
VmiCVS: Cloud Vulnerability Scanner

Anil Kumar Konasale Krishna
∗

University of Utah
Salt Lake City, USA

akumarkk@cs.utah.edu

Robert Ricci
†

University of Utah
Salt Lake City, USA

ricci@cs.utah.edu

ABSTRACT
Every service that runs in cloud systems comes with its own
set of vulnerabilities. It is important to detect and assess
those vulnerabilities to provide seamless and secure service
to the users. Various scanners such as Port scanner, Net-
work scanner, Web application security scanner, Database
security scanner, Host based vulnerability scanner etc pro-
vide security assessment. But these scanners use methods
that an attacker uses to attack in order to expose the vul-
nerabilities. As a result, application ecosystem might get
disturbed and hard-to-attack vulnerabilities might left un-
detected. A yet another set of scanners check version of the
service through protocol level messages in order to deter-
mine the vulnerabilities applicable to that particular service
version. With this approach, certain vulnerabilities are not
discovered when a particular software piece(example : glibc)
is not directly exposed to the remote user.

We propose a novel Cloud Vulnerability Scanner, VmiCVS
(Virtual Machine Introspection based Cloud Vulnerability
Scanner). It provides security assessment of vulnerabilities
even if the software is hidden from remote user and with-
out disturbing application ecosystem. It can be used by
cloud provider to provide Vulnerability scanning-as-a-service
where detected vulnerabilities are reported to tenant for ad-
ditional incentives. We have evaluated our scanner by as-
sessing the vulnerabilities of services such as sshd and hid-
den(from remote user) libraries such as glibc and libcrypto.

Keywords
Virtual Machine Introspection; Vulnerability Scanner; Ver-
sion Scanner

1. INTRODUCTION
Every service that runs in cloud systems comes with its

own set of vulnerabilities. It is important to detect and

∗
†

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

assess those vulnerabilities to provide seamless and secure
service to the users. The recent Distributed Denial of Ser-
vice (DDoS) attack on American Banks, Bash’s remote code
execution vulnerability(shell shock) [8], buffer overflow bug
exploited by [5], OpenSSL heart bleed bug, OpenSSL Null
pointer assignment flaw [7] exploited to cause Denial of Ser-
vice(DoS) attack etc shows the importance and imminence
of Cloud vulnerability Assessment tools. Intrusion Detection
and Prevention Systems(IDS/IPS), Firewalls and Anti-Virus
are used as security solutions. Attacker can still bypass these
security solutions and exploit known vulnerabilities. As re-
ported in 2015 Data Breach Investigations Report [1], 99.9%
of the exploited vulnerabilities had been compromised more
than a year after the associated CVE was published. As
reported in Vulnerability Assessment report [12], one of the
70 largest security breaches were achieved through the ex-
ploitation of known vulnerability in spite of the presence of
correctly installed Firewalls, IDS/IPS and Anti-virus. These
reports indicates the need for vulnerability assessment sys-
tems even in presence of other security solutions.

Existing Vulnerability Assessment (VA) Scanners do not
produce accurate results. VA scanners produce many false
negatives.As stated in [10], nearly all VA scanners rely on
version checking as their primary method of known vulner-
ability assessment. Version number is extracted from the
response header. But this method of extracting version num-
ber is not reliable as a) Header does not contain enough in-
formation such as patch number b) Application itself is con-
figured to not reveal the version information in the header
to make the attack harder c) version of the shared libraries
is not revealed d) Firewall could manipulate the header in-
formation or header can be hidden and suppressed. System
library version information is not included in the protocol
header fields. So version analysis does not list the vulnera-
bilities in the system libraries. Though VA scanners perform
Behavior Analysis, as the potential known vulnerability list
is huge, it is not possible to assess all of them by exploitation
tests. Further, evaluation of seven VA scanners performed
in [15] shows that automated vulnerability scanning is not
able to accurately identify all the vulnerabilities present in
the system. Though Authenticated VA scanning produces
better results, it requires system credentials.

Though there exist tens of Vulnerability Assessment Scan-
ners in the Market, they still have to evolve. Most of the
existing Vulnerability Assessment Scanners are not safe. As
reported in [2] and [11], scanners can crash the system un-
der testing, disrupt normal network operations etc. In some
sense, this is not surprising as scanners use crafted network



packets to exploit the vulnerability like an attacker. For ex-
ample, in order to assess buffer overflow bug, scanners send
enough data to overflow the buffer and the overflow could
cause any unpredictable program execution including sys-
tem crash.

We propose a novel Virtual Machine Introspection(VMI)
based Cloud Vulnerability Assessment Scanner, VmiCVS. It
is safe as it does not use crafted network protocol packets
to exploit vulnerabilities in order to assess them. Instead, it
produces accurate results by performing version analysis of
all pieces of software including system libraries using VMI
techniques. It does not need system credentials to produce
accurate results.

Most of the software libraries and services have their ver-
sion number stored in a symbol in their binaries. These con-
stant symbols are loaded into data segment of the process
memory layout. stackdb is a VMI library, which provides
APIs to read value of any particular symbol of a running
process or a library linked to running instance of a binary.
It also provides the most powerful and simpler APIs to read
the virtual memory pages of a process. VmiCVS reads the
virtual memory pages of a process through stackdb APIs and
runs a version parser program to extract the version string.
Through this method, even the version of libraries such as
glibc, libcrypto etc can be determined.

We have evaluated VmiCVS by scanning the version of
three different pieces of software; sshd,running instance of a
process binary, libcrypto, library that contains version num-
ber as a part of its name, glibc, library that do not contain
version number in its name.

The rest of the paper is as organized as follows: In Sec-
tion 1 we discuss Background. In Section 3 we present our
VmiCVS architecture, while the VmiCVS implementation
is detailed in the Section 5. Evaluation of VmiCVS is ex-
plained in the Section 6 and finally, conclusion and further
research directions are given in the Section 7.

2. BACKGROUND
Cloud computing services such as Infrastructure as a Ser-

vice(IaaS), Software as a Service(SaaS) and Platform as a
Service(PaaS) are delivered through virtualized computing
resources. Virtualization is the main enabling technology for
cloud computing. Hardware Virtualization abstracts under-
lying physical hardware and allows multiple instances of op-
erating systems to be running on the same physical machine
with the help of Hypervisor. Hypervisor/Virtual Machine
Monitor(VMM) is a software which provides virtual operat-
ing platform for guest operating systems and manages the
execution of the guest operating systems.

It is very important to monitor the host in order to de-
tect and report any malicious activity that compromises the
host.Virtual Machine Introspection (VMI) is used to
achieve this. VMI is a technique of introspecting Virtual
Machine from outside of it for the purpose of analyzing the
software running inside it. VMI is realized by interposing
at hardware level which allows to mediate the interaction
between hardware and the host software.

Stackdb is a debugging library with VMI support, which
allows one to control and monitor the whole system at mul-
tiple levels. It can be used to monitor guest operating sys-
tem itself, process running in guest or language runtime. It
directly interacts with the system being debugged through
Hypervisor interface. Stackdb provides APIs to install break

Figure 1: Cloud Vulnerability Scanner Architecture

points, watch the values of symbols in the processes running
inside guest, read values of symbols of a process etc.

Vulnerability Assessment Vulnerability can be defined
as a flaw or bug in the system that present the opportunity
for malicious exploitation and results in security breach or a
violation of system security policy. Vulnrability Assessment
[13] is a process of identifying, quantifying and prioritizing
the vulnerabilities in the system. There exists tens of Vul-
nerability Assessment tools in the market; Nessus, Open-
VAS, SAINT, Nikto, Wikto, nmap, Qualys, Fireeye, Alien-
vault, skybox security etc.

Behavior Analysis Behavior of a host in response to a
specially crafted queries/packets is used to assess a paricular
vulnerability. These special queries/packets are constructed
to exploit a particular vulnerability.

Version Analysis In this method, version number of a ser-
vice is detected in order to determine the exploits the server
is vulnerable to. Usually existing vulnerability scanners pre-
dict the version number from the protocol headers and re-
sponse messages to a special query packets.

3. ARCHITECTURE
VmiCVS architecture is as shown in the Figure 1
It consists of Machine hardware, Host OS, VmiCVS ver-

sion scanner, Stackdb layer, Hypervisor and Guest OS. As
shown in the Figure1, Host Operating System(OS) runs di-
rectly on hardware. VmiCVS version scanner program runs
in Host OS and uses stackdb provided API layer to inter-
act with kernel and user processes running in Guest OS.
As shown in the Figure 2, it consists of Version Scanner
program and Version Parser program .

• version scanner dumps the data source containing ver-
sion information into a file. Source of version number
can be virtual memory pages of a process or shared
library filename.

• version parser program matches the pattern specific
to a software in order to extract the version number.



Figure 2: VmiCVS Version Scanner

• version number and software name is looked up in CVE
database in order to list all the exploits a software is
vulnerable to.

version scanner and version parser are explained in detail
in the below section.

• Version Scanner Program It extracts the version infor-
mation of desired library/binary running in the guest
OS using stackdb APIs and dump it into a File. Ver-
sion number of a library can be extracted from either
the name of the library or through the virtual memory
pages of the library. Based on how the version in-
formation is extracted, there are two types of version
scanners

1. Virtual Memory based Version Scanner It dumps
the virtual memory page contents of a process into
a file in order to extract the version number. Usu-
ally version number is stored in a symbol/macro
in binary/library executable. For example, glic
version number is stored in a symbol, banner. So
virtual memory pages pointing to the text seg-
ment of a library/binary is the source of version
number information in this case. It walks through
the task list until it finds the desired process and
dump all the virtual memory page contents into
a file through stackdb’s overlay target.

2. Name based Version Scanner It dumps all the
shared library names linked to a particular pro-
cess into a file. Some shared library names con-
tain version number. So shared library name is
the source of information in this case. To list all
the shared libraries of a process, it attaches to the
guest operating system through base driver and
walks through the task list until it finds the one
which carries the version number of desired soft-
ware piece and dump all its shared library names.

Both the Version Scanners include three step process
to dump the version information :

– Initialization Initializes stackdb and VMI envi-
ronment.

– Process Lookup In this step, start of the task list
of guest operating system is retrieved and lookup
for the required process is performed by traversing
the task list.

– Overlay Instantiation stackdb overlay target han-
dler corresponding to the desired process is re-
trieved in this step. Overlay target is stacked on
top of the base target and is used to get state
information of a process.

– Information Extraction Information such as vir-
tual memory contents or shared library names is
dumped into the file on a disk.

• Version Parser Program It parses the output file pro-
duced by the version scanner program, based on the
version pattern and report the version number. For ex-
ample, pattern to extract the version of glibc is Ubuntu
EGLIBC %d.%d-0ubuntu%d.%d

4. DESIGN
VmiCVS consists of two types of version scanners

• Name based Version Scanner As described in the
paper [14], virtually all the systems incorporate some
form of version number in the filename of each library
in order to indicate and manage the upward compati-
bility. GNU libraries follow

lib<name>.so.<major>.<minor>.<rls>

format for the shared library names.For example li-
braries generated by Cyrus SASL package [4] such as
liblogin.so.2.0.25, libplain.so.2.0.25, libdigestmd5.so -
.2.0.25, libsasldb.so.2.0.25, libsasl.so.2.0.25, Linux PAM
package [6] such as libpam misc.so.0.82.1, libpam.so.0.
84.1, libpamc.so.0.82.1 and CrackLib package [3] li-
braries such as libcrack.so.2.9.0. So version number
of such libraries can be extracted by finding the file
name of the library. Tools such as libtool are available
to automatically build libraries with version number
in their file names.

Shared libraries are linked against process binaries.
In a running process, each such shared library file is
loaded as a memory mapped file and its information is
stored in kernel memory map data structure. As shown
in the Figures3, each process is represented by a kernel
data structure, task_struct. Information about mem-
ory mapped files is stored in struct mm_struct *mm

member of task_struct. Each shared library linked
against a process consists of text segment, data seg-
ment and bss. Each segment is mapped to a particular
piece of process address space. This mapping informa-
tion including shared library file name and other at-
tributes are stored in vm_area_struct corresponding
to data, text and bss segments of a library. vm_area_s-
truct structure associated with each segment is linked
with vm_area_struct of another segment through dou-
bly linked list. The head of the link list is stored in
mmap member of struct mm_struct shown in the Fig-
ure 3. The file name of the shared library can be ob-
tained by scanning all the linked structures as shown
in the Figure 3.

• Virtual Memory based Version Scanner process
binaries and some libraries such as glibc do not contain
version number as a part of their file names. For such



Figure 3: Kernel data structures traversed to read the shared library file name

libraries/binaries, this method is applied to obtain the
version number.

Most of the shared libraries and binaries have their
version number stored in a symbol as a constant literal
or stored as a part of banner string. For example,
version number of glibc is stored as a part of banner
string in a variable banner, release version number of
sshd binary is coded in the macro SSH_VERSION. These
pre-defined version strings are stored in text segment of
the library and are loaded into data segment based on
the platform and operating system. As these segments
are mapped to virtual memory pages of the process,
contents of the memory pages are dumped into a file
by version scanner program using stackdb APIs. Later
Version Parser is used to extract the potential version
string.

5. IMPLEMENTATION
Version string of a process binary or shared library is ob-

tained by reading the virtual memory pages or by listing the
shared library names. VmiCVS version scanner programs
need to initialize the stackdb environment through stackdb
APIs before probing or monitoring processes in guest op-
erating system. VmiCVS program also provides command
line options to specify the process or library name, whose
version number needs to be scanned.

• –vscanner-log-file specifies log file name where to dump
virtual memory contents of a process.

• –vscanner-olay-process option to specify overlay pro-
cess, of which version user interested in.

• –vscanner-olay-library option to specify library name
whose version user is looking for.

Implementation of two types of Version Scanners is ex-
plained below.

1. Name based version Scanner It consists of three steps

• Initialization includes initializing stackdb and VMI
environment and attaching to the target Guest
OS.

• Process Lookup step retrieves head of guest OS’s
task list and traverses the list to find the task_st-
ruct corresponding to the desired process.

• Information Extraction As explained in the de-
sign section, shared library files are loaded into
process address space as memory mapped files.
Hence memory map data structures are read to
obtain the file name of a particular shared library.

stackdb provides APIs to read the values of any
structure member given structure and member
name. For example, to read the value of comm,
task_struct structure and comm as a query are
passed to stackdb APIs. Initially comm member of
task_struct is read to check the process name.
Next, as shown in the Figure3, values of mm, mmap,
vm_file, f_path, dentry and dname symbols are
read to list the name of memory mapped shared
libraries.

2. Virtual Memory based version Scanner

• Initialization includes initializing stackdb and VMI
environment and attaching to the target Guest
OS.

• Process Lookup step retrieves head of guest OS’s
task list and traverses the list to find the task_st-
ruct corresponding to the desired process.

• Overlay handle retrieval stackdb handle holding
the meta data of the desired process needs to be
retrieved from the base handle pointing to the
guest OS using stackdb API os_linux_list_for-
_each_struct(). This API invokes a callback
function supplied as argument to it on each struc-
ture.

• Information Extraction Contents of the virtual
memory pages of a process are read to extract
the version number of a library/binary. As shown
in the Figure 4, stackdb process memory model
consists of an address space of a process which is
divided into regions and regions are divided into
ranges. range corresponds to a contiguous region
of memory with same permission flags. region is a



Figure 4: Stackdb Memory Model of a Process

group of related ranges. For example, a memory
mapped library file(example: glibc) corresponds
to a region and each segment(text, data and bss)
of a mapped file corresponds to a range. An entire
address space content of a process is dumped by
walking through regions and each of the ranges in
the regions.

Following are the APIs used in initialization, Process
Lookup and Information Extraction

• target_open() stackdb API to open the target
given target spec structure.

• vmi_version_scanner()

input : target structure, version scanner
arguments

output : returns success on successful scanning
of virtual memory pages of requested process,
else returns failure code

description : dump virtual memory content of
requested process in specified log file. Log file
and process are specified in argument structure

– target_lookup_sym() call it to get the struct
bsymbol corresponding to init_task, which
is the head of doubly linked list of task_struct

– os_linux_list_for_each_struct() used to
traverse through the linked list of task_struct.
gather_version_scanner_info() callback func-
tion is passed as an argument, which will be
called on each task_struct

– gather_version_scanner_info() handler func-
tion called for each task_struct. It invokes
version_scanner() to dump the virtual mem-
ory contents of the interested process.

– version_scanner(target, vscanner_args) En-
tire address space of a process is divided into
number of regions. Each region is divided
into number of ranges. version_scanner()

walks through each of the ranges of the whole
address space and dump the contents into a
given file.

5.1 Limitations

1. false positives If some patches are applied to a bi-
nary/library that do not bump the version number to
fix a particular vulnerability, VmiCVS does not detect
that.

2. It is assumed that VM admins do not try to hide the
version of binaries and libraries. That is VM admins do
not morph the binaries and libraries to have different
version than their original version.

3. certain softwares such as libz, rpcbind do not have their
version string encoded either in their names or in their
binary code. So it is not possible to obtain the version
of such softwares using our VmiCVS

6. EVALUATION AND RESULTS
The main goals of our evaluation of VmiCVS are

1. To show the extraction of version number of system
libraries which are not directly exposed to remote user
through any protocols

2. To show the version number extraction of service or
daemon binaries

3. Quantifying the disruption caused during version num-
ber scanning

4. Comparison of Name Based and Virtual Memory based
Version Scanners



We have not considered version parser program for eval-
uation as it is a simple pattern matching script.

We ran our Cloud Vulnerability Scanner, VmiCVS on em-
ulab’s d820 machine. It consists of Four 2.2 GHz 64-bit 8-
Core E5-4620 Sandy Bridge processors with 7.20 GT/s bus
speed, 16 MB cache and VT (VT-x, EPT, and VT-d) sup-
port. Memory includes 128 GB 1333 MHz DDR3 RAM (8 x
16GB modules) and 250GB 7200 rpm SATA disk, 6 x 600GB
10000 rpm SAS disks. It was running host operating system
as Ubuntu 15.04 with kernel 3.19.0− 16− generic. Virtual
Machine had Ubuntu 14.04.3 LTS with 3.8.0− 34− generic
kernel.

6.1 Version Number Extraction
We have chosen three different categories of software to

verify and analyze our VmiCVS version scanners. In this
section, we present the version number extraction of these
three different pieces of software

• libraries that contain version number in their filenames
As explained in the section 4, most of the shared li-
braries contain version number in their file names. Cyrus
SASL libraries required by OpenLDAP’s slapd and
Linux PAM library needed by sshd contain version
numbers in their file names. We extracted the version
numbers of these libraries using Name Based Version
Scanners.

SASL libraries In our setup, Virtual Machine was
running slapd linked to 2.0.25 version of the SASL li-
braries ;liblogin.so.2.0.25, libplain.so.2.0.25, libdigestm-
d5.so .2.0.25, libsasldb.so.2.0.25, libsasl.so.2.0.25. Name
Based version Scanner dumped all the libraries linked
to slapd by taking slapd as input as shown in the Fig-
ure 5.

Linux PAM libraries Similarly, we ran version scan-
ner to extract the version of libpam linked to sshd bi-
nary. It dumped all the shared libraries linked to sshd
process.

• libraries that do not contain version in their filename
In our setup, VM was running init process linked to
libc library which had no version number in its file-
name. VmiCVS Virtual Memory Based Version Scan-
ner dumped all the virtual memory pages of init into a
file. It had the following string which contains version
information :

GNU C Library (Ubuntu EGLIBC 2.19-0ubuntu6.6) -

stable release version 2.19, by Roland McGrath-

et al

Version Parser reported 2.19 from the above string.

• service/daemon binaries We chose two different kinds
of daemons a) remote user facing daemons such as
sshd and slapd b) internal daemons such as rsyslogd
and dnsmasq. Virtual Memory Based Version Scanner
dumped the virtual memory pages of these processes
into a file.

Main string in virtual memory dumped data file that
contains the version numbers is shown below for the
above chosen daemons

sshd OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.6

slapd buildd@lgw01-53:/build/openldap-2QUgtL/op-

enldap-2.4.31/debian/build/servers/slapd

dnsmasq Dnsmasq version 2.68 Copyright (c) 2000-

2013 Simon Kelley

rsyslogd rsyslogd %s, compiled with:

Version number of any the shared library or daemon bi-
nary can be extracted using VmiCVS version scanners.

6.2 Impact
Virtual Machine needs to be paused during version scan-

ning. As described in the section 3 and 5, version scanners
consist of four phases; a) Initialization b) Process Lookup
c) Overlay instantiation d) Information Extraction

Virtual Machine needs to be paused during Process Lookup,
Overlay instantiation and Information Extraction phases.
Name Based Version Scanner does not need to intanti-
ate process overlay.

• Virtual Memory based Version Scanner Total VM
pause time and time breakdown for the processes sshd,
init, syslogd and dnsmasq is shown the Table 1. It
shows that Virtual Machine needs to be paused for
atleast 3 seconds during version scanning. Process
Overlay instantiation phase contributes maximum share
to VM pause time. This can be reduced by re-engineering
the stackdb implementation to instantiate the overlay
from base target. Also as shown in the Table 2, size
of the logfile(virtual memory pages content dump) is
in the order of Mega Bytes and hence Information Ex-
traction phase takes milliseconds to dump the memory
pages. This can be optimized by dumping the memory
pages to fast File Systems such as /shm.

• Name based Version Scanner Total VM pause time
and time breakdown for this scanner for the processes
sshd, init, syslogd and dnsmasq is shown the Table 4.
It shows that VM pause time is in the order of mil-
liseconds. Also from the Table 3, it is evident that this
scanner requires less storage to dump shared library
file names.

6.3 Comparison of VmiCVS version scanners

• Disruption It is measured by Virtual Machine pause
time during version scanning. As shown in the Ta-
bles 1 and 4, Virtual Memory Based Version Scanner
cause more disruption than Name based Version Scan-
ner while pausing VM in the order of seconds.

• Storage Name based Version Scanner consumes less
storage space.

• Virtual Memory Based Version Scanner can be used
to scan the version of both the shared libraries and
process binaries.

7. CONCLUSIONS AND FUTURE WORK
VmiCVS performs version analysis through VMI tech-

nique and reports the system vulnerabilities. It produces
false positives when patches are applied to fix some vul-
nerabilities. Not all the libraries and binaries have their
release version coded. In such cases, VmiCVS fails to re-
port the vulnerabilities.These limitations of the VmiCVS



Figure 5: Name Based Version Scanner’s version data for slapd

Version Scanner Steps
Run Time in Seconds

sshd init dnsmasq rsyslogd
Initialization 24.19 24.29 24.29 24.34
Process lookup 1.19× 10−3 0.08× 10−3 1.26× 10−3 0.57× 10−3

Overlay Instantiation 3222.96× 10−3 3215.59× 10−3 3167.85× 10−3 3320.45× 10−3

Information Extraction 85.27× 10−3 60.02× 10−3 46.00× 10−3 251.01× 10−3

Total time VM Paused 3309.42× 10−3 3275.69× 10−3 3215.12× 10−3 3572.04× 10−3

Table 1: Virtual Memory based Version Scanner Run Time Break down

process logfile size in bytes
init 2,912,967
dnsmasq 1,544,569
rsyslogd 4,142,067
sshd 3,138,302

Table 2: Virtual memory pages dump Logfile size of
processes

process logfile size in bytes
init 404
dnsmasq 409
rsyslogd 406
sshd 663

Table 3: shared library file names Logfile size of pro-
cesses

can be overcome by using code measurement or binary anal-
ysis techniques to confirm the presence of vulnerabilities.

Though there exists online tools [9] to list vulnerabilities
corresponding to particular version of a software, it is nec-
essary to link such tools to VmiCVS version scanners to list
vulnerabilities corresponding to software version.

8. ACKNOWLEDGMENTS
We thank David M Johnson and Richard Li for their

help on stackdb. We thank Prashanth Nayak for his in-
direct help. We have followed shared library listing tech-
nique(Name Based version Scanner) from his thesis work
[16]. We also thank Jacobus (Kobus) Van der Merwe, Eric
Eide, Anton Burtsev and Feifei Li for suggesting improve-
ments.

9. REFERENCES
[1] 2015 data breach investigations report. https:

//msisac.cisecurity.org/whitepaper/documents/1.pdf.

[2] 7 ways vulnerability scanners may harm website(s)
and what to do about it.

https://www.whitehatsec.com/blog/
7-ways-vulnerability-scanners-may-harm-websites-and-what-to-do-about-it/.

[3] The cracklib package. http://www.linuxfromscratch.
org/blfs/view/svn/postlfs/cracklib.html.

[4] The cyrus sasl packag. http://www.linuxfromscratch.
org/blfs/view/svn/postlfs/cyrus-sasl.html.

[5] Ghost vulnerability.
https://access.redhat.com/articles/1332213.

[6] The linux pam package. http://www.linuxfromscratch.
org/blfs/view/svn/postlfs/linux-pam.html.

[7] Openssl dos vulnerability, new bagel variants.
https://isc.sans.edu/forums/diary/Updated+1345+
318+GMT+OpenSSL+DoS+Vulnerability+New+
Bagel+Variants/140/.

[8] Shellshock: All you need to know about the bash bug
vulnerability.
http://www.symantec.com/connect/blogs/
shellshock-all-you-need-know-about-bash-bug-vulnerability.

[9] Vulnerabilities and version details.
https://www.cvedetails.com/version-list/72/767/1/
GNU-Glibc.html.

[10] Vulnerability assessment accuracy.
http://www.beyondsecurity.com/va accuracy false
positive negative.html.

[11] Vulnerability assessment guide.
http://scitechconnect.elsevier.com/wp-content/
uploads/2013/09/Vulnerability-Assessment.pdf.

[12] Vulnerability assessment whitepaper. http://www.
beyondsecurity.com/pdf/AVDS Whitepaper.pdf.

[13] Vulnerability assessment wiki. https:
//en.wikipedia.org/wiki/Vulnerability assessment.

[14] D. J. Brown and K. Runge. Library interface
versioning in solaris and linux. In Proceedings of the
4th Annual Linux Showcase & Conference - Volume 4,
ALS’00, pages 40–40, Berkeley, CA, USA, 2000.
USENIX Association.

[15] H. Holm, T. Sommestad, J. Almroth, and M. Persson.
A quantitative evaluation of vulnerability scanning.
Inf. Manag. Comput. Security, 19(4):231–247, 2011.



Version Scanner Steps
Run Time in Seconds

sshd init dnsmasq rsyslogd
Initialization 24.06 24.17 24.15 24.25
Process lookup 2.00× 10−3 0.07× 10−3 1.70× 10−3 0.76× 10−3

Information Extraction 3.38× 10−3 0.05× 10−3 2.28× 10−3 2.76× 10−3

Total time VM Paused 5.38× 10−3 0.12× 10−3 3.97× 10−3 3.52× 10−3

Table 4: Name based Version Scanner Run Time Break down

[16] P. Nayak. Detecting and mitigating malware in virtual
appliances. Master’s thesis, University of Utah, 2014.


