
P2P Offloading in Mobile Networks using SDN

Ryan Saunders
ryan.saunders@utah.edu

Junguk Cho
junguk.cho@utah.edu

Arijit Banerjee
arijit@cs.utah.edu

Frederico Rocha
fred@cs.utah.edu

Jacobus Van der Merwe
kobus@cs.utah.edu

School of Computing,
University of Utah

ABSTRACT
The peer-to-peer (P2P) architecture and the mobile net-
work architecture have conflicting designs. P2P can
take advantage of peers being in close proximity to de-
crease latency. However, the mobile network is hier-
archical as routing is directed through centralized gate-
ways. Because of network state needed to establish con-
nections in the mobile network, user equipment’s traffic
needs to travel up the hierarchy before being redirected
back down to a nearby peering device. The inherent
delay and the additional network state strip P2P appli-
cations of their primary advantages over client-server
applications. We have developed an SDN architecture
to offload and redirect peering traffic before reaching
the core of the mobile network. Our implementation
allows for any P2P communication independent of the
mobile provider and the peering application. We have
evaluated our design and demonstrate that there is a de-
crease in latency by approximately a factor of two with
our method compared to a standard P2P procedure be-
tween smartphones in the same mobile network.

CCS Concepts
•Networks→ Network architectures; Mobile networks;
Network design principles;

Keywords
P2P; Mobile network; SDN; Openflow

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’16, March 14-15, 2016, Santa Clara, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890963

P2P applications have become widely adopted. Video
and voice communication, gaming, file sharing, and mul-
timedia sharing commonly use P2P technology to pro-
vide services between peers [28, 27]. The primary bene-
fit of P2P communication is that a connection between
peers in close proximity would perform with lower la-
tency than if a centralized server was required to relay
such communication. While it is difficult to provide ex-
act statistics about the percentage of P2P traffic due
to the difficulty to identify P2P traffic [15, 14], these
applications contribute about 50 percent of consumer
traffic and are forecasted to only increase [4].

However, the current mobile network does not dif-
ferentiate P2P and regular internet traffic, such that it
does not utilize the P2P architecture to provide low la-
tency connections to peers in close proximity. Hence,
the current P2P applications, e.g., Skype, use the mo-
bile network as a communication bit-pipe in an over-
the-top (OTT) manner. Traffic from one user equip-
ment (UE) to another UE in close proximity follows a
sub-optimal route that leads through a large amount of
mobile network infrastructure. This is due to the hier-
archical routing strategy employed by the mobile net-
work, in which UE traffic is directed through network
core gateways deployed at a few centralized locations.
This sub-optimal route results in high latency, even if
two mobile devices are only a few miles apart from each
other. Although latency is generally an issue on the
mobile networks [19] and latency highly depends on the
provider [10], we contend that focusing on improving
the P2P experience is fundamental since many P2P ap-
plications expect low latency for quality user experi-
ence. For example, applications like Skype use P2P for
voice and video messaging [27]. Skype is an ideal mo-
bile application since it takes full advantage of mobile
device capabilities such as voice and video capabilities,
but its performance suffers from high latency on the mo-
bile network. Improving the P2P performance on the
mobile network will not only improve the existing P2P
applications, but will also lay the foundation to enable
new P2P applications.

Even so, modifying the current mobile networks to

support P2P applications would be an extremely dif-
ficult and costly affair. Mobile networks employ com-
plex standardized protocols to enable communication
and maintain significant per device network state across
various core network entities, including routing tunnel
information, to provide connectivity even in presence of
device mobility.

In contrast, a benefit of P2P is that it allows com-
munication between peers without the need of infras-
tructure support. By utilizing the capabilities of Soft-
ware Defined Networking (SDN), we can enable P2P
in a mobile network with a modest amount of network
state, without requiring any change in the current net-
work operations. Towards this end, we propose our ar-
chitecture: a Software-defined Architecture for P2P Of-
floading in Mobile networks (SAPOM) which can be de-
ployed at regional aggregation points close to the peer-
ing UE locations. With this method of offloading, the
traffic between two mobile peers in close proximity fol-
lows a more direct route via the regional aggregation
point, without traversing all the way to the central-
ized gateways in the core mobile network. This tech-
nique significantly reduces the latency of such a P2P
connection since regional aggregation points are usu-
ally close to the UEs that route to them. Furthermore,
our method also reduces the load on the centralized core
mobile network entities by offloading the heavy traffic
usually generated by P2P applications, thus, improving
the overall network performance. We make the follow-
ing contributions:

1. We designed and implemented SAPOM, an ar-
chitecture that successfully identifies and offloads
P2P traffic before reaching the core mobile net-
work.

2. We demonstrate SAPOM works during radio ac-
tive mode, and after a UE is paged during idle
mode.

3. We evaluate SAPOM in an OpenEPC-based [6]
LTE/EPC test bed with real UEs and a real eN-
odeB while running Skype, a popular P2P applica-
tion. Our results show that SAPOM significantly
improves the latency between peering devices, and
also reduces the traffic load on the core mobile net-
work.

2. BACKGROUND

2.1 Mobile Network Architecture
Figure 1 shows the general architecture of the mobile

network. The Evolved Packet Core (EPC) of the mo-
bile network connects UEs, such as cellphones, to the
Internet. This is achieved by UEs wirelessly connecting
to an access point (eNodeB) on the radio access net-
work (RAN). Clusters of eNodeBs traditionally aggre-
gate at regional aggregation points, located at a Mobile
Telephone Switching Office (MTSO). Within a mobile
network these regional aggregation points continue the

UE

UE
eNodeB

MTSO
UE

UE
eNodeB

UE eNodeB
MTSO

EPC

MME

SGW PGW
NAT

Router

Internet

Control plane
Data plane

Figure 1: Mobile Network Architecture includ-
ing UE, eNodeB, MTSO, and EPC.

connection to the Serving Gateway (SGW) in the EPC.
The EPC connects the UEs to the internet and other
IP networks. As this hierarchical structure suggests,
for each centralized EPC there are significantly more
MTSO locations, and for each MTSO there are signif-
icantly more eNodeBs [12]. Conclusively, the mobile
network makes the distance for data-packets to travel
to reach the IP network a much longer traversal than
that of a typical home network.

Controlling the designation of SGW to UE is done us-
ing control-packets between the eNodeB and Mobility
Management Entity (MME). The MME identifies and
authenticates UEs as they attach to the mobile network.
When a UE becomes inactive, it detaches from the ra-
dio bearer and enters the idle state [24]. While in this
mode, the UE does not send or receive traffic from the
IP network because it has no established bearer.

When an incoming packet is destined for an idle UE,
the MME starts the paging procedure to activate the
UE and reestablish the UE’s data connection to the
EPC. Once active, a UE will be under a different radio
bearer and possibly a different eNodeB.

2.2 NAT in Mobile Networks
Many mobile service providers deploy middleboxes

like Network Address Translation (NAT) enabled routers
between the IP network and EPC to reduce the number
of public IP addresses allocated and to prevent unso-
licited external connections with their clients’ devices [26].
Due to these constraints, two devices with allocated
private IP address behind the NAT router cannot eas-
ily establish P2P connections. As a workaround, mo-
bile peer-to-peer applications often use NAT traversal
or hole-punching methods to establish communication
between peers behind a NAT [13] enabled router.

For example Skype, one of the most popular P2P
applications [3], uses NAT Traversal techniques [9, 29]
to support P2P connections behind the NAT router.

2.3 Motivation
In the current mobile networks, a peer-to-peer con-

nection, even between two geographically close UEs,
extend through the EPC to the NAT router deployed
at a centralized location. Such sub-optimal routing
fails to leverage the benefit of P2P and degrades the

quality of experience of latency-sensitive P2P applica-
tions like video streaming, audio streaming, and gam-
ing, even when using high bandwidth 4G LTE connec-
tions [10, 11]. Because of poor latency, many developers
may choose not to make use of P2P on mobile applica-
tions [22], even given the benefits that mobile devices
offer such as portability and accessibility.

Additionally, P2P applications, like multiplayer games,
file sharing applications, and Voice over IP (VoIP) typ-
ically generate a heavy amount of traffic [5]. P2P is
ideal for such applications because a major portion of
the traffic can be diverted from a centralized server,
thus significantly decreasing the server load. Although
NAT traversal on a mobile network allows to alleviate
the load on the P2P application server, the core mo-
bile network entities, i.e., the centralized gateways, still
suffer from congestion due to traffic heavy P2P appli-
cations. Network congestion can also cause bufferbloat,
increasing the latency of the connection [11]. By of-
floading mobile P2P traffic before reaching the EPC,
mobile network providers can significantly reduce the
load on the core network.

We argue that there is a need for a mobile network
architecture that efficiently accommodates P2P appli-
cations to reduce latency as well as core network load.
In order to seamlessly integrate with the current mobile
networks and still improve quality of service for P2P ap-
plications, such an architecture must meet the following
criteria:

1. The architecture must seamlessly work with cur-
rent mobile architecture, NAT router domains, and
mobile applications,

2. The architecture should not affect an application,s
performance negatively, and connections other than
P2P should not be impacted,

3. Realizing P2P connectivity should be possible, even
if a UE has entered an idle state.

SAPOM utilizes SDN priciples to achieve the above
goals in the current mobile network.

3. ARCHITECTURE

3.1 SAPOM workflow
The basic concept of SAPOM is to insert an SDN

switching fabric and controller into the mobile network
to offload P2P traffic without modifying the underly-
ing network architecture. This is achieved by inserting
an SDN switching fabric at the MTSO, the aggrega-
tion point through which eNodeBs are connected to the
EPC. A depiction of our architecture is shown in Fig-
ure 2. By deploying our architecture at the MTSO, we
ensure less propagation delay for P2P connections for
any peering UEs under the same MTSO. On the other
hand, if offloading occurred at the eNodeB, two UEs
only a few miles apart will not be able to realize the

UE1

UE
eNodeB

UE

UE2
eNodeB

EPC

NAT
Router

IP Network

MTSO

Skype server

UE1

UE
eNodeB

UE

UE2
eNodeB

EPC

NAT
Router

IP Network

MTSO

Skype serverController

SDN

SAPOM

(a)

(b)

Controller

SDN

SAPOM

1

2 3

456

UE1

UE
eNodeB

UE

UE2
eNodeB

EPC

NAT
Router

IP Network

MTSO

Skype serverController

SDN

SAPOM

(c)

7

8

910

11

12

13

Figure 2: SAPOM positioned at an MTSO in
the mobile network. Figure shows the P2P con-
nection establishment procedure with SAPOM
offloading enabled.

benefit of our system. Similarly, offloading at the cen-
tralized gateways, latency improvements wouldn’t be
nearly as significant.

A P2P connection begins by one peer requesting a
connection with another peer. Under the NAT router,
an outside server usually helps perform NAT traversal
for two peers under the same NAT domain. In Fig-
ure 2(a), UE1 begins a Skype-based P2P connection
with UE2 by contacting a Skype server dedicated for
helping with NAT traversal (1-3 in Figure 2(a)). The
Skype server begins the NAT traversal process and the
private IP address of the connecting UEs are shared
(4-6). During this phase, SAPOM forwards the traf-
fic via the default route (1,5). Once NAT traversal is
completed, each UE is aware of the other’s assigned
IP address under the NAT domain, and a P2P con-
nection is established between the two UEs (7-10 in
Figure 2(b)). The connection currently traverses the
EPC until the packets exit the GPRS Tunneling Proto-
col (GTP) tunnel and are decapsulated (8). The packet
is redirected to the MTSO after being encapsulated in a
GTP packet (9). Preconfigured flow rules added to the
SAPOM SDN switching fabric will forward a copy of
these initial packets to the controller for creation of flow
rules for this particular connection (11). We present the
details about the handling of these flow rules in Section
3.2. Once the flow rules for this connection are added
to the SDN switching fabric, SAPOM will intercept the
P2P traffic (12 in Figure 2(c)) preventing these packets
from continuing to the EPC, and instead redirect the

SAPOM SDN

Yes

tunnel source &
destination IP match

exact specified
addresses

tunnel source &
destination IP in subnet &

source MAC = SGW

Recognized as P2P traffic.
Forward to destined

eNodeB & the controller

Yes

No

source MAC = SGW
NoThe tunnel source IP is in

subnet. Forward to SGW

Modify packet header &
forward to peering UE’s

eNodeB

Yes
GTP_eval

In_port No

Out_port

GTP
Packet

eNodeB

Figure 3: Handling P2P packets in SAPOM
SDN

packets to the eNodeB associated with the destination
UE (13).

3.2 Flow rules at SDN switch and controller
Relevant information about UE-EPC interaction, such

as the UE’s private IP address and information regard-
ing the eNodeB associated with the UE, can be obtained
from evaluating the GTP packet headers, the tunneling
protocol used to route packets in the EPC. When a P2P
connection is requested, this information is provided to
the controller to create OpenFlow [18] match rules for
the SDN switch. These OpenFlow rules identify traf-
fic that needs to be offloaded, or redirected, while all
other traffic are forwarded as expected. This is similar
to the standard SDN model in that the controller logic
is triggered by data plane activity. However, our SDN
approach differs from the standard model in that the
logic only optimizes P2P interaction. All other forms of
traffic flows are not impacted by our architecture.

A flowchart of our P2P offloading rules is shown in
Figure 3. A SAPOM SDN switch first checks whether or
not an incoming packet (from either an eNodeB or the
SGW interface) is a GTP data packet. All GTP packets
are forwarded to a GTP evaluation port. At the evalua-
tion port, an incoming packet is first checked against all
flow rules corresponding to existing P2P connections.
In case a match is found, the packet is forwarded to
the corresponding peering UE’s eNodeB with necessary
header modifications. Otherwise, the packet is com-
pared to the next rule to determine if it belongs to a
new P2P connection. If the inner source and destina-
tion IP addresses of the packet matches the subnet of
the NAT domain, and the source MAC address matches
to that of the SGW, the packet corresponds to a new
P2P connection, and is forwarded to the eNodeB inter-
face and also to the controller. If the packet matches
neither of the previous rules, it is forwarded to either
the destined eNodeB or to the SGW based on the source
MAC address.

The controller is aware of the network’s private IP
subnet domain under the NAT router, and sets up the
initial flow rules that require this subnet mask. If a

packet is received at the controller, a new P2P connec-
tion was requested between two UEs under the subnet.
From this packet, the controller extracts the eNodeB
IP address, MAC address, and GTP tunnel identifier
(TEID) associated with the destination UE; the IP ad-
dress and MAC address of the SGW; and the IP ad-
dresses of the source and destination UEs. With this
information, a flow rule is constructed and sent to the
switch to modify and redirect subsequent packets from
this new P2P connection.

3.3 P2P with Idle Mode
SAPOM supports P2P offloading even if a user device

has entered idle mode. The offloading mechanism of
SAPOM is decoupled from the underlying mobile net-
work control protocols and states. When one of the
peering UEs requests a connection with an idle peer,
the mobile network performs a paging procedure [24]
to activate the idle UE and reestablish the associated
radio bearers. After paging has established the radio
bearer for the UE, it is able to receive the P2P connec-
tion request and begin the connection. At this point,
the procedure to offload the P2P connection are identi-
cal to those found in Section 3.1. This is a significant
advantage of SAPOM architecture since it seamlessly
integrates with the existing architectures and protocols,
without requiring a monitor to continuously sniff mobile
network specific events and transactions.

4. IMPLEMENTATION
For our prototype implementation, we used Open vSwitch

(OVS) [20] and Ryu [2] for SAPOM SDN and controller
respectively. To support the functionality described in
Section 3, we extended OVS and Ryu to handle GTP
packets, since the current OpenFlow standard does not
support the GTP protocol.

SAPOM Controller. The SAPOM controller was
implemented using the Ryu OpenFlow controller. How-
ever, Ryu is not equipped with a default GTP data
packet parsing library or GTP flow modification library.
To extract GTP header information and inner packet
information from GTP data packets, we modified the
UDP Ryu library and added GTP data packet parsing
functionality using struct [23]. We also extended the
Ryu API to support flow modification for GTP pack-
ets. These modifications enable the SAPOM controller
to insert flow rules that match GTP TEIDs, prefix in-
ner IP addresses, and exact inner IP addresses, and to
rewrite GTP TEIDs based on matching rules. These
modifications are instrumental to offload packets to the
destination eNodeB in a P2P connection.

When SAPOM is enabled, the controller inserts the
initial flow rules as specified in Section 3.2. Priority
are set on the flow rules to ensure correct logic flow.
Additionally, since the size of flow tables is limited, a
timeout is set on the flow rules that match specific P2P
connections.

SAPOM SDN. SAPOM SDN is configured through
the initial flow rules from the controller to offload P2P
traffic. Other forms of traffic are forwarded as expected
on a standard L2 switch. To handle GTP data packets
in SAPOM SDN, we use a virtual port (vport) abstrac-
tion, which simplifies header manipulation [16] in the
OVS. SAPOM SDN has two designated virtual ports.
The first virtual port acts as the GTP evaluation port
described in Section 3.2. It is used to extract the inner
IP addresses and GTP TEID from GTP data packets.
The second virtual port is used to offload P2P traffic by
rewriting the outer IP addresses, MAC addresses, and
GTP TEID from GTP data packets. This port forwards
modified packets to the destined eNodeB. SAPOM SDN
also uses physical ports to interface with the eNodeBs
and the SGW.

5. EVALUATION
We evaluate our prototype in the PhantomNet [8]

testbed. We use two Nexus 5 machines as UEs, and a
real IpAccess small cell as the eNodeB. For the EPC, we
use OpenEPC-based components as provided by Phan-
tomNet. We add our SDN components between the eN-
odeB and the EPC. To evaluate scenarios with different
load conditions, we generate background traffic on the
EPC using emulated UEs and an eNodeB that bypasses
SAPOM to the EPC. In our evaluation, we configure a
25 ms delay between SAPOM and the EPC. This num-
ber is derived from average mobile network round trip
time (RTT) [12]. The actual delay in a mobile net-
work largely depends on the capabilities of the network,
the distance between key components, and the service
provider [10, 11, 19].

To validate our design, we evaluate the SAPOM com-
ponents and end-to-end latency reductions with our ap-
proach.

5.1 SAPOM Controller
We measure the processing time of the SAPOM con-

troller in installing flows. The average processing time
for the controller to parse the incoming packet is 1.36
ms and the average processing time to install the nec-
essary flow rules into the OVS is 2.54 ms. Only two
packets are forwarded to the controller for processing
for each P2P connection.

5.2 RTT Improvement
To evaluate RTT improvements, we compare the RTT

between two devices with SAPOM and without SAPOM;
packets are redirected from SAPOM SDN and from the
NAT router in the EPC respectively.

Using ping between two UEs connected within our
testbed, one UE sends ping request packets to the other
at one second intervals for 300 seconds with its pri-
vate IP address. Figure 4 shows our experiment re-
sult. The first RTT is similar with and without SAPOM
since with SAPOM enabled this packet is forwarded to

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

R
TT

 (
m

s)

Seconds

 Without SAPOM

With SAPOM

Figure 4: Latency of ping test between two
Nexus 5 devices under same eNodeB without
SAPOM and with SAPOM

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

R
TT

 (
m

s)

Seconds

 Without SAPOM

With SAPOM

Figure 5: Latency of Skype audio and video
message call test between two Nexus 5 devices
under same eNodeB without SAPOM and with
SAPOM

the SAPOM controller to create flow rules for offload-
ing, while also being forwarded to the NAT router for
NAT traversal. After inserting offloading rules into the
SAPOM SDN, the end-to-end RTT is 61.1 ms on aver-
age. Whereas, without SAPOM the average end-to-end
RTT is 121.4 ms. The evaluation reveals an anomalous
downward pattern in RTT during the ping test. It is our
guess that this is caused by a modulation and coding
scheme (MCS) between the UE and eNodeB according
to traffic load. Increasing the traffic by introducing high
background traffic removes this anomaly. However, this
altered the average RTT of our ping tests therefore such
evaluation results are omitted.

To evaluate a more realistic case, we start a Skype
video call between two Nexus 5 phones. Similar to the
ping test, one UE calls the other with audio and video
activated. End-to-end RTT is recorded for 300 seconds
with Skype’s in-app “technical call info” feature.

Open
Skype app

Start
Skype call

End
Skype call

Close
Skype app

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140

B
an

dw
id

th
 (

m
bp

s)

Seconds

Without SAPOM, high quality call

Without SAPOM, low quality call

With SAPOM

Figure 6: Reduction of EPC load with SAPOM

Figure 5 shows the result of our experiment. With
SAPOM, the end-to-end RTT is 54.7 ms and without
SAPOM, the same is 106.8 ms.1

Our tests show about a 50 percent lower RTT using
our solution. We also execute the ping and the Skype
test when one device is in idle mode and verify that
both cases work after the paging procedure.

5.3 EPC Load Reduction
To evaluate how much load SAPOM reduces of the

EPC network for P2P applications, we measure the
bandwidth with Skype applications use. Since there
are two options to adjust video quality in Skype appli-
cations, we test both low quality video and high quality
video cases. In this experiment, we generate 1 Mbps
traffic from the emulated UEs and run the Skpye appli-
cation on both Nexus 5 devices. We then measure the
total bandwidth in the EPC.

Figure 6 shows the result of our experiment. With
SAPOM, the bandwidth usage is 1 Mbps since only the
traffic from the emulated UEs goes through EPC and
the Skype traffic is redirected from the SAPOM SDN.
The difference between the with SAPOM and the with-
out SAPOM case is the reduction of the EPC traffic
load with SAPOM. As the number of UEs using P2P
applications increases, the bandwidth SAPOM saves in-
creases improving the performance of other applications
on the network.

6. RELATED WORK
Recently, several proposals have been made to sup-

port device-to-device (D2D) communication within the
mobile architecture [21, 25]. In D2D, a device uses
its LTE air interface to identify and communicate with
other devices over a direct link [17]. However, D2D only
supports communication between devices in very close

1In some tests without SAPOM, Skype would avoid a
P2P connection and route through a dedicated supern-
ode. In this case, we measured an average RTT of 220.1
ms.

proximity and does not replace P2P. D2D is also still
in its research phase and requires communicating de-
vices to be D2D capable, whereas SAPOM works seam-
lessly with existing devices and protocols. Our work is
conceptually similar to local breakout mechanisms pro-
posed by the standards body [1]. However, unlike these
works, SAPOM does not require additional expensive
offloading infrastructure and significant modification in
standard protocols.

Our work is largely motivated by the SMORE archi-
tecture [12] which supports SDN-based offloading in a
mobile network. However, our work is significantly dif-
ferent from SMORE in the following aspects: i) it does
not require a monitor to sniff control messages leading
to a cleaner, lightweight design, ii) it does not need to
store device state, and iii) it offloads without the need
of a subscription service. SAPOM is also completely de-
coupled from the underlying mobile network state, and
works seamlessly with mobility related functions such
as paging and handover.

7. DISCUSSION
To deploy SAPOM in real mobile network, it would

require several features. SAPOM would need a charg-
ing mechanism for offloaded P2P traffic that avoids the
Policy and Charging Enforcement Function (PCEF) in
PGWs. Since offloaded P2P traffic only passes logical
ports in SAMPO SDN switches, we can add interfaces
(gz/gy) to talk to the charging components (e.g., OCS
and OFCS) in the mobile network for only P2P traf-
fic by extending functions of SAMPO SDN. SAPOM
would also need to allow deep packet inspection for
lawful interception of traffic [7]. Both features are fea-
sible and will be addressed in future work. We also
consider how SAPOM would fit within the 5G stan-
dards. Although there are many uncertainties regard-
ing 5G, our work would supplement the expected SDN
addition to the 5G deployment. Lastly, we expect to
explore other P2P offloading possibilities for different
mobile network topologies in the future. Specifically,
we expect to enable P2P offloading between multiple
MTSO locations by utilizing inter-MTSO SDN switch-
ing fabric and a distributed controller framework. How-
ever, we are not concerned with extending SAPOM
across multiple providers. While it is true that providers
want standards to communicate across themselves, they
also want services that differentiate themselves, such as
those found in SAPOM.

8. CONCLUSION
We have presented SAPOM, an SDN-based P2P of-

floading architecture that improves P2P connections la-
tency by offloading traffic close to connected mobile
peers, and also reduces core network load. In the fu-
ture, we expect to enable several core mobile network
features, as well as exploring P2P offloading potential
in other network topologies.

9. REFERENCES
[1] Local IP Access and Selected IP Traffic Offload

(LIPA-SIPTO).
http://www.3gpp.org/ftp/Specs/html-info/23829.htm.

[2] Ryu controller, a component-based software-defined
networking framework. http://osrg.github.io/ryu/.

[3] Skype internal data.
http://advertising.microsoft.com/en/skype, 2013.

[4] Cisco visual networking index: Forecast and
methodology, 2014-2019.
http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/
white paper c11-481360.html, 2015.

[5] How much bandwidth does Skype need?
https://support.skype.com/en/faq/FA1417/
how-much-bandwidth-does-skype-need, 2015.

[6] OpenEPC. http://www.openepc.com/, 2015.
[7] Balbas, J.-J., Rommer, S., and Stenfelt, J.

Policy and charging control in the evolved packet
system. Communications Magazine, IEEE 47, 2
(February 2009), 68–74.

[8] Banerjee, A., Cho, J., Eide, E., Duerig, J.,
Nguyen, B., Ricci, R., Van der Merwe, J.,
Webb, K., and Wong, G. Phantomnet: Research
infrastructure for mobile networking, cloud computing
and software-defined networking. GetMobile: Mobile
Computing and Communications 19, 2 (2015), 28–33.

[9] Baset, S., and Schulzrinne, H. An analysis of the
skype peer-to-peer internet telephony protocol. In
INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings (April
2006), pp. 1–11.

[10] Chen, Y.-C., Lim, Y.-s., Gibbens, R. J., Nahum,
E. M., Khalili, R., and Towsley, D. A
measurement-based study of multipath tcp
performance over wireless networks. In Proceedings of
the 2013 Conference on Internet Measurement
Conference (New York, NY, USA, 2013), IMC ’13,
ACM, pp. 455–468.

[11] Chen, Y.-C., and Towsley, D. On bufferbloat and
delay analysis of multipath tcp in wireless networks.
In IFIP Networking 2014 (2014), IFIP.

[12] Cho, J., Nguyen, B., Banerjee, A., Ricci, R.,
Van der Merwe, J., and Webb, K. SMORE:
Software-defined networking mobile offloading
architecture. In Proceedings of the 4th Workshop on
All Things Cellular: Operations, Applications, &
Challenges (New York, NY, USA, 2014),
AllThingsCellular ’14, ACM, pp. 21–26.

[13] Ford, B., Srisuresh, P., and Kegel, D.
Peer-to-peer communication across network address
translators. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (Berkeley,
CA, USA, 2005), ATEC ’05, USENIX Association,
pp. 13–13.

[14] Karagiannis, T., Broido, A., Brownlee, N.,
Claffy, K., and Faloutsos, M. Is p2p dying or just
hiding? [p2p traffic measurement]. In Global
Telecommunications Conference, 2004. GLOBECOM
’04. IEEE (Nov 2004), vol. 3, pp. 1532–1538 Vol.3.

[15] Karagiannis, T., Broido, A., Faloutsos, M., and
claffy, K. Transport layer identification of p2p
traffic. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement (New York, NY,
USA, 2004), IMC ’04, ACM, pp. 121–134.

[16] Kempf, J., Johansson, B., Pettersson, S.,
Luning, H., and Nilsson, T. Moving the mobile
evolved packet core to the cloud. In Wireless and
Mobile Computing, Networking and Communications
(WiMob), 2012 IEEE 8th International Conference on
(2012), IEEE, pp. 784–791.

[17] Lin, X., Andrews, J. G., Ghosh, A., and
Ratasuk, R. An overview on 3gpp device-to-device
proximity services. CoRR abs/1310.0116 (2013).

[18] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Comput.
Commun. Rev. 38, 2 (March 2008).

[19] Nguyen, B., Banerjee, A., Gopalakrishnan, V.,
Kasera, S., Lee, S., Shaikh, A., and Van der
Merwe, J. Towards understanding tcp performance
on lte/epc mobile networks. In Proceedings of the 4th
Workshop on All Things Cellular: Operations,
Applications, & Challenges (New York, NY,
USA, 2014), AllThingsCellular ’14, ACM, pp. 41–46.

[20] OpenVswitch. http://openvswitch.org/.
[21] Osseiran, A., Doppler, K., Ribeiro, C., Xiao,

M., Skoglund, M., and Manssour, J. Advances in
device-to-device communications and network coding
for imt-advanced. ICT-MobileSummit (2009).

[22] Patro, A., Rayanchu, S., Griepentrog, M., Ma,
Y., and Banerjee, S. Capturing mobile experience
in the wild: A tale of two apps. In Proceedings of the
Ninth ACM Conference on Emerging Networking
Experiments and Technologies (New York, NY, USA,
2013), CoNEXT ’13, ACM, pp. 199–210.

[23] Python Tutorial. struct - Interpret strings as
packed binary data.
docs.python.org/2/library/struct.html.

[24] Rao, V. S., and Gajula, R. Protocol signaling
procedures in lte. White Paper, Radisys Corporation
(2011).

[25] Tehrani, M., Uysal, M., and Yanikomeroglu, H.
Device-to-device communication in 5g cellular
networks: challenges, solutions, and future directions.
Communications Magazine, IEEE 52, 5 (May 2014),
86–92.

[26] Wang, Z., Qian, Z., Xu, Q., Mao, Z., and Zhang,
M. An untold story of middleboxes in cellular
networks. SIGCOMM Comput. Commun. Rev. 41, 4
(Aug. 2011), 374–385.

[27] Xu, Y., Yu, C., Li, J., and Liu, Y. Video telephony
for end-consumers: Measurement study of google+,
ichat, and skype. In Proceedings of the 2012 ACM
Conference on Internet Measurement Conference (New
York, NY, USA, 2012), IMC ’12, ACM, pp. 371–384.

[28] Yahyavi, A., and Kemme, B. Peer-to-peer
architectures for massively multiplayer online games:
A survey. ACM Computing Surveys (CSUR) 46, 1
(2013), 9.

[29] Zhang, D., Zheng, C., Zhang, H., and Yu, H.
Identification and analysis of skype peer-to-peer
traffic. In Proceedings of the 2010 Fifth International
Conference on Internet and Web Applications and
Services (Washington, DC, USA, 2010), ICIW ’10,
IEEE Computer Society, pp. 200–206.

