
Function as a Service, an Ad Hoc Approach to Cloud Computing

Keith Downie1

1School of Computing, University of Utah

May 4, 2016

Abstract

Cloud computing has become an integral piece of
many services and has had a major impact on how
software is developed, both in the research and com-
mercial fields. However, the traditional types of cloud
computing are best used for applications that fit well
into a client-server model. While this is an invaluable
service, it is important to question this paradigm and
to research uses for cloud computing that reach be-
yond traditional models.

In this paper, we define Function as a Service, a
paradigm for cloud computing that more closely re-
sembles a distributed systems model rather than the
traditional client-server model. Under this paradigm,
the cloud has a more intimate relationship with in-
terpreted programming languages, allowing software
systems to utilize computation from the cloud di-
rectly through an API. We define a model for cloud
authentication that allows developers to either main-
tain control over how their software interacts with
the cloud, or empower users to choose their cloud
provider and themselves define cloud interactions
without risk to the developer.

1 Introduction

Cloud Computing has become an integral part of
many modern applications and is a major topic of
research in both industry and academia. Of the var-
ious types of cloud computing, there are three main
categories. The first of these, and likely the most well

known, is Infrastructure as a Service. In this model,
software distributors reserve remote machines from a
cloud provider to run and maintain their software.

The second is Platform as a Service, a model that
offers software creators an easy way to run their
server-side code in the cloud. The developer sim-
ply supplies the cloud provider with the code that
they wish to run. From there the provider handles
everything from the running environment to scaling
servers.

Finally, Software as a Service is a model where both
the cloud servers and the software are provided by the
same entity and the user then purchases access to the
software that utilizes the cloud servers. Most often,
this type of cloud used either as part of a thin-client
web application or to synchronize user data, files, and
other application data.

While each of these models differ in many aspects,
they share some important traits. First, at their core
these models all follow a client-server workflow, which
revolves around creating long-standing proprietary
servers for client applications to communicate with.
This means that any software that utilizes the cloud
must work within this client-server model. While this
model works for many cases, it also limits the role
that the cloud can play in relation to the user-end
software. There are many clever ways to skirt around
this limitation, but they are typically hacks and don’t
address the core issue.

The primary area where these models differ is what
the developer is responsible for maintaining. For ex-
ample, in PaaS the distributor is only responsible
for maintaining the code that they give to the cloud

1

provider and the cloud provider charges them accord-
ingly. In contrast, the cloud provider in the Software
as a Service model is responsible for both the software
and the cloud.

However, all of these models are similar in requir-
ing the developer maintain this responsibility for the
lifetime of their product. If a cloud-based application
is utilizing a server in the cloud and the developer
stops supporting that service, then the user-end ap-
plication becomes useless if the cloud played any sort
of meaningful role. This perpetual responsibility also
discourages both smaller ventures and open source
projects from using cloud computing.

Having the developer running the server that an
application talks to also brings up some privacy con-
cerns. Opening up the source code of a server is rarely
done, so a user of that cloud service can’t be sure
what is being done with their private data. While
most consumers of cloud-enabled applications under-
stand this risk, it also means that users who need
to work with secure data must avoid anything that
utilizes the cloud.

We propose Function as a Service, which provides
a cloud abstraction similar to a function call. This
abstraction is used by the application itself, giving it
the flexibility to choose whether to execute a func-
tion locally or in the cloud. By utilizing this API, an
application is able to ship functions and state to the
cloud to be executed remotely using a token-based
authentication system. This model differentiates it-
self from the standard models in the following ways:

Function-like Workflow This model uses work-
flow that exists in between that of a platform and a
service, as it is the software that decides what parts
of its execution to offload. This means that the soft-
ware itself that is in control over what gets processed
in the cloud, and can make decisions based on its
environment or hardware capabilities.

This level of control is interesting cases where pre-
serving resources on the device is important, such
as devices with low battery life or minimal process-
ing power. This allows for the cloud to be utilized
to alleviate these weaknesses without fundamentally
changing the design characteristics of the software.

Choice in Provider Two different authentication
models are defined, the first of which is most similar

to existing cloud models. In this model, the developer
sets the permissions for each user and is financially
responsible for what resources are used. This allows
for distributors to maintain control over how their
software is being run in the cloud and what actions
users can make.

The second model puts the control in the hands of
the user, allowing them to define what cloud provider
they use and what they use it for. This allows devel-
opers to make open source projects to make use of
the cloud without being accountable for the actions
of others. Instead, each user registers directly with a
provider and is responsible for what they run.

Ad Hoc Communication Devices in this work-
flow can communicate though state stored in the
cloud. This allows devices to collaborate while still
running software specific to that device, promoting
an “Internet of Things” approach to working with
the cloud. This communication does not have to be
previously established, which means this communica-
tion can be done on the fly.

2 Related Works

Of the three main categories of cloud computing, the
model that is the most closely related on the surface
is Platform as a Service (PaaS) [4]. This is because
in the PaaS model, the cloud provider abstracts away
nearly everything about how the servers run. To use a
cloud like this, the developer gives the cloud provider
the source code for their server and the provider han-
dles running and maintaining it.

What makes this work different is that this inter-
action is done prior to the execution of the client-side
code. PaaS, like the other models, establishes a server
for clients to communicate with. This work focuses
on defining the cloud interaction in band with the
execution of the client application rather than com-
municating with a proprietary server.

A common way for machines to coordinate remote
execution is through Remote Procedure Calls (RPC).
In the RPC model, an application sends a request to
another machine. This message is intended to invoke
the second machine to perform some task. There
have been many implementations of this protocol,

2

such as XML-RPC [5], which uses HTTP requests as
the medium for invocation and returning data. What
we propose here is different from RPC however.

In RPC, the remote machine runs a middleware
that listens for RPC requests. Upon receiving a
request from the first machine, this middleware
launches a process on the remote machine to service
the request. This is a key difference between RPC
and the model we propose. This means that in order
for RPC, and similar systems like Remote Method
Invocation [2], to service a request, the services must
already be implemented on the second machine. Like
the differences with PaaS, this work differs because
it focuses on executing arbitrary code that is not im-
plemented on the other side.

There have been other efforts for developing and
supporting the Internet of Things (IoT) concept.
SmartThings [3] is a cloud-enabled framework for IoT
devices. This framework uses the cloud and a Smart-
Things enabled router to abstract an event system
that smart objects in the home subscribe to. This
lets remote devices send event commands to objects
inside the home. AllJoyn [1] is another framework
that makes it easier for IoT devices to discover one
another and communicate.

These frameworks differ than what is proposed
here however, as they are primarily focused on ab-
stracting the communication layer. The devices here
must be subscribed to the framework and must be
built to services requests that are given to it, which
means that the execution of an event is still done on
a given device. It also means that, in order to send
command to another device, it must also know what
methods the other device implements.

The communication in the model we propose is
more indirect than this. When a device sends code
to the cloud to be executed, it has the option to pick
up sets of state that has been stored in the cloud.
We consider this to be a benefit for IoT devices, as
this allows an ad hoc communication without each
device explicitly knowing about the implementation
of others.

Research into sending the code that is to be pro-
cessed remotely does exist in some form. In particu-
lar, a similar style of sending code to another entity
is a part of research efforts such as active network-

ing [6]. ANTS [7] is an architecture for achieving
active networks by having network devices that are
able execute remote code in order to realize new pro-
tocols.

While research into remote execution already ex-
ists in some form, to our knowledge the this is the
first work to be done in expanding this to fit into a
cloud environment where the application sends the
arbitrary code to be executed. What we propose is a
model for how Cloud Computing can be abstracted
as a service directly to software, extending any appli-
cation to be able to utilize cloud computing as a part
of its own execution.

3 Function as a Service

In the traditional models of cloud computing, what
the model abstracts is the details server side of an
application. The level of this abstraction can vary
considerably, even to the extent of the entire cloud
being handled by the provider, such as in Software
as a Service. However, all of these abstractions are
still in the details of the server. A consequence of
this is that nearly all cloud-enabled applications will
fit into a client-server workflow.

What makes Function as a Service (FaaS) different
from the traditional models of cloud computing is the
reach of the abstraction. Instead of the cloud only
abstracting the details of a server that a client makes
calls to, in this model the abstraction is used directly
by the client-side application. Through the use of an
API, this enables the client to interact with the cloud
in a way that is similar to a function call.

When calling a defined function in a typical pro-
gramming language, at a high level there are two
things to expect as the function caller. The first is
that work will be done in another part of the pro-
gram, perhaps accessing and changing global vari-
ables in the process. The second is that the execu-
tion of the program will return to the caller. Once
returned, the caller gets a return value and can use
this changed global.

What Function as a Service provides is a choice
over where this called function is run. By extracting
and packaging the code of the function that is being

3

called, the API can send the code to be executed
in the cloud while still satisfying the expectations of
the caller. When the cloud finishes executing the
function, it sends the return value back to the API
and the caller sees that it has a return value upon
resuming.

In this model, the actions of the cloud are defined
by what already exists in the client. This allows the
application itself to decide when and how much to
use the cloud, as the code that is being executed also
exists locally on the client. This allows an applica-
tion to be written in a model other than the stan-
dard client-server model while still taking advantage
of cloud resources.

4 Authentication

This section details how the client can communicate
with the cloud. In the FaaS model, the cloud does not
consist of proprietary application servers as in other
models. Instead, the cloud consists of general servers
that take in arbitrary code and interprets it. This
means that the communication protocol itself must
be able to define who a user is and what they can do.
As a part of achieving a system that strikes a balance
between flexibility and customization for the user and
control for the developer, we present two token-based
authentication models as shown in Figure 1.

4.1 Public Tokens

This model is one that most closely resembles how re-
sponsibility in a cloud operates today. In this model,
the software developer is the one who is billed for
what executes in the cloud and typically the devel-
oper either takes payment from the user or monetizes
in other ways. This model authentication is impor-
tant for cases where the developer wishes to remain
involved in how their software is run and allows for
them to maintain more control.

Public tokens are a way for a developer to main-
tain control over what is run on their behalf. The
distribution of these public tokens are done out of
band with the cloud interaction. For example, when
a user wishes to run their application, the developer

can host a server that distributes these tokens to cus-
tomers. Another option would be to make a perma-
nent token that gets distributed with the application.

If the developer chooses to authorize a user, it then
creates with a public token that contains encrypted
identifying information that the cloud can then use
to authenticate the user. After obtaining this public
token, the client application can then make requests
directly to the cloud server by including this public
token for as long as the token is valid.

Code White Lists

When a developer gives a user a public token, they
are authorizing that user to execute code on the cloud
at their expense without any knowledge of what each
request might contain. As this could potentially be
abused by an attacker to execute arbitrary code at
the developer’s expense, it is important to allow the
developer to limit what code is being executed on the
cloud under their token.

Each developer is given their own private token
in which to communicate with the cloud. With this
token they can register a list of namespaces and a
white list of code hashes for each ID. These white
lists specify what code is allowed to run on the cloud
for that particular namespace. When request comes
in using a public token from that developer, the code
that the user is attempting to run is then hashed and
compared against the white list that is registered for
that particular namespace. If the hash of the code
does not match, then the code is not executed and
the client is given an error message.

4.1.1 Permissions

As they are accountable for what resources a user un-
der a public token consumes, a developer is able to
further limit how users can interact with the cloud.
Permissions are an extensible way to define what re-
strictions a user has. For example, these restrictions
include how often a user can run functions, if they are
able to schedule recurring functions, and what mem-
ory state they are allowed to access. More about
these permissions are discussed in further sections.

4

(a) Public Token (b) Private Token

Figure 1: Token Authentication

4.1.2 Token Security

As part of the goal of this model is to provide cloud
access to low hardware devices, this must also be
taken into consideration in the security model. As
things like key pair encryption can be expensive for
impoverish devices, this model instead uses a token
checksum in order to protect interactions from abuse.

For each public token that is issued by a provider, a
checksum for that token is created that must also be
included in the message to the cloud. This checksum
is simply a SHA1 hash of the entire token, including
the identities and permissions for the token. This al-
lows the cloud, upon receiving a request, to ensure
that the permissions of the token have not been tam-
pered with.

4.2 Private Tokens

In contrast to a public token, private tokens impose
no artificial restrictions on the holder. When a user
registers with the cloud provider that given their own
private token. This private token can then be used
with any application that they wish and are free to
execute what they want in the cloud. In this case,
the user is billed directly based on what cloud re-
sources they use, which means that the developer is
not responsible for what the user runs.

As there is no longer a third party involved, the re-
quirements for a private token system is much more
simplified. For this a unique private token is issued to
the user with a unique identifier. This token can then

be used by any application the user wishes across
any software platform within the limits of the cloud
provider. Anyone with a private token can create
public tokens under it, as was described in the previ-
ous section.

This type of authentication in particular provides
some interesting properties for the cloud. For exam-
ple, it makes it more realistic for open source project
to utilize the cloud, as each user can have their own
cloud interaction. Since each person is paying for
what they use, users can make any modifications they
wish to the software while posing no risk to the de-
velopers. These benefits and more are explored via
prototypes in a later section.

5 Anatomy of a Message

Communication with the cloud is done through the
concept of message passing. Here, an API is invoked
in the software which creates a message for the user to
communicate with the cloud. Upon receiving a mes-
sage, the cloud will then perform actions based on
this request. For some of these messages, the cloud
will then create a response message that is sent back
to the user. Following is the structure of a request
message. The actual fields that a user will include
in a message will vary based on what the user is re-
questing.

5

Function Code

There are two options for providing what function to
execute on the server. The first is to provide the byte
code for the function in the message. In this case, the
cloud can be instructed to either execute the function
and return the result or simply store the function in
the cloud for later use. When storing the function,
the byte code is then hashed by the server and stored
relative to the user making to the request.

A second option is available when a function has
already been hashed and stored on the cloud. In this
case, the device can instead provide the hash of the
function instead of the byte code for the function
itself. When the cloud receives this hash, it then
matches and loads the correct function to execute.

Parameters and Global Variables

When a function’s byte code is sent to the cloud, the
function itself keeps the same anatomy that it had on
the originating machine. This means that in order to
call the function, the user is also responsible for en-
suring that the correct number of input parameters
of the correct type are also sent along. If these are
not provided then the cloud send a return message
back to the user containing an error and the func-
tion will not be executed. When the cloud prepares
for executing the function, it matches the parameter
names that the function is expecting to the pair with
the same name in the parameters set and passes those
into the function when started.

In a similar vein, during execution global variables
that are referenced inside of the function will also be
called. The user is also responsible for ensuring that
these global variable are also passed to the cloud.
When the cloud creates the isolated container to exe-
cute the function in, it can load these global variables
into the container that any global references inside of
the function will reference.

In both cases, the user provides a separate set of
key-value pairs. Each of these key-value pairs repre-
sents a single variable or parameter, where the key is
the name of the variable and the value is the intended
value of that variable. These sets are provided each
time the user wants to execute a function and only

live for the current execution. An obvious limitation
to this is that the function is only able to use informa-
tion that already exists on a single device. To address
this, we introduce the concept of namespaces.

Memory Namespace

A memory namespaces is a mechanism that offers a
parity to storing global variables on the cloud. These
namespaces allow users to store state on the cloud
and access it from any function using that namespace,
which allows devices to reduce the amount that is has
to store and allows this state to be shared between
multiple devices without additional communication.
Similar to global variables, a namespace simply con-
sists of a set of key-value pairs.

In the request message the user provides the name
of the namespace, given as a string. To avoid con-
flicts, only one namespace can be defined per mes-
sage. The user can also provide a set of key-value
pairs as well as what action they want to cloud to
perform on this set. In the default case, the pairs in
this set are added to the namespace and are avail-
able to any future executions. If the request is also
performing the execution of a function then there are
two additional options.

The first of these options is to add the given join
the given pairs and the requested namespace into a
new structure that lives only for the given execution,
which allows for references to global variables in the
function to be defined without adding everything to
the namespace. The second option is to take what
the function returns and store it in the namespace.

Creating a namespace can be done by anyone with
a private token and are unique within that token.
When creating public tokens, access to a namespace
must be explicitly given in the token before a call is
able to access it. This allows applications to com-
municate within the same namespace, but provides a
way for the holder of the private token to limit what
applications can modify what namespaces.

Token

Included in the message is the public or private token
discussed in the previous section. Providing a valid

6

token is required to be able to communicate with the
cloud, as it ties the message to a user. No matter the
type of token, it is added to the message in the same
way. Once a message is received, the cloud parses the
token to determine the type and check whether it is
valid.

In the case of a public token, this will also (op-
tionally) include the permissions of the user. This
includes how often the public token can be used and
what namespaces the token is allowed to access. The
checksum for the token must also be provided or the
cloud will not service the message. This is to ensure
that the cloud is not servicing tokens that have been
tampered with.

6 Cloud Prototype

Implementing the entire cloud infrastructure for this
paradigm is beyond the scope of this project. As
such, for the prototype the cloud provider is treated
as a black box, where the user sends a message and
receives a response from the cloud. The plumbing for
the prototype is simply a server that takes in mes-
sages and returns what the protocol specifies. In this
section we work through the details of how this server
implements this protocol.

Function Introspection

Python 2.7 was chosen as the language for this proto-
type in order to take advantage of the introspection
features that it provides. Specifically, Python makes
it easy to get the byte code of a function. Byte code
in Python is what is generated when the interpreter
converts the text source code into something that it
can run. What this enables us to do is send the byte
code to another location and use it to create a new
function. While there are multiple ways to accom-
plish this in Python, each with their own advantages,
the simplest way is to use the code structure that
is automatically added to each function definition.
Below is an example of retrieving this byte code and
using it to create a new function.

import new

def foo(b, c):

return b+c+z

byte code = foo.__code__

bar = new.function(byte code , {z: 3})

bar(1,2)

Using the ”new” library to recreate the function
also puts the function in a container. In the func-
tion bar, the only global variables that are available
are those passed in as the second parameter. When
bar is called, z=3 will resolve to what it sees as a
global variable, even though z was never defined in
the main program. This also means that any depen-
dencies that the cloud wishes to support must pass
these in as well. The original foo function remains
unaffected and if run will result in an exception since
it does not see z as defined.

In addition, Python also makes available a list of
variables that the function makes reference to. This
can be used alongside the globals() command to have
the API automatically pull the required global vari-
ables into the message as apposed to the manual ap-
proach shown above. As the two are simply a Python
dictionary, a mix of the two approaches can also be
used and the data structures will be joined into a
single dictionary.

API and Packaging messages

Messages in the prototype take the form of a Python
dictionary. Below is an example of what a message
sent with a public token looks like.

{’action ’: ’load’,

’execute ’: 1,

’hash’: # SHA1 function hash

’namespace ’: ’app1’,

’token’: {’private_id ’: 0x1234 ,

’public_id ’: 0x5678 ,

’permissions ’: {’rate_limit ’: 5,

’namespaces ’: [’app1’]

}

},

’checksum ’: # Encrypted checksum

}

In order to send these messages, the JSON library
is used to pack and unpack these messages. With
this library, json.loads(msg) with turn the message

7

into a string that can be send through a socket, and
json.reads(msg) will take that string and recreate the
dictionary on the other side. This is used for both
requests from the user and responses from the cloud.
Below is an example of how this is done from the
perspective of the application.

import cloudapi as api

def bar(a,b):

return a+b+z;

if runLocal: # Run bar locally

z = 3

ret = bar(1,2)

else: # Run bar in the cloud

ret = api.ex(bar , {z: 3}, token , ...)

This example shows how the application invokes
the API of the cloud. It also shows that, since the
function bar is defined locally, the application has a
choice as to whether to execute the function locally
or send it to the cloud. When the API is called, by
default the following actions are taken by the API
and the cloud.

1. API checks if the function was recently hashed
or if the user provided the hash. If not, it makes
a SHA1 hash of the function.

2. API builds a message from the hash and
application-defined parameters and sends this
message to the cloud.

3. Cloud checks permissions of the token and checks
if it has the function that the hash matches to
cached.

If the function is cached, the cloud executes the
function with the parameters in the message and
sends back the return value. The API then sends
this back to the application.

If the function not cached, the cloud returns an
error saying this to the API.

4. If the API gets a message that the function was
not cached, it sends a new message using the
byte code for the function.

5. When the cloud receives the byte code for a func-
tion, it caches the function and its hash and then

executes the function, sending the return value
back to the API who returns it to the applica-
tion.

White lists and Namespaces

In this prototype, namespaces are stored in a dictio-
nary of dictionaries, which can be up to three levels
deep. At the first level, the keys in the dictionary are
the private id of the token. The second level keys
are the namespaces that have been set up under that
private token. The third level are the key-value pairs
that reside in that namespace for functions to use.

In addition to the values of a namespace, there is
another key labeled whitelist. This contains the in-
formation that the owner of the private key has set up
and is not writable for any public keys. This contains
a list of function hashes that users with access to that
namespace are allowed to run. A user is only able to
use one namespace per message, so these white lists
can not be mixed together to perform unwanted ac-
tions in a namespace.

When a user executes a function with a namespace
declared, the values of that namespace are joined to-
gether with the supported libraries as well as any
global variables the user may have passed in. This
joined set is then passed into contained function
which accesses them as if they were global variables.

7 Application Prototypes

In this section we detail the prototype applications
that were made to demonstrate how this cloud model
can be used to achieve the properties discussed earlier
in the paper.

7.1 Smart Home Thermostat

The motivation for this prototype is to show that the
ad-hoc nature of this cloud can have important prop-
erties for the “Internet of Things” mindset. Specifi-
cally, this prototype shows that this cloud can be used
to enable smart home devices such as a “smart” ther-
mostat. This is a device that has very minimal hard-
ware and a small computational throughput, which

8

makes it something that could benefit from the abil-
ity to utilize cloud computing.

While the hardware of a typical thermostat is suf-
ficient to monitor the local temperature and main-
tain a static schedule, it likely wouldn’t suffice for
anything more advanced. For example, incorporat-
ing weather forecasts or using machine learning to
adjust to the behavior and preferences of the user
would likely be beyond the ability of the hardware.
This is where cloud computing can help, by allow-
ing the thermostat to offload computation and state
aggregation to the cloud.

This thermostat prototype consists of three parts:
the driver that controls the furnace and wireless com-
munication, a temperature reader, and a set of con-
trol firmware. Inside of this firmware is the logic to
decide whether to turn the furnace on or off. Once the
firmware was completed, a “compiler” was ran that
saved the hashes of those functions to a file and regis-
tered those functions in the cloud. Both the compiled
files and the source code are included on the thermo-
stat. Both online and offline modes are included.

Offline Mode

If there a lack of a connection to the cloud, the ther-
mostat still needs to be able to operate. In this
prototype, the thermostat has the entirety of the
source code. This means that it is able to import the
firmware and can execute all of the required function-
ality locally using its own state. Below is an snippet
of the thermostat running in offline mode.

import firmware

import temperature as temp

ID = firmware.registerDevice ()

while 1:

currentTemp = temp.read()

firmware.updateTemp(ID, currentTemp)

decision = firmware.makeDecision ()

turnFurnace(decision)

time.sleep()

While the workflow may look odd, this is because
the firmware was written to work when run both lo-
cally and in the cloud. Here, the thermostat gives the
firmware the latest reading it took with updateTemp

and then calls makeDecision. The firmware will then
evaluate the temperatures and determine if the fur-
nace needs to be turned on, returning with a ”yes”
or a ”no”. If ”yes” is returned, the driver will turn
the furnace on until a ”no” is given.

Online Mode

Once the thermostat has an internet connection and
is able to connect to the cloud, it no longer needs to
run things locally. Instead of importing the firmware
directly, it can instead send the functions to be exe-
cuted on the cloud. Since the thermostat has limited
resources, the driver can load the saved hashes from
file instead of hashing the functions itself. Below is a
snippet of the driver using the cloud API instead of
the firmware to make a decision.

import cloudapi as api

import temperature as temp

api.setToken = getToken(’public.token ’)

api.addNamespace(ns)

registerDevice = getHash(’rD.hash’)

updateTemp = getHash(’uT.hash’)

makeDecision = getHash(’mD.hash’)

ID = api.ex(registerDevice)

while 1:

currentTemp = temp.read()

api.ex(updateTemp , currentTemp)

decision = api.ex(makeDecision)

turnFurnace(decision)

time.sleep()

In online mode, the thermostat also has the op-
tion to utilize additional information other than just
the one that it reads. In addition to the thermostat,
this prototype also includes individual temperature
readers. There readers represent small devices that
are placed in other rooms in the house. The entire
functionality of these readers is to read the current
temperature and report it to the cloud using the same
namespace. When the firmware running in the cloud
is making a decision, it will see the current tempera-
ture for all of these devices and tell the thermostat to
turn on or off based on the minimum of these values.

In this model, when the user buys a thermostat

9

or a reader it comes with a unique public token that
allows that device to communicate with the server.
The information that they upload is unified by using
the same namespace, such as the SSID of the network
they are connected to. To prevent users from running
unauthorized code on their token, the developers set
up a white list of function hashes that their public
tokens are allowed to run. Each time the firmware is
updated they add the new hashes to the white list,
which enables the new firmware to run.

Now, say that the company that makes the thermo-
stat goes out of business and they remove their ser-
vices from the cloud. Traditionally this would mean
that the thermostat would now only function in of-
fline mode, as there would be no server to commu-
nicate with. In this paradigm however, the user can
themselves register with a cloud provider. After get-
ting their own private key, uploading it to the devices,
and registering the functions, the thermostat would
still be able to function online despite the official to-
ken no longer being serviced.

Since this gives the user financial responsibility for
the resources they use, they are also in charge of what
functions can be run in the cloud. This means that,
were the firmware open source, the user can upload
custom firmware to the devices. Say that a user wants
to instead have the temperature decided by the av-
erage of the last five readings rather than the most
recent reading. After they update the firmware, all
they would need to do is run the compiling program
to generate new hashes and upload them to the de-
vices and the cloud. Now, when the devices load the
hashes from file they will be telling the cloud to run
the new functions.

7.2 Mobile Feed Reader

To help motivate this prototype, we list several re-
alistic goals that an application might have during
development. Imagine that there is a developer that
wishes to make an application with the following
properties:

• The user can set what feeds they wish to follow,
and the results from all of these feeds are shown.

• They are only interested in looking for posts with
specific words in the title. The user can provide
a set of search terms. All results that match the
search terms should be displayed since the last
time the user viewed the feed.

• The application is meant to be run on a mobile
phone, so it should spend a minimal amount of
time processing feed changes in order to save on
battery life.

• The developer isn’t sure if they want to keep
maintaining the application, so they want to
make this application open source so users can
make modifications.

• The developer wants to limit their financial bur-
den, limiting a user’s resources usage to what
they think they can get through things like ad
revenue.

• The developer understands that some users are
concerned about their privacy, so an informed
user should be able to know what is being done
with their data and can take steps to protect it.

A user could run an application locally and be able
to satisfy the functional requirements for this app.
In order to store the feed results in between viewing
the application would have to poll the feeds every so
often, match the results against the search terms, and
add them to the pending posts. However, having to
frequently poll the feeds to maintain this application
would demand a non-trivial battery life.

Another option is to have the feed gathering part of
the application run in a traditional cloud, where the
cloud keeps state on what pending posts match the
search terms since the last sync. While this would
work functionally, it does not satisfy several of the
developer’s needs.

The developer would have to maintain a server on
the cloud to service any active applications. If they
decide that they don’t want to maintain the software
and take the server down, the application will cease
functioning. Having to maintain a server would also
disincentivize making the application open source, as
any changes in functionality that a user would make

10

could only be on the client side without the developer
approving changes and updating the server. Making
the code open source also increases the attack vector
on the server should someone attempt to exploit it
with unauthorized code.

Prototype

The focus of this prototype is to show how all of these
properties can be achieved when using this cloud
paradigm. The application here is a web page that
the user visits to view the feeds that they have sub-
scribed to. This page was created with HTML and
jQuery in order to show that, even though no Python
is being run on the page, communication is still pos-
sible.

When the web page first loads it does not have
any information about the Reddit feeds that the user
has visited. To find this out, it needs to send a mes-
sage to the cloud to read the namespace. To support
these interactions, a separate Python script is cre-
ated. In this script are all of the functions that the
web page will need to use. When run, this script will
take the byte code of those functions, hash them,
and spit them out to a file. Then, when the page
wants to communicate with the cloud, it loads these
hashes. The snippet below shows how the getUpdates
function is compiled. This simple function grabs the
current subscriptions and pending post updates that
currently reside on the cloud.

def getUpdates ():

return pendingPosts

f = open(’getUpdates.hash’, ’wb’)

m = hashlib.sha1()

m.update(marshal.dumps(getUpdates.__code__))

f.write(m.hexdigest ())

Since the web page is not running Python, it does
not have access to the API. It can, however, build
a message itself since it has the hash for the func-
tion it wants to execute and the cloud sends and
receives messages in JSON, the native data struc-
ture of Javascript. To avoid having to use web sock-
ets in Javascript, the cloud was updated to supports
HTTP headers when the web page sends the message
through a GET request. This is all that is required
of the web page to display the posts that have been

curated by the cloud, and the user can resend this
message any time they wish to get the latest content.

When the user first visits the page they need to
register the post gathering function in the cloud.
This function is hashed in the same way that the
getUpdates function is. To set or change what feeds
they are subscribed to or what search terms they fol-
low, the web page first stores the user set values in
the user’s namespace. When the web page wants to
clear the posts that the cloud has gathered, it sets the
pending variable in the cloud to an empty set. The
function to get the feed uses the requests library to
make a HTTP call to reddit.com. A snippet of this
function is below.

def getPosts ():

subs = {}

for sub in subscriptions:

url = ’reddit.com/r/’+sub+’/.json’

page = requests.get(url)

pageJSON = page.json()

if len(filters) > 0:

Filter the data

posts = filtered

else:

posts = page.json()

subs[sub] = posts

return json.dumps(subs)

This function will grab the current posts from each
of the subscriptions and put the JSON for those posts
into a dictionary. Since this function will only run
once, it needs to utilize the scheduling functionality
of the cloud. Below is the message that the web page
sends to schedule this function to repeat.

{’action ’: ’load’,

’execute ’: 1,

’repeat ’: 30,

’write_to ’: ’pending ’,

’namespace ’: ’ns’,

’hash’: # SHA1 function hash

’token’:{’private_id ’: 0x1234 ,

’public_id ’: 0x5678 ,

’permissions ’:{’repeat ’: 30,

’repeat_limit ’: 1,

’namespaces ’: [’ns’]

}

},

’checksum ’: # Encrypted checksum

}

This request tells the cloud that it wants the func-

11

tion to execute when the message is received and to
repeat every 30 seconds after. Since the web page will
not be listening for return messages after the first ex-
ecution, the write to parameter instructs the cloud
that, when the function is repeated, the return of the
function should be stored in the pending variable in
the ns namespace.

In the permissions object, the developer has set
that most frequent that a function can repeat is every
30 seconds and only one function can be scheduled,
which allows them to limit the amount of resources
that is used. If the web page were modified to lower
the requested repeat time below what the permis-
sion state, then the cloud will send back an error
and the function will not be scheduled. As state pre-
viously, the checksum over the token prevents users
from changing the permissions, as the cloud recalcu-
lates this checksum and compares them before per-
forming the request.

8 Discussion and Future Work

This prototype largely focuses on the communication
between devices and the cloud. As such there are
some issues that would arise in creating a full cloud
environment that were not addressed in this proto-
type. In this section, we highlight a few of the more
glaring issues and discuss how these issues could be
mitigated.

Token Security

An integral piece to any network-based system is the
issue of security. The primary security mechanism
in the token exchange model is the signed hash of
the message so that the cloud can confirm that the
message was not tampered with. While this prevents
users from modifying their public token or from a
man in the middle attack, there are other security
concerns that should be considered. One of the pri-
mary issues with the current prototype is the lack of
end-to-end encryption.

This could be addressed with the addition of end-
to-end encryption, such as using a public/private key
pair. In this case, the user would register their public

key with the cloud prior to sending any messages.
When creating a message, the user would provide the
API with a private key pair to encrypt the message
with. Once the cloud receives a message it would
then decrypt the message using the public key.

While this would work, it has the potential to run
contrary to one of the primary goals of the system.
This goal is to enable low powered devices to com-
municate with the cloud, which means that the per-
formance of the encryption used will play a factor in
what performance can be achieved on the device. In
general, using key pair encryption is a heavy task that
is non-trivial to perform on sufficiently weak hard-
ware.

A middle ground for this issue would be to give
users a choice as to what messages to encrypt. An
example would be if a user is concerned about oth-
ers snooping on the byte code or namespace updates
that they are sending to the cloud, but do not want
to encrypt every message they send. In this case, the
user would register functions and update the names-
pace with encrypted messages. After the functions
are already registered, they can switch to using only
function hashes to call functions in the unencrypted
messages that follow.

State Synchronization

In this prototype, the cloud was running on a single
server. As such, it was easy to prevent two devices
using the same namespace from causing irregulari-
ties. The server knows what calls a function will be
making beforehand and in what order, so the server
can simply check for conflicts to decide whether to
run two functions concurrently.

However, in a full cloud environment this issue be-
comes much less clear. An integral part of the cloud
is the concept of distributing work across many ma-
chines, which raises the question of how the state of
a namespace can be shared in a way that resolves
namespace conflicts. A conflict in the namespace
happens when a function is beginning its execution
just after the namespace has been updated. If the
change in the namespace is not synchronized quickly
enough, the function will execute with a stale value
and could erroneously overwrite values in the names-

12

pace.
One way to address this issue is for each resource

to keep a time line of what functions were executed
since the namespace was last synced with the rest
of the cloud. Specifically, this time line would need
to keep track of only what functions modified the
namespace. These time lines are compared when a
synchronization occurs, and if actions occurred out
of order then the local namespace state is discarded
and the functions are run again with the updated
namespace.

9 Conclusion

We believe that this model of cloud computing shows
a contrast to the standard model of cloud comput-
ing, allowing for a new interaction between devices
and the cloud. It enables ad-hoc approaches like
cloud hopping, optional local execution, and creat-
ing a shared state for multiple devices on request. It
also for the user to easily control their cloud interac-
tions, enabling cloud-based open source projects and
allows for software to operate beyond the attention
of the developer.

While the work presented in this paper is not fo-
cused on evaluating the performance of a cloud of this
type, it does show that the key concepts of FaaS can
be done using an interpreted language like Python,
and that it allows for interactions that would be diffi-
cult using standard cloud computing models. It also
shows two distinct applications operating under this
workflow as opposed to a traditional cloud and shows
that there are some clear advantages in doing so.

References

[1] AllJoyn Framework. https://allseenalliance.

org/framework.

[2] Introduction to Java Remote Method Invoca-
tion. http://www-itec.uni-klu.ac.at/~harald/

ds2001/rmi/rmi.html.

[3] SmartThings. https://www.smartthings.com/.

[4] Understanding the Cloud Computing
Stack: SaaS, PaaS, IaaS. https:

//support.rackspace.com/white-paper/

understanding-the-cloud-computing-stack-saas-paas-iaas/.

[5] Merrick, P., Allen, S., and Lapp, J. Xml remote
procedure call (xml-rpc), Apr. 11 2006. US Patent
7,028,312.

[6] Tennenhouse, D., and Wetherall, D. Towards
an active network architecture. Computer Communi-
cation Review 26, 2 (Apr. 1996).

[7] Wetherall, D., Guttag, J., and Tennenhouse,
D. Ants: A toolkit for building and dynamically de-
ploying network protocols. IEEE Open Arch ‘98 (Apr.
1998).

13

