
Extensions to Barrelfish Asynchronous C

Michael Quigley
michaelforrquigley@gmail.com

School of Computing, University of Utah

October 27, 2016

1 Abstract

The intent of the Microsoft Barrelfish Asyn-
chronous C (AC) project was to provide fast
and lightweight asynchronous functionality to
the C language. We have added some useful
extensions and bug fixes for the AC project.
The goal is to apply these extensions to fa-
cilitate decomposition of a custom capability-
based GNU/Linux kernel. We measure per-
formance to ensure consistency with the orig-
inal Barrelfish AC numbers as well as to
compare asynchronous inter-process commu-
nication (IPC), which makes use of these
extensions, with synchronous IPC. We also
demonstrate some extensions which improve
lightweight context switching performance.

2 Introduction

The goal of the Barrelfish AC project [1] was to
add cooperative, asynchronous execution function-
ality to the Microsoft Barrelfish OS. The approach
that the Barrelfish researchers took allowed for light-
weight context switching between atomic work ele-
ments (AWEs). This paper discusses work done using
the macro based implementation of AC.

Shown in Figure 1 is an example of an AC program.
There are three key parts of this example:

1. DO FINISH macro - All ASYNC macros must
exist inside a DO FINISH block.

2. ASYNC macro - Specifies that code contained
within this macro may block execution.

3. THCYield - Function to be called if execution
blocks within an ASYNC invocation.

static void do_something()

{

THCYield();

print("Got here too.\n");

}

static void do_something_else()

{

print("Got here.\n");

}

...

DO_FINISH(

{

ASYNC(do_something(););

ASYNC(do_something_else(););

});

Figure 1: Simple Example

The output of the above example is:

Got here.

Got here too.

In this program, the function ‘do something’ in the
first block will yield to another block of execution be-
fore anything is printed out from the current block of

1



execution. After this, execution will go into the sec-
ond ASYNC block and execute ‘do something else’
which will invoke a print statement. After this, the
end of the DO FINISH block is reached, but since
there is pending work, it will be executed and the
print statement that was in the first ASYNC block
will be invoked.

We have added extensions that are targeted toward
an asynchronous IPC implementation. These exten-
sions are discussed in section 5 and performance of
the extensions is discussed in section 6.

3 Background

3.1 AWEs

AWEs represent an atomic block of work. They are
responsible for saving the context of a particular exe-
cution path. The AWE struct stores the %esp, %ebp,
and %eip needed for keeping track of context. It also
stores the current finish block, the current per-thread
state struct, its stack, and pointers to two other AWE
structs that can be set to allow for insertion into a
linked list.

3.2 DO FINISH Macro

All invocations of ASYNC must happen directly in
a DO FINISH block or from code that is within a
DO FINISH block. At a high level, the DO FINISH
block just represents a block of code that contains
asynchronous behavior. This block makes the guar-
antee that all asynchronous work will be finished by
the end of the block. In other words, code execution
will not continue past the DO FINISH block until all
pending work that was started in the DO FINISH
block is finished. The eager and lazy configura-
tion have some minor implementation differences, but
conceptually they are the same.

The DO FINISH block starts by calling
thc startfinishblock and passes in a reference

to a new stack allocated finish block struct as a
parameter. The finish block keeps track of infor-
mation such as how many pending AWEs there are
for a specific DO FINISH. The execution will keep

track of a linked list of finish blocks. This linked
list encodes the nesting structure of invocations of
DO FINISH. An example of this is shown in Figure
2. In this example, the first DO FINISH creates
a finish block and adds it to the linked list at the
bottom of the figure. Both the start node and
end node for ‘finish block 1’ will have a reference to
the finish block structure for ‘finish block 1’. The
second DO FINISH will add two more nodes to
the linked list for ‘finish block 2’. These nodes are
placed between the nodes for ‘finish block 1’ since
the second DO FINISH is nested inside the first.

Once thc startfinishblock has finished adding
nodes to the linked list of finish blocks, the code inside
the DO FINISH is executed, and thc endfinishblock
is called. The function thc endfinishblock will check
to see if there are any pending AWEs for the cur-
rent finish block. If there are, it will initialize the
finish awe as the continuation of thc endfinishblock,
and call into the dispatch loop to dispatch pend-
ing work. Once execution reaches thc endfinishblock
again via the finish awe, it is assumed that there is no
pending work for the current finish block, so the func-
tion will then remove the current finish block from the
linked list.

The only difference between the eager and lazy
configurations are, the lazy configuration must keep
track of the stack pointer that is used upon invoca-
tion of the DO FINISH block. This is because in the
eager configuration, when thc endasync is called at
the end of an ASYNC, execution can always free an
AWE’s stack; whereas in the lazy configuration, ex-
ecution can only free the stack if it ensures ASYNC
is executing on a different stack than the enclosing
DO FINISH is using.

3.3 ASYNC Macro

There are two configurations of the ASYNC macro.
There are advantages and drawbacks to either ap-
proach. Figure 3 shows the required stack allocations
for both approaches.

2



Figure 2: Finish Block Nesting Structure

Figure 3: ASYNC Stack Allocations

3



3.3.1 Eager Configuration

The eager configuration involves two stack allocations
for AWEs in the example in Figure 3. When execu-
tion arrives at a usage of ASYNC, a new stack is
allocated for the code placed inside of the ASYNC
macro. An AWE for the continuation of the code
using the main stack is placed on the main stack.
This continuation represents the code that would
be executed after the ASYNC macro. The AWE
struct (‘main AWE’ in this example) contains the
stack pointer, frame pointer, and instruction pointer
needed to continue execution after the first ASYNC.
This AWE is then added to the front of the dispatch
queue so that it can be executed later. This first
ASYNC then executes the code placed inside of it
on the newly allocated stack inside of a nested func-
tion. Since the function ‘do something’ blocks (calls
THCYield), another AWE is put on AWE one’s stack
that represents AWE one. AWE one is then added to
the back of the dispatch queue and the thc dispatch
loop is entered. This loop will take ‘main AWE’ off
of the dispatch queue and execute it. The ‘main
AWE’ will continue to run on the main stack until
the second ASYNC at which point a new stack for
the second ASYNC will be created and a new ‘main
AWE’ will be stored on the main stack and added
to the front of the dispatch queue. The code for
the second ASYNC will execute until the end with-
out blocking since there is no THCYield in the func-
tion ‘do something else’. At the end of this ASYNC,
the function ‘thc endasync’ is called which will free
the stack for the second ASYNC, and call into the
dispatch loop again. At this point, ‘main AWE’
will be taken off of the dispatch queue. The AWE
‘main AWE’ will execute from the end of the second
ASYNC to the end of the DO FINISH. At the end of
the DO FINISH, thc endfinishblock is called to see if
there are any pending AWEs on the dispatch queue.
If there are any pending AWEs, thc endfinishblock
will create another AWE (finish awe) to save the cur-
rent context. At this point, ‘AWE 1’ is the only AWE
left in the queue, so this gets executed. Once it fin-
ishes, it calls thc endasync which executes the fin-
ish awe since there are no more pending AWEs.

One of the main advantages to the eager approach

is that if the designer knows that the code will always
block, or almost always block, the eager implemen-
tation runs more quickly. This is because in this sit-
uation, a stack allocation happens in both the eager
and lazy configurations, but stack walking does not
need to occur in the eager configuration. The main
disadvantage of the eager configuration is that in a
situation where a program using AC usually doesn’t
block, time would be wasted allocating unnecessary
stacks.

3.3.2 Lazy Configuration

The lazy configuration involves one stack allocation
for AWEs in the example in Figure 3. Some of the
details about AWEs will be skipped over since much
of it is the same as what is described in the eager
configuration. The notable difference with the lazy
configuration is that a new stack is allocated only
when an AWE blocks execution.

When execution arrives at an ASYNC, a special
marker is put in place of the return address to indi-
cate that the current AWE is lazily allocated. In
addition to the special marker, the status of this
AWE is set to LAZY AWE. The code placed in-
side the ASYNC is executed in a nested function.
If an AWE blocks, the function ‘check for lazy awe’
is called which walks up the stack looking for this
marker to determine if a stack needs to be allocated.
If it finds this marker in place of the return address, a
stack is allocated for the continuation of the code that
was originally using the main stack. In this exam-
ple, the AWE representing this continuation is then
scheduled after being popped off the dispatch queue.
When execution arrives at the second ASYNC, the
marker is once again put in place of the return ad-
dress. Since this ASYNC does not block, no more
stacks are allocated and the pending AWEs are exe-
cuted after being taken off of the dispatch queue just
like in the eager configuration.

The main advantage of the lazy configuration is,
if an ASYNC block does not call THCYield, then
no additional stack needs to be allocated. If all the
calls to ASYNC never block, then there will only ever
be one stack that is used. The disadvantage is that
any time ASYNC does block, execution must walk up

4



the stack to decide if a stack allocation is necessary.
Execution walking up the stack incurs a little bit of
additional overhead.

4 Yielding

At a high level, the purpose of yielding is for an
AWE to save its context, suspend its execution and
pass execution to another AWE. When an AWE in-
vokes a yield function, this is referred to as blocking.
There are two types of yields supported by Barrelfish.
They are THCYield and THCYieldTo. The function
THCYield will suspend the current AWE and exe-
cute other pending work if available. The function
THCYieldTo will yield to a specific AWE. Both the
eager and lazy configuration of the yield functions
will put an AWE struct on the current stack that
represents the continuation of the current AWE. Af-
ter that, there are some minor differences with how
the yield functions work for the two configurations.

4.1 Eager Configuration

4.1.1 THCYield

Inside of THCYield, the macro ‘CALL CONT’
is passed a function pointer to the function
‘thc yield with cont’. This macro will put an AWE
on the stack that represents the current continuation
(what happens after the code currently executing),
then call into an assembly function (‘thc callcont’)
to initialize this AWE. This function will set the
AWE’s %eip to the return address of THCYield, the
AWE’s %esp to the current %esp + 8, and the AWE’s
%ebp to the current %ebp. This function then calls
‘thc callcont c’ which will finish the initialization of
this AWE by initializing its current finish block and
per thread state struct. Since the currently executing
context already has its own stack, this is all the ini-
tialization that needs to be done for the current AWE.
This function then invokes the function pointer that
was passed to it (‘thc yield with cont’ in this case).
The function ‘thc yield with cont’ will call ‘THC-
ScheduleBack’ and pass in the AWE used for the cur-
rent continuation. The function ‘THCScheduleBack’
will add this AWE to the tail of the dispatch queue.

After this, ‘thc dispatch’ is called which directly exe-
cutes an AWE that represents the ‘thc dispatch loop’
function. The function ‘thc dispatch loop’ will pop
an AWE off of the head of the dispatch queue and
execute it directly.

4.1.2 THCYieldTo

This process is very similar to THCYield. The
macro ‘CALL CONT’ is used here as well
except the function ‘thc yieldto with cont’ is
used instead of ‘thc yield with cont’. The
function ‘thc yieldto with cont’ is similar to
’thc yield with cont’, but instead of calling
‘thc dispatch’, it directly invokes the AWE that
is passed in as an argument. All the initialization for
the current AWE is the same between THCYield and
THCYieldTo. Since this function avoids using the
dispatch queue to find work, it does not call into the
dispatch loop, although it does need to remove the
yielded to AWE from the dispatch queue. There was
a bug in the original Barrelfish AC implementation
where this AWE was not being removed from the
dispatch queue. This would result in page faults
since after the AWE would execute and clean up its
stack, it would still be in the dispatch queue. The
dispatch loop would eventually pop it off the queue
and try to execute it with an invalid stack.

4.2 Lazy Configuration

The lazy configuration only has a few small dif-
ferences from the eager configuration for both
THCYield and THCYield to. The main dif-
ference with the lazy configuration is that it
must perform the walk up the stack to see if
there is an AWE that needs a stack allocated
for it. This check is performed inside of the
function ‘check for lazy awe’ which is called from
the function ‘thc yield with cont’ for THCYield or
‘thc yieldto with cont’ for THCYieldTo. This func-
tion is passed in the AWE’s %ebp (this was just set
from ‘CALL CONT LAZY’). At this point, it will
use the current %ebp it has to get the previous %ebp
value from the stack. It will loop until either an old
%ebp value, or the return address that was placed on

5



the stack is null. If it reaches this point, it is assumed
that the code is not executing inside of another AWE.
There is however an issue with this assumption in
the Linux kernel (discussed in 5.5). While the stack
walking is happening, if an old return address value
equals a special marker, then execution knows there
is a lazy AWE just above this location on the stack.
If this function discovers a lazy AWE on the stack,
it will call ‘init lazy awe’ to see if the status of the
AWE is LAZY AWE. If the status is LAZY AWE,
execution will allocate a stack for this AWE, and set
its status to ALLOCATED LAZY STACK.

5 Extensions

Extensions to the Asynchronous C module primarily
focus on making asynchronous message passing be-
tween isolated domains easier to manage.

5.1 AWE-Mapper

The AWE-mapper is responsible for associating an
AWE with an id number. The mappings are stored
using an awe table structure. Each per-thread-state
structure has its own awe table for storing its own
AWE mappings. The AWE-mapper is initialized
with the function ‘awe mapper init’ and uninitialized
with the function ‘awe mapper uninit’. The function
‘awe mapper create id’ is called to get an id num-
ber that is unique in the current thread. The func-
tion ‘awe mapper remove id’ marks a particular id
as available. The function ‘awe mapper set id’ as-
sociates a particular id with an AWE pointer. The
function ‘awe mapper get awe ptr’ returns the AWE
pointer for a particular id.

Internally, the AWE-mapper is just an array.
When a new id is requested, this is simply an in-
dex into the array. This index is found by starting
at the index number directly after the last returned
index number, and performing a linear scan until an
available index number is found. This scan may wrap
around if the end of the array is reached.

5.2 Updated Yields

The AC code initially came with two types of yields.
The first one (THCYield) would just yield to any
available work. The second one (THCYieldTo) would
take as input a particular AWE to execute. Three
new yield types were added to facilitate asynchronous
message passing.

5.2.1 THCYieldAndSave

This function is the same as THCYield except that
it associates the currently executing AWE with the
provided id number. The id number is assumed to
have been allocated using awe mapper create id.

5.2.2 THCYieldToId

This function yields to the AWE corresponding to the
provided id number.

5.2.3 THCYieldToIdAndSave

This function takes in an id number to associate with
the currently executing AWE as well as yielding to an
AWE that corresponds to another provided id num-
ber.

In addition to these three types of yields, code was
added to remove a specific AWE from the dispatch
queue. The new THCYieldTo* functions and the
original THCYieldTo function make use of this code.
As mentioned in section 4.1.2, without this code, re-
sources in the AWEs would be cleaned up, but the
AWE pointers would still be in the dispatch queue
causing page faults later on.

5.2.4 No Dispatch Yields

Yield functions that avoid using the dispatch loop
have been created that are similar to the above three
yield functions. The functions are ‘THCYieldAnd-
Save NoDispatch’, ‘THCYieldToId NoDispatch’, and
‘THCYieldToIdAndSave NoDispatch’. These func-
tions work the same way as the above three functions
except they assume all AWEs they deal with (both
callee and caller AWE) are not and should not be in
the dispatch queue. This means that these functions

6



do not schedule AWEs back into the dispatch queue.
This also means they do not have to be removed from
the dispatch queue. These functions were made to
improve performance in specific situations where a
dispatch queue isn’t needed. There is an example of
the use of these functions in section 6.2.

5.3 IPC Dispatch Loop

The dispatch loop discussed in this section is not the
dispatch loop that is currently in the AC code. In-
stead, this is a higher level loop designed to process
messages and asynchronously dispatch functions. A
general dispatch loop is shown below.

void dispatch(struct thc_channel_group* rx_group)

{

DO_FINISH_(ipc_dispatch,{

struct thc_channel_group_item* item;

struct fipc_message* msg;

while(true)

{

if(!thc_poll_recv_group(rx_group, &item, &cmsg))

{

if(item->dispatch_fn)

{

ASYNC_({

item->dispatch_fn(item->channel, msg);

},ipc_dispatch);

}

}

}

});

}

The dispatch loop is not expected to return and is
intended to be run on a thread that is always wait-
ing to receive messages and dispatch work based on
the messages. If thc poll recv group returns 0, then
a message is made available in ‘msg’ and ‘item’ is set
to the item that the message corresponds to. The
dispatch function that corresponds to ‘item’ is then
called in an ASYNC block so that it handles the mes-
sage and performs more work that may yield.

5.4 Asynchronous IPC Functions

These functions are integrated with a message pass-
ing mechanism that uses a producer-consumer ring

buffer to pass cache-aligned structures from one pro-
cess to another. These cache-aligned structures con-
tain a field to populate with arbitrary message data
as well as a field for flags such as whether the message
is a response or a request type message.

5.4.1 thc ipc recv response

This function should be called within an ASYNC
block to asynchronously receive a message response.
This function polls on an IPC message channel check-
ing for messages that are marked as response mes-
sages. If a message response is available and it is
for the currently executing AWE, then the message
is returned. Execution knows if a message is for the
current AWE by comparing the id field in the message
with the id that was passed into this function. If a
message response is available and has a pending AWE
waiting for it that is not the current AWE, execution
associates the current AWE with an id, and yields
to the AWE corresponding to the message by calling
THCYieldToIdAndSave. Otherwise execution yields
and associates the current execution context with an
id number by calling THCYieldAndSave.

5.4.2 thc ipc poll recv

This function is similar to thc ipc recv response ex-
cept that it will return both request type and re-
sponse type messages and if there is no message
present, it just returns -EWOULDBLOCK instead
of yielding.

5.4.3 thc ipc poll recv group

This function calls thc poll recv on a list of channels.
If a channel has a message available that does not
correspond to a pending AWE, the message and the
channel are returned in out parameters. If there is no
message available in any of the channels, this function
also returns -EWOULDBLOCK.

5.4.4 thc ipc send request

This function takes in a message and a channel vari-
able and marks the message as a request message,
then sends it on the channel. In addition, a new id

7



is obtained using the AWE mapper. This is is stored
in the message as well as returned in the form of an
out parameter.

5.4.5 thc ipc reply

This function takes a channel, an id, and a response
message. It marks the message as a response type,
sets the message’s id to the id provided, and sends
the message on the channel.

5.4.6 thc ipc call

This function takes a request message and a chan-
nel as parameters. It calls thc ipc send request and
passes in the request message and the channel. The
id that is returned by thc ipc send request is passed
into thc ipc recv response. When a response is ob-
tained, the response message is returned as an out
parameter. This function abstracts the logic of man-
aging ids and yielding to specific AWEs away from
the user.

5.5 Modified Return Address in
KThreads

In the lazy configuration of AC when an AWE yields,
it walks up the stack to check for a special marker in
place of the return address to see if the AWE was
lazily created. If it finds this marker, it can create
a new stack for the current AWE. The stack-walking
terminates when either a special marker is found in
place of the return address, or when both the saved
return address and frame pointer that are on the
stack are NULL. In the first case, when executing
in user space, this would indicate the bottom of the
stack. We had an issue with this when using this with
kernel threads. The issue was that, at the bottom of
the kernel thread stack, the old saved frame pointer
and return address are not guaranteed to be NULL.
This usually results in a kernel oops since if the frame
pointer is not NULL, it is dereferenced.

To mitigate this issue, we created a macro
(LCD MAIN) that sets the return address of a func-
tion to NULL for the duration of AC code execution,

and restores the return address once this code has
finished.

6 Experiments

Experiments have been performed to check for both
performance consistency with the Barrelfish AC pa-
per [1], and to test the extensions. All the experi-
ments were performed on a four core Intel Xeon 5530
processor at 2.4GHz. The timing was performed us-
ing the processor’s time stamp counter.

6.1 Dispatch Loop

The dispatch loop experiment was designed to test
the process of efficiently sending and receiving mes-
sages from multiple IPC channels on the same core.
The setup is shown in Figure 4. In this figure, there
are two types of messages that ‘core 1’ sends. The
first type of message contains a number and is in-
tended to reach ‘core 2’, at which point the number
is incremented by one, and sent back to ‘core 1’. The
second type of message also contains a number that
is sent to ‘core 2’. When it is received by ‘core 2’, it
is passed along to ‘core 3’. This core will increment
the number in the message by 10, then sleep for 10
milliseconds before sending the message to ‘core 2’.
Once ‘core 2’ receives the message, it will send it back
to ‘core 1’. Both ‘core 2’ and ‘core 3’ make use of the
IPC dispatch loop described in section 5.3.

The experiment executes 60,000 iterations of a
loop on ‘core 1’. This loop sends two messages
of the first type per iteration, and every ten itera-
tions, a message of the second type is also sent. A
thc ipc recv response is placed after each send, and
each transaction (send/recv) is placed inside a sep-
arate ASYNC. The expected result is that since the
message of type two will cause ‘core 3’ to sleep before
it responds, both ‘core 2’ and ‘core 1’ which are wait-
ing for a response for this transaction should still be
able to dispatch more work. Specific timing results
for specfic messages were not the intended take away
from this example. Instead, we simply wanted to
show that when asynchronous IPC is used with the
IPC dispatch loop, more messages can be sent and

8



Figure 4: Dispatch Loop Experiment Setup

received using multiple IPC channels even when a re-
sponse to a message blocks. The results, as expected
were that hundreds of messages of type one are re-
ceived on ‘core 1’ before any messages of type 2 are
received.

6.2 Context Switching

This experiment was designed to test the time re-
quired to switch from executing in one AWE to ex-
ecuting in another. The experiment first creates an
AWE and assigns an id to it. This AWE then yields
to another AWE that creates an id for itself and
yields back to the first AWE. Throughout this pro-
cess, each AWE yields to the other 50,000 times, cre-
ating 100,000 context switches which are timed. Re-
sults were collected for the standard eager and lazy
configuration (which saves all AWEs to the dispatch
queue and removes them when necessary), as well as a
test where the AWEs being yielded to were not added
to the dispatch queue. The motivation for not adding
these to the dispatch queue is that if we know they
will be yielded to (which is true in the case of asyn-
chronous IPC where an AWE is waiting for a specific
message), then we don’t need them in the dispatch
queue since they are still accessible via their id. The
results of these experiments are shown in table 1.

We then performed another experiment to get

Table 1: Context Switch Times (in cycles)
Configuration Average

Lazy 95
Lazy (no dispatch) 80

Eager 83
Eager (no dispatch) 71

bounds on the context switch time. This experi-
ment involved taking 100,000 timing measurements
(one timing measurement per context switch instead
of one measurement over 100,000 context switches).
The time stamp counter incurs 42 to 60 cycles of
overhead, and 51 cycles on average. To account for
this overhead, we approximate the maximum timing
bound as:

max = maxMeasurement−maxTimerOverhead

and the minimum as:

min = minMeasurement−minTimerOverhead

As a sanity check, we also computed the average num-
ber of cycles per context switch in this experiment as
well and made sure that after subtracting the timer
overhead from the average, it wasn’t farther than ten
cycles away from the average of the previous exper-

9



iment. It should be noted that because of the limi-
tations of measuring individual context switches ac-
curately, the results in table 2 are just good approx-
imations.

The max result for the lazy configuration is much
larger than the max result for the eager configura-
tion. This is because a new stack is allocated the
first time an AWE calls THCYield in the lazy config-
uration, but in the eager configuration, the stack was
already allocated upon creation of the AWE. When
a new stack is requested, the function thc allocstack
will see if there are any stacks that have previously
been allocated and freed that can be re-used. This is
done by keeping a linked list of freed stacks. If there
are no stacks on this list, then kmalloc is invoked to
create a stack. This max value for the lazy configura-
tion represents the call to kmalloc. Upon consecutive
iterations, the AWE will be able to reuse the stack
that was allocated and freed in previous iterations.

Table 2: Context Switch Bounds (in cycles)
Configuration Min Max

Lazy 90 1712
Lazy (no dispatch) 79 2814

Eager 74 404
Eager (no dispatch) 54 316

6.3 AWE Creation

This experiment was designed to measure the time
required to create an AWE. The time interval mea-
sured here is started just before a call to ASYNC,
and ended just after the call. This is performed over
100,000 iterations. These results were obtained in a
similar way as the results for the last context switch-
ing experiment. As a result, we again assumed that
the minimum time was:

min = minMeasurement−minTimerOverhead

the maximum time was:

max = maxMeasurement−maxTimerOverhead

and the average time was:

avg = avgMeasurement− avgT imerOverhead

As a result, the true value of these numbers can vary
by around 10 cycles.

The maximum number of cycles measured for the
eager configuration is much larger than the maximum
for the lazy configuration. This is because for the
lazy configuration, when ASYNC is invoked, a new
stack is not allocated unless the ASYNC block calls
THCYield later on. In the eager configuration, a new
stack is always allocated at the point of AWE cre-
ation.

Table 3: AWE Creation Times (in cycles)
Configuration Min Max Median Average

Lazy 4 96 8 7
Eager 20 1920 26 24

6.4 Message Passing

This experiment was designed to compare the
throughput of synchronous versus asynchronous mes-
sage passing between cores. There are two cores in-
volved with this experiment. The first core creates a
message to send to the second core. The second core
takes a number that is inside the message it received
and increments the number by one, then sends it back
to the first core. Each timing measurement is taken
starting from before the first core sends a message,
and ends after this core receives a response for the
message. This is performed over 60,000 iterations.
There are three sets of throughput results gathered
for this experiment as shown in Table 4. Both the
lazy and eager configurations are compared with a
synchronous implementation. The synchronous re-
sults indicate that about four more messages can be
ping-ponged in the same amount of time, but again
the advantage of async is that is these messages block,
async can continue to dispatch more work while a
synchronous implementation could not.

6.5 AWE Creation and Tear Down

This experiment was designed to measure the time
it takes for an AWE to be created and torn down.

10



Table 4: Message Throughput
Configuration Throughput (msgs / 10,000 cycles)

Lazy 15
Eager 17
Sync 20

The timing results were collected over 100,000 iter-
ations for an empty function invocation, a function
invocation inside of an ASYNC block, and a function
invocation inside of an ASYNC block that yields and
immediately gets yielded back to. In the last case, re-
sults were measured using both THCYield and then
THCYieldTo. These results are shown in table 5.

Table 5: AWE Creation and Tear Down Time (cy-
cles)

Experiment Lazy Eager

Empty invocation 6 6
Empty invocation in ASYNC 26 74
Blocking function (THCYield) 335 330

Blocking function (THCYieldTo) 326 260

7 Conclusion

We have demonstrated that AC can be extended for
efficient asynchronous IPC and lightweight context
switching. We have also shown that performance
can be improved through use of the extensions we
have added. We have started to integrate these ex-
tensions into a custom capability-based GNU/Linux
kernel, but full integration is a topic of future work.
The research presented in this thesis was supported
by the National Science Foundation under Grants
No. 1319076 and No. 1527526.

References

[1] Harris, T., Abadi, M., Isaacs, R., and McIlroy,
R. Ac: composable asynchronous io for native lan-
guages. ACM SIGPLAN Notices 46, 10 (2011), 903–
920.

11


