KIDL: Interface Definition Language for the Kernel

Sarah Spall
email spall@cs.utah.edu
University of Utah, School of Computing

I. INTRODUCTION

This project is part of a larger project whose goal is to
decompose the Linux kernel. The Linux kernel is a shared-
memory environment, and decomposing the Linux kernel
provides security by confining the effects of attacks. The
Lightweight Capability Domains project [6] is decomposing
the Linux kernel into a share-nothing environment. In this en-
vironment, subsystems which previously existed in a shared-
memory environment will now exist in their own share-
nothing isolated domains. Because processes now execute in
separate address spaces, functions cannot be directly called
between domains. To allow these subsystems to continue to
interact in this new environment, new code must be written
that makes function calls across address spaces. This “glue”
code marshals parameters from one address space to another,
and then calls the function as if the caller was in the same
address space. This code must be written for each individual
function that we would like to use across domains, and this
code is highly similar between functions. To automate this
code generation an Interface Definition Language (IDL) is
used. An IDL allows a user to describe the functions they
would like to export for other domains to use, and then an
IDL compiler automatically generates the glue code.

We created an IDL compiler that automatically generates
this glue code. Because the Linux kernel is written in C, this
IDL is targeted for the C language, and we created a new
IDL syntax for describing C interfaces. Like previous IDLs’
syntaxes, this new IDL syntax allows users to describe data
structures, functions, and remote data structures.

From an IDL specification, two pieces of code are gener-
ated: code for the function caller, caller glue code; and code
for the function provider, callee glue code. The caller glue
code is used by anyone who wishes to call any of the ex-
ported functions. This glue code is called in place of the real
function, and handles the marshaling of parameters across
address spaces, and the remote function call using inter-
domain communication (IDC). The callee side glue code is
used by whomever is exporting the functions described in the
IDL. This glue code intercepts the function calls meant for
the callee, and then unmarshals the parameters and makes
the real function call, returning the result to the caller using
IDC. The code generated from the IDL is described in greater
detail in section

We want to allow two separate domains to synchronize
two separate copies of the same data, so the same piece of
data can be used without passing the entire data structure

every function call; only the pieces of the data structure
which have changed must be passed. Since, pointers to
structures are often passed during function calls, this allows
the minimal amount of data to be copied between address
spaces during each function call. To support this, we have
created the concept of a container. A container is a structure
which contains the original piece of data we would like to
synchronize, as well as a reference to our local container
and a reference to the remote container. These container
references allow one domain to refer to another domain’s
data during a function call. To support this idea, the IDL
syntax allows the user to specify container lifetimes with
new syntax. Containers will be explained in greater detail in
section

In the following sections I will explain the syntax of the
IDL, the glue code which is generated, and the purpose
of this glue code. The IDL compiler currently generates
the caller and callee glue code functions, as well as the
container structures. It also generates the extra code required
to implement cross-domain function pointer calls.

II. SYNTAX

This section will describe the Interface Description Lan-
guage’s syntax.

A. Keywords

The following are keywords which can be attached to
parameters and projection fields. A projection is how a C
structure is described in the IDL; these will be explained
in more detail in section These keywords indicate the
direction of data flow during a function call as well as data
structure lifetime. Here, data structure lifetime, refers to the
lifetime of a “container”, which is how shared memory is
imitated in the share nothing environment. For variables the
users wishes would persist across remote function calls, a
container is allocated and saved. Containers and how they
imitate shared memory will be explained in more detail in
section

The in and out keywords are used to indicate the direction
of data flow during a function call. This information allows
the compiler to only marshal the necessary parameters during
a function call. Previous IDLs [] have also used keywords
to indicate the direction of data flow during a function call.
The in keyword indicates that a parameter must be passed
from the caller to the callee during the function call. When
the remote function call is made the value of that parameter
will be marshaled by the caller and then unmarshaled by the

mailto:spall@cs.utah.edu

callee. The out keyword is similarly used to indicate that the
parameter needs to be passed from the callee to the caller
when the remote function call returns.

In simple cases, such as a function which only accepts
scalar values, this data flow may be obvious. In more com-
plex cases, the in and out keywords can provide useful hints
to the compiler about which values it is necessary to marshal.
annotating functions and projections does require the user
to understand the data flow of each function they wish to
decompose. Labeling the fields of a projection in a discerning
manner requires the user understand how the corresponding
structure is accessed as it flows through function calls. This
may prove to be too great of a burden for the user and
useful future work would be to develop a tool which statically
analyzes C data structures and the function calls which use
them, to automatically generate projections.

The alloc and dealloc keywords are used to describe object
lifetimes. This idea of object lifetimes creates an imitation
of shared memory where the caller and callee can share
an object even though they are running in a share nothing
environment. Shared memory is imitated through the use of
containers. A container is a structure which encloses the data
the caller and callee wish to share, as well as a local and
remote reference for the containers. If a container is stored by
a caller or callee, this allows the data it holds to be references
in a later function call. Containers will be explains in more
detail in section

Alloc and dealloc indicate to the compiler when a con-
tainer needs to be allocated and deallocated. After a container
is allocated it is inserted into a cspace so it can be referenced
during a later remote function call. The alloc keyword
tells the compiler when a container should be created and
inserted into the cspace. Alloc(caller) tells the compiler that
a container should only be allocated on the caller side.
Similarly, a variable is marked alloc(callee) if a container
only needs to be created on the callee side. If a container
should be allocated on both sides, then just alloc is used.

Dealloc is the counterpart to alloc, and it is used to
specify that a variable’s container should be removed from
the cspace. Just as with alloc, a variable can be marked deal-
loc(caller), to indicate it’s container should be removed from
the caller’s cspace. A variable can be marked dealloc(callee),
in which case it will be removed from the callee’s cspace.
And if a variable’s container’s should be removed from both
the caller’s and callee’s cspaces, then it can be marked just
dealloc..

Bind tells the compiler when a container already exists for
a variable. As with alloc and dealloc, bind(caller) means the
caller has already allocated a container for this variable, and
alloc(callee) means a container has already been allocated
on the callee’s side. Originally it was thought that a bind
keyword would be unnecessary, because the compiler would
simply be able to infer that a container already existed if alloc
wasn’t used. This is true if every variable which is a pointer
to a projection requires a container. However, if we want to
give the user the option to decide whether or not they want
to reference the same data across function calls, then a bind

keyword is necessary to tell the compiler when a container
already exists. Otherwise, the compiler won’t know if the
container can be found in the caller’s or callee’s cspaces.

B. Simple types

Currently supported types:

« Integer data types
— char (signed, unsigned)
— short (signed, unsigned)
— int (signed, unsigned)
— long (signed, unsigned)
— long long (signed, unsigned)

o Floating point

o Boolean

o Structures (non-circular)

« Pointer types

Currently unsupported types:
o Union types
o Enum types
o Lists

C. Structure data types

C structure types are described in the IDL with projections.
A single structure may be described by many projections.
This is because a projection describes more than just the
fields of a structure. Just as a parameter can be marked:
in, out, alloc, dealloc, and bind, so too can the field of a
projection. Because the data flow and lifetime of a structure’s
fields can be described using a projection, a user may need
to define multiple projections for the same structure.

Projections tell the compiler which fields of a structure it
is necessary to marshal and unmarshal during function calls.
As mentioned in section the in, out, alloc, and dealloc,
keywords provide hints to the compiler which fields need
to be marshaled or allocated, just as for other parameters.
Because there is no shared address space, when a structures
is passed as an argument to a function or returned from a
function call, all of the fields must be explicitly passed. The
in and out keywords tell the compiler which fields need to
be marshaled which directions.

Currently there are two slightly different projection forms.
The first form is used for simply describing the relevant
fields of a structure and any channels associated with this
projection. Channels will be explained in section [[II-B]

projection <struct struct—name> proj—name {
channel [alloc] chanl; // optional
type * [in,out,alloc] fieldl;
type2 [in] field2;

The second projection form allows the user to, in addition
to what the previous form describes, describe channels
associated with this projection that will be created elsewhere
and will be provided when this projection is used.

projection <struct struct_name>

proj_name (channel

R N

argl

channel [alloc] chanl;
type = [in] fieldl;
type2 [out] field2;

// optional

D. Functions
Functions are described using rpc syntax, which looks

like a regular C function declaration, but with “rpc” at the
beginning.

rpc type name(typel [in,...] s*paraml, ...);

This syntax is used to describe a function the user wishes
to export. The return type and parameters of an rpc definition
can either be one of the simple types described in section
or a projection. As stated in section the parameters
can be marked with the keywords: in, out, alloc, dealloc,
and bind, which describe which direction the values of these
parameters flow during the function call, and whether or not
containers should be allocated for these parameters.

From an rpc definition the compiler will generate two
functions: a caller function, and a callee function. The
caller function will have the same signature as the exported
function, and will be used by the caller in place of the real
function. The callee function will have the following function
signature:

void name_callee ();

This function will intercept the caller’s remote function
call and call the real function. The content of these functions
will be explained in detail in section

E. Function pointers

The notation for describing function pointers is very
similar to the notation for describing functions, and is also
very similar to the C notation.

rpc type (*name) (typel [in, ...] xparaml, ...);

Function pointers are currently only supported in a pro-
jection field context.

projection <struct name> proj—name {

rpc type [alloc] (xname) (typel [in,...] *xparaml

s e)

Function pointers can be marked with the same keywords
as regular rpc parameters and projection fields. If a function
pointer is marked alloc, a trampolin will be allocated for

ICharlie Jacobsen is credited with designing how trampolines work.

the function pointer. The trampoline enables cross domain
function pointer calls and will be explained in detail in
section In addition to caller and callee functions, for
each function pointer, a trampoline function is also generated
by the compiler. This trampoline function is included by the
caller of the function pointer

The signature of the function pointer caller’s function:

return_type name(typel sxparaml
, struct proj—name_container xcont
, struct cspace *cspace);

The signature of the trampoline function:

return_type name_trampoline(typel =xparaml, ...);

The callee function pointer glue code, has the same
signature as the callee glue code for a regular function.

The trampoline function passes the extra arguments to the
caller glue code function.

If a function pointer is marked dealloc(caller), the copy
of the trampoline code will be freed, as well as the hidden
arguments structure for the function pointer. It does not make
sense for the function pointer to be deallocated on the callee
side, because nothing special is allocated for the function
pointer. It also does not mean anything for a function pointer
to be marked in or out, and as a result these will be ignored.

F. Module syntax

A module describes a collection of functions a domain
wishes to provide, and the associated data structures. The
module syntax is as follows:

module module_name (channel chnll, ...) {
projection <struct s> proj—name {...}
rpc type rpc-name (typel paraml, ...);
{
projection <struct s> proj—name {...}
rpc type rpc_name (typel paraml, ...);

The body of a module begins with any number of type
definitions, followed by any number of rpc definitions, and
lastly, followed by any number of unnamed scopes. An
unnamed scope introduces a new lexical scope, which makes
it convenient for a user to associate type definitions with
one or more rpcs. Consider the following example of how
unnamed scopes are useful.

module m (channel chanl) {

{

projection <struct s> p

int [in] fieldl;
int [out] field2;

}

rpc int funcl(projection p xparaml);
}
{

projection <struct s> p

int [out] fieldl;
int [in] field2;

}

rpc int func2(projection p *p);

}

In this case, two functions took the same structure as an
argument, but used it in different ways. The user wanted to
describe two different projections for this reason, and using
unnamed scopes they were able to create two projections
each with the same name.

A module also declares channels, in the form of what looks
like a constructor declaration. A module declares channels
for the caller to make remote function calls and for the callee
to listen for remote function calls. A module must declare at
least one channel. Currently, only the first channel declared
is used for making and listening for remote function calls. If
users wish to specify a specific channel for each rpc, a new
syntax would need to be created to specify that. The channels
specified in the IDL will be declared as global variables in
the generated code and will be initialized by the module
initialization functions. The initialization functions and other
code generated for a module definition will be explained in
detail in section [[II-Al

III. GENERATED CODE
A. Modules

A module is used to group together the functions a domain
wishes to export. These functions share a channel for making
IDC calls and share a cspace for container storage. These
extras, channels and cspaces, require initialization before
they can be used. As a result, for each module, two module
initialization functions are generated: a caller initialization
function, and a callee initialization function.

The initialization functions are mainly responsible for
setting up channels and cspaces. For each channel specified
as part of the module, a corresponding cspace is created by
the initialization function. Every channel declared as part
of the module and the corresponding cspaces are declared
as global variables in each the generated caller code file
and the generated callee code file. Remote function calls
made on a channel will use the corresponding cspace to store
any containers they allocate. The channels are provided as

arguments to the initialization functions, and are allocated
somewhere else. These channels must be shared between
the caller and callee, and the process of sharing channels
happens via some other means.

Suppose someone defined the following module vfs in an
IDL file.

module vfs (channel vfs_chnl) { ... }

In the caller glue code file, vfs_chnl will be declared as
a global variable of a capability to a channel. This capa-
bility will be provided by whomever calls the initialization
function. A corresponding cspace will also be declared as a
global variable and will be allocated and instantiated in the
initialization function.

The signature of the caller side initialization function is
as follows.

int glue_vfs_init(cptr_t vfs_chnl
,struct lcd_sync_channel _group *_group);

The lcd_sync_channel_group stores a collection of channels
to allow, in this case, the caller’s dispatch loop to listen on
multiple channels. The only time a caller would listen for
function calls is if it exports function pointers to another
domain. Therefore, in the caller’s initialization function
no channels are added to the Ilcd_sync_channel_group. The
initialization function also creates the corresponding cspaces
for each channel.

The signature of the callee’s module initialization function
is as the same as the caller’s module initialization function.
But, because the callee is providing the functions it must
initialize its dispatch loop to listen on the channels it is
provided with. Each channel passed to the initialization
function is added to the lcd_sync_channel_group. The initial-
ization function also creates the corresponding cspaces for
each channel. The ideas around the dispatch loop, channels,
and how they should be handled have been continually
evolving, and as a result this particular part is not completely
implemented.

For each module, caller and callee exit functions are
also generated. The caller’s exit function frees every cspace
created during initialization. The caller’s exit function frees
every cspace created during initialization as well as removes
every channels from the dispatch loop. The exit functions
should only be called when the caller does not wish to use
the functions in the module anymore, and the callee should
only callee exit when it no longer wishes to provide the
module.

The signature of the caller and callee module exit func-
tions.

void glue_vfs_exit();

B. Channels and Structures

As shown in section [[I-C| projections can specify channels
in two ways: either by declaring a channel as a field, or

Domain B

\. dstore

struct container s *c;

Domain A

struct container_s *c;

struct s s; struct s *s :
struct dptr local; =
struct dptr remote;

struct s *s_; struct s s;

struct dptr local;

Fig. 1. Containers across domains

declaring a channel as a parameter in a projection con-
structor. Someone may want to specify channels for their
projections if the projections contain function pointers and
they want to control which channel is used for the remote
function call.

This is how a channel is specified as a projection field.

projection <struct fs> fs {
channel [] chnll;

The container structure corresponding to the fs projection
will have a channel field. If chnll was marked alloc then a
channel would be allocated and stored in the container.

This is how a channel is specified as a parameter of a
projection constructor.

projection<struct fs> fs(channel chnll) {

In this case, the fs projection expects to have a channel
passed to it when it is used. This projection fs’s correspond-
ing container will have a channel field, which would be
set to the channel fs receives when it is initialized. Who
provides this channel will depend on where the projection is
referenced.

C. Containers

Containers are structures created by the compiler that con-
tain extra information, which allows us to create an imitation
of shared memory. A container will have a minimum of
three fields: a field for the piece of data we would like to
share, a local reference field, and a remote reference field. A
container may also hold additional information in the form
of channels. A container’s references allow us to refer to the
other domain’s copy when a function call is made, by passing
a reference with the other parameters. Refer to figure [T| for a
graphical depiction of how two cross-domain containers are
linked.

A container has two reference fields: a local reference,
and a remote reference. During a function call, where both

//l:,: ruct dptr remote;

the caller and callee have already allocated containers for a
particular variable, the caller will pass its remote reference to
the callee. This allows the callee to locate its corresponding
container in its cspace. In the case where both containers
have not been allocated yet, both the caller and callee will
pass their local references, so the other side can store it for
later use.

Containers could be used for all parameters and return
values that are pointers, however, this doesn’t provide any
benefit in the case of simple data types. For simple data types,
such as int, a container could be created, but no portion of
the data will remain the same when it is updated. It costs
the same to send a remote reference from one domain to
the other as it does to send the value. In the case of a data
structure maybe only one or two fields will be changed at
a time. Therefore, currently containers are only created for
pointers to structure data types.

A container for a structure takes the following form:

struct structure_container {
structure real;
cptr my._ref;
cptr other_ref;

cptr chnll; // optional

The my_ref field holds the position in the container’s
domain’s cspace that the container is stored at. The other_ref
field stores the position in the other domain’s cspace the
corresponding container resides at. The optional chnll field
stores a channel declared by this container’s corresponding
projection definition.

In summary, containers are used to link two pieces of data
across two domains. This can be useful if two domains are
continually modifying the fields of a structure, but never all at
once. Using containers, two domains can synchronize their
changes without needing to pass the entire structure every
time a field is updated.

D. Functions

For every rpc definition in an IDL file two functions are
generated: a caller function, and a callee function. The caller
function is included by the caller of the real function, and
handles the marshaling of parameters and making the remote
function call. The callee function is included by whomever
is providing the real function, and handles the unmarshaling
of parameters and makes the real function call.

Suppose one domain wishes to export the following func-
tion.

int register_fs(struct fs xfs);

In the IDL file this function would be written as an rpc
that looks like this:

projection <struct fs> fs {

int [in] id;
int [in, out] size;
rpc int register_fs(projection fs

[alloc (callee)] *fs);

From these definitions, the IDL compiler generates two
functions: the caller glue code function and the callee glue
code function. In the next section I will explain the caller
function.

1) Caller function: The generated caller function will
have the same function signature as the original register_fs
function, but will handle marshaling parameters and making
the remote function call. In this section I will detail every-
thing that occurs in a generated caller function.

First, for every parameter which is a pointer, a projection,
and is marked alloc or bind it is necessary to allocate a new
container or locate the existing container. If the container
has already been allocated, which in this case it has, the
caller side code uses the container_off]| function to access
the existing container; container_of does math to calculate
the position of the container from the parameter.

fs_container xfs_container
= container_of (fs
,struct
,fs);

struct

fs_container

A parameter’s corresponding container must be accessed
every time the parameter is used so a remote reference can
be passed to the callee. This allows the callee to access their
own copy of the container.

If any of the register_fs rpc’s parameters referred to a
projection that declared a channel those would be allocated
or initialized here. This is so these channels can be marshaled
to the caller.

All parameters marked in and the necessary container
or channel references are marshaled in preparation for
the remote function call. In this example we marshal the
fs_container’s local reference because the register_fs rpc’s fs
parameter is marked alloc(callee). The callee code will allo-
cate its own container and store the caller’s local reference
for later use. Projection f5’s two fields id and size are also
being marshaled because they were both labeled in.

lcd_set_rl (fs_container—>my_ref.cptr);
lcd_set_r3 (fs—id);
lcd_set_r4 (fs—>size);

Register 0 is reserved for the function tag, which identifies
which function is being called. Here we set this register to
the function tag for register_fs.

lcd_set_r0(1);

2The container_of function was implemented by Charlie Jacobsen.

After marshaling is finished, the remote function call is
made. This is done using a synchronous IDC call on a
channel specified by the module containing the register_fs
rpc. In this case the channel is vfs_chnl.

ret = lcd_sync_call(vfs_chnl);

After the remote function call returns, the return value
and all parameters labeled out are unmarshaled. If the callee
allocated any containers, the caller will unmarshal those
references and store them in the corresponding container.
In this example the caller received a reference from the
callee and is storing it in the fs_container’s other reference
field. The fs projection’s field size was marked out, so we
unmarshal its value.

fs_container—>other_ref = __cptr(led_rl ());
fs_container—>fs.size = lcd_r2 ();
return lcd_r3 ();

These are the major portions of the generated caller
function. In the next section I will explain the generated
callee function.

2) Callee function: This generated callee function will
handle the unmarshaling of parameters, will make the real
function call, and will return the appropriate values to the
caller. In this section I will detail the contents of the callee
function.

The generated callee function will have the following
signature:

void register_fs_callee ();

First, each of register fs’s parameters must be declared. If
a parameter has a container, the container is declared instead
of the parameter. In this example register fs’s fs parameter
has a parameter, so we declare it here.

fs_container *xfs_container;

Fs was marked alloc(callee), so the callee code will
allocate this container and insert it into the cspace. This is
also where regular parameters would be allocated, if any
were declared.

fs_container = kzalloc(sizeof(xfs_container)
, GFP_KERNEL) ;
ret = vfs_cap_insert_fs_type(minix_cspace

,fs_container
,&fs_container—>my_ref);

If fs had been marked bind rather than alloc, fs_container
would have been looked up in the cspace using the remote
reference received from the caller.

After every parameter has been allocated, and every con-
tainer has been either allocated or looked up in the cspace,
the parameter’s values are unmarshaled. In this example, the

Caller
structure Caller

function pointer
glue code

function pointer s

Heap Trampoline
glue.o Extra arguments|
h call fp glue code\

Callee

remote call

Callee
function pointer
glue code.
real call
structure

function pointer

Internal organization of trampoline code

Fig. 2.

callee sets it’s fs_container’s remote reference to the caller’s
fs_container’s local reference. If the callee had looked up
fs_container in the cspace, this reference would have been
unmarshaled previously. The fs_container fields id and size
are unmarshaled as well because both were marked in.

fs_container—>other_ref = __cptr(lcd_rl ());
fs_container—>fs.id = lcd_r3();
fs_container—>fs.size = lcd_r4 ();

After the parameters are unmarshaled, the real function
call is made.

register_fs_ret = register_fs(&fs_container—>fs);

All parameters marked out are marshaled to be sent back
to the caller. In this case fs_container’s only field marked out
was size and it is marshaled here. In addition to marshaling
the parameter values, because the parameter fs was marked
alloc(callee) the callee allocated its own container and the
callee’s local reference for this container must be passed back
to the caller. The synchronous reply call is then made.

lecd_set_rl (cptr_val(fs_container—>my._ref));
lcd_set_r3(fs_container—>fs.size);
ret = lecd_sync_reply ();

This is a basic example of what a generated callee
function consists of. In more complicated cases, the callee
function may also allocate function pointer trampolines to
enable cross-domain function pointer calls. The code which
makes this possible will be explained in the next section.

3) Function pointers and trampolines: If any function
pointers are declared in the IDL file, then caller and callee
functions will be generated for them. The function pointer
caller function has the following signature:

return_type name(typel =xparaml

R .
, struct proj—name._container xcont
, struct cspace *cspace);

The last two arguments are extra arguments which must be
passed to the callee so the function pointer can be located
and called. There is an additional piece of code which is
generated for each function pointer called a “trampoline”
function. This trampoline function will be installed in place
of the real function pointer on the caller’s side, and will call
the function pointer’s caller function with the extra argu-
ments. The following trampoline function will be generated:

LCD_TRAMPOLINE_DATA(new _file_trampoline);
int
LCD_-TRAMPOLINE_LINKAGE (new _file_trampoline)
name_trampoline(typel =xparaml, ...)

int (xvolatile namep)(typel=x*

,struct name_struct_containersx
,struct cspacesx);

struct name_hidden_args xhidden_args;

LCD_TRAMPOLINE PROLOGUE(hidden_args
,name_trampoline);

namep = name;
return namep(paraml

, hidden_args—>name_struct_container
, hidden_args—>cspace);

In order for one domain to use the function pointers
provided by another, the caller must install a pointer to the
trampoline function in place of the real function pointer. The
rest of this section will explain how this is done.

If any of a function’s parameters are structures which
contain function pointers, then special code may be generated
which enables cross-domain function pointer calls. This
involves declaring a “hidden arguments” structure for each
function pointer; the “hidden arguments” structure contains
the extra arguments mentioned previously. Then the trampo-
line function generated for the function pointer is copied onto
the heap, so it can be installed in place of the real function
pointer.

struct name_hidden_args *name_hidden_args
= kzalloc(sizeof (xname_hidden_args)

, GFP_KERNEL) ;

The trampoline code generated for the function pointer is
copied onto the heap and then stored in the hidden arguments
struct. This is so the function pointers trampoline function
can access the extra arguments and call the caller function.

name_hidden_args—>t_handle
= LCD_DUP.TRAMPOLINE (name_trampoline);

In addition to copying and storing the trampoline code into
the hidden arguments structure, the extra arguments fields of
the hidden structure must also be initialized. On line 4 in
the next code excerpt, the hidden argument which stores the
container for the structure that has the real function pointer,
is set. And on line 7, The cspace where the container can be

found is set. And finally, on line 9, the trampoline is installed
in place of the real function pointer.

name_hidden_args—>t_handle —>hidden_args
= name_hidden_args;

name_hidden_args—>name_struct_container
= name._struct_container;

name_hidden_args —>cspace = cspace;

name_struct_container—>name_struct.name
= LCD_HANDLE_TO_TRAMPOLINE (
name_hidden_args—>t_handle);

This code is only necessary for the domain which wishes
to call the function pointer. The domain providing the
function pointer can simply include the generated callee file
like it would with a regularly exported function.

IV. RELATED WORK

Common Object Request Broker Architecture (CORBA)
provides a specification for doing distributed object-oriented
computing. CORBA specifies an Interface Definition (de-
scription) Language to describe object interfaces [9]. Various
mappings, such as CORBA IDL to C++, define how the
IDL is mapped to the target language. THE CORBA IDL
compiler generates client and server glue code, which han-
dles marshaling and cross-network function calls. This IDL
syntax allows a user to describe an Object and the functions
that may be performed on that object.

Other microkernel based projects such as L4Ka::Pistachio
[4] and Barrelfish [2] also use Interface Descrip-
tion Languages to generate communication glue code.
L4Ka::Pistachio has an interface description language, IDL4,
to generate its stub code. IDL4 is written in C++ and
supports mappings from the CORBA IDL and DCE IDL
[5] to the C language for the Pistachio, Hazelnut, and Fiasco
L4 microkernels.

Barrelfish is a multikernel, where multiple OS instances
exist in separate domains and communicate using explicit
messages [2]. Flounder [1] is the Interface Description Lan-
guage for the Barrelfish project.

Also created in association with the Barrelfish project is
Filet-o-Fish (FoF), a tool for developing Domain Specific
Languages (DSLs) for operating system development [3].
FoF is an “embedding‘ of C in Haskell. To implement a
DSL using Filet-o-Fish, the developer implements a parser,
and a backend which takes the AST produced by the parser,
and produces FoF code by composing the FoF constructs.
The FoF compiler then translates these constructs into C
code. The FoF paper mentions many difficulties that I myself
ran into, and I wish I had known about Filet-o-Fish when
I began this project. The most difficult part of this project
was translating the AST produced by the parser into a C
AST. Having a higher-order combinatorial representation of
C constructs likely would have made this project easier to
implement.

Other related work is Google protocol buffers [8] and
Cap’n Proto [7]. Google protocol buffers serializes structured

data so it can be sent across “the wire” and retrieved on the
other end. Using Google protocol buffers involves writing a
.proto file which contains a description of the data structure
the user wishes to serialize. The compiler then creates a

. class that implements automatic encoding and decoding of

the data; Google protocol buffers does not support C. This
can be compared to how this project chose to “serialize” C
structures by describing them using projections and rather
than serializing them in the form of a string, marshals each
field individually and reconstructs the structure on the other
side.

Cap’n Proto is another serialization project which was
spun off from Google protocol buffers. Unlike Google pro-
tocol buffers, there is an implementation for serialization in
C. Maybe this could be used as an alternative to the current
system of marshaling data.

V. FUTURE WORK

Useful future work on this project could be to develop
a tool which uses static analysis to automatically generate
projection definitions. This could be very useful because it
is likely a great burden on the user to determine all of the
necessary projections for anything but a very simple inter-
face. Another piece of work, which is more necessary than
automatically generating projections, is adding a sequence
type to the IDL. It is a major limitation that lists are not
currently supported and would be important to add in the
future.

A sequence type could represent lists of an unknown
length, as well as of a known length. Alternatively two
different types could be created, one for lists of a known
length and another for lists of an unknown length. Adding
these two types would involve create new classes, as well
as adding support to the parser. In the case of a sequence
type for lists of unknown length, support would need to be
added to determine how to marshal a sequence at runtime.
This is because the current system of assigning registers for
marshaling at compile time, would not work for lists of an
unknown length.

There are other C types which are not supported, such as
unions and enums. Support for these could also be added to
the IDL.

VI. CONCLUSION

In order to decompose the Linux kernel, extra code must
be written that enables function calls, which previously
occured in a shared address space, to occur across address
spaces. This code must be be written for every function
we wish to call across address spaces, and it is highly
similar for each function. For this project, we created an IDL
compiler which automatically generates this code. In addition
to allowing users to describe data structures and functions
as previous IDLs have, users can also associate to pieces of
data across two separate address spaces. This is implemented
using containers, which can relate two pieces of data. Using
containers, the same pieces of data can be referred to across

many remote function calls, in some cases reduing the need
to copy entire data structures between address spaces.

Currently the code which generates caller and callee glue
code for functions is complete. As well as the code which
enables making remote function pointer calls. The code
which initializes modules is partially complete and I am in
the process of finishing this code.

VII. ACKNOWLEDGMENT

I would like to thank John Regehr, Matthew Flatt, and Matt
Might for agreeing to be on my Master’s project committee.
I would also like to thank Anton Burtsev for allowing me to
work on this project. The research presented in this report
was supported by the National Science Foundation under the
Grants No. 1319076 and No. 1527526.

REFERENCES

[1] BAUMANN, A. Inter-dispatcher communication in barrelfish. Tech.
rep., Barrelfish Technical Note, 2010.

[2] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS,
R., PETER, S., ROSCOE, T., SCHUPBACH, A., AND SINGHANIA, A.
The multikernel: a new os architecture for scalable multicore systems.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (2009), ACM, pp. 29—44.

[3] DAGAND, P.-E., BAUMANN, A., AND ROSCOE, T. Filet-o-fish: prac-
tical and dependable domain-specific languages for os development.
ACM SIGOPS Operating Systems Review 43, 4 (2010), 35-39.

[4] GRrRoupr, S. A. L4ka::pistachio microkernel.

[5] Group, T. O. Cde 1.1: Remote procedure call, 1997.

[6] JACOBSEN, C., KHOLE, M., SPALL, S., BAUER, S., AND BURTSEYV,
A. Lightweight capability domains: towards decomposing the linux
kernel. ACM SIGOPS Operating Systems Review 49, 2 (2016), 44-50.

[7] VARDA, K. Cap’n proto.

[8] VARDA, K. Protocol buffers: Googles data interchange format. Google
Open Source Blog, Available at least as early as Jul (2008).

[9]1 YANG, Z., AND DUDDY, K. Distributed object computing with corba.
Tech. rep., DSTC Technical Report 23, 1995.

APPENDIX

This appendix will detail the implementation details of the
compiler. Writing this compiler was a learning process for
me and in some situations the best design choices may not
have been made. I will point out potential problems with
these choices and suggest alternatives for them. I will also
explain ways to extend the compiler with new features, such
as dispatch loop generation. I will first note that C++ was
likely not the best choice for this project, a better choice
would have been Racket. Doing code generation in Racket
is likely much easier than doing code generation in C++.

A. Front end

The compiler uses a parser generator; likely any parser
generator could be used. The parser generator requires a
grammar file, which is called lcd_idl.peg and is in the parser
directory. This file describes the syntax of the IDL and how
it is parsed into a tree.

I will now describe the front end tree an IDL file is
parsed into. Definitions for these classes are in lcd_ast.h in
the include directory and implementation for these classes
is found in the ast directory. There are 6 important classes:
Type class, Variable class, Rpc class, Module class, Project
class, and LexicalScope.

A Project is made up of multiple modules as well as
a top level scope which contains type definitions used by
every module. At this point, development has focused solely
on individual modules and not how multiple modules may
interact. The implementation of the Project class can be
found in Ilcd_ast.cpp in the ast directory.

Each module defined in an IDL file is parsed into a new
Module instance. A Module consists of: Rpc definitions, a
LexicalScope, channels, and cspaces. The implementation of
the Module class is found in lcd_ast.cpp.

The LexicalScope class describes a scope for type defini-
tions, variables, and identifiers. A new scope is introduced at
these times during parsing: when a new interface is parsed, a
projection constructor is parsed, an unnamed scope is parsed,
or an rpc is parsed. A new scope is introduced at each of
these times because new types may be introduced or new
variables are introduced. The scope keeps track of variables
for two reasons: first, so channel variables can be looked up
in the scope and used to initialize projection constructors;
and second, to keep track of which identifiers have been
used.

Each rpc defined in an IDL file is parsed into a new
Rpc instance. In addition, an Rpc will be created for each
function pointer found in the IDL file. The rpc represents
a function being provided from one domain to others. The
implementation for the Rpc class can also be found in the
led_ast.cpp file.

There is an abstract class Variable which is inherited from
to implement the various types of variables. The various
variables are: GlobalVariable, Parameter, ReturnVariable,
and ProjectionField. 1 think having a variable, a global
variable, and a return variable class may be unnecessary and
these could be collapsed into just a single class. But, as it
is currently I will talk about the different uses for each of
these variable types.

o GlobalVariable is used for the channels specified by a
module in the IDL file. These channels are declared as
global variables in the output C files. GlobalVariables
are not marshaled between domains and therefore can-
not be set as in, out, alloc, dealloc, or bind as other
variables can be.

e Parameter represents an rpc’s parameter. Parameters
can be marked as in, out, alloc, dealloc, and bind, which
tell the compiler how to generate code for the parameter.

o ReturnVariable represents the return value of an rpc.
The return value of an rpc is represented as a variable
so it can be assigned a name and easily declared in the
generated glue code for the function.

e ProjectionField is a field in a projection. The reason
this is treated as a variable is because I wasn’t sure
what structure fields are usually considered to be. And
it fit nicely in with generating the C AST.

The goal is to support C types such as Integers and
structures. The organization of the supported types is as
follows. There is an abstract Type class and all types inherit
from this class. The classes, which inherit from Type are:
InitializeType, UnresolvedType, Function, Typedef, Channel,

VoidType, IntegerType, ProjectionType, and ProjectionCon-
structorType. The two most unusual of these classes is
InitializeType and UnresolvedType; these do not represent
types as much as future computations to calculate a type. In
the beginning, Pointer was treated as a type just as integer
is. I changed this to make pointer a property of a variable
rather than a type, because it fit in better with the C tree
and generating C code. I am not sure if this was the correct
approach, however it fits in well with the implementation.

The UnresolvedType class is used as a placeholder
when the parser encounters a type whose definition has
not been resolved yet. After parsing is complete, the
unresolved type will resolve to the real type if possible.
If the type cannot be resolved after parsing it is an error.
The InitializeType class is used to initialize instances of
ProjectionConstructorType after parsing is complete. A
usage of a projection constructor cannot be initialized
until after parsing because a field of the projection
may be unresolved, and before a projection constructor
can be initialized the type must be copied. In order to
initialize projection constructor types after parsing, it
is necessary to save the information of what we want
to initialize the ProjectionConstructorType with. The
IDL was not originally intended to support this sort of
variable passing. As a result, I am not sure if this was
the best way to implement this feature.

The IntegerType class represents the C integer data
types: char, short, int, long, and long long. Rather than
creating a different class for each integer data type, I
decided to create one class and use an enum field to
distinguishes them. I do not know if this is better or
worse than each integer type having its own class.
The Typedef class represents a C typedef of the form:

typedef unsigned int size_t;

Adding a struct typedef form would be as easy as adding
the form to the parser. The typedef class is merely a
wrapper around another type.

The Function class represents the type of a C function.
An instance of this class is created each time a function
pointer is encountered by the parser, either as an rpc
parameter or as a projection field. After parsing, all
functions are converted into rpcs; this is to re-use
the existing code which generates caller and callee
functions for rpcs.

The VoidType class represents the void type in C.

The Channel class represents the LCD notion of a
channel, although I am not sure this type is actually
used. I believe every time a channel is created in the
parser, a cptr_t projection is returned rather than an
instance of the Channel class.

The ProjectionType class represent the first of two
notions of a projection. A projection describes a C struc-
ture and the relevant fields it is necessary to marshal.
A projection type also specifies any channels that it
will allocate. These channels may be used for making

function pointer calls, or may be passed to a projection
constructor type.

The ProjectionConstructorType class represents the
second notion of a projection; a projection that has
parameters that must be initialized when it is used.
When a projection constructor type is referred to in an
IDL file, arguments must be provided. These parameters
are only allowed to be channels, and these channels are
used for the same reason as in a regular projection type.
After parsing, the projection constructor’s parameters
are initialized with the arguments provided from a usage
of a projection constructor type.

projection pl xfieldl (chnl, chn2);

Whenever a usage of a projection constructor type is
encountered by the parser, the type is wrapped in an Ini-
tializeType and the arguments are given to the InitializeType.
After parsing, the projection constructor will be initialized
with the arguments.

One glaring omission is lists. Although, for instance, char*
is supported, it is assumed that it is a pointer to a single char
not a sequence of chars. This is clearly a major limitation
and can be remedied with the addition of a sequence type.
This type could represent lists of unknown length. Because
a list’s length may not be known at compile time, additional
support will be required in the form of a runtime function
for marshaling sequences.

B. Tree transformations

After parsing, additional transformations are made to the
tree produced by the parser. Each transformation begins
at the project level, and is propagated to every module in
the project. Implementing a new transformation is done by
adding a new function to the Project and Module classes;
additional functions are added depending on the transforma-
tion. Every transformation is called from the main function.
Here the current transformations are detailed in the order
which they occur.

o trampoline structure creation: For each function
pointer encountered, a hidden arguments structure is
created. This structure contains extra arguments to be
passed when the function pointer is called. At the end
of this transformation a projection for each function
will have been created and inserted into the appropriate
scope.

o function pointer to rpc: For each function pointer
encountered a new rpc is created. When the glue code is
being generated for each rpc, it is checked whether it is
a regular rpc or an rpc created from a function pointer.
In the case it is an rpc created from a function pointer,
slightly different code will be produced.

o function tag generation: Every rpc is assigned a unique
tag, an integer, which is used to identify which rpc is
being called.

« resolve unresolved types: Each usage of a type which
is unresolved after parsing is now resolved. If the type

still cannot be resolved then it is an error. If the type
is successfully resolved it is installed in place of the
unresolved type. In some cases it may not matter which
order these transformations occur in, however, it does
matter that this transformation occurs before the type
copying transformation.

o creation of container variables: A container variable
is created for each variable that requires a container.
Currently a variable requires a container if it is: a
pointer, a projection variable, and is marked bind or
alloc in the IDL.

o type copying: All usages of a type point to the same
type object. This is useful for resolving the unresolved
fields of a projection, because, the fields only need to
be resolved once, rather than for each usage of the pro-
jection. However, this also causes problems because the
fields of a projection have an accessor field, which for
different instances of the type should refer to different
variables. In order for these accessors to be set, the
projection type must be copied. This choice to allow
projection fields to have accessors is very useful when
generating the C code that accesses variables and fields.
The copying of types is also required before initializing
usages of projection constructor types.

« initialize projection constructors: Projection construc-
tor types must be initialized with channels. The type
copying phase must occur before this phase so each
usage of a projection constructor can be initialized with
different channels. To initialize a projection constructor
type, the channels saved in the InitializeType are passed
to the projection.

e set accessors: Variables have an accessor field, which
points to the variable that “accesses” it. This is mostly
useful for projection fields. The accessors for every
variable are set so when the C code is generated,
the access of each variable is generated properly. This
must occur after copying of types happens, because this
modifies projection fields.

o prepare for marshaling: Each parameter and return
value of each rpc is assigned a register. Currently, it is
possible to assign registers at compile time because lists
are not supported. If a sequence type is added to support
lists of unknown length, variables of type sequence
could not be assigned registers at compile time. A
sequence type would require registers for marshaling
to be determined at runtime.

These are the current transformations that occur after parsing.
It is easier to reason about the small changes each individual
pass makes rather than worrying about all of them combined.

C. Backend

After the IDL file is parsed into the intermediate repre-
sentation and the tree is transformed, the resulting tree is
passed to the code which generates the glue code. The result
is C code in the form of a C AST. The definitions for this
C AST can be found in include/ccst.h. Each of these classes
has a write function which takes a file and writes itself to

that file. The constructors and write functions for each class
in include/ccst.h can be found in ast/ccst.cpp.

In general, there are two files we would like to generate:
a caller glue code file, and a callee glue code file. Caller and
callee are referred to, respectively, as client and server in the
compiler. All of the code which generates the C AST is in
the code_gen directory. First I will explain the generation of
the client side glue code. Then I will explain the generation
of the server side glue code.

The code which does the majority of client file gen-
eration is in client.cpp in code_gen. A single client file
is generated for a module. There is a top level function
generate_client_source which accepts a Module and returns
the C AST for the file. Here I will describe the important
parts of the client glue code file.

o Declare the channels specified as a part of the module
in the IDL file. These channels are declared as global
variables and will be initialized by the module initial-
ization function.

« Declare the cspaces associated with each channel spec-
ified as a part of the module in the IDL file. These
cspaces are declared as global variables and will be
initialized by the module initialization function.

e Define a module initialization function, which initializes
the channels and cspaces declared as global variables.

o Define a module exit function, which frees every cspace
allocated in the initialization function and performs
other exit duties.

e Define any structures which were created by the com-
piler and used in the caller glue code.

o For each regular rpc defined in the IDL file, generate
a caller glue code function. Caller glue code functions
will be explained in more detail later.

o For each rpc defined by a function pointer, generate a
callee glue code function. This is because it is currently
assumed that only the caller exports function pointers to
the callee. This clearly will not always be true, and the
caller and callee glue code for function pointers could
easily be put in its own file.

The generation of server files is mainly done in server.cpp
in code_gen. Just as a single client file is generated for a
module, so is a single server file. There is a top level function
generate_server_source which accepts a Module and returns
the C AST for the file. Here I will describe the important
parts of the server glue code file.

o Declare the channels specified as a part of the module
in the IDL file. These channels are declared as global
variables and will be initialized by the module initial-
ization function.

o Declare the cspaces associated with each channel spec-
ified as a part of the module in the IDL file. These
cspaces are declared as global variables and will be
initialized by the module initialization function.

¢ Define a module initialization function, which initializes
the channels and cspaces declared as global variables.
This function is slightly different than the caller side

initialization function; it also inserts the channels into a
dispatch loop so it can listen for function calls on these
channels.

e Define a module exit function, which deallocates all
of the cspaces the initialization function allocated, and
removes the channels from the dispatch loop.

o Define a callee glue code function for each regularly
defined rpc. The contents of the callee side glue code
functions will be explained in depth later.

e Define a caller glue code function for each rpc defined
by a function pointer. As stated previously, it is currently
assumed that only the caller exports function pointers
to the callee. These function pointer caller glue code
functions could be placed in their own file, so they could
be used by whomever is calling them.

Most of the complexity lies in the code that generates the
caller, glue code function body. This code is mainly in the
caller_body function in client.cpp. This function returns a
compound statement, which is a combination of declarations
and statements, where all declarations occur before state-
ments. Here I will explain the pieces of a caller glue code
function.

o For each parameter which has a container, declare the

container. Then allocate each container if it does not
already exist, otherwise access the existing container. If
the container needs to be inserted into a cspace, this
is how the correct cspace is determined. If this is the
caller function for a regular rpc, then choose the cspace
associated with the first channel specified for the module
the rpc is in. If this is an rpc defined by a function
pointer, use the cspace associated with the first channel
specified by its container. If its container doesn’t specify
any channels, use the same cspace which would be used
for a regular rpc.

For each parameter which is a projection and specified
in the IDL that it wants to allocate its own channels,
allocate all of the channels it specified. All allocated
channels are stored in the projection variable’s corre-
sponding container.

For each parameter which is a projection constructor
and specified in the IDL that it must be initialized with
channels, initialize each channel. As with the allocated
channels, these channels are also stored in the projection
variable’s corresponding container.

After everything that needs to be allocated and ini-
tialized is, we marshal all of the parameters which
are marked “in” and their corresponding container ref-
erences, if they have a container. If the rpc we are
generating a caller body for was defined by a function
pointer, then it is also necessary to marshal the function
pointer’s hidden arguments. The rpc’s unique tag is also
marshaled, always in register 0, so the function being
called an be identified by the callee.

Now the remote call is made using the first channel
specified by the module, or if this rpc was defined by
a function pointer, using the first channel specified by

the function pointer’s container. If there is no channel
specified by the container, the function pointer call is
made using the same channel a regular rpc would be
called on. This is a synchronous call.

When the IDC call returns, all of the parameter and
container fields marked “out” are saved. If the return
type of the function is not void, a variable is declared
and allocated for the return value, and is then populated.
If this is an rpc defined from a function pointer, then the
function pointer’s hidden arguments which are marked
“out” are also unmarshaled.

At this point, before we return to the caller, if any
parameters are marked dealloc, we deallocate them.
Only parameter’s which have a container can be deallo-
cated. Depending on whether the parameter is marked
dealloc(caller) or dealloc(callee) determines how com-
plicated deallocating is. For instance, if the parameter
is marked dealloc(callee) then the caller glue code will
merely remove the container from the cspace. If the
parameter is marked dealloc(caller) then the container
is removed from the cspace, and all channels associated
with the container, which are marked dealloc(caller),
are deleted. If the projection we are deallocating had
function pointers in it, we also deallocating the hidden

arguments and trampoline code for these function point-
ers. Finally, the container itself is freed.
o Finally, we are ready to return to the caller.

Just as when generating client side glue code, most of the
complexity of generating a server side glue code lies in the
code that generates the server glue code function body. The
function which generates the rpc callee function bodies is
callee_body in server.cpp. This function returns a compound
statement, which is a combination of declarations and state-
ments, where all declarations occur before statements. Here
I will explain the pieces of a callee glue code function.

o First, we declare each parameter and parameter’s con-
tainer, if it has one. If the rpc we are generating callee
glue code for was defined by a function pointer, then
we also need to declare the hidden arguments.

o For each parameter’s container, either allocate the con-
tainer, or lookup the existing container in the cspace.
Container’s are looked up using the container reference
the callee received from the caller. If this rpc was
defined by a function pointer, then the hidden arguments
will also need to be allocated. Regular parameters, with
no containers will also need to be allocated.

o For each parameter which is a projection with function
pointers, we perform a setup so the callee, can call these
function pointers. As stated previously it is assumed
that the caller exports function pointers to the callee.
This setup involves installing a pointer to the function
pointer’s “trampoline” function in place of a pointer to
the real function. To do this, first a hidden arguments
structure is declared for each function pointer which
was marked alloc(callee) in the IDL file. Then, each
of these hidden arguments structures is allocated. Then

the trampoline code for the function pointer is copied
to the heap and installed in the hidden arguments
structure. Then various field linking is done; this field
linking can be more easily understood from looking at
the produced code. The code which allocates hidden
arguments structures can be found in trampolines.cpp
in the code_gen directory.

After all of the parameters, containers, and hidden argu-
ment structures have been declared and allocated, then
the parameters which were marked in are unmarshaled.
At this point, the container references have already been
unmarshaled, because they may have been required to
lookup a container in the cspace.

Now, the real function call is made. If the rpc was
function pointer defined, then the call is made by
accessing the function pointer stored in the hidden
argument container of the projection which contained
the function pointer.

After the function call returns is when any parameters
which were marked dealloc are deallocated. Dealloca-
tion on the server side follows the same process as on
the caller side, except the simple case of only removing
a container from the cspace occurs if the parameter was
marked dealloc(caller) and the complex deallocation
case occurs if the parameter was marked dealloc(callee).
After the function call returns, all parameters and con-
tainer references marked out are marshaled back to the
caller, as well as any non-void return value.

The IDC reply call is then made.

	Introduction
	Syntax
	Keywords
	Simple types
	Structure data types
	Functions
	Function pointers
	Module syntax

	Generated Code
	Modules
	Channels and Structures
	Containers
	Functions
	Caller function
	Callee function
	Function pointers and trampolines

	Related Work
	Future Work
	Conclusion
	Acknowledgment
	References
	Appendix
	Front end
	Tree transformations
	Backend

