
Introducing Configuration Management
Capabilities into CloudLab Experiments

Abstract—Users of CloudLab (and other GENI-derived
testbeds) commonly use image snapshots to preserve their
working environments and to share them with other users.
While snapshots re-create software environments byte-for-
byte, they are not conducive to composing multiple
environments, nor are they good for experiments that must
run across many versions of their environments with subtle
differences. This paper describes our initial work on an
alternative experiment management system. This system is
built on expendable instances of the Chef configuration
management system, and can be used “on top of” existing
testbeds.

Keywords—testbed; cloud; configuration management
system; reconstructability.

I. INTRODUCTION
Software environments in modern distributed systems

demonstrate great diversity and high complexity.
Hypervisors, virtual machines (VMs), cloud frameworks,
containers, databases, and computing frameworks – these
are some of the types of components used in modern
software stacks. Individual components need to efficiently
utilize available hardware resources as well as interact with
one another. Integration of independently designed and
developed tools with cutting-edge versions and capabilities
is particularly challenging.

CloudLab [1] is an NSF-funded flexible scientific
infrastructure for supporting fundamental advances in cloud
architectures and applications. It is designed to facilitate
research and development involving cutting-edge software
environments. CloudLab provides root-level access to
heterogeneous resources at three geographic locations:
datacenters at the University of Utah, Clemson University,
and the University of Wisconsin. CloudLab users combine
resources from these sites into environments to experiment
with architectures and software of their choice. CloudLab is
built on the Emulab software base[16], which has evolved
to incorporate ideas from the GENI [5] facility. 

The Adaptable Profile-driven Testbed (Apt) [2], also
developed and hosted at the University of Utah, is designed
with an emphasis on consistency, transparency, and
repeatability. Apt and CloudLab are tightly integrated:
experiments on Apt and CloudLab can be managed through
the CloudLab portal [3], and in this study we treat Apt as
another cluster within the CloudLab environment. The two
systems share the following concepts:

• profiles – XML-based RSpec [4] documents (developed
as part of the GENI [5] project) describing specific
experiment hardware and software. The purpose of
these profiles is to describe an environment that is
either used repeatedly by one user to run many
experiments, or is used as a way for users to share
software artifacts with one another.

• experiments – instances of profiles. When a profile is
instantiated, its specification is realized on available
resources that satisfy the environment described in the
RSpec. The experiment owner is granted root-level
access to these resources for a fixed period of time.

• snapshots – saved copies of node filesystems [6]. Users
create these full-disk custom images when they need to
preserve custom configurations in their experiments.
They create new ones or update the original profiles to
launch future experiments with their snapshots rather
than images provided by the facility.
The resource allocation model on CloudLab is built

around temporary leases: every resource, after being
utilized by one user, is reclaimed and given to another user.
If “setting up” the environment to run an experiment is
complicated and/or time-consuming, the user is encouraged
to snapshot the configured nodes in order to instantiate
identical configurations with no additional effort. The
snapshot model fits will the “build once, test repeatedly”
experimentation, where users perform the bulk of necessary
configuration work at once, snapshot the customized nodes,
and proceed to testing: simulate workloads, run
benchmarks, gather utilization statistics, visualize it, etc.

In contrast, while developing experiments to analyze
performance and energy efficiency of the CloudLab
hardware, we encountered a situation where the selected
software stack continually evolved. We frequently added
new and modified existing software components. We
confronted the following drawbacks:
• Custom images cannot be automatically “merged”. If

Image A and Image B each have a different set of tools
installed, there is no simple way to create an Image C
that combines both sets of tools.

• Much effort is required to evaluate multiple versions of
the selected software. For instance, to evaluate the
impact of a set of compiler options on the performance
of a particular tool, we need to rebuild all performance-
sensitive tools multiple times with different option sets,
with each requiring an additional custom image.

Dmitry Duplyakin
Computer Science

University of Colorado, Boulder, USA
dmitry.duplyakin@colorado.edu

Robert Ricci
School of Computing

University of Utah, Salt Lake City, USA
ricci@cs.utah.edu

The coarse granularity of the snapshotting mechanism
is the root cause of these drawbacks. With no fine-grained
mechanisms, users encounter the described overhead when
developing complex software environments, contributing to
the rapid growth of the number of snapshots. More
importantly, if we share our snapshots with other CloudLab
users, we cannot expect them to reassemble those snapshots
in order to reuse individual tools. This raises a platform-
level question: how can CloudLab support efficient tool
reuse among its users? Since CloudLab has over 800 users
and 1,000 profiles after one year of operation, the
importance of this question cannot be overstated.

In this paper, we describe our design and
implementation of the CloudLab infrastructure for efficient
management and reuse of software components. We
describe the software artifacts we have developed, which
CloudLab users can leverage and customize. Using the
developed profiles and custom scripts, we streamline the
creation of experiments with instances of a configuration
management system called Chef [7]. We demonstrate how
we use expendable, short-term instances of Chef to manage
nodes inside CloudLab experiments and consistently build
complex software environments. By describing our
progress with orchestration of software of our choice using
Chef, we aim to set an appealing example for other users
and encourage them to invest effort in the development of
infrastructure code. We also demonstrate how we structure
the developed infrastructure code to increase its usability.

II. MOTIVATION
The experiment that we use as motivation and example

in this paper is one that facilitates performance analysis of
the CloudLab hardware using the GCC compiler, OpenMPI
for message passing, the PETSc [8] library with routines
for scientific computing, and HPGMG [9], a robust and
diverse benchmark that is representative of HPC
applications. (We do not assume reader familiarity with
these tools in this study.) We suppose that each tool can be
properly administered (e.g., using instructions from the
corresponding websites) and treat them as components of a
complex software environment. In such environments,
issues related to customization and composability are
among our main concerns.

After we install and configure these tools on a
CloudLab node, we can snapshot the node. With this
snapshot, we can recreate this configuration in future
experiments. However, as soon as we add higher-level tools
for execution management, in our case SLURM [10], we
need to create two images: one for the SLURM controller
node, and another for compute nodes. A distributed
filesystem, such as NFS, requires the server- and client-side
images as well. The number of images begins to multiply
even further if we consider running experiments on
different hardware architectures. Thus, the Utah cluster is
built with 64-bit ARMv8 CPUs, Wisconsin – Haswell
CPUs, Clemson – Ivy Bridge CPUs, and APT – Sandy
Bridge CPUs. To optimize performance, we must build
libraries and benchmarks with cluster-specific compilation
flags. The desired performance analysis requires the

configuration of 4 experiments, each with at least 2
SLURM nodes. This amounts to 8 node configurations with
unique optimizations applied.

We expect the software environment to evolve over
time. In the worst-case scenario, we will encounter the
overhead of applying each modification to the created
images up to 8 times. For instance, over the course of our
experiments we evaluated three versions of GCC: 4.8.2,
part of the the default Ubuntu 14.04 image, the 5.2 version
with performance improvements for the hardware on the
Utah clusters, and also the latest 5.3 version. We performed
limited testing of several configurations with these
compilers, but chose to search for an efficient alternative to
the manual creation of all 24 node configurations. We also
plan to equip our experiments with tools for tracking
instantaneous power draw and the total energy consumed
over time (described in section 5). Similarly, a stand-alone
image with such tools will be insufficient; instead, we
intend to run the energy-focused tools alongside the
performance tools. We would need to create many
configurations by composing these sets of tools, each time
with unique modifications applied to either of the sets.

Aiming to reduce the overhead in the configuration of
our experiments, we decided to invest effort in automation
of installation procedures. We consider components, such
as SLURM and NFS, for which the installation processes
are exactly the same across all node types and independent
of the rest of the software environment. After we develop
the automated installation scripts once, we can run them in
numerous configurations with minimal effort. In contrast,
we need to incorporate platform-specific flags into our
scripts for building high-performance libraries and
benchmarks. Despite the difference in the flags, many
actions in those scripts should be similar for different
platforms. A single investment in configuration scripts will
help save time in configuring future experiments, even if
we need to adapt script parameters for particular platforms.
We are confident that automation will reduce the amount of
overhead, as well as greatly increase consistency. The
developed code should also yield more transparency
comparing to a growing number of custom images.

III. APPROACH
In order to systematize the outlined automation effort,

we leverage a configuration management system (CMS).
CMSes are built around the “infrastructure as code”
principle, which dictates that all administrative procedures
must be implemented as code and maintained, versioned,
shared, and reused similar to other types of software.
Embracing this code-centric vision, we plan to establish a
public repository with the CloudLab infrastructure code,
encourage community members to contribute, and
incrementally expand the set of supported components.

In our previous work [11], we used a CMS called Chef
(developed by Chef Software, Inc.) to manage a small
group-owned experimental HPC cluster. In that
environment, Chef proved to be a powerful tool with
support for a variety of administrative procedures. We

showed how Chef can be deployed in highly available
configurations with increased reliability and longevity,
which are desired in production scenarios. In contrast, this
study investigates creation of expendable, short-term CMS
deployments, which correspond to the CloudLab resource
model, where nodes are allocated to users on a temporary
basis. We enable the following workflow for the CMS-
based experiment management: 1) a user launches an
experiment with a fully functional instance of the selected
CMS, 2) he or she develops infrastructure code and uses
the CMS to execute it on the nodes under his control, 3)
before the experiment expires, preserves his or her code,
and 4) at later times, creates new instances of the CMS,
obtains copies of the code, proceeds to manage new
experiments, and continues the code development.

Our experience suggests that Chef is an appropriate
system for this workflow. We attempt to automate the
installation of necessary components and dependencies to
create complete, working Chef environments. Much of the
deployment process will be hidden from the user. To obtain
identical instances of Chef in steps 1 and 4, CloudLab users
will simply choose a profile and instantiate it via the
CloudLab portal. They may run several instances of the
profile simultaneously on the same or different clusters.

We must pay special attention to how we develop
infrastructure code in order to increase its usability. In
Chef, infrastructure code is arranged into so-called
cookbooks, which include one or more Ruby scripts called
recipes. Recipes typically use Chef resources, which are
high-level constructs specifically designed to describe
many common administrative tasks such as install a
package, download a file, mount a filesystem, etc. Even
though Chef recipes can include arbitrary Ruby code,
resources help reduce the amount of Ruby code and spare
the recipe developers from being Ruby experts.

While developing cookbooks in step 2, we focus on the
following goals:
• Develop the cookbooks which run on the nodes of user

choice with no modification. While running these
cookbooks, novice users will install the corresponding
components and practice the workflow that is the same
all cookbooks: assign cookbooks to nodes, run the
cookbooks, and check the output.

• Ensure that advanced users can perform customization
with minimal effort. Such parameters as version
numbers, URLs of packages, compilation flags,
installation paths, etc., need to be easily customizable
rather than hard-coded.

• Transparently support different platforms. Where
possible, moving from one cluster to another should
require only slight parameter changes (e.g., platform-
specific compilation flags) and minimal modification in
the code. Additionally, we should avoid code
redundancies: rather than developing cookbooks such as
ARM-X, IvyBridge-X, and Haswell-X with similar code,
we should develop a single cookbook for X which is
capable of supporting X on all appropriate architectures.

Preservation of the code in step 3 of the workflow is
straightforward, since all Chef cookbooks and other code
artifacts are developed inside chef-repo, a directory that is
version controlled by default. The code can be “pushed” to
a public repository, e.g., hosted at GitHub, and later
“pulled” on the same or ad different Chef server.

IV. ARCHITECTURE
A minimal Chef deployment includes four

components – a server, a client, a workstation, and a chef-
repo – all installed on the same node. The command line
utility called knife plays the role of the workstation and
provides an interface to server operations: bootstrap a client
(i.e. install necessary packages and register the client with
the server), assign cookbooks to the client, and query the
environment, etc. The server is a central authority for
storing cookbooks and cookbook-to-node assignments. The
client contacts the server to obtain the latest configuration
when the “chef-client” command is issued (Chef supports
the pull model, as opposed to the push model used in other
CMSes). The server returns the assigned cookbooks, and
the client executes them. In multi-node environments, each
node runs a client and receives updates from the server.

We developed a CloudLab profile called Chef-
Cluster [12]. It provides uncomplicated control over the
deployment and configuration of Chef environments using
the profile parameters, including:
• N, the desired number of client nodes,
• URL for the chef-repo used for this experiment,
• cookbooks obtained from Chef Supermarket [13] – the

repository with many cookbooks developed by the
global community of Chef developers,

• a set of cookbooks assigned to all clients.

When instantiating Chef-Cluster via the portal, we
choose appropriate values for these parameters and proceed
to the experiment placement step. We select the CloudLab
site on which we prefer to instantiate Chef-Cluster with the
specified parameters. The portal displays the experiment’s
physical topology where all created nodes are
interconnected with a single experiment network. In
contrast, the logical structure inside the experiment is such
that all client nodes can be configured from the server
node. Fig. 1 illustrates both the physical (in black) and
logical structure (in red) inside an experiment with N=4.
Since the server node also runs a client, we can use knife on
the server node to configure all five experiment nodes.

Once the cluster is selected and the experiment name is
specified, the experiment is launched. At the back end, a
Python script generates an RSpec using geni-lib [14]. The
RSpec is populated with the XML elements that describe
the environment for the experiment. Additional elements
are appended to the RSpec for the described parameters,
and the node attributes “Install Tarball” and “Execute
Command” are used to download and run startup scripts.

To produce a working Chef environment with the
shown logical structure, we need to convert a pool of

interconnected but independent nodes into a cluster
environment with centralized management. The startup
scripts perform two tasks: enable the server to issue remote
commands to the clients, and inform the server about the
available clients. For the former, our scripts use the geni-
get key call to generate experiment-specific public and
private keys. These keys are the same among all nodes,
enabling secure host-based authentication within the
experiment. The rest of our scripts run on the server node
and leverage this authentication. For the latter, our scripts
process experiment metadata included in the manifest. In
contrast with the abstract requests in the profile RSpec,
experiment manifests contain information about the actual
experiment resources. Obtained via the geni-get manifest
call, this information allows our scripts to register the client
nodes with the Chef server. The scripts also assign the
specified cookbooks to the nodes based on the specified
parameter value, which becomes available in the manifest.

The configuration process usually takes several
minutes. When it completes, the script sends a notification
via email to the user who launched the experiment. To
reduce the learning curve for novice users, the email
includes several knife commands for querying the created
Chef experiment and their output. For instance, the output
of knife cookbook list and knife node list reports which
cookbooks and nodes are recognized by the server.

After inspecting the environment, the user can proceed
to configuring the nodes using their assigned cookbooks.
We intentionally do not automate this step in our scripts,
allowing the user to log into the nodes in the desired order,
trigger the configuration processes by issuing the chef-
client command, and examine the output.

V. IMPLEMENTATION
We established the emulab/chef-repo repository

[15], which provides public access to the cookbooks
developed in accordance with the goals from section 3.
Currently, the repository includes 13 Chef cookbooks and
24 recipes, which focus primarily on the configuration of
performance- and energy-related tools. CloudLab users can
fork this repository, customize the existing cookbooks, and
use the URLs of their derived versions of the repository
when they create their Chef-Cluster experiments. Pull
requests can also be submitted; the new code will be
thoroughly tested before becoming a part of the official
repository.

If [15] is selected when Chef-Cluster is instantiated, the
repository is cloned and the cookbooks listed in Table 1
become available on the created server. Even though we
developed these cookbooks to configure our specific
software stack, some of them can be immediately useful to
other CloudLab users. For instance, emulab-gcc,
emulab-R, and emulab-nfs are general-purpose
cookbooks which install the latest versions of the
corresponding components with minimal effort. To enable
easy customization, cookbooks optionally include
attributes – the variables which change the cookbook’s
behavior. We added attributes in our cookbooks for setting
version numbers, URLs of packages, compilation flags,
installation paths, among other parameters.

We use the emulab prefix in the names of our
cookbooks to emphasize that they are developed for
Emulab [16] and derived testbeds such as CloudLab and
Apt. This helps distinguish them from the Supermarket
cookbooks, which are installed in the same directory on the
server node. Our cookbooks leverage four Supermarket
cookbooks – apt, mysql, nfs, apache2 – which are
sufficiently documented and actively supported by many
Chef developers.

The cookbooks emulab-R, emulab-shiny, and
emulab-powervis demonstrate an example of
cookbook chaining. CloudLab provides access to power
consumption traces from every physical server. To simplify
the usage of this data, we developed PowerVis, a dashboard
for analysis and visualization of power traces. This
dashboard is an application in Shiny, the environment for
interactive web applications powered by the R statistical

Fig. 1. Physical and logical structures in a 5-node experiment –

instance of the Chef-Cluster profile. The small box in the middle
represents a networking switch connecting all nodes.

TABLE I. DEVELOPED CHEF COOKBOOKS, THEIR DEPENDENCIES, AND COMPONENTS.

Cookbooks Description Required Cookbooks Recipes Attributes
emulab-gcc Install the latest available version of GCC apt 1 N/A
emulab-openmpi Install and make available OpenMPI emulab-gcc 1 4
emulab-slurm Configure SLURM controller and compute nodes apt, mysql 3 18
emulab-nfs Install NFS server and clients, export/mount directory nfs 3 12
emulab-petsc Obtains and builds PETSc emulab-openmpi 1 2
emulab-hpgmg Obtains and builds HPGMG emulab-petsc 1 4
emulab-R Install the latest available version of R package emulab-gcc 3 1
emulab-shiny Install Shiny server and necessary R library emulab-R 1 2
emulab-powervis Install PowerVis and its dependencies emulab-shiny, apache2 1 1

language. With the help of dependencies expressed in the
cookbook metadata files, emulab-powervis calls
emulab-shiny, which, in its turn, calls emulab-R.
Therefore, emulab-powervis is a top-level cookbook
which installs all necessary underlying components and
enables analysis and visualization of the experiment-wide
power data. Similarly, emulab-hpgmg consolidates the
installation of HPGMG, PETSc, OpenMPI, and GCC.

Since a single model cannot fit perfectly all scenarios,
Chef provides the developer with enough flexibility to
organize the code into structures that match specific
environments and applications. Some of our cookbooks
support different platforms with the help of multiple
recipes. For instance, inside emulab-R, the default
cookbook identifies the node architecture and calls either
the aarch64.rb (on ARMv8 nodes) or the x86.rb (on
the rest of the nodes) recipe to take platform-specific
actions. In contrast, emulab-hpgmg uses a single recipe
which selects optimal compilation flags from its attributes
and runs the same code on all platforms.

VI. EXPERIENCE
We used Chef to manage configurations inside

experiments on each of the CloudLab sites and turned
many experiments into fully functional computing clusters
with the described performance and energy tools. We often
incrementally built our clusters: we started by installing
HPGMG (and its dependencies); after single-node tests, we
enabled multi-node runs by installing SLURM and NFS;
then, we installed PowerVis to perform power and energy
analysis of the performed runs.

Using the node names shown in Fig. 1, below we
illustrate how we configured our clusters. Initially, we ran:

knife node run_list set head "emulab-hpgmg"

Then, the “chef-client” command executed on head
triggered the execution of the assigned emulab-hpgmg
cookbook. These two steps, the assignment and the
configuration, can easily be repeated many times
throughout the experiment lifecycle. We can use the add
function to modify run_lists, the lists which define what is
executed on individual nodes:

knife node run_list add head "emulab-slurm"
knife exec -E 'nodes.find("name:node-*") {
|n| n.run_list.add("emulab-slurm") ; n.save}'

While the first command assigns emulab-slurm to the
server node (head), the second command assigns the same
cookbook to the client nodes (node-[0-3]) using the
wildcard matching for the node names. The client nodes
can now be configured one at a time. Alternatively, if the
order is insignificant, we can trigger the batch update by
running “knife ssh 'name:*' chef-client” on the
server node (emulating the push-based model). We can
assign additional code artifacts to our nodes:

knife exec -E 'nodes.find("node:*") {
|n| n.run_list.add("<artifact>") ; n.save}'

where <artifact> can take one of these forms: “recipe
[<cookbook name>::<recipe name>]”, “recipe
[<cookbook name>]”, or “<cookbook name>”. In the
last two cases the cookbook’s default.rb recipe is
used. Moreover, we can also use the “role[<role
name>]” notation to assign Chef roles – the higher-level
code artifacts which set attributes, complementing and
possibly overriding attributes specified inside individual
cookbooks, and consolidate ordered groups of cookbooks.

In our computing clusters configured inside CloudLab
experiments, we typically ran emulab-hpgmg, emulab-
slurm, emulab-nfs, and emulab-powervis (along
with their dependencies) on the server nodes and executed
emulab-hpgmg, emulab-nfs, and emulab-slurm
on the clients. After performing the aforementioned
incremental development and thoroughly testing each
component, we streamlined this assignment with the help
of custom roles. The developed controller and compute
roles (available at [15]) consolidated the server- and the
client-side cookbooks. We also ensured that the individual
cookbooks included in these roles work together. For
instance, the roles set the attributes such that HPGMG,
PETSc, and OpenMPI are installed inside the directory
used as the cluster NFS share. These tools, once installed
on the server, become available on all clients when the NFS
share is mounted. Consequently, we can reduce the number
of cookbooks included in the compute role.

The controller and compute roles have sufficiently
satisfied our configuration needs. We used these roles to
consistently create computing clusters at different
CloudLab sites and performed many benchmarking
experiments. While running HPGMG, we gained better
understanding of the benchmark code and the properties of
the available hardware. In addition to the performance
analysis, we processed power traces using PowerVis. Not
only can we identify the CloudLab site that is the most
appealing for running HPGMG in terms of Watts and
Joules, we can use energy efficiency as the deciding factor.
Thus, for our 8-core HPGMG runs, the estimated energy
efficiency of the Utah nodes is between 0.06 and 0.11
GF/W (gigflop per second per watt). For the same runs, this
efficiency is higher by 42-55% at Clemson and 62-70% on
Apt. In future work, we will perform a comprehensive
analysis of the energy efficiency of the CloudLab resources
using a number of diverse benchmarks. From the
infrastructure standpoint, we will reuse the existing
components and develop additional cookbooks only for the
new benchmarks and their dependencies.

VII. RELATED WORK
In [17], the authors introduce cloudinit.d, a utility for

contextualization of VMs, i.e. assignment of application
roles to individual nodes in virtual clusters. AWS
CloudFormation templates [18] allow launching virtual
clusters on the AWS cloud in pre-configured states. In both
cases, the specified configurations are realized when nodes
boot. Similarly, CloudLab allows users to create and use
custom images. In contrast, we developed a profile where

Chef naturally supports recontextualization, i.e. incremental
development and modifications in node configurations,
throughout the experiment lifecycle.

In [19], the authors propose custom configuration and
reconfiguration capabilities. Kameleon in [20] is a software
appliance builder which promotes reconstructability using a
custom configuration specification syntax. In contrast, we
demonstrate how users of CloudLab can create instances of
Chef, a modern CMS with an active and diverse global user
community. They can use Chef to develop custom
infrastructure code and also take full advantage of the
publicly available code developed by the community.

Among the GENI-focused projects, GENI Experiment
Engine [21] and LabWiki [22] are the most relevant
experiment management solutions. GENI Experiment
Engine provides support for configuring experiments with
Ansible, a free, open-source automation tool. While
Ansible is considered intuitive and easy to operate, we
anticipate that hierarchies of roles, cookbooks, and recipes
in Chef are more conducive to supporting customization
and composability of configurations in multi-node software
environments. Additionally, Chef recipes equipped with
fully featured Ruby code will likely provide more
flexibility in complex experiments than Ansible playbooks
implemented in YAML.

VIII. SUMMARY AND FUTURE WORK
In this paper, we demonstrate how the Chef

configuration management system can help orchestrate
components of software environments in CloudLab
experiments. Chef helps us address customization and
composability issues encountered when developing multi-
component and multi-node software stacks capable of
running on multiple hardware platforms.

We will continue examining possible organizations of
Chef components that are appropriate for CloudLab
experiments. For instance, we will investigate if it is
advantageous to install and configure Chef workstations on
user machines to manage CloudLab resources. We will also
explore another model where a single CloudLab-wide Chef
server is used, nodes in every experiment become its
clients, and different users and experiments are isolated
from each other using unique server credentials. We will
aim to enable configuration management not only on new
experiments but also transparently support existing
experiments. Rather than using a custom profile, we
consider delegating configuration of Chef components to
the CloudLab back-end services and adding to the portal an
optional per-node checkbox for enabling Chef. This will
spare the users from managing custom tarballs and startup
scripts in their profiles. We plan to expand the established
repository with infrastructure code beyond the
performance- and energy-focused tools and develop Chef
cookbooks for a variety of applications used on CloudLab
and related testbeds.

Ansible, CFEngine and Puppet are commonly used
Chef alternatives, each with unique advantages and
disadvantages. In future work, we will investigate which

particular advantages each of these systems can bring to the
users on CloudLab and in testbed environments in general.

ACKNOWLEDGMENTS
We would like to thank the CloudLab and Emulab staff

at the University of Utah for feedback on the design of this
system, as well as participants in the GENI project for
inspiration by developing a variety of other experiment
tools. This material is based upon work supported by the
National Science Foundation under Grant Nos. 1338155
and 1419199.

REFERENCES
[1] R. Ricci and E. Eric, "Introducing CloudLab: Scientific Infrastructure for

Advancing Cloud Architectures and Applications," ;login:, Usenix, no.
2014.

[2] R. Ricci et al., "Apt: A Platform for Repeatable Research in Computer
Science," ACM SIGOPS Operating Systems Review, vol. 49, no. 1, Jan. 2015.

[3] "CloudLab," 2016. [Online]. Available: http://cloudlab.us/. Accessed: Jan.
20, 2016.

[4] "RSpec Documents in GENI". [Online]. Available:
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs/. Accessed: Jan
26, 2016.

[5] M. Berman et al., "GENI: A federated testbed for innovative network
experiments", Computer Networks, vol. 61, Pages 5-23, Mar. 2014.

[6] M. Hibler et al. "Fast, Scalable Disk Imaging with Frisbee." USENIX
Annual Technical Conference, General Track. 2003.

[7] "All about Chef,". [Online]. Available: https://docs.chef.io/. Accessed: Jan.
20, 2016.

[8] "PETSc," [Online]. Available: http://www.mcs.anl.gov/petsc/. Accessed:
Jan 26, 2016.

[9] "HPGMG,". [Online]. Available: https://hpgmg.org/. Accessed: Jan. 20, 2016.
[10] "SLURM,". [Online]. Available: http://slurm.schedmd.com/. Accessed: Jan.

26, 2016.
[11] D. Duplyakin, M. Haney, and H. Tufo, "Architecting a Persistent and

Reliable Configuration Management System," Proceedings of the 6th
Workshop on Scientific Cloud Computing (ScienceCloud ’15). ACM, pp.
11–16.

[12] "Chef-Cluster - CloudLab Profile," 2015. [Online]. Available:
https://www.cloudlab.us/p/abdb27f1-9392-11e5-88c8-277b2fdb9c32.
Accessed: Jan. 20, 2016.

[13] "Chef Supermarket,". [Online]. Available: https://supermarket.chef.io/.
Accessed: Jan. 20, 2016.

[14] "geni-lib’s documentation,". [Online]. Available: http://geni-
lib.readthedocs.org/. Accessed:Jan. 20, 2016.

[15] "Emulab chef-repo," GitHub. [Online]. Available:
https://github.com/emulab/chef-repo. Accessed: Jan. 20, 2016.

[16] "Emulab,". [Online]. Available:
https://www.emulab.net/. Accessed: Jan. 20, 2016.

[17] J. Bresnahan et al., "Managing appliance launches in infrastructure clouds,"
In Proceedings of the 2011 TeraGrid Conference: Extreme Digital
Discovery (TG '11). ACM, New York, NY, USA.

[18] "AWS CloudFormation," 2010. [Online]. Available:
https://aws.amazon.com/cloudformation/. Accessed: Jan. 20, 2016.

[19] D. Armstrong et al., "Contextualization: Dynamic configuration of virtual
machines," Journal of Cloud Computing, vol. 4, no. 1, Jul. 2015.

[20] C. Ruiz et al., "Reconstructable software appliances with Kameleon," ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 80–89, Jan. 2015.

[21] A. Bavier et al., "The GENI experiment engine," in Teletraffic Congress
(ITC), 2014 26th International , pp. 1-6,9-11 Sept. 2014.

[22] "LabWiki," [Online]. Available: http://labwiki.mytestbed.net/. Accessed:
Jan 26, 2016.

