
Introducing Configuration Management  
Capabilities into CloudLab Experiments 

Abstract—Users of CloudLab (and other GENI-derived 
testbeds) commonly use image snapshots to preserve their 
working environments and to share them with other users. 
While snapshots re-create software environments byte-for-
byte, they are not conducive to composing multiple 
environments, nor are they good for experiments that must 
run across many versions of their environments with subtle 
differences. This paper describes our initial work on an 
alternative experiment management system. This system is 
built on expendable instances of the Chef configuration 
management system, and can be used “on top of” existing 
testbeds. 
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I. INTRODUCTION 
Software environments in modern distributed systems 

demonstrate great diversity and high complexity. 
Hypervisors, virtual machines (VMs), cloud frameworks, 
containers, databases, and computing frameworks – these 
are some of the types of components used in modern 
software stacks. Individual components need to efficiently 
utilize available hardware resources as well as interact with 
one another. Integration of independently designed and 
developed tools with cutting-edge versions and capabilities 
is particularly challenging. 

CloudLab [1] is an NSF-funded flexible scientific 
infrastructure for supporting fundamental advances in cloud 
architectures and applications. It is designed to facilitate 
research and development involving cutting-edge software 
environments. CloudLab provides root-level access to 
heterogeneous resources at three geographic locations: 
datacenters at the University of Utah, Clemson University, 
and the University of Wisconsin. CloudLab users combine 
resources from these sites into environments to experiment 
with architectures and software of their choice. CloudLab is 
built on the Emulab  software base[16], which has evolved 
to incorporate ideas from the GENI [5] facility.   

The Adaptable Profile-driven Testbed (Apt) [2], also 
developed and hosted at the University of Utah, is designed 
with an emphasis on consistency, transparency, and 
repeatability. Apt and CloudLab are tightly integrated: 
experiments on Apt and CloudLab can be managed through 
the CloudLab portal [3], and in this study we treat Apt as 
another cluster within the CloudLab environment. The two 
systems share the following concepts: 

• profiles – XML-based RSpec [4] documents (developed 
as part of the GENI [5] project) describing specific 
experiment hardware and software. The purpose of 
these profiles is to describe an environment that is 
either used repeatedly by one user to run many 
experiments, or is used as a way for users to share 
software artifacts with one another. 

• experiments – instances of profiles. When a profile is 
instantiated, its specification is realized on available 
resources that satisfy the environment described in the 
RSpec. The experiment owner is granted root-level 
access to these resources for a fixed period of time. 

• snapshots – saved copies of node filesystems [6]. Users 
create these full-disk custom images when they need to 
preserve custom configurations in their experiments. 
They create new ones or update the original profiles to 
launch future experiments with their snapshots rather 
than images provided by the facility. 
The resource allocation model on CloudLab is built 

around temporary leases: every resource, after being 
utilized by one user, is reclaimed and given to another user. 
If “setting up” the environment to run an experiment is 
complicated and/or time-consuming, the user is encouraged 
to snapshot the configured nodes in order to instantiate 
identical configurations with no additional effort. The 
snapshot model fits will the “build once, test repeatedly” 
experimentation, where users perform the bulk of necessary 
configuration work at once, snapshot the customized nodes, 
and proceed to testing: simulate workloads, run 
benchmarks, gather utilization statistics, visualize it, etc. 

In contrast, while developing experiments to analyze 
performance and energy efficiency of the CloudLab 
hardware, we encountered a situation where the selected 
software stack continually evolved. We frequently added 
new and modified existing software components. We 
confronted the following drawbacks: 
• Custom images cannot be automatically “merged”. If 

Image A and Image B each have a different set of tools 
installed, there is no simple way to create an Image C 
that combines both sets of tools. 

• Much effort is required to evaluate multiple versions of 
the selected software. For instance, to evaluate the 
impact of a set of compiler options on the performance 
of a particular tool, we need to rebuild all performance-
sensitive tools multiple times with different option sets, 
with each requiring an additional custom image.     
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The coarse granularity of the snapshotting mechanism 
is the root cause of these drawbacks. With no fine-grained 
mechanisms, users encounter the described overhead when 
developing complex software environments, contributing to 
the rapid growth of the number of snapshots. More 
importantly, if we share our snapshots with other CloudLab 
users, we cannot expect them to reassemble those snapshots 
in order to reuse individual tools. This raises a platform-
level question: how can CloudLab support efficient tool 
reuse among its users? Since CloudLab has over 800 users 
and 1,000 profiles after one year of operation, the 
importance of this question cannot be overstated. 

In this paper, we describe our design and 
implementation of the CloudLab infrastructure for efficient 
management and reuse of software components. We 
describe the software artifacts we have developed, which 
CloudLab users can leverage and customize. Using the 
developed profiles and custom scripts, we streamline the 
creation of experiments with instances of a configuration 
management system called Chef [7]. We demonstrate how 
we use expendable, short-term instances of Chef to manage 
nodes inside CloudLab experiments and consistently build 
complex software environments. By describing our 
progress with orchestration of software of our choice using 
Chef, we aim to set an appealing example for other users 
and encourage them to invest effort in the development of 
infrastructure code. We also demonstrate how we structure 
the developed infrastructure code to increase its usability.   

II. MOTIVATION 
The experiment that we use as motivation and example 

in this paper is one that facilitates performance analysis of 
the CloudLab hardware using the GCC compiler, OpenMPI 
for message passing, the PETSc [8] library with routines 
for scientific computing, and HPGMG [9], a robust and 
diverse benchmark that is representative of HPC 
applications. (We do not assume reader familiarity with 
these tools in this study.) We suppose that each tool can be 
properly administered (e.g., using instructions from the 
corresponding websites) and treat them as components of a 
complex software environment. In such environments, 
issues related to customization and composability are 
among our main concerns.  

After we install and configure these tools on a 
CloudLab node, we can snapshot the node. With this 
snapshot, we can recreate this configuration in future 
experiments. However, as soon as we add higher-level tools 
for execution management, in our case SLURM [10], we 
need to create two images: one for the SLURM controller 
node, and another for compute nodes. A distributed 
filesystem, such as NFS, requires the server- and client-side 
images as well. The number of images begins to multiply 
even further if we consider running experiments on 
different hardware architectures. Thus, the Utah cluster is 
built with 64-bit ARMv8 CPUs, Wisconsin – Haswell 
CPUs, Clemson – Ivy Bridge CPUs, and APT – Sandy 
Bridge CPUs. To optimize performance, we must build 
libraries and benchmarks with cluster-specific compilation 
flags. The desired performance analysis requires the 

configuration of 4 experiments, each with at least 2 
SLURM nodes. This amounts to 8 node configurations with 
unique optimizations applied. 

We expect the software environment to evolve over 
time. In the worst-case scenario, we will encounter the 
overhead of applying each modification to the created 
images up to 8 times. For instance, over the course of our 
experiments we evaluated three versions of GCC: 4.8.2, 
part of the the default Ubuntu 14.04 image, the 5.2 version 
with performance improvements for the hardware on the 
Utah clusters, and also the latest 5.3 version. We performed 
limited testing of several configurations with these 
compilers, but chose to search for an efficient alternative to 
the manual creation of all 24 node configurations. We also 
plan to equip our experiments with tools for tracking 
instantaneous power draw and the total energy consumed 
over time (described in section 5).  Similarly, a stand-alone 
image with such tools will be insufficient; instead, we 
intend to run the energy-focused tools alongside the 
performance tools. We would need to create many 
configurations by composing these sets of tools, each time 
with unique modifications applied to either of the sets. 

Aiming to reduce the overhead in the configuration of 
our experiments, we decided to invest effort in automation 
of installation procedures. We consider components, such 
as SLURM and NFS, for which the installation processes 
are exactly the same across all node types and independent 
of the rest of the software environment. After we develop 
the automated installation scripts once, we can run them in 
numerous configurations with minimal effort. In contrast, 
we need to incorporate platform-specific flags into our 
scripts for building high-performance libraries and 
benchmarks. Despite the difference in the flags, many 
actions in those scripts should be similar for different 
platforms. A single investment in configuration scripts will 
help save time in configuring future experiments, even if 
we need to adapt script parameters for particular platforms. 
We are confident that automation will reduce the amount of 
overhead, as well as greatly increase consistency. The 
developed code should also yield more transparency 
comparing to a growing number of custom images.  

III. APPROACH 
In order to systematize the outlined automation effort, 

we leverage a configuration management system (CMS). 
CMSes are built around the “infrastructure as code” 
principle, which dictates that all administrative procedures 
must be implemented as code and maintained, versioned, 
shared, and reused similar to other types of software. 
Embracing this code-centric vision, we plan to establish a 
public repository with the CloudLab infrastructure code, 
encourage community members to contribute, and 
incrementally expand the set of supported components. 

In our previous work [11], we used a CMS called Chef 
(developed by Chef Software, Inc.) to manage a small 
group-owned experimental HPC cluster. In that 
environment, Chef proved to be a powerful tool with 
support for a variety of administrative procedures. We 



showed how Chef can be deployed in highly available 
configurations with increased reliability and longevity, 
which are desired in production scenarios. In contrast, this 
study investigates creation of expendable, short-term CMS 
deployments, which correspond to the CloudLab resource 
model, where nodes are allocated to users on a temporary 
basis. We enable the following workflow for the CMS-
based experiment management: 1) a user launches an 
experiment with a fully functional instance of the selected 
CMS, 2) he or she develops infrastructure code and uses 
the CMS to execute it on the nodes under his control, 3) 
before the experiment expires, preserves his or her code, 
and 4) at later times, creates new instances of the CMS, 
obtains copies of the code, proceeds to manage new 
experiments, and continues the code development.  

Our experience suggests that Chef is an appropriate 
system for this workflow. We attempt to automate the 
installation of necessary components and dependencies to 
create complete, working Chef environments. Much of the 
deployment process will be hidden from the user. To obtain 
identical instances of Chef in steps 1 and 4, CloudLab users 
will simply choose a profile and instantiate it via the 
CloudLab portal. They may run several instances of the 
profile simultaneously on the same or different clusters.   

We must pay special attention to how we develop 
infrastructure code in order to increase its usability. In 
Chef, infrastructure code is arranged into so-called 
cookbooks, which include one or more Ruby scripts called 
recipes. Recipes typically use Chef resources, which are 
high-level constructs specifically designed to describe 
many common administrative tasks such as install a 
package, download a file, mount a filesystem, etc. Even 
though Chef recipes can include arbitrary Ruby code, 
resources help reduce the amount of Ruby code and spare 
the recipe developers from being Ruby experts.   

While developing cookbooks in step 2, we focus on the 
following goals: 
• Develop the cookbooks which run on the nodes of user 

choice with no modification. While running these 
cookbooks, novice users will install the corresponding 
components and practice the workflow that is the same 
all cookbooks: assign cookbooks to nodes, run the 
cookbooks, and check the output. 

• Ensure that advanced users can perform customization 
with minimal effort. Such parameters as version 
numbers, URLs of packages, compilation flags, 
installation paths, etc., need to be easily customizable 
rather than hard-coded.  

• Transparently support different platforms. Where 
possible, moving from one cluster to another should 
require only slight parameter changes (e.g., platform-
specific compilation flags) and minimal modification in 
the code. Additionally, we should avoid code 
redundancies: rather than developing cookbooks such as 
ARM-X, IvyBridge-X, and Haswell-X with similar code, 
we should develop a single cookbook for X which is 
capable of supporting X on all appropriate architectures. 

Preservation of the code in step 3 of the workflow is 
straightforward, since all Chef cookbooks and other code 
artifacts are developed inside chef-repo, a directory that is 
version controlled by default. The code can be “pushed” to 
a public repository, e.g., hosted at GitHub, and later 
“pulled” on the same or ad different Chef server. 

IV. ARCHITECTURE 
A minimal Chef deployment includes four 

components – a server, a client, a workstation, and a chef-
repo – all installed on the same node. The command line 
utility called knife plays the role of the workstation and 
provides an interface to server operations: bootstrap a client 
(i.e. install necessary packages and register the client with 
the server), assign cookbooks to the client, and query the 
environment, etc. The server is a central authority for 
storing cookbooks and cookbook-to-node assignments. The 
client contacts the server to obtain the latest configuration 
when the “chef-client” command is issued (Chef supports 
the pull model, as opposed to the push model used in other 
CMSes). The server returns the assigned cookbooks, and 
the client executes them. In multi-node environments, each 
node runs a client and receives updates from the server. 

We developed a CloudLab profile called Chef-
Cluster  [12]. It provides uncomplicated control over the 
deployment and configuration of Chef environments using 
the profile parameters, including:  
• N, the desired number of client nodes, 
• URL for the chef-repo used for this experiment, 
• cookbooks obtained from Chef Supermarket [13] – the 

repository with many cookbooks developed by the 
global community of Chef developers, 

• a set of cookbooks assigned to all clients. 

When instantiating Chef-Cluster via the portal, we 
choose appropriate values for these parameters and proceed 
to the experiment placement step. We select the CloudLab 
site on which we prefer to instantiate Chef-Cluster with the 
specified parameters. The portal displays the experiment’s 
physical topology where all created nodes are 
interconnected with a single experiment network. In 
contrast, the logical structure inside the experiment is such 
that all client nodes can be configured from the server 
node. Fig. 1 illustrates both the physical (in black) and 
logical structure (in red) inside an experiment with N=4. 
Since the server node also runs a client, we can use knife on 
the server node to configure all five experiment nodes.  

Once the cluster is selected and the experiment name is 
specified, the experiment is launched. At the back end, a 
Python script generates an RSpec using geni-lib [14]. The 
RSpec is populated with the XML elements that describe 
the environment for the experiment. Additional elements 
are appended to the RSpec for the described parameters, 
and the node attributes “Install Tarball” and “Execute 
Command” are used to download and run startup scripts. 

To produce a working Chef environment with the 
shown logical structure, we need to convert a pool of 



interconnected but independent nodes into a cluster 
environment with centralized management. The startup 
scripts  perform two tasks: enable the server to issue remote 
commands to the clients, and inform the server about the 
available clients. For the former, our scripts use the geni-
get key call to generate experiment-specific public and 
private keys. These keys are the same among all nodes, 
enabling secure host-based authentication within the 
experiment. The rest of our scripts run on the server node 
and leverage this authentication. For the latter, our scripts 
process experiment metadata included in the manifest. In 
contrast with the abstract requests in the profile RSpec, 
experiment manifests contain information about the actual 
experiment resources. Obtained via the geni-get manifest 
call, this information allows our scripts to register the client 
nodes with the Chef server. The scripts also assign the 
specified cookbooks to the nodes based on the specified 
parameter value, which becomes available in the manifest. 

The configuration process usually takes several 
minutes. When it completes, the script sends a notification 
via email to the user who launched the experiment. To 
reduce the learning curve for novice users, the email 
includes several knife commands for querying the created 
Chef experiment and their output. For instance, the output 
of knife cookbook list and knife node list reports which 
cookbooks and nodes are recognized by the server. 

After inspecting the environment, the user can proceed 
to configuring the nodes using their assigned cookbooks. 
We intentionally do not automate this step in our scripts, 
allowing the user to log into the nodes in the desired order, 
trigger the configuration processes by issuing the chef-
client command, and examine the output.  

V. IMPLEMENTATION 
We established the emulab/chef-repo repository 

[15], which provides public access to the cookbooks 
developed in accordance with the goals from section 3. 
Currently, the repository includes 13 Chef cookbooks and 
24 recipes, which focus primarily on the configuration of 
performance- and energy-related tools. CloudLab users can 
fork this repository, customize the existing cookbooks, and 
use the URLs of their derived versions of the repository 
when they create their Chef-Cluster experiments. Pull 
requests can also be submitted; the new code will be 
thoroughly tested before becoming a part of the official 
repository.  

If [15] is selected when Chef-Cluster is instantiated, the 
repository is cloned and the cookbooks listed in Table 1 
become available on the created server. Even though we 
developed these cookbooks to configure our specific 
software stack, some of them can be immediately useful to 
other CloudLab users. For instance, emulab-gcc, 
emulab-R, and emulab-nfs are general-purpose 
cookbooks which install the latest versions of the 
corresponding components with minimal effort. To enable 
easy customization, cookbooks optionally include 
attributes – the variables which change the cookbook’s 
behavior. We added attributes in our cookbooks for setting 
version numbers, URLs of packages, compilation flags, 
installation paths, among other parameters.  

We use the emulab prefix in the names of our 
cookbooks to emphasize that they are developed for 
Emulab [16] and derived testbeds such as CloudLab and 
Apt. This helps distinguish them from the Supermarket 
cookbooks, which are installed in the same directory on the 
server node. Our cookbooks leverage four Supermarket 
cookbooks – apt, mysql, nfs, apache2 – which are 
sufficiently documented and actively supported by many 
Chef developers. 

The cookbooks emulab-R, emulab-shiny, and 
emulab-powervis demonstrate an example of 
cookbook chaining. CloudLab provides access to power 
consumption traces from every physical server. To simplify 
the usage of this data, we developed PowerVis, a dashboard 
for analysis and visualization of power traces. This 
dashboard is an application in Shiny, the environment for 
interactive web applications powered by the R statistical 

 
Fig. 1. Physical and logical structures in a 5-node experiment –  

instance of the Chef-Cluster profile. The small box in the middle 
represents a networking switch connecting all nodes. 

TABLE I. DEVELOPED CHEF COOKBOOKS, THEIR DEPENDENCIES, AND COMPONENTS.   

Cookbooks Description Required Cookbooks Recipes Attributes 
emulab-gcc Install the latest available version of GCC apt 1 N/A 
emulab-openmpi Install and make available OpenMPI emulab-gcc 1 4 
emulab-slurm Configure SLURM controller and compute nodes apt, mysql 3 18 
emulab-nfs Install NFS server and clients, export/mount directory nfs 3 12 
emulab-petsc Obtains and builds PETSc emulab-openmpi 1 2 
emulab-hpgmg Obtains and builds HPGMG emulab-petsc 1 4 
emulab-R Install the latest available version of R package emulab-gcc 3 1 
emulab-shiny Install Shiny server and necessary R library emulab-R 1 2 
emulab-powervis    Install PowerVis and its dependencies emulab-shiny, apache2 1 1 

 



language. With the help of dependencies expressed in the 
cookbook metadata files, emulab-powervis calls 
emulab-shiny, which, in its turn, calls emulab-R. 
Therefore, emulab-powervis is a top-level cookbook 
which installs all necessary underlying components and 
enables analysis and visualization of the experiment-wide 
power data. Similarly, emulab-hpgmg consolidates the 
installation of HPGMG, PETSc, OpenMPI, and GCC.   

Since a single model cannot fit perfectly all scenarios, 
Chef provides the developer with enough flexibility to 
organize the code into structures that match specific 
environments and applications. Some of our cookbooks 
support different platforms with the help of multiple 
recipes. For instance, inside emulab-R, the default 
cookbook identifies the node architecture and calls either 
the aarch64.rb (on ARMv8 nodes) or the x86.rb (on 
the rest of the nodes) recipe to take platform-specific 
actions. In contrast, emulab-hpgmg uses a single recipe 
which selects optimal compilation flags from its attributes 
and runs the same code on all platforms.  

VI. EXPERIENCE 
We used Chef to manage configurations inside 

experiments on each of the CloudLab sites and turned 
many experiments into fully functional computing clusters 
with the described performance and energy tools. We often 
incrementally built our clusters: we started by installing 
HPGMG (and its dependencies); after single-node tests, we 
enabled multi-node runs by installing SLURM and NFS; 
then, we installed PowerVis to perform power and energy 
analysis of the performed runs. 

Using the node names shown in Fig. 1, below we 
illustrate how we configured our clusters. Initially, we ran: 

# knife node run_list set head "emulab-hpgmg" 

Then, the “chef-client” command executed on head 
triggered the execution of the assigned emulab-hpgmg 
cookbook. These two steps, the assignment and the 
configuration, can easily be repeated many times 
throughout the experiment lifecycle. We can use the add 
function to modify run_lists, the lists which define what is 
executed on individual nodes: 

# knife node run_list add head "emulab-slurm" 
# knife exec -E 'nodes.find("name:node-*") { 
|n| n.run_list.add("emulab-slurm") ; n.save}' 

While the first command assigns emulab-slurm to the 
server node (head), the second command assigns the same 
cookbook to the client nodes (node-[0-3]) using the 
wildcard matching for the node names. The client nodes 
can now be configured one at a time. Alternatively, if the 
order is insignificant, we can trigger the batch update by 
running “knife ssh 'name:*' chef-client” on the 
server node (emulating the push-based model). We can 
assign additional code artifacts to our nodes: 

# knife exec -E 'nodes.find("node:*") { 
|n| n.run_list.add("<artifact>") ; n.save}' 

where <artifact> can take one of these forms: “recipe 
[<cookbook name>::<recipe name>]”, “recipe 
[<cookbook name>]”, or  “<cookbook name>”. In the 
last two cases the cookbook’s default.rb recipe is 
used. Moreover, we can also use the “role[<role 
name>]” notation to assign Chef roles – the higher-level 
code artifacts which set attributes, complementing and 
possibly overriding attributes specified inside individual 
cookbooks, and consolidate ordered groups of cookbooks. 

In our computing clusters configured inside CloudLab 
experiments, we typically ran emulab-hpgmg, emulab-
slurm, emulab-nfs, and emulab-powervis (along 
with their dependencies) on the server nodes and executed 
emulab-hpgmg, emulab-nfs, and emulab-slurm 
on the clients. After performing the aforementioned 
incremental development and thoroughly testing each 
component, we streamlined this assignment with the help 
of custom roles. The developed controller and compute 
roles (available at [15]) consolidated the server- and the 
client-side cookbooks. We also ensured that the individual 
cookbooks included in these roles work together. For 
instance, the roles set the attributes such that HPGMG, 
PETSc, and OpenMPI are installed inside the directory 
used as the cluster NFS share. These tools, once installed 
on the server, become available on all clients when the NFS 
share is mounted. Consequently, we can reduce the number 
of cookbooks included in the compute role. 

The controller and compute roles have sufficiently 
satisfied our configuration needs. We used these roles to 
consistently create computing clusters at different 
CloudLab sites and performed many benchmarking 
experiments. While running HPGMG, we gained better 
understanding of the benchmark code and the properties of 
the available hardware. In addition to the performance 
analysis, we processed power traces using PowerVis. Not 
only can we identify the CloudLab site that is the most 
appealing for running HPGMG in terms of Watts and 
Joules, we can use energy efficiency as the deciding factor. 
Thus, for our 8-core HPGMG runs, the estimated energy 
efficiency of the Utah nodes is between 0.06 and 0.11 
GF/W (gigflop per second per watt). For the same runs, this 
efficiency is higher by 42-55% at Clemson and 62-70% on 
Apt. In future work, we will perform a comprehensive 
analysis of the energy efficiency of the CloudLab resources 
using a number of diverse benchmarks. From the 
infrastructure standpoint, we will reuse the existing 
components and develop additional cookbooks only for the 
new benchmarks and their dependencies. 

VII. RELATED WORK 
In [17], the authors introduce cloudinit.d, a utility for 

contextualization of VMs, i.e. assignment of application 
roles to individual nodes in virtual clusters. AWS 
CloudFormation templates [18] allow launching virtual 
clusters on the AWS cloud in pre-configured states. In both 
cases, the specified configurations are realized when nodes 
boot. Similarly, CloudLab allows users to create and use 
custom images. In contrast, we developed a profile where 



Chef naturally supports recontextualization, i.e. incremental 
development and modifications in node configurations, 
throughout the experiment lifecycle.  

In [19], the authors propose custom configuration and 
reconfiguration capabilities. Kameleon in [20] is a software 
appliance builder which promotes reconstructability using a 
custom configuration specification syntax. In contrast, we 
demonstrate how users of CloudLab can create instances of 
Chef, a modern CMS with an active and diverse global user 
community. They can use Chef to develop custom 
infrastructure code and also take full advantage of the 
publicly available code developed by the community. 

Among the GENI-focused projects, GENI Experiment 
Engine [21] and LabWiki [22] are the most relevant 
experiment management solutions. GENI Experiment 
Engine provides support for configuring experiments with 
Ansible, a free, open-source automation tool. While 
Ansible is considered intuitive and easy to operate, we 
anticipate that hierarchies of roles, cookbooks, and recipes 
in Chef are more conducive to supporting customization 
and composability of configurations in multi-node software 
environments. Additionally, Chef recipes equipped with 
fully featured Ruby code will likely provide more 
flexibility in complex experiments than Ansible playbooks 
implemented in YAML. 

VIII. SUMMARY AND FUTURE WORK 
In this paper, we demonstrate how the Chef 

configuration management system can help orchestrate 
components of software environments in CloudLab 
experiments. Chef helps us address customization and 
composability issues encountered when developing multi-
component and multi-node software stacks capable of 
running on multiple hardware platforms.  

We will continue examining possible organizations of 
Chef components that are appropriate for CloudLab 
experiments. For instance, we will investigate if it is 
advantageous to install and configure Chef workstations on 
user machines to manage CloudLab resources. We will also 
explore another model where a single CloudLab-wide Chef 
server is used, nodes in every experiment become its 
clients, and different users and experiments are isolated 
from each other using unique server credentials. We will 
aim to enable configuration management not only on new 
experiments but also transparently support existing 
experiments. Rather than using a custom profile, we 
consider delegating configuration of Chef components to 
the CloudLab back-end services and adding to the portal an 
optional per-node checkbox for enabling Chef. This will 
spare the users from managing custom tarballs and startup 
scripts in their profiles. We plan to expand the established 
repository with infrastructure code beyond the 
performance- and energy-focused tools and develop Chef 
cookbooks for a variety of applications used on CloudLab 
and related testbeds. 

Ansible, CFEngine and Puppet are commonly used 
Chef alternatives, each with unique advantages and 
disadvantages. In future work, we will investigate which 

particular advantages each of these systems can bring to the 
users on CloudLab and in testbed environments in general. 
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