The critical role in the estimation of these parameters is played
by the covariance function k(x,,z,). A covariance matrix:

[K)ij = k(z,2;), for all columns z; and z; in X, (8)
a covariance vector:
[ks]i = k(x4, 2;), for all columns z; in X, )

and a scalar,

i = k(s 74) (10)

are calculated using the selected function k(xp, z4).

Both [5] and [8] describe the squared exponential (also
referred to as the radial basis function or RBF) as a common
choice of the covariance function:

2
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where the length scale [ and the amplitude O'}% are hyperpa-

rameters, along with the noise level o2. Appropriate values

need to be selected for all three hyperparameters in order for



the regression to match the given dataset (X, y) and be able
to produce reliable predictions.

According to the Bayesian inference with marginal likeli-
hood, the following quantity, referred to as the log marginal
likelihood (LML), is minimized with respect to the hyperpa-
rameters:

1
logp(y|X,1,07,07) = =5 (v K, 'y +log | Ky [) + C, (12)

(1,07,07) = argmin(log p(y| X, 1,07,02)).  (13)
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After solving this optimization problem and fitting the
hyperparameters, we can use the constructed GPR model to
obtain the mean and the variance of predictions for every
input point z. Instead of the Monte Carlo criterion (1), at
every iteration of AL we propose choosing x for which the
variance of predictions is the highest, with or without adjusting
for the expected cost. In Section V, we present two AL
algorithms which we develop based on this idea and describe
their performance. Our analysis shows that the proposed AL
algorithms run as expected even when the number of data
points is small, for instance, only a single measurement of a
quantity of interest is available at the beginning (the situation
where EMCM is unlikely to perform well).

IV. IMPLEMENTATION

We developed a prototype capable of choosing experiment
candidates based on AL with GPR for noisy performance and
power data. The prototype, which is implemented in Python,
allows us to analyze characteristics of large collections of
computational jobs, as well as provides insights into properties
of the implemented AL algorithms. Although a detailed anal-
ysis of computational requirements and the scalability of these
algorithms is out of the scope of this paper (planned for further
research), we successfully analyzed numerous sequences with
hundreds and thousands of experiments.

The prototype, given a dataset with the design matrix X
and the vector of response values y, partitions it into 3 sets:
Initial (for initial regression training), Active (for one-at-a-time
experiment selection with AL), and Test (for prediction quality
analysis). In our evaluation, we use random partitioning with
selected ratios between these sets. Thus, we typically used
the Initial set with a single experiment, which corresponds
to realistic scenarios where in many performance studies an
application is first run on a new platform to verity correctness
and the subsequent runs are used to evaluate the performance.
The Active and Test sets in our analysis split the remaining
experiments roughly with the 8:2 ratio.

In addition to single realizations of AL, our prototype is
capable of running batches of random partitions of the same
dataset. The aggregate results, such as the average error and
the average cumulative cost of experiments, provide insights
into how the AL process behaves independent of the initial
state (i.e. the partition properties) and allows us to compare
alternative algorithms for candidate selection.

To test the prototype and investigate the available tuning
mechanisms in the developed AL algorithms, we ran the
prototype on two datasets which we collected from running
parallel computational jobs on the hardware available for
short-term dedicated experiments and provisioned via the
CloudLab portal [9]. Below we describe in detail the leveraged
technologies; in Section V-A we characterize the collected
datasets and provide our intuitions about them.

A. Leveraged Technologies

In order to gather practical empirical data for our analysis,
we leveraged several existing technologies:

¢ CloudLab [10]: Performance and power data were gath-
ered on CloudLab, a facility that gives users exclusive
bare-metal access to compute, storage, and network re-
sources. Because access is exclusive, we could be cer-
tain that the data collected from our experiments was
not significantly impacted by other users of the facil-
ity. CloudLab also provides power measurements at the
server-level, a critical feature for the energy consumption
modeling in this study. We collect power traces with
frequent recordings of the instantaneous power draw (in
Watts) from the on-board IPMI sensors and infer per-
job energy consumption estimates (in Joules) using the
recorded timestamps.

« HPGMG [3]: A robust and diverse benchmark that is de-
signed to be representative of modern HPC applications.
This benchmark is used to rank supercomputers and HPC
systems based on geometric multigrid methods. We ran
HPGMG-FE, the compute- and cache-intensive compo-
nent which solves constant- and variable-coefficient ellip-
tic problems on deformed meshes using Full Multigrid.

o scikit-learn [11]: A Python module with efficient tools
for Machine Learning and data analysis. Specifically, we
leverage the code for Gaussian Processes [12] in the latest
development version (0.18.dev0).

We used the Wisconsin cluster on CloudLab to instantiate

a 4-node homogeneous environment where every physical
machine is equipped with 2 8-core Intel E5-2630 v3 Haswell
CPUs, 128GB of RAM, and 10Gb NICs (full hardware de-
scription is provided at [13]).

We constructed a fully functional compute cluster out of the
provisioned individual machines by installing and configuring
the following software stack: NFS for sharing job input and
output between the nodes, OpenMPI (ver. 1.10.0) for message
passing, and SLURM (ver. 15.08) for resource management
and scheduling. The latest stable versions of the PETSc library
[14] and the HPGMG code were built and executed. In this
configuration process, we relied on the infrastructure related
to the Chef configuration management system [15] — the Chef-
Cluster profile and the relevant cookbooks (bundles of installa-
tion and configuration scripts) developed in the previous work
and documented in [16].

HPGMG-FE jobs with different parameters (e.g., operator
type, problem size, etc.) were organized into batches and
submitted to the job queue, after which SLURM managed



TABLE I: The Parameters of the Analyzed Datasets.

Dataset: Performance | Dataset: Power

# Jobs 3246 640
Responses Runtime (S) Runtime (S), Energy (J)
Runtime, S 0.005 - 458.436 0.005 - 458.436
Energy, J - 6.4e3 - 1.1e5
Variables Operator: poissonl,poisson2,poisson2affine

Global Problem Size: 1.7e3 - 1.le9
NP: 1,2,4,8,16,24,32,48,64,96,128
CPU Frequency (GHz): 1.2,1.5,1.8,2.1,2.4

their execution on the available nodes. After completion, we
collected all relevant information, including benchmark output,
error logs, SLURM accounting information, power consump-
tion traces, and system information. Then, we transferred that
data from the cluster to a local workstation to plot it and
analyze it using the developed AL algorithms.

V. EVALUATION
A. Understanding the Dataset

For experimental evaluation, we run our prototype “offline”,
consulting a database with the collected data. We demonstrate
the advantages which AL algorithms can provide on these
or similar datasets, while the target use case for practical
applications is the “online” operation, where every iteration
of AL includes selecting an experiment, running it, and using
the experiment outcome to update the underlying GPR model.

Table I provides a high-level summary of the collected
datasets. It lists all considered responses and controlled vari-
ables available in the datasets. It is worth mentioning that the
intervals in which Runtime, Global Problem Size, and NP
(number of processes) change are relatively large, allowing
us to explore the behavior of the application across a domain
where the growth along some of the dimensions is significant.
For instance, the runtime increases from its smallest recorded
value to the largest by growing 5 orders of magnitude. Also,
CPU Frequency varies from 1.2 to 2.4 GHz, which are the
low and the high limits on the selected machines’ CPUs.
The datasets include up to 3 repeated experiments for every
combination of the controlled variables. The complete datasets,
with up to 46 attributes for each job — controlled variables, job
execution properties reported by SLURM (e.g., memory usage
on every node), and the listed responses — are available in the
CSV format at [17].

In order to validate our intuitions about this data, we fix the
Operator variable (choose “poissonl”), select several levels
of NP, and show these subsets on 3D plots in Fig. 1. These
plots demonstrate that the variance in the Power dataset is
much higher comparing to the Performance dataset. There are
also fewer points in the Power dataset due to the fact that the
collected power traces from the utilized machines had gaps
and we excluded a number of jobs with insufficient number
of corresponding power draw records (less than 10 for 60
seconds of computation). The per-job Total Energy estimates,
obtained from the traces of instantaneous power draw via
numerical integration, can be interpreted as approximation of
the actual per-job energy consumption. Calibration of these

estimates using measurements from a set of physical electrical
power meters falls beyond the scope of the current analysis; it
constitutes a context for an appealing future study where, in
the AL terms, experiments for which physical measurements
are available can be used in the modeling with higher con-
fidence, while the derived IPMI-based estimates are marked
with lower confidence and the corresponding experiments are
recommended for repeated execution.

Fig. 2 shows the same subsets with log-transformed re-
sponses. The plot for the Performance dataset confirms the
linear growth of Runtime along the problem size dimension,
for which the plot also uses the log-transformed scale. One
downside of this log-transformed representation is that it
becomes difficult to see the growth along the frequency dimen-
sion, therefore, the original, non-log plot needs to be always
referenced when AL decisions and GPR predictions in this
space are analyzed. As we can see, log-transformation does
not significantly change the structure of the Power dataset.

In the remainder of the paper, we describe how we use these
datasets with log-transformed Runtime, Energy, and Global
Problem Size for GPR and AL with one and two controlled
variables.

B. Regression Training and Active Learning

We aim to gain confidence about the reliability of the
proposed AL algorithms by running our prototype on simple
problems. We ensure that it works in 1D and 2D scenarios: the
prototype receives subsets of the datasets where all but one and
two controlled variables are fixed. Initially, we gain intuitions
about the created one-variable GPR models by inspecting their
visualizations (shown in Fig. 3). Then, we switch to the two-
variable GPRs (depicted in Fig. 5) and describe the behavior
of AL for pure variance reduction (without adjusting for the
expected cost). An alternative strategy, which uses a cost
efficient selection algorithm is developed and compared to the
original strategy. Throughout this section we document the
outlined progression and summarize our observations.

1) 1D — Varying Problem Size: In 1D case, we choose to
model how Runtime and Energy respond to changes in the
Global Problem Size. We fix the rest of the variables (NP=32,
Freq=2.4, Operator=‘poissonl’), and use GPR to produce a
regression with associated prediction mean and variance as
functions of the problem size.

Fig. 3(a) shows four GPRs with different values of two
hyperparameters, the length scale I and the amplitude oy,
which define the shape of the squared exponential defined in
(11). The difference between the predictive mean curves is
negligible. In contrast, the 95% confidence intervals (shown
as: mean =+ 2*standard deviation) are greatly impacted by
the value of [: a decrease of [ leads to a significant increase
in the uncertainty, characterized by the standard deviation of
predictions, in areas between measurement points.

In Fig. 3(b), we can see that the growth of uncertainty can be
exaggerated at the edge of the domain if there is no measure-
ment nearby. “Clamped” at the existing points, the predictive
distribution is so wide at the maximum problem size that we
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Fig. 2: Jobs from Fig. 1 shown with log-transformed Runtime and Energy.

observe the difference not only for the confidence intervals but
also for the predictive means with different hyperparamters. In
choosing values of hyperparameters to best fit the datasets, we
rely on the scikit-learn’s implementation which runs gradient
ascent on the LML as described at [12]. This implementation
finds hyperparameter values from a domain with specified
boundaries and, in order to increase reliability, repeats this
search multiple times, each time starting from a random point.

It is worth noting that when GPR is created using a small
number of points, it may be erroneously assumed that the
measurements are noise-free because the dataset does not
include multiple y values for the same x. The produced GPR
will optimistically consider its predictions to be exact, and
the selected noise level may approach the machine precision.
Further discussion of this point is provided in Section V-B4.

In general, GPRs constructed on datasets with many points
should be more reliable. As described in [8], LML becomes
more peaked with the growth of the dataset size. We can

see that finding the peak in the landscape shown in Fig. 4,
which corresponds to the Performance subset from Fig. 3(a),
is a straightforward optimization problem with a unique global
optimum. This peak can be found using gradient ascend with
a single randomly selected starting point.

2) 2D — Varying Problem Size and Frequency: Instead of
curves, we obtain GPR surfaces when we vary two factors.
For each GPR solution, defined by a set of specific hyper-
parameters, we obtain 3 surfaces: the high bound for the
confidence interval, the predictive mean, and the low bound for
the confidence interval. Fig. 5(a) shows the bounds with green
wireframes and the mean with the red wireframe between the
two bounds. In this particular case, the four randomly selected
training points are aligned with each other well enough to
define a tight predictive distribution. Nowhere in this space
the confidence interval is particularly wide. However, further
away from the training points, e.g., where both Frequency and
Problem Size are near their maximum values, the confidence
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interval bounds are further apart. These are the areas where
AL should select candidates for subsequent experiments. All
experiment candidates are depicted on this plot with vertical
magenta lines connecting the confidence interval surfaces.

Fig. 5(b) depicts LML for this GPR. Comparing to the
aforementioned landscape for the case with abundant data,
this one is significantly more shallow. However, the identified
peak yields a GPR model which behaves as expected: it has a
reasonable predictive distribution, and, we are confident that
its standard deviation can be used as a selection criterion in
AL.

3) Monitoring Active Learning Progress: When we im-
plement an Active Learning algorithm it is important to
confirm that it indeed suggests an “interesting” sequence of
experiments for learning. In other words, we need to monitor
the steps taken by the algorithm and, at least in simple cases,

compare its behavior with our expectations. In more difficult
cases, e.g., when the number of varied variables is greater
than two and we cannot easily visualize AL trajectories, we
need to track metrics that characterize the learning progress.
Such metrics will be used in making practical decisions such
as whether to keep AL running or terminate it because the
desired prediction accuracy is achieved.

We start by visualizing how AL chooses points in the 2D
input space where Problem Size and Frequency are varied.
Unlike the previous example, we consider a much larger
dataset: a subset of points from the Performance dataset for
which NP = 32 and Operator="poissonl’. This selection yields
251 jobs, which we randomly split into the Initial, Active,
and Test sets. Fig. 6 depicts these sets and visualizes how
AL suggests exploring this domain for 10 and 100 iterations.
Each transition from one point to another in these sequences
is shown with a colored arrow, starting with the blue-colored
and progressing to the green-colored arrows. We can see that
initially points from the middle of the domain are not selected.
In a star-like pattern, AL chooses experiments at the edges
and, only after exhausting all edge points, progresses toward
the middle. This is exactly the type of exploration that is
intuitively employed by human experimenters, typically when
there is no understanding of the relationships captured in the
studied data, and often described in performance studies.

4) Interpretation of Results and Discussion: To understand
AL’s progress, we monitor 3 selected quantities as follows:

e 0y — Standard Deviation (SD) of the prediction distri-
bution at selected AL candidates (should not be confused
with oy, one of the GPR hyperparameters). In the AL
algorithm discussed so far, these are the highest values
found across all candidate points.

. ﬁ Z‘iilo 0 f(x) — Arithmetic Mean of the Standard Devi-
ation (AMSD) calculated across all points in the Active
Set. Our initial analysis shows that a geometric mean can
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Fig. 6: AL with Variance Reduction.

be used as an alternative metric, but it does not provide
any significant advantages.
o« RMSE: Aggregate error on the Test set defined by (2).
All three metrics are evaluated for 10 repetitions of AL for
different random partitions of the same Performance subset,
and the results are depicted in Fig. 7(a). We immediately
notice that all three quantities seem to converge to their
stable values after about 25 iterations (with small subsequent
variations). However, we consider inadequate the behavior
where o () drops to negligible values before the 5Sth iteration.
Also, AMSD in many of the shown trajectories decreases
significantly below its stable value of approximately 1072
We explain this effect by the model overfitting: from the
GPR’s perspective, a regression with a very small variance
is produced. This happens because with fewer than 5 points

the measurements often align well and the mean and the
confidence interval bounds are close to each other. Even with
more points, it is still possible to obtain random partitions
containing no outliers or particularly skewed measurements,
which can results in non-optimal AL decisions.

To eliminate the overfitting issue, we restrict the search
space for the hyperparameter o, in GPR. Specifically, we
increase the lowest bound for the values which can be con-
sidered in gradient ascent. In contrast with Fig. 7(a), which
shows properties of GPR with o,, > 10~%, we generate 10
new trajectories with this limit increased to 10~ and show
them in Fig. 7(b). The new trajectories do not demonstrate the
aforementioned downsides. In this setting, AMSD becomes
an important practical measure: when it converges (i.e. the
average does not change significantly with additional AL
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Fig. 8: Comparing AL strategies: Variance Reduction and Cost Efficiency.

iterations), AL can be terminated. The plots confirm that at
that point RMSE will also converge to its stable value, and
subsequent experiments may be considered excessive.

While the described fixed limit for o,, results in the desired
behavior in our experiments, we believe that a more general
solution should involve a limit that dynamically adjusts. For
instance, we expect that the restriction: o,, > 1/+/(NN), where
N is the iteration counter, is a viable choice. In future work,
we will investigate such limits and their implications.

AL which selects points with the highest SD is the approach
which we refer to as Variance Reduction. Below we discuss
our experience with an alternative cost-aware AL approach. In
the cost-aware algorithm, rather than minimizing the variance
we attempt to minimize the variance/cost ratio. While it may
not be entirely clear how to define the cost in many other ap-

plication domains, in performance analysis and computational
science, certainly, longer experiments are more “expensive”.
Therefore, Runtime and Total Energy, the same quantities we
are predicting, can be interpreted as cost approximations, as
well as different measures of the resource utilitzation.

Since we work primarily with the log-transformed re-
sponses, the proposed variance/cost ratio takes the form:

o =argmax (0p(z) — ff(z)) (14)

xEpool
where pr) and oy, are the mean and the SD of the
predictive distribution at point z. This selection criterion
defines the AL algorithm which we refer to as Cost Efficiency.
We expect that this algorithm will be less aggressive about SD
minimization and lean toward smaller experiments rather than
larger ones where such choice is appropriate.



We integrated the described algorithm into our prototype
and performed the initial analysis. We ran both Variance
Reduction and Cost Efficiency on 50 random partitions of
the Performance subset shown in Fig. 6(b). Fig. 8(a) illus-
trates different trajectories of individual learning sequences.
As expected, RMSE for Cost Efficiency does not converge
as quickly as for Reduction Variance, neither does AMSD
(we again used o,, > 107!), but both quantities converge
after approximately the same number of iterations. However,
the cost for these algorithms, shown in Fig. 8(b), confirms
that Cost Efficiency can be the algorithm of choice in cost-
sensitive and cost-limited studies. The tradeoff curves shown
in the same figure are meant to act as a practical tool for
selecting one algorithm over the other. In other words, it
can help an experimenter who relies on AL suggestions to
see how aggressive the available selection algorithms can
minimize the error for a given cost. What we infer from
the intersecting curves is that Cost Efficiency initially selects
several points that on average do not efficiently reduce the
error. In the longer term, by learning from a larger set of
smaller experiments as opposed to a smaller set of larger
experiments, Cost Efficiency becomes the superior algorithm
(lower cost and lower error), at least for a subrange of cost
values. In the shown example, the curves intersect at the value
of the cumulative cost of C' = 1626 (total compute time in
seconds * number of cores). After that point, Cost Efficiency
outperforms Variance Reduction, where the relative difference
between the two algorithms for any given cost reaches up to
38%. White it is difficult to see it on the log-scaled plot, this
advantage is also significant at many other points: at 2 x C,
3xC, 5*C, and 10 x C it is 25%, 21%, 16%, and 13%,
respectively. Eventually, the curves meet at the maximum cost,
the point where all available experiments are used to create
GPR models.

VI. CONCLUSIONS AND FUTURE WORK

This paper has shown how Active Learning can be effec-
tively applied to regression problems in performance analysis.
By combining AL and GPR, we have created a method that al-
lows us to get high-confidence predictions across a large input
space without the need for a static, and possibly inefficient,
experiment design. This means that performance regression
against expensive computations or with larger parameter sets,
become more feasible.

The experiments in this study have been run “offline”
(consulting a database of precomputed performance samples),
but the target use case is “online” where the next experiment
must be scheduled. As future work, some experiments could
reasonably be run in parallel which adds additional scheduling
concerns and may indicate a less greedy selection strategy. Re-
alistic simulations often involve continuous or near-continuous
parameters, such that the active set cannot be treated as finite.
We expect that this could be handled by choosing the best
option within a finite subset or, preferably, by using continuous
optimization. Gradient-based methods, which are available
with GPR, would provide an important benefit for problems

with high-dimensional parameter spaces. We expect that the
techniques in this paper can also be generalized to perform
cost-aware adaptive reduced order modeling for application-
relevant response surfaces. In a separate study, we plan to
investigate computational requirements of competing GPR and
AL algorithms and consider available optimizations.
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