
OpenEdge: A Dynamic and Secure Open Service Edge Network

Josh Kunz, Christopher Becker, Mohamed Jamshidy, Sneha Kasera, Robert Ricci, and Jacobus Van der Merwe
Flux Research Group, School of Computing, University of Utah

josh.kunz@utah.edu, {cbecker | jamshidy | kasera | ricci | kobus}@cs.utah.edu

Abstract—High performance edge networks, such as fiber-to-
the-premises (FTTP), are increasingly being deployed by mu-
nicipalities and communities to support advanced services and
applications. The complexity of operating these networks often
means that their full potential is not being reached and they
are relegated to being fast access pipes to the Internet. In this
paper, we present our work on OpenEdge, a dynamic and secure
open service edge network architecture. OpenEdge provides a
control architecture that automates the configuration of the edge
network in a cloud-like manner to simplify the introduction of
new network services and applications.

I. INTRODUCTION

Despite significant advances in edge network technologies—

for example fiber-to-the-premises (FTTP) deployments—the

service model of these networks remains largely unchanged.1

Specifically, the primary purpose of these (monolithic) access

networks is to provide access to the Internet and other services

(like IPTV and VoIP) offered by the Internet access provider,

who also owns and operates the physical network infrastructure.

Access to the Internet does of course enable others, e.g., Netflix,

to offer over-the-top services. While some over-the-top services

have been successful, we argue that there is a need for a

new edge network service model that more fully exposes the

capabilities and distinctive characteristics of these networks, to

enable an even wider variety of services. First, many services

(e.g., smart grid applications) do not require conventional

Internet access, and would in fact be better served by networks

that are separated from the Internet. Second, edge networks

have low latency and high capacity characteristics, which can

enable services that are simply not feasible in an over-the-

top scenario, e.g., networks aimed at content manipulation

by clusters of digital media companies [1]. Third, we argue

that a dynamic service model, where services are offered and

consumed on-demand—for the duration of a tele-health session,

or an immersive entertainment application—would be desirable.

A related trend we observe is that many municipalities

and communities, often underserved by incumbent providers,

are deploying their own network infrastructures [2]. These

municipal edge networks are often first deployed to provide

services to specific anchor institutions, like public safety [3],

[4]. While these edge networks are inherently capable of

supporting other services, the complexity of operating and

providing services on them frustrates such efforts. Often, such

1We use the term edge network intentionally in place of the more common
access network; “access” implies that the primary (or only) purpose of these
networks is to provide access to the Internet. As we argue below, reducing
edge networks to just Internet access is a key part of the problem addressed
in our work.

networks are relegated to being access networks with limited

service offerings.

We argue that current FTTP and municipal edge network

deployments are in an analogous state to where data centers

were before the sea change brought about by cloud computing.

Like cloud control architectures that transformed data centers

into cloud computing infrastructures, what is needed to unlock

the potential of edge networks is a network control architecture

that not only automates the management of network resources,

but also allows new services and applications to be created,

deployed and decommissioned in a highly dynamic and secure

fashion. Such a network control architecture enables a model

where the barrier to entry for becoming a service provider is

significantly lowered, empowering a wide variety of unique

services to be provided on the infrastructure. In addition to

today’s long-lived ISP, IPTV and VoIP services, we envision

a rich marketplace of dynamic services and applications.

Specifically, services that are both “local” (exploiting the high

capacity, low latency edge network capabilities), as well as

highly dynamic services or applications that might exist for

relatively short periods of time.

Towards realizing this vision, we present our work on

OpenEdge, a dynamic and secure open service edge network

architecture. OpenEdge is broadly modeled after earlier open

access network approaches [5], [6], [7] in that it assumes the

possibility of separating the entity that owns and operates the

network, the network operator (NO), and the entity (or entities)

that provide services and applications on the network, the

service providers (SPs). Unlike earlier open access networks,

OpenEdge provides a control architecture that automates the

operation of the edge network in a cloud-like manner to simplify

the introduction of new network services and applications.

While inspired by the cloud, open edge networks are unique:

the topology of the network and the location of devices within

it are everything to its customers; most devices in the network

(home and business computers, TVs, IoT devices, etc.) are

neither owned nor controlled by the network operator; and

the physically distributed nature of the network (on telephone

poles and in roadside utility boxes) means that the physical

security of many parts of the network is not assured.

In OpenEdge, we address a number of key challenges in

realizing an open edge network architecture. First, finding the

“right” abstraction to enable services and applications to utilize

the network. Second, like in a cloud computing platform, the

shared tenancy nature of an OpenEdge environment implies se-

curity concerns not present in monolithic access networks. The

key security concern in a physically distributed, multi-tenant

(or multi-service) OpenEdge environment is unauthorized use978-1-5090-0223-8/16/$31.00 © 2016 IEEE

of a service and the network resources associated with it. For

example, unauthorized use of a public safety network, e.g., by

tech-savvy gamers, might jeopardize public safety when there

is an emergency. Similarly, allowing unauthorized access to a

power company network in a smart city setting could open the

door for compromise of cyber physical systems associated with

such a network. Our third challenge relates to the realization

that end users are increasingly mobile and as such, require

services obtained via an OpenEdge environment to move with

them. Such ubiquitous service access would enable a physician

from a teaching hospital, temporarily filling in at a health

clinic, to receive her normal access to specialized resources on

a health network while at the clinic location.
In OpenEdge we address these challenges via two comple-

mentary and interacting components. First, FlowOps imple-

ments the network abstraction offered to service and application

providers and realizes the underpinnings of that abstraction

on the physical network. FlowOps provides a simple API that

allows service/application providers to treat the entire network

as a “big switch”. This leaves the service providers free to

focus on the semantics and logic of the service/application

they want to provide. The minimal semantics of the FlowOps

API means that the network operator is free to implement the

underlying connectivity using any technology they desire. The

only requirement is that strong isolation is provided between

network resources associated with different services.
The second OpenEdge architectural component, SecureOps,

deals with authenticated access to the network and services/ap-

plications available on the network. The design of SecureOps

is inspired by the security framework used in cellular networks.

Specifically, in SecureOps, access to a network service is

authenticated via security credentials contained in a virtual

subscriber identity module (V-SIM). Unlike a physical SIM,

the V-SIM allows separate credentials for different services,

allowing a more fine-grained service model. Our V-SIM can be

realized solely in software, or made more secure by utilizing a

Trusted Platform Module (TPM) [8], [9]. A TPM is a hardware

module that is installed in a device which can securely store

and use cryptographic values.
Finally, because authentication and service creation happen

dynamically in OpenEdge, ubiquitous service access follows

from our basic design. With OpenEdge we can remove the tight

coupling that exists in current access networks between the

services being provided and the physical network location at

which those services are being provided. In OpenEdge, subject

to the availability of network resources, authentication and

service provisioning can occur wherever an end-user attaches

to the network.
We make the following contributions:

• We present the OpenEdge network architecture which

enables services to be provided over edge networks in a

cloud-like fashion.

• We present the design and implementation of FlowOps,

the OpenEdge component that provides a simple network

abstraction to service providers, easing the realization of

edge network services and applications.

• We present the design and implementation of SecureOps,

an OpenEdge component that uses a virtualized SIM

abstraction and the OpenEdge authentication protocol to

provide fine-grained network and service authorization

and access control.

• We show the utility of our approach by developing a

number of example services, including a “composed”

service, consisting of two independent service providers.

• We present a detailed evaluation of our architecture. We

perform a security analysis of the SecureOps component

and present a performance analysis of the FlowOps com-

ponent, as well as the OpenEdge architecture as a whole.

Our results show that, in a simulated 10K node FTTP

edge network, FlowOps can perform service creation that

involves 10K end-nodes in about 6 1/2 seconds.

II. OPENEDGE ARCHITECTURE

An overview of the OpenEdge architecture is depicted in

Figure 1 (a). As shown, OpenEdge builds on and controls

a physical edge network. In OpenEdge we assume that this

network is controlled and operated by a network operator (NO)

using the OpenEdge control architecture and that independent

service providers (SPs) provide services and applications on

the infrastructure. Unlike conventional open access networks,

the OpenEdge control architecture lowers the barrier-to-entry

of becoming a service provider by allowing services to be

dynamically created in a cloud-like fashion.

The functionality of OpenEdge is provided by two compo-

nents: FlowOps and SecureOps. FlowOps provides connectivity

across the NO’s network to the various service providers who

want to provide services on the network. FlowOps does this

through a “virtual link” abstraction where service providers can

request connectivity between any two points on the NO network.

SecureOps provides authentication and location mapping ser-

vices for the end-user, network operator, and service providers,

while taking into account the complex business relationships

that exist between these parties. SecureOps provides these

services through the use of a Virtual SIM (V-SIM), a shared

secret between a service provider and a user of that service.

V-SIMs are used as part of the SecureOps protocol that allows a

service provider and the network operator to verify the identity

of a user. Together FlowOps and SecureOps provide the “user-

token” abstraction, a binding between an identity (i.e., V-SIM)

and a physical port on the network edge. These tokens are used

by service providers as the endpoints of virtual links. This way,

connectivity is based on the identity of the subscriber rather

than the subscriber’s physical location.

Figure 1 (a) depicts a walk-through of the OpenEdge system.

Consider a service provider that has just signed up a new

customer. In OpenEdge, the first thing the service provider

would do is generate a new V-SIM and then assign it to

that customer. The customer would then go to their home

computer or router and install that V-SIM into their V-SIM

manager (Section II-B2). Once the V-SIM is installed, the V-

SIM manager will attempt to authenticate against the service

provider that allocated the V-SIM. (Section II-C2). If that

authentication is successful, a new user-token is generated,

which binds that V-SIM to the port on the network on which

the user’s authentication request originated. Both FlowOps and

the authenticating service provider are notified of this binding.

The service provider can then use the user-token in subsequent

service setup requests. For example, if the user had signed up

for internet service, at this point the ISP would tell FlowOps

to create a virtual link between the user—identified by the

user’s token—and its border router. Since FlowOps knows the

mapping between a particular user-token and switch-port pair,

it can configure the forwarding elements in the network to

realize this service.

End
User

Service
Provider

SecureOpsFlowOps

Network Operator

Physical Edge
Network

End
 User A

Network
Operator Physical Edge

Network

Internet

ISP-YISP-X

Backup
Service

Gaming Service
(LAN Party)

Network resources

Compute resources

Storage resources

End
 User B

End
 User C

(a) Architecture

(b) Example services

Firewall
Service

authenticate

bind

service setup
request

service
realization

Fig. 1. OpenEdge Architecture and Example Services

Example services: To illustrate the open service environ-

ment enabled by OpenEdge we depict a number of example

services in Figure 1 (b). We envision that current long-lived

services, like Internet access, will still be provided in this

environment. As illustrated by ISP-X and ISP-Y, multiple

such services can be operational concurrently in OpenEdge.

Additionally, the separation of identity and physical location

allows OpenEdge to provide services that are not possible

on standard edge networks. For example, OpenEdge can

dynamically re-bind user-tokens to any point on the network

at the request of an authenticated service provider allowing

service providers to “chain” themselves into a user’s already

existing service. For example a firewall can re-bind a user-

token that was bound when a user authenticated against an

ISP to one of their edge ports, create a virtual link to the user

from a separate edge port, and then perform a firewall action

between the two.
Due to OpenEdge’s increased dynamicity, we can also have

services that are only created for short periods of time, or

the lifetime of a particular action. Consider a backup service

that only needs connectivity to a user’s device during off-peak

early morning hours when pricing may be cheaper. Such a

service could dynamically create a link to the user, backup

the user’s device, and then destroy the virtual link with no

human intervention. OpenEdge can also be used to realize

services with no physical presence on the network. For example,

consider a “Gaming” service that connects various users to

play a networked game over the high-speed edge network. The

service provider doesn’t need to have any physical presence

at the edge, it can create virtual links between the players as

its business logic sees fit. We envision that service provider

resources (such as servers to host “Gaming” match-making

services) might be provided by a cloud platform operated by

the network operator, or a separate “platform” service provider.

Authentication

Management

Network Controller

Network
Topology

Services

SecureOps

Service
Mapper

Service
Provider

FlowOps

Service Management

Physical Edge Network

Fig. 2. FlowOps Architecture

In the remainder of this section we first describe the

OpenEdge components before detailing the OpenEdge Au-

thentication Protocol.

A. FlowOps: Network Management

Figure 2 shows the main components of the FlowOps

architecture. The functionality of FlowOps divides into two

main functions: Authentication Management, which cooperates

with SecureOps to implement the user-token abstraction,

and Service Management, which deals with the virtual link

abstraction provided by FlowOps.

1) Authentication Management: As shown in Figure 2,

FlowOps maintains some state about what user-tokens have

been bound, and what switch-port pairs on the network the user-

tokens have been bound to. As part of the authentication process

SecureOps delivers two pieces of information to FlowOps

(Section II-C2): a notification that a new authentication request

has been sent via a particular switch and port on the network,

and a notification that the request has completed (if the request

completes successfully). Each notification has a unique (per-

request) identifier so that FlowOps can identify which “new

authentication request” notification a “successful authentication”

notification applies to. FlowOps uses these notifications to

maintain a mapping between users (identified by their V-SIM)

that have successfully authenticated and the network location

(i.e., port on a switch) from which they authenticated (i.e.,

user-tokens).

2) Service Management: FlowOps provides the logic that

maps the high level desires of various service providers (SPs) to

their low-level realization in the network operator’s (NO’s) edge

network. The FlowOps API has minimal semantics, allowing

SPs to connect endpoints using “virtual links” into complex

topologies. The NO is free to realize this abstraction using any

underlying network technology, e.g., SDN, VLANs or MPLS.

As shown in Figure 2, FlowOps maintains a network

topology database. This database can be filled from an already-

existing topology database, or built by performing network

topology discovery. When the Service Mapper component of

FlowOps receives a request to create a set of virtual links, it

uses the network topology and user location information to

build a logical topology composed of the virtual links, mapped

onto the physical edge network.

To do this, the mapper first translates the user-tokens

given in the request into physical user locations using the

previously created user-token bindings stored in a database

in the Authentication Management component of FlowOps.

Having obtained the location of each user-device, the Service

mapper then builds routes through the network using a spanning

tree algorithm optimized for star and ring topologies common

in edge networks (In Section III-B we show our method scales

to large edge networks). Once the Service Mapper discovers a

set of physical devices that can realize this logical topology, it

logs this information in the Services database. Thereby, any

future modifications to this logical topology know its current

configuration. Finally, the Service Mapper contacts the network

controller and informs it of the logical network configuration

in order to realize the service request.

B. SecureOps: Security Management

SecureOps provides security for all role players in an

OpenEdge environment while taking into account the rela-

tionships between participants. It provides a mechanism for

authenticating requests for network resources and services,

allowing only authenticated use of the network, with fine-

grained access control and ubiquitous service access.

1) Threat Model: The security risks associated with

OpenEdge stem from two fundamental properties of this

environment. First, an edge network deployment is physically

more vulnerable than a datacenter, enterprise or provider

backbone deployment. In an edge network, edge switches

(or optical network terminals (ONTs)) are typically mounted

in a relatively unsecured manner on residential or business

premises. This affords relatively easy physical access to the

network, e.g., to tap or snoop on the access link, or to

insert a rogue inline device in the access link. Second, in

the OpenEdge environment, we assume different actors: end

users (subscribers), service providers, and a network operator.

Below we consider adversarial models from the perspective of

each of these actors.

Network Operator and Service Provider Perspectives:

In both of these perspectives, we assume that the goal of

the adversary is to use the resources and bandwidth without

authorization. The adversary does not have valid credentials

for the intended target and is not using (or behind) an end-

device that has already been authenticated by the target. We

assume the adversary only has access to limited resources

such as an authentication server and provider front ends,

which is enforced by FlowOps using traditional traffic isolation

techniques such as VLANs or MPLS. We also assume the

network operator trusts all network components it has control

over and that service providers trust the network operator,

particularly the information on authentication attempts from

the network operator.

End-user Perspective: We consider a number of different

scenarios from the end user perspective. The first scenario

involves passive listening for credentials, where the goal of

the adversary is to intercept subscriber credentials and data

using untrusted hardware. E.g., the adversary is able to place

itself between the subscriber and the service provider (e.g., a

compromised edge switch or rogue device on the access link).

For this scenario we assume that the service provider is trusted

and that the end-device is trusted for storing the credentials

and performing session data encryption.

The second scenario involves a rogue authentication server.

The goal of the adversary is to pose as an authentication server

between the user and the real service provider in order to

retrieve authentication information. We assume the adversary

is able to insert a node that mimics the functionality of

an authentication server and can get the subscriber to send

credentials to it.

The third scenario involves an untrustworthy service provider.

In this case, we assume that a legitimate service provider, i.e.,

a service provider who is authorized to provide services on

the edge network, attempts to provision services on behalf of

an end user, without having received an actual service request

from the user in question. Since this is a legitimate service

provider, we assume that the service provider is able to access

FlowOps in order to request the creation of network resources.

The final scenario involves tampering with the end-device.

Here we assume the goal of the adversary is to copy the

subscriber credentials (including the shared secret) from one

end-device to another. Note that the legitimate end user might

be complicit with the adversary, e.g., copying their credentials

to friends to allow them access to certain services.

2) SecureOps Architecture: Our SecureOps authentication

framework was inspired by the cellular security architec-

ture [10]. Applying this framework to an open edge network

environment required a substantial redesign. We adopt the

notion of a subscriber identity module (SIM) to store authenti-

cation information on the end-user device, and generalize the

authentication protocol to support multi-player authentication.

Given the multiple role players in an OpenEdge network, in

SecureOps we virtualize the SIM to allow authentication with

both the network operator and multiple service providers. One

virtual subscriber identity module (V-SIM) is stored on the end-

user device for the network operator, with additional V-SIMS

for each service provider the user subscribes to. In a cellular

environment, the SIM is stored on a physical card (SIM card)

in the mobile device. In SecureOps, it is managed by a piece

of software which runs on the end-user device called a V-SIM

manager, with additional security optionally provided by a

trusted platform module (TPM). The network operator acts as

a proxy for authentication to collect the information necessary

to set up the connection and provide the user-token abstraction

used by the service provider without requiring knowledge of

the shared secret between the user and the service provider.

Typical workflow: To attach to the network, a new user

needs a V-SIM from the network operator. The user obtains

this V-SIM by interacting with the network operator’s portal,

a website that collects account details such as name, address,

payment information, etc. The protocol used to bootstrap the

new V-SIM is described in Section II-C1. With this V-SIM, the

user authenticates to the network as described in Section II-C2.

For each new service that the user wishes to subscribe to,

a similar process is repeated, except that the user interacts

with the relevant service provider’s portal instead of the NO’s

portal. Once the user has a V-SIM and has authenticated with

the service, the service can contact FlowOps and/or its own

infrastructure to set up connectivity to the user as needed.

Service Provider setup: We note that for an SP to become

operational on the network, it goes through a similar authenti-

cation process to receive V-SIMs from the network operator

for all its devices connected to the edge network. Additionally,

the SP will allocate V-SIMs to all of the infrastructure devices

it controls, and have them authenticate against the SP’s

authentication server, so that it can prove to the OpenEdge

system that it owns the devices and obtain user-tokens for

them. Since it is essentially the same process and uses the

same authentication protocol, we omit the details.

C. OpenEdge Authentication Protocol

The OpenEdge authentication protocol enables ubiquitous

service access by authenticating users’ network locations. Ser-

vice providers tie services to users’ V-SIMs, rather than physical

locations, allowing fine-grained access control wherever the

user is.

Fig. 3. OpenEdge V-SIM Creation Process

1) Bootstrapping: Figure 3 provides an overview of the

process for creating a new V-SIM, which will authenticate a

user to an SP. A V-SIM manager, running on the user’s device,

requests a new V-SIM from the SP. The V-SIM returned by

the service provider includes user credentials (Provider ID and

User ID) and a shared secret key (for authentication).

Fig. 4. OpenEdge Authentication Protocol

2) Authentication Protocol: The OpenEdge authentication

protocol (Figure 4) is initiated by the user’s V-SIM manager,

and authenticates against a particular service; this is repeated

for each service. The initial message, which includes the

credentials established during V-SIM creation, is forwarded

through the network to the Network Operator Authentication

Server (NOAS). As part of the initial exchange, the user’s

first-hop switch (the ONT) informs FlowOps of the network

location the request originates from. The NOAS mediates the

rest of the authentication process, forwarding the credentials

to the Service Provider Authentication Server (SPAS), which

creates a challenge for the V-SIM and informs the NOAS of the

expected response. Assuming the V-SIM produces the correct

response to the challenge, the NOAS informs FlowOps that

the authentication was successful and receives a user-token for

the authentication. This token is sent (along with the user’s

credentials) to the service provider, which uses it to request

the creation of network resources to realize its service for the

user.

The authentication process must be initiated by the user: this

prevents a rogue service provider from establishing connections

to users who have not requested them. Even if the rogue

authentication server tried to mimic a user authentication (since

it knows the shared secret) the generated user-token will still be

bound to an edge-port controlled by the rogue service provider,

not by the end user. Similarly, the connection setup request at

the end of the protocol must come from the service provider

since they are the only party that knows the user-tokens for both

ends of the virtual link. This prevents users from connecting

to services they have not subscribed to.

3) TPM: Using a TPM (Trusted Platform Module) in the

device hosting the V-SIM manager is optional, but it improves

security by making it impossible to ‘clone’ V-SIMs or copy

them from one device to another. During V-SIM creation,

TABLE III
END-TO-END FIREWALL SERVICE CREATION (14 TRIALS)

Action Median Std.
(ms) Dev.

Security Protocol 107.439 10.636
ISP Setup 1119.387 4.727
Relocation 960.632 4.645
Other Service Setup 158.817 0.872
VM Overhead 737.413 6.382

Overall 3204.464 15.700

To realize the firewall we use a host on the lab network

running Xen. The firewall service portal (running in domain

0) dynamically creates a new VM for each authenticated user;

this VM runs an instance of the Click [11] modular router to

realize user-specific firewall functionality.

To evaluate this service, we had the node Alice authenticate

against the ISP service, then the firewall service, which then

performed a relocation. The results of this evaluation are located

in Table III. We find that a firewall service can be created

(from initial request, to filtering packets) in about 3 seconds. 2

seconds are FlowOps overhead, 740ms are overhead from Xen

and Click, and 100ms or so is taken by the security protocol.

B. Service Creation Performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 (

s
)

Logical Links In Service

Median

Fig. 6. OpenEdge Service Creation Time

To enable dynamic service creation and ubiquitous service

access, FlowOps must quickly render service provider requests

into network configurations. Our evaluations of FlowOps

showed that this service creation is mostly dependent on the

size of the physical edge network and the number of logical

links in the requested virtual network.

We evaluate the service creation time of our implementation

as a function of the size of the requested virtual network

(in number of logical links). A virtual network with 10K

logical links (the maximum in our evaluation) would be the

size of an ISP on a medium sized edge network that had

every user as a subscriber. Evaluating a real, or even emulated,

network of this size is beyond our capabilities, so we opt

for a simulated test. We evaluated the time taken to push

an entire switch configuration to a target Brocade switch

using a Ryu OpenFlow driver. This configuration time varied

between ≈ 25 − 60 milliseconds. To simulate this delay in

our evaluation, we implemented a dummy driver in FlowOps

that sleeps for a random time between 25− 60 milliseconds

per-configuration request. To aid in scaling to networks of this

size, we push the switch configurations in parallel. Since the

switch configurations are generated in the previous step, all

switches can be configured simultaneously. In our experiments,

we assume only 100 switches can be configured in parallel to

approximate a realistic scenario.

The network topology we use for this evaluation is a typical

star edge network with five core switches, two distribution

switch layers, the first with a fanout of 10, and the second

with a fanout of twenty edge switches which are connected

to each distribution leaf. These edge-switches represent the

on-the-premises devices. This translates to 10K edge switches,

and 555 non-edge switches, of which 5 are core switches and

the remaining 550 are distribution switches.

We perform the evaluation on an Emulab d820 node (2.2Ghz,

8-core 64 bit Xeon “Sandy Bridge”, with 128Gb RAM). We

use the pypy python interpreter to perform the evaluation. The

results for this evaluation are shown in Figure 6. The figure

shows the number of seconds (y-axis, in wall clock time) it

takes to create a virtual network with the given number of

logical links (x-axis) in the median case.

Our results show that FlowOps can easily scale to realistic

edge network sizes, and that service creation times are low

enough to readily support dynamic and ubiquitous access to

services.

C. Security Analysis

We use the threat model from Section II-B1 to guide a

security analysis of OpenEdge.

Network Operator and Service Provider Perspectives:

Users are required to authenticate using a shared secret before

connectivity is granted to service provider-specific network

resources. In the case of trying to access SP network resources,

the user has to authenticate against both the network operator

and the SP via the NOAS. Using traffic separation, we provide

strong isolation of network operator and SP network resources.

For an unauthorized user, it is as if the SP network resources

do not exist.

Subscriber Perspective: To protect against the passive

listening for credentials scenario, the secret is shared between

only the service provider and subscriber. A network operator

can authenticate the subscriber while having no knowledge

of that shared secret. Rogue NOs similarly cannot access the

shared secret. Intermediate nodes are only able to access the

challenge (and expected response if the adversary is between

the service provider and network operator) of the authentication

vector. The use of a TPM will improve the security of stored

credentials on the end-device.

OpenEdge protects against the rogue authentication server

scenario by having the authentication occur over a secure

connection (e.g., SSL/TLS). Communication between a user’s

V-SIM manager and a rogue authentication server would only

occur if the latter was able to produce a certificate that is

considered valid by the user’s V-SIM manager.

The untrustworthy service provider scenario is prevented via

the user-token mechanism. Since user-devices have to initiate

the authentication flow with a service provider, we can be sure

that an SP can only include user-devices in its setup request

that have signaled a desire be part of the SP’s service. This

prevents a rogue SP from attaching its network to a user device

that has not explicitly requested services from the SP.

Using a TPM prevents the tampering with the end-device

scenario. When the shared secret is imported into the TPM,

it is tied to that TPM and cannot be cloned. In order for the

shared secret to be moved to another device, it would have to

be prepared for TPM import by the SP who issued it.

IV. RELATED WORK

Our work is inspired by the open access network (OAN)

model, which has been proposed as an alternative to the

pervasive monolithic network access approach [5], [6], [7].

Earlier efforts have met with limited success. A key technical

limitation of these approaches is the lack of a control framework

that would enable automated operation of such networks. As a

result OANs offer limited choice, both in terms of the number

of services and the types of services available. The OpenEdge

cloud-like control architecture addresses these limitations by

making it easy to provide services on an edge network. In

future work, management of these services could be done

through integration with the OpenEdge architecture.

In the commercial world, companies that provide turnkey

solutions over high speed fiber networks are emerging. For ex-

ample, services that target content and digital media companies

are being offered in the Vancouver area [1]. With OpenEdge

we share the goal of these efforts to provide services that

exploit high performance networks. However, unlike these

efforts, OpenEdge adopts an open cloud-like approach where

services or applications that utilize these networks can be

readily provided by third parties.

Our work is also related to software defined networking

(SDN) [12], [13] and network function virtualization (NFV)

efforts [14], [15]. In particular, efforts related to control

architectures for such networks [16], [17]. We use OpenFlow

to realize the OpenEdge virtual network abstraction. However,

our approach is not fundamentally coupled with OpenFlow (or

SDN) and could be realized with other underlying technologies.

Our goal is to provide a new edge network service abstraction

which eases the realization of edge services and applications.

Current NFV efforts are focused on virtualizing network

element functionality, while with OpenEdge we use network

virtualization to enable new edge service abstractions.

Our work also relates to security frameworks such as OpenID

and OAuth. These frameworks require the end user to be able to

directly communicate with both of the other parties during the

authentication flow. In the case of OpenID, more information

is required to be shared between the OpenID provider (our

Service Provider) and the client (our Network Operator). In

the case of OAuth, the client (our end user) is responsible for

all parts of the authentication. These properties make these

approaches unsuitable for an open edge environment.

V. CONCLUSION

In this paper, we presented the OpenEdge architecture to

realize a new open service abstraction for edge networks.

OpenEdge provides a control architecture which allows edge

networks to be controlled in a cloud-like fashion. Specifically,

service providers can interact with FlowOps, the network

management component of OpenEdge, to dynamically request

the creation of network resources to enable their services and

applications. OpenEdge also provides a comprehensive security

component, SecureOps, which provides fine-grained access

control and authentication between end users and both the

network operator and service providers. Our evaluation shows

that OpenEdge can scale to realistic edge network topologies

and effectively mitigate the security concerns for such a multi-

player environment.

REFERENCES

[1] Stratuscore, “Service and Components,” http://www.stratuscore.com/
services/.

[2] Institute for Local Self-Reliance, “Community Broadband Networks,”
http://www.muninetworks.org.

[3] M. Manic et al., “Next generation emergency communication systems
via software defined networks,” in Research and Educational Experiment

Workshop (GREE), 2014 Third GENI, 2014.
[4] Christopher Mitchell, “Broadband At the Speed of Light: How

Three Commmunities Built Next-Generation Networks,” http://ilsr.org/
wp-content/uploads/2012/04/muni-bb-speed-light.pdf, April 2012.

[5] A. González et al., “Prospects on ftth/ep2p open access models,” in
Federation of Telecommunications Engineers of the European Union

(FITCE) 49th Congress, 2010.
[6] W. Lehr et al., “Broadband open access: Lessons from municipal network

case studies,” in Proceeding of the TPRC conference, 2004.
[7] M. Forzati et al., “Open access networks, the swedish experience,”

in Transparent Optical Networks (ICTON), 2010 12th International

Conference on. IEEE, 2010, pp. 1–4.
[8] T. Morris, “Trusted platform module,” in Encyclopedia of Cryptography

and Security, H. van Tilborg and S. Jajodia, Eds. Springer US,
2011, pp. 1332–1335. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4419-5906-5 796

[9] “TPM Library Specification,” http://www.trustedcomputinggroup.org/
resources/tpm library specification.

[10] “3G security; Security architecture,” http://www.3gpp.org/DynaReport/
33102.htm.

[11] E. Kohler et al., “The click modular router,” ACM Transactions on

Computer Systems (TOCS), vol. 18, no. 3, pp. 263–297, 2000.
[12] N. McKeown et al., “Openflow: Enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1355734.1355746

[13] N. Feamster et al., “The road to sdn: An intellectual history
of programmable networks,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 2, pp. 87–98, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602219

[14] R. JAIN and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” Communications Magazine,

IEEE, vol. 51, no. 11, pp. 24–31, November 2013.
[15] W. Zhang et al., “SmartSwitch: Blurring the Line Between Network

Infrastructure & Cloud Applications,” in Proceedings of the 6th USENIX

Conference on Hot Topics in Cloud Computing, 2014.
[16] C. Monsanto et al., “Composing software-defined networks,” in

Proceedings of the 10th USENIX Conference on Networked Systems

Design and Implementation, ser. nsdi’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–14. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2482626.2482629

[17] N. Gude et al., “Nox: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008. [Online]. Available: http://doi.acm.org/10.1145/1384609.1384625

