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Abstract
Efficient deterministic replay of whole operating systems
is feasible and useful, so why isn’t replay a default part of
the software stack? While implementing deterministic re-
play is hard, we argue that the main reason is the lack of
general abstractions for understanding and addressing the
significant engineering challenges involved in the develop-
ment of a replay engine for a modern VMM. We present a
design blueprint—a set of abstractions, general principles,
and low-level implementation details—for efficient determin-
istic replay in a modern hypervisor. We build and evaluate
our architecture in Xen, a full-featured hypervisor. Our archi-
tecture can be readily followed and adopted, enabling replay
as a ubiquitous part of a modern virtualization stack.

1. Introduction
In the last decade, deterministic replay went through a full
cycle of a blooming research field—from rapid growth, to its
peak, and arguably into decline. Numerous applications of
deterministic replay were suggested: e.g., debugging and anal-
ysis of complex software systems [15, 26, 27, 32, 33, 35, 40,
41], fault-tolerant replication [9, 43, 44], performance analy-
sis [4], and forensics [11, 19, 22]). A number of deterministic
replay systems were developed along with advanced tech-
niques for reconstructing execution of parallel [1, 12, 13, 38]
and distributed systems. However, despite academic success,
deterministic replay did not become a de facto part of systems
and virtualization stacks.

As a default component of the modern VMM stack, ubiq-
uitous deterministic replay could change the way we develop
and analyze complex software systems. The availability of
complete system state, the guaranteed deterministic behav-
ior of re-execution, and the absence of limitations on the
run-time complexity of analysis algorithms collectively en-
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able deep, iterative exploration of the run-time properties of
whole systems, such as automatic debugging, explanation of
cross-component performance anomalies, reconstruction of
intrusion vectors, and more.

Why hasn’t deterministic replay become a default part of
the systems stack? Implementing deterministic replay is hard.
We argue, however, that the main reason is the lack of general
abstractions for developing replay mechanisms. In theory,
system interfaces—OS system calls and VM hypercalls—
are designed to provide a clean abstraction boundary and
full encapsulation. In practice, abstractions are leaky due
to a number of low-level optimizations aimed to deliver
low-latency and high-throughput I/O for virtualized systems.
In full-featured hypervisors like Xen and KVM, a replay
interposition boundary built to capture the execution of a
virtual machine cuts through multiple subsystems and layers
of the software stack: hypervisor, host kernel, and host
user-level. Without general abstractions for reasoning about
nondeterminism, proper mechanisms for efficient recording,
and tools for analyzing and debugging divergence, building
replay into a full-featured hypervisor is impossible.

Abstractions for deterministic replay are badly needed.
Existing replay prototypes either sidestep the complexity of
a real environment and concentrate on a particular research
topic, or develop an implementation that is challenging to
generalize and reuse. It took the authors three person-years
to implement a deterministic replay engine for uniprocessor
guests running on Xen. Despite the existence of earlier replay
implementations (one in Xen [23]), the reuse of code and
strategies for replay did not appear to be possible. Having
no reference design, and no clear abstractions or principles
from prior work to follow, we had to re-analyze sources of
nondeterminism, reinvent debugging tools, and rediscover a
way to split Xen into deterministic and nondeterministic parts
such that recording and replay have good performance.

The contribution of this paper is an effective collection of
techniques and abstractions that provide a practical founda-
tion for extending modern hypervisors with virtual machine
replay. As our work is based on the experience of implement-
ing deterministic replay in Xen, it fully reflects the complexity
of a modern virtualization stack: parallel, asynchronous, and
paravirtualized device I/O; a multi-layer device virtualization
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model; a fully preemptible, parallel hypervisor; and more.
Our abstractions are clean and practical. We develop a gen-
eral approach for capturing and coordinating the execution of
a VM at multiple layers of the virtualization stack. We design
general techniques for ensuring the determinism of larger
nondeterministic components. Finally, our techniques keep
recording mechanisms off the carefully optimized critical
path of the hypervisor. We believe that deterministic replay is
a useful part of the virtualization stack and that our blueprint
can substantially simplify future replay implementations.

Although our work develops mechanisms essential for any
replay engine, we focus on the replay of uniprocessor guest
VMs. These are appropriate for many production use-cases
where it is often acceptable to obtain scalability by running
multiple guests on a powerful machine. A number of promis-
ing research efforts have addressed the problem of high over-
head [13, 23] in recording multiprocessor guests. Still, these
techniques require assumptions that are often unacceptable
for production environments: e.g., the need to tolerate the
overheads of whole-system binary translation [12], heavy-
weight execution-reconstruction techniques that are limited
to several seconds of recording [1, 38], the inability to record
a whole system due to strict limits on the amount of shared-
memory nondeterminism [33], intrusive changes to the entire
OS stack [7], or specialized hardware [29].

2. Deterministic VMMs Are Hard
The basis for deterministic replay is simple: the execution
of a system is largely deterministic, and is only occasionally
altered by external nondeterministic events. Being placed
in identical initial conditions, and processing an identical
instruction stream, the CPU deterministically generates the
same values in registers and memory.1 The determinism of
execution holds until some external event, e.g., an external
interrupt, or an I/O read from an external source, alters either
the state of the CPU or the system’s memory. Starting from
the initial state, one can force the system to repeat its original
execution by replaying external events.

Complex interposition boundary Replay requires that all
nondeterministic input be available for interposition during
logging and replay. Although the virtual machine is designed
to have a rigid isolation boundary, in a real system it has a
number of architectural dependencies on multiple parts of the
virtual machine monitor: the low-level state of the hypervisor
(interrupt and exception handlers, timers, virtual CPUs and
MMUs, and cross-VM shared memory), host device drivers
(fully emulated and paravirtualized devices), a platform
emulator (emulation of BIOS, legacy peripheral devices, and
buses for unmodified guests), VM configuration and creation
tools, and so on. Each of the parts contains some state of the
VM and can affect its execution. Synchronized logging and
orchestrated re-execution of the multi-level, multi-component

1 There are anecdotal examples of nondeterministic CPU behavior [9].

system require abstractions providing a general approach to
nondeterminism in a complex system, as well as mechanisms
that can (1) record a complex decentralized system without
loss of performance and (2) re-execute it in a controlled lock-
step manner during replay.

Concurrent, reentrant environment Modern hypervisors
are designed to provide low-latency virtualization of inter-
rupts and device I/O. They run with minimal locking to en-
sure preemptive, concurrent, and parallel processing of high-
priority interrupts and signals. Most components are reentrant,
and under high load may create interleaving of low-level up-
dates to the state of the replayed system in an order that is still
acceptable for the system, but is impossible to replay at the
level of recorded events. Deterministic replay must ensure the
atomicity of recording across the entire VMM stack without
introducing a “big lock” into a highly concurrent system.

Complex instruction-counting logic Despite having a long
development history, precise instruction counting—required
for replaying asynchronous events—is still challenging on
modern CPUs. Precise instruction counting requires tracking
every exit from the replayed system. This is especially chal-
lenging in the face of the System Management Mode (SMM)
interrupts, which exit straight into the BIOS firmware and
are transparent to the hypervisor [46]. Instruction-accurate
injection of asynchronous events requires support for emu-
lating repeated string instructions, which do not change the
instruction pointer or branch counter across multiple itera-
tions, and careful emulation of the trace flag, which is used
to single-step the replayed system.

Subtle divergence bugs A change of a single bit in the state
of the replayed system can potentially alter its execution path.
An analysis of the divergence is further complicated by a
period of execution that is common (unchanged) between the
altering change and the observed divergence. In practice,
without special debugging tools aimed at recording and
comparing execution traces across original and replay runs,
it is impossible to implement a replay engine that scales to
replay enterprise workloads.2

3. Abstractions and Mechanisms for Replay
The main challenge of implementing a replay platform in the
complex, concurrent, multi-layer environment of a VMM is
ensuring the determinism of execution: mediating all sources
of nondeterminism and guaranteeing controlled execution
of the system in a lock-step manner between pairs of non-
deterministic events. Several abstractions are critical for ad-
dressing the complexity of this task: a three-part model of the
environment, a general approach to implementing interposi-
tion functions, a simple locking and event atomicity model,
and a general execution scheduler.

2 The ReVirt team analyzed a replay-divergence bug caused by the order of
page fault exceptions, which were required to emulate the “dirty” page bits,
and external interrupts, for two months [21].
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3.1 A Three-Part Model
A three-part model provides a general view of possible non-
deterministic updates that affect the execution of the system.
The model represents the entire replayed system as three
components (Figure 1): (1) the replayed system, (2) a deter-
ministic execution environment, and (3) the nondeterministic
external world. This representation simplifies the develop-
ment of interposition and replay execution-scheduling layers
by classifying all interactions between the replayed system
and its environment into the following three categories: deter-
ministic, synchronous, and asynchronous. Also, the three-part
split reflects the fact that the seemingly rigid boundary of a
virtual machine monitor in practice is pushed well outside
the narrow hardware interface of a VMM for the following
reasons: (1) the flexibility to choose the interposition bound-
ary that reduces the amount of recorded nondeterminism,
and (2) the possibility of reusing complex, low-level VMM
code for injecting asynchronous events and implementing
device I/O. Most of the hypervisor code—e.g., memory man-
agement, page-fault handling, and the hypercall interface—is
deterministic and can be classified as the deterministic envi-
ronment. This often allows ensuring determinism by record-
ing and replaying an invocation of a high-level function from
the VMM code (Figure 1(d)). Device code, e.g., for disk, net-
work, and console, can be forced to look deterministic to the
replayed system with the help of a small layer of code, a de-
terminizing proxy, that ensures the determinism of observed
behavior (Section 3.2).

Deterministic updates A replayed system and its execution
environment evolve together by updating each others’ state
(Figure 1(a)). For example, a replayed virtual machine starts
through the normal VM-creation protocol that instantiates the
VMM with a new VM (creates virtual CPUs, memory, par-
avirtualized or emulated device drivers, hardware emulator,
etc.). In practice, it is simpler to ensure that the VM-creation
protocol and its components are deterministic than it is to
implement a new set of tools instantiating a replayed VM in
a more controlled environment. Later, during VM execution,
the VM updates the state of the deterministic environment,
and vice versa. Deterministic interactions do not need to be
logged, but they do need to be re-executed during replay to
ensure that both parts of the system evolve in the same way
they did in the original run.

Synchronous updates A guest system periodically invokes
functions that might return nondeterministic results. For in-
stance, reading the timestamp counter accesses nondetermin-
istic data from otherwise deterministic code (Figure 1(b)). To
ensure that the replayed machine follows the original execu-
tion path, synchronous events are replayed “in place.” Replay
interposition primitives query the replay engine and return
to the system the value of the nondeterministic variable that
was observed during the original run.

Deterministic state Nondeterministic state

Replayed
system

Deterministic
environment

Nondeterministic
external world

(a) Deterministic update,
e.g., hypercall

(b) Synchronous update,
e.g., rdtsc, in

(c) Asynchronous update,
e.g., wallclock time

(d) Grouped update, e.g.,
interrupt injection

Figure 1. External world, deterministic environment, and
replayed system.

Asynchronous updates Asynchronous events represent ex-
ternal updates to the replayed system (Figure 1(c)). These
include interrupts and updates to shared memory from virtual
device drivers running in parallel with the replayed system. In
contrast to a synchronous event—where the replay machine
effectively schedules the state update itself—an asynchronous
event must be replayed in an instruction-accurate fashion by
carefully scheduling execution of a replayed VM.

Dependent updates Figure 1(d) illustrates the common
case where an asynchronous event triggers the execution
of a function that performs multiple deterministic and syn-
chronous updates. For example, an interrupt event updates
the flags, registers, and stack of the guest system. While it is
possible to record all these updates as asynchronous events,
it is easier and more efficient to record a single asynchronous
update, and treat the remaining updates as synchronous events
originating from the code of the deterministic interrupt han-
dler. Of course, the replay system must ensure the atomicity
of the entire handler. In many cases this is easy, since the hy-
pervisor is already designed to ensure that interrupt handlers
are atomic.

3.2 Interposition Functions and Determinizing Proxies
Interposition functions Interposition functions implement
a general logging, replay, and filtering interface for nondeter-
ministic events (Figure 2). During the original run, interpo-
sition functions record all nondeterministic updates. During
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and Lock-Free
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Figure 2. Components of the replay engine: pluggable inter-
position functions, logging and replay daemons, execution
scheduler, instruction counting, and determinizing proxies.

replay, they serve two goals: (1) replay the original nondeter-
ministic values and (2) prevent unscheduled nondeterministic
events from updating the replayed system. Nondeterminism
is generated by parts of the hypervisor and device drivers
that were not modified to support replay and are therefore
unaware that they are dealing with a replayed system. The
interposition functions prevent nondeterminism from leaking
into the replayed system.

An interposition function follows the pattern shown in List-
ing 1. When the system is under replay and the current event
is synchronous, it asks the replay scheduler to replay the cur-
rent event. If the event is asynchronous, it is suppressed, but
the replay scheduler can replay optional events (Section 3.5).
During the original run, the function first pauses all the virtual
CPUs of the VM, traces the event, and then emulates it by
either emulating the original operation or invoking one of
the original functions in the hypervisor code. Note that it is
critical to trace the event before emulating it, as emulation
might trigger more nondeterministic events. By following
this pattern during replay, events will be replayed in order.

Different interposition functions can be invoked in dif-
ferent contexts of execution, e.g., hypervisor, host kernel,
and host user-level. If the function is invoked from outside
the hypervisor, it relies on fast communication primitives
to implement atomic tracing and replay of events that are
coordinated from inside the hypervisor.

Determinizing proxies Virtual devices are not part of the
deterministic environment. However, since their execution
during replay is driven by requests from the replayed system,
they are “nearly deterministic”—the only nondeterministic
aspect of their execution is the time at which they respond,
and order of replies. We use determinizing proxies to inter-
pose on the communication protocol between the replayed

int trace_<function>(...) {
event_t event = {<EVENT_NAME>, ...};
if(replayed_guest()) {
if(synchronous(&event)) {
// request replay of a specific event
replay_current_events(..., &event, &ret);
return ret;
}
// asynchronous event: suppress the
// update but replay "optional" events
replay_current_events(...);
return OK;
}
// Pause all virtual CPUs
pause_vm();
trace_event(<event_type>, ...);
// Emulate original event
ret = <function>(...);
unpause_vm();
return ret;
}

Listing 1. Generic example of an interposition function.

system and the device, ensuring that updates are propagated
in a deterministic way. A virtual device accesses the state
of the guest system through two mechanisms: (1) memory
remapping and interrupt-signaling hypervisor calls, and (2) a
region of shared memory. The determinism of hypervisor
calls is ensured by the interposition layer inside the hypervi-
sor. To ensure the determinism of direct memory updates, the
determinizing proxy inserts itself between the guest system
and the virtual device, and mirrors all updates to and from
the guest system in a deterministic way. Some devices, e.g.,
network and console, require replay of the device I/O payload.
The console device’s proxy replays the console input itself.
The more complex network device’s proxy avoids emulation
of the full device protocol. Instead, it replays the network pay-
load into the guest device by using the device driver functions
of the host kernel.

3.3 Precise Instruction Counting
A replay platform forces the replayed system to repeat its
original execution by reproducing all nondeterministic up-
dates to the state of the system and deterministic environment
at the exact points of execution at which they happened dur-
ing the original run. The position of each nondeterministic
event is uniquely determined by the number of instructions
executed by the replayed system since its start. While requir-
ing compiler or binary translation support if done in soft-
ware [36, 42], on modern CPUs, instruction counting can be
implemented by utilizing the hardware performance monitor-
ing interface [3, 31]. On the Intel architecture, two hardware
performance counters can be utilized to implement an accu-
rate instruction-counting algorithm: the branch instruction re-
tired counter (BR_INST_RETIRED.ALL_BRANCHES) and the
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instruction retired counter (INST_RETIRED.ALL) [31]. A tu-
ple of {instruction pointer, branch counter} is sufficient to
identify the exact position in the instruction stream [24, 42].
On x86 systems, the tuple must be extended with the value
of the RCX register, to account for cases when a string-copy
instruction is preempted by an interrupt in the middle of the
long copying loop. (The RCX register contains the last iter-
ation of the loop.) Unfortunately, two problems complicate
the implementation of a precise instruction counting: delay
of the counter overflow interrupt, and nondeterminism.

Delay of the counter overflow interrupt The hardware
performance monitoring interface of Intel CPUs provides
support for preempting the execution of the system when a
certain number of performance events is reached. In other
words, it is possible to configure a performance counter to
signal a nonmaskable interrupt when the counter overflows.
Unfortunately, a nonmaskable counter overflow interrupt
can be delayed for many cycles.3 To address the interrupt
delay problem, we configure the replay engine to preempt the
execution of the system long enough in advance to account
for the delay of the interrupt. After the interrupt is received,
the system is single-stepped until the proper point in the
instruction stream is reached.

Counter nondeterminism Both branch and instruction
counters can become nondeterministic in the face of in-
terrupts and exceptions. Specifically, certain instruction se-
quences change the behavior of the counter if preempted with
an interrupt. In practice, this is a problem when the system
is single-stepped for long periods during replay to compen-
sate for the delay of the counter-overflow interrupt. During
single-stepping, we implement a precise instruction-counting
algorithm in software. If a counting anomaly occurs while
the system is not in the single-step execution mode, we try to
guess the correct value of the counter based on the value of
the instruction pointer register. If the counter is only several
instructions apart from the recorded value, we adjust it to
match the value recorded during the original run.

3.4 Lightweight Interposition and Logging
Interposition code resides on the critical path of the guest
system: inside interrupt and exception handlers, I/O paths of
device drivers, and exit paths from the guest to the hypervisor.
The main principle for implementing a fast interposition layer
is to offload all tracing, processing, and saving of the trace
data from the critical path. We implement this principle by uti-
lizing a three-stage logging pipeline: pluggable interposition
functions, ring channels, and a logging daemon (Figure 3).

The lightweight interposition layer must be designed to
avoid memory allocations, data copying, and locking on the
critical path. We implement our tracing mechanisms on top
of a producer-consumer ring buffer. We allocate the memory

3 On our hardware, the counter interrupt is typically delayed by only several
instructions. We have seen cases, however, in which the delay is more than a
hundred cycles.
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Register 4
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Figure 3. Lightweight interposition pipeline. Events and
their payloads are allocated inside the ring.

for a new event record straight in the communication channel
and log the event data into that memory. In the ring buffer,
the pointer to the next element in the ring always points to the
next available record, and thus it can be allocated by simply
incrementing the pointer. Ring buffers are both lock-free
and nonblocking; allocation, send, and receive operations are
done with a single update of the producer and consumer
pointers. To avoid blocking, a ring buffer provides flow
control and tries to notify the receiver via an out-of-band
mechanism when new records are available. For channels in
which delay does not matter, ring channels notify the receiver
only if the channel becomes critically full.

Atomicity of cross-CPU events To ensure the atomicity of
recording nondeterministic events in a multi-CPU environ-
ment, we use active messages. We preempt and suspend the
execution of the guest system. To record an asynchronous
event between two physical CPUs—the CPU on which the
event originates, and the CPU on which the recorded sys-
tem is running—our primitives migrate the execution of the
recording function between the CPUs. We request invocation
on another CPU with an interprocessor interrupt (IPI). An
IPI preempts execution of the guest system and invokes the
requested function in the context of the IPI handler. Active
messages allow us to avoid multiple cross-core round-trips
required for suspending a VM.

Branch counter caching Frequent accesses to the rela-
tively slow hardware branch-counter register introduce addi-
tional overhead when recording nondeterministic events. To
minimize this cost, like ReVirt [22], our system accesses the
hardware counter only once for each exit from the guest into
the hypervisor.

3.5 Execution Scheduling
The replay engine induces a VM to reproduce a recorded
execution path by injecting each nondeterministic event at its
instruction-accurate position in the instruction stream. The
execution scheduler implements controlled execution of the
system from one nondeterministic event to the next.
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Proper design of the event scheduler, and careful choice
of the event scheduling types, ensures the extensibility of the
replay infrastructure—allowing it to be modified to record
additional information about the system: e.g., debugging
information, the state of hardware performance counters, and
branch-tracing store events. A general execution scheduler
implements support for the following types of events.

Synchronous and asynchronous events To replay syn-
chronous events, the scheduling engine lets the system run
until it reaches the execution point at which it must replay
that specific event. To replay asynchronous events, the ex-
ecution scheduler configures branch counters to raise an
overflow interrupt before the original event takes place, and
then continues execution of the system in a single-step mode.
This is done to address a hardware delay in receiving the
interrupt [24, 37]. Upon reaching the target location in the
execution, the replay engine replays the asynchronous event
and continues execution by scheduling the execution of the
system to the next nondeterministic event.

Optional events Optional events are useful to implement
best-effort service. A scheduler will replay an optional event
if it observes that the recorded guest is at a position in the
instruction stream at which the event occurred in the original
run; otherwise, it will discard the event. For example, we rely
on the optional event type to replay performance information
(Section 4.5) and turn on and off heavyweight debugging
features like hardware branch tracing (Section 3.6).

Nonreplayable events Finally, nonreplayable events can
record arbitrary information, e.g., debugging and perfor-
mance analysis primitives like printf, tracing of real-time
performance information during original and replay runs, and
collecting BTS logs (Section 3.6).

Retyping asynchronous events as synchronous The re-
play engine benefits from recording as many synchronous
events as possible. The replay of synchronous events does
not require slow single-stepping—the system can just run to
a point at which it exits into the hypervisor. Typically, sev-
eral asynchronous events (e.g., device ring buffer updates)
will be recorded while the guest system is inside the hyper-
visor that is servicing this synchronous exit. Although the
synchronous exit itself does not need to be recorded since it
is deterministic, it is possible to use the information about the
synchronous exit to relabel all asynchronous events inside
this exit as synchronous.

Replay on exit to guest It is reasonable to assume that
the timestamp of the guest system changes only while it is
running. In practice, this assumption is not true. The logic of
instruction emulation implemented inside the hypervisor can
change the instruction pointer of the guest system, moving
its timestamp forward. Therefore, a scheduler should check
if more events are ready to be replayed right before exiting
into the guest system.

3.6 Scaling Development with Replay Analysis Tools
In our experience, the scalable development of determinis-
tic replay is impossible without a range of debugging and
analysis tools to aid the analysis of nondeterminism and the
debugging of subtle replay divergence cases. Three mecha-
nisms aid the development of replay: page guarding, hardware
branch tracing, and run-time state comparison.

Page guarding Our system’s run-time page guarding mech-
anism enables the detection of unrecorded updates to the
guest system. Page guarding write-protects guest pages when
the guest system exits into the hypervisor. To implement the
guard, we extended the hypervisor to automatically protect
and unprotect pages on every transition between the guest
system and the hypervisor. Page guarding enables us to detect
a large subset of all nondeterministic events at the processor
and memory boundaries of the virtual machine interface.

Hardware branch tracing Any undetected nondetermin-
ism or error in the replay implementation might diverge the
execution of a guest system from its original run. Without
additional information, subtle replay failures are difficult to
debug. We implemented an efficient execution comparison
tool using the Branch Tracing Store (BTS) facility provided
by Intel CPUs [31]. The BTS interface allows us to config-
ure a region of memory as a linear array in which the CPU
records all taken branches. The BTS can be configured to
send a nonmaskable interrupt when the array reaches a cer-
tain length. We flush the contents of the BTS buffer every
time it traces a nondeterministic event. This way, we are able
to see what code the system was executing between nonde-
terministic updates, and compare BTS traces across original
and replay runs. We further built a set of tools that resolve
raw branch addresses into human-readable symbol names.
We rely on the GDB debugger to perform the symbol lookup.
The BTS mechanism, coupled with automatic symbol reso-
lution and trace-comparison tools, has proved to be a good
mechanism for analyzing diverging executions.

Run-time state comparison Finally, to detect divergent
state and nondeterminism in the hypervisor, the replay engine
contains a run-time mechanism that can record and compare
the state of the hypervisor across original and replay runs.
We implement state comparison by extending our replay
engine with a new optional event. This event carries the state
information between original and replayed runs, and triggers
a state comparison when it is replayed.

4. Deterministic Replay in Xen
We implemented our ideas in XenTT, a full-system deter-
ministic replay engine for the Xen virtual machine monitor.
Multiple reasons motivated the choice of Xen as the basis
for XenTT. Xen is a full-featured, open-source virtualization
platform [5]. It offers excellent virtualization performance;
a fast, fully asynchronous, paravirtualized device driver ar-
chitecture; and support for a wide variety of guest systems
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Figure 4. Architecture of the XenTT replay engine.

and hardware platforms. It is widely used as a virtualiza-
tion provider in commercial datacenters [2] and large-scale
academic research facilities [47].

4.1 XenTT Architecture
XenTT implements our replay architecture in Xen (Figure 4).
Its replay engine consists of four main components and sev-
eral high-bandwidth communication channels that connect
them. The event-interposition layer utilizes pluggable inter-
position functions to implement logging and replay of the
low-level VM interface exported by the hypervisor. The coor-
dination layer relays events between the interposition func-
tions and the logging and replay daemons. Logging and re-
play daemons run as user processes inside the privileged Xen
domain; they process the log of recorded events and save it
to a persistent store. The device-interposition layer imple-
ments determinizing proxies for each logged and replayed
Xen device.

4.2 Hardware-level Virtual Machine Interface
Several Xen components require modification to record and
replay nondeterministic events; we discuss them here.

Start info page The start_info page is shared between
the guest system and the hypervisor at boot time. XenTT
leverages the determinism of the domain-creation protocol,
which recreates values in the start info page during replay.

Shared info page The shared_info page contains infor-
mation required for initialization of the guest, delivery of
interrupts (event channels), nanosecond and wall-clock time,
etc. Shared info is updated asynchronously by the hypervisor.
XenTT records and replays nondeterministic updates to the
shared info page as simple memory-page updates.

Grant tables The grant tables store information for memory
access permissions and in-flight sharing of pages between
domains. Grant tables are typically updated asynchronously
by the backend drivers. A grant table update has the form
of a compare-and-exchange or a clear-flag operation. For
compare-and-exchange, XenTT records a grant table opera-
tion as an index into the grant table array, the old value, the
new value, and the result of the compare-and-exchange.

Event channels Event channels are Xen’s analog to hard-
ware interrupts. They are one-bit communication primitives
used to send immediate notifications between virtual ma-
chines. To deliver an event, Xen preempts the execution of
the guest, creates a special interrupt stack, and forces the exe-
cution of the interrupt handler. Although the event-delivery
protocol requires several updates to the shared_info page,
and the injection of an interrupt frame into the guest, its ex-
ecution is deterministic. XenTT records and replays event
notifications by simply invoking the event delivery function
(evtchn_set_pending).

Copy-user interface The copy-user interface is used to
return data from the hypervisor to the guest. XenTT wraps the
copy-user function and records all asynchronous copy-user
events. The recording of in-place copy-user events is optional,
since they will be reinvoked as part of another action.

Privileged instructions The Xen hypervisor supports privi-
leged CPU instruction emulation (e.g., cpuinfo and rdtsc).
XenTT interposes on this emulation to detect instructions that
return nondeterministic results.

EFLAGS register To single-step the guest during replay,
XenTT uses the trace flag (TF) in the EFLAGS register of
the guest. Obviously, TF can change the execution of the
system during replay, if it is “leaked” into the guest. For
example, TF changes the execution of the Linux kernel on
the system-call entry path. To preserve the determinism of
the guest, XenTT virtualizes the EFLAGS register. During
replay, when the guest is single-stepped, XenTT parses the
guest’s instruction stream and detects instructions that save
the EFLAGS register.

Optional events Some exits from the guest are in-place
events (i.e., exceptions, hypercalls, and int 0x80 system
calls) that are deterministically re-executed by the guest, if
the determinism of all other events is preserved. To reduce
interposition overhead, XenTT does not record these events.

Time Xen exports wall-clock time, system time since boot,
and run-time state statistics to the guest system through a
shared memory region that Xen updates periodically. To ob-
tain the most recent time values, the guest system interpolates
time values with nanosecond precision by reading a hardware
timestamp (TSC) register that is used to compute the time
passed since the last memory update. To ensure the determin-
ism of time values, XenTT records updates of time values in
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the shared page, and implements emulation of the rdtsc in-
struction that accesses the timestamp counter. XenTT records
and replays the guest’s run-time state statistics that reflect the
amount of time a guest system spends in each of four states:
running, runnable, blocked, and idle. Finally, XenTT records
the execution of periodic, polling, and single-shot timers.

4.3 Device Drivers
The major source of nondeterminism in any system is com-
munication with external devices. Under Xen, a guest system
accesses its virtual devices via a backend-frontend split de-
vice pair [14, 25]. To notify each other about new I/O requests,
backend and frontend device drivers rely on a fast, lock-free,
producer-consumer ring, which they share in a memory page.
The backend and frontend devices add new requests to the
ring by simply advancing the pointers in the shared ring, and
sometimes notifying the other end via an event channel.

For high-bandwidth I/O devices, the shared ring contains
only pointers to the memory pages with the actual I/O
payload. The ring essentially holds a queue of I/O requests.
Each I/O request contains a machine frame number of a page
with the actual I/O payload. A typical I/O transfer relies on
the memory-mapping mechanism, although other ways of
communicating I/O data are possible, e.g., memory copy in
and out of a large shared I/O buffer, hypervisor-supported
memory copy operation, page flipping, etc.

There are two challenges in logging device driver commu-
nication. First, the overhead of logging every update to mem-
ory shared between virtual machines is prohibitive. XenTT
leverages the semantics of the shared ring and logs only
shared-ring pointer updates. (In theory, a guest could access
the data in the shared memory before the pointer update; in
practice, guest frontend device drivers do not.)

The second challenge is a result of the fact that a shared
ring is updated inside the kernel of a device driver domain.
XenTT must record the exact state of the guest at the update,
but this state is only available inside the hypervisor. To
avoid multiple context switches needed to read guest state,
XenTT implements a new technique that ensures atomicity
of the memory update and reading the guest state. Instead of
updating a pointer in the ring, the device driver domain sends
the hypervisor an active message (Section 3.4) describing the
update. The hypervisor atomically performs the update and
records guest state.

4.4 Determinizing Proxies
To preserve the determinism of replay, XenTT ensures the
determinism of updates to the shared-ring buffers. To control
all shared-ring updates from the backend devices, XenTT
implements a device-driver interposition component: Devd,
which is inserted between each pair of backend and frontend
device drivers to mediate their communication (Figure 5).
Devd implements determinizing proxies for the four most
critical Xen devices: console, XenStore, disk, and network.
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Figure 5. Details of ring interposition.

Devd is implemented as a user-level application that runs
inside the device driver domain, i.e., Domain 0 in a typical
Xen setup. Devd implements a device bus: by monitoring the
XenStore database, Devd’s bus driver discovers new devices
connected to the guest system. For each newly discovered
device, Devd walks through the list of registered drivers and
tries to find a match for the device.

Instead of connecting to the event channels and shared
rings of the frontend domain, backend devices connect to
the shared rings created by Devd. Devd is transparent to
the communication between backend and frontend devices:
backend and frontend devices update their ring pointers as
they do in case of noninterposed execution, and Devd reflects
all updates between the two rings it mediates. In Figure 5,
Devd mediates the update of the request producer pointer.

In-kernel payload logging Replay of the console, Xen-
Store, and network devices requires logging of the data enter-
ing the guest during the original run. To shorten the datapath
for high-throughput network devices, XenTT implements a
payload logging mechanism, which allows it to save the pay-
load of a backend device straight into a file without leaving
the context of the device driver domain kernel.

Determinism of transactions in XenStore XenStore is a
registry database fostering the exchange of device and domain
configuration information; it implements a publish-subscribe
interface across virtual machines. To support atomic updates,
XenStore implements a transactional interface for updating
its state. The determinism of the device-bootstrap protocol
required deterministic XenStore transactions. XenTT imple-
ments this support by ensuring that transactions from replay-
ing VMs always commit.

4.5 Extending Replay with Accurate Performance
Information

Deterministic replay ensures that the replayed copy of ex-
ecution is identical to the original run; i.e., during replay,
the system repeats its original execution instruction by in-
struction. However, the performance information about the
original execution is lost. Compared to the original run, the
replayed system progresses at different speeds during replay.
The two main factors that affect the performance of the re-
played system are (1) eliminated periods of I/O waits and
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Figure 7. Replaying the TSC information.

CPU inactivity and (2) frequent periods of single-stepping
required for replay of asynchronous events.

XenTT extends a traditional replay protocol with the abil-
ity to record and recreate a faithful view of performance of the
original run during replay. During original execution, XenTT
periodically records the value of the timestamp counter reg-
ister (TSC). During replay, recorded values provide a basis
for accurate approximation of performance at any moment of
replayed execution with the help of a simple linear model.

XenTT records the value of the TSC on every transition
from the hypervisor into the recorded system. The following
optimization allows XenTT to make time recording more
accurate. Every time the hypervisor is about to enter the
guest, XenTT saves the current value of the TSC. The
recording of this value is delayed until the guest returns to the
hypervisor (Figure 6). During replay, the value of the original
timestamp counter is replayed on every transition from the
hypervisor into the guest (Figure 7). The current values of
the TSC right at the entry point (Rentry) and at the moment
the performance information is queried (Rnow) allow XenTT
to recreate the original value of the timestamp counter (Vnow)
as Vnow =Venter +(Rnow −Renter).

5. Evaluation
Can our replay abstractions and mechanisms be applied
for recording complex software systems? In this section,
we present several evaluation scenarios that demonstrate
XenTT’s ability to perform deterministic recording of real
systems, on a variety of workloads, with overheads that are
non-prohibitive for use in production environments.

Hardware setup We conducted our evaluation on a hard-
ware platform that is representative of a production cloud en-
vironment. We performed experiments on a Dell PowerEdge
R710 server equipped with a quad-core 2.4 GHz Intel Xeon

E5530 “Nehalem” processor with hyperthreading support,
12 GB of 1066 MHz DDR2 RAM, and four Broadcom NetX-
treme II BCM5709 rev C 1 Gbps NICs. The machine is config-
ured with four Western Digital WD1501FASS 1.5 GB SATA
disks with a 64 MB buffer, 7200 RPM, and a sustained data
transfer rate of 138 MB/s. One of these disks is the root disk.
XenTT is based on a development version of the 32-bit Xen
hypervisor (the closest corresponding Xen release is 3.0.4)
and a 32-bit Linux 2.6.18 kernel.

To minimize test variability, we configured the system
with the minimal set of resources required to fulfill the test
task. For all experiments, we configured the Xen hypervisor
to recognize only three CPU cores: two cores are allocated
for Domain 0, and one core runs the XenTT guest VM. To
reduce caching and buffering effects, we reduce the memory
allocation for Domain 0 and the guest VM to be 2 GB and
192 MB, respectively.

5.1 Is Replay Faithful?
How do we know if the replayed system repeats the original
execution? Deterministic replay naturally implements a self-
checking mechanism through the replay of synchronous
events. During replay, the system periodically asks for the
replay of a synchronous event. At this point, the replay
platform must provide the original value for a specific event.
Replay detects divergence if the log does not contain the
requested event, or if the timestamp of the event differs from
the current position in the execution of the replayed system. In
practice, synchronous events are frequent enough to provide a
high degree of confidence that replay is faithful. A malicious
system could possibly confuse the replay engine about its
state (e.g., if replay is used for malware analysis or virtual
machine accountability [28]). In these cases, hardware branch
tracing can be used to compare executions at the level of taken
branches.

5.2 Logging and Replay Overheads
CPU-intensive workloads To evaluate recording overhead
on CPU-intensive workloads, we configured XenTT to run the
open-source, multiplatform Freebench benchmarking suite.
Freebench uses existing open source tools to implement
ten tests that measure a system on a variety of workloads:
scientific, 3D rendering, compression, encryption, database,
photo processing, audio encoding, text processing, and AI.

Figure 8 presents our results from running Freebench
benchmarks on a Linux guest and on a XenTT guest with
recording enabled. For all but one test, the recording infras-
tructure introduced only a small overhead of 5.6%.

To evaluate the performance of a recorded system on a set
of systems workloads, we configured XenTT to record the
execution of the Phoronix benchmarking suite. The Phoronix
suite provides a large library of benchmarks; we use nine that
characterize whole-system performance and stress specific
hardware components.
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Figure 8. Freebench benchmarks.
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Figure 9. Phoronix benchmarks.

Figure 9 shows the performance of XenTT relative to
the reference, non-XenTT performance, for each benchmark.
LAME, GnuPG, and Stream remain within 2% of the perfor-
mance of an unmodified Xen. Under XenTT, apache serves
approximately 69% as many requests per second as the refer-
ence implementation. The apache benchmark incurs a large
number of accesses to the timestamp counter register (TSC),
via the rdtsc instruction. In an unmodified Xen, rdtsc is a
non-privileged instruction. XenTT, however, forces the guest
system to exit on rdtsc to record the returned TSC value. It
is unclear if the large number of TSC events is inherent to the
Apache workload or simply a side-effect of the benchmark.
DBench and Postmark perform a large number of random
disk operations. Higher delays of the disk interposition code
penalize their performance.

Log sizes We evaluated the space required to store deter-
ministic logs by running XenTT on several representative
tasks. A Linux kernel boot incurs a large number of exits
to the hypervisor and nondeterministic events. XenTT logs
performance information on every VM exit. An idle XenTT
system generates a raw log at a rate of 167 MB/hr (4 GB/day),
or 44 MB/hr (1 GB/day) if compressed with gzip. For the

Activity Raw/Compressed Log Size
Linux boot 903 MB 145 MB
Idle machine (12 hours) 2 GB 529 MB

(167 MB/hr) (44 MB/hr)
TCP receive (4 GB)

Event log 1.8 GB 342 MB
Payload log 4.4 GB (dependent)

TCP send (4 GB) 1.1 GB 211 MB
Disk write (4 GB file) 600 MB 145 MB
Disk read (4 GB file) 414 MB 62 MB

Table 1. Log size for various workloads.

TCP network receive test, we report both nondeterministic
event and payload logs. We do not report the compressed size
of the payload log, since it is payload-dependent.

Table 1 suggests that the system, which only reads and
writes its disk at the highest speed, generates the compressed
log at the speed of 5.5 GB/hr and 7.2 GB/hr, respectively. This
implies that a 1 TB hard disk can only store 5.7 and 7.5 days
of recording. The system, which sends and receives data over
the network at the highest speed, will generate the compressed
log at the speed of 18 GB/hr and 30 GB/hr, respectively. At
such high rates, a 1 TB hard disk can only store 2.3 and 1.3
days of recording. The best case for deterministic replay is an
idle system, which generates the compressed log at a rate of
1 GB/day. A 1 TB disk will store 3 months of deterministic
recording.

Disk-intensive workloads To stress sequential disk I/O, we
used dd to read and write a 4 GB file (Figure 10). We used
a 1 MB block size and averaged results over three runs. The
Xen disk drivers provide little buffering on the I/O path and
are therefore sensitive to the delays that XenTT introduces
by routing all disk requests through a user-level device-
interposition daemon. On a disk with a sustained data transfer
rate of 138 MB/s, a vanilla Xen system achieves write and
read throughputs of 101 MB/s and 130 MB/s, respectively.
The XenTT interposition layer stays within 21% and 22% of
the performance of unmodified Xen.

Network-intensive workloads We evaluated network log-
ging overhead by recording the execution of the netperf
network benchmark (Figure 11). We set a TCP window size
of 128 KB, ran netperf for 60 s, and averaged results over
three runs. Compared to disk I/O, Xen’s network drivers
are more highly optimized to support high-bandwidth work-
loads and tolerate I/O delays. On send and receive operations,
XenTT is able to stay within 8% and 14% of unmodified Xen.

To measure network delay, we used XenTT to record the
execution of the ping tool (Figure 12). The tests report the
overhead of interposition for both idle and loaded network
paths. To load the network path, the guest system runs a
netperf TCP stream test in the background, concurrently to
the ping test. On a loaded connection, the measured delays
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Test Native VMI/Perf Model Error
nop1 120 212 1.77x
nop10 24 100 4.17x
nop100 68 128 1.88x
nop1K 352 420 1.19x
nop10K 3,568 3,808 1.07x
nop100K 34,924 35,976 1.03x
nop1M 349,068 350,300 1.00x
real10 28 116 4.14x
real100 80 168 2.10x
real1K 516 632 1.22x
real10K 5,224 5,260 1.01x
real100K 51,700 51,888 1.00x
real1M 516,756 517,680 1.00x

Table 2. Precision of the performance model.

for XenTT are within 5% of those measured for Xen. On an
idle link, XenTT’s interposition code adds an 80 µs delay.

5.3 Precision of the Performance Model
To characterize the precision of XenTT’s performance model,
we measured simple sequences of instructions. Table 2 lists
our results. The “nopX” tests consist of X nop instructions;
the “realX” tests consist of X simple instructions (e.g., pushl,
inc, addl, etc.). To improve measurement fidelity, we re-
moved the possibility of page faults while loading the test
code pages. In the table, the “Native” cycle counts are ob-
tained by directly instrumenting the test using the rdtsc
instruction; the “VMI/Perf Model” values are obtained from
the XenTT performance model via a virtual machine intro-
spection (VMI) interface exported by XenTT at the beginning
and end of the test sequence. The “Error” values are the ratios
of VMI to Native cycle counts.

The performance model is noticeably less precise for very
small instruction sequences. This is to be expected, given the
fact that a combined entry and exit path to the hypervisor costs
approximately 800 cycles, and the performance model must
account for these and other expensive events as it virtualizes
the TSC. However, its precision becomes much better over
even a relatively small number of cycles (e.g., 10K nops or
real instructions). Given this, we claim that the performance
model provides reasonable precision.

6. Discussion
Although we implement deterministic replay for paravirtual-
ized Xen guests, we argue that our ideas generalize to other
hypervisors and types of virtualization. Paravirtualization and
hardware-supported CPU virtualization require inherently
similar replay interposition boundaries. A paravirtualized
interface is designed to follow the shape of the hardware in-
terface of the CPU—a pragmatic choice aimed at minimizing
the changes necessary in the guest kernel. Compared to par-
avirtualization, hardware-supported virtualization defines a
much cleaner and simpler protocol for injecting asynchronous
interrupts into the guest system. As a result, the replay interpo-
sition boundary can rely on the same principles for injecting
guest interrupts (i.e., determinism of low-level hypervisor
functions), but does not require assembly programming to
invoke interposition functions from an interrupt return path.

Full virtualization extends hardware-supported virtualiza-
tion of the CPU with full emulation of a platform. This re-
quires extending the interposition boundary into a hardware
emulator: QEMU is a de facto standard emulator used by both
Xen and KVM. Until recently, QEMU had a single-threaded,
serialized device-emulation architecture that enabled rela-
tively simple interposition and replay [12]. Components of a
hardware emulator that are not performance-critical, such as
BIOS emulation, can leverage this simple architecture, and
thus can be trivially extended with replay. On the other hand,
the emulation of high-throughput hardware devices would
require fully asynchronous, parallel devices. Such devices
will benefit from the techniques developed by our work: de-
terminizing proxies, device interposition, fast communication
primitives, centralized recording, active messages, and gen-
eral replay scheduling. These same techniques can be applied
to the replay of virtualization platforms that support direct de-
vice assignment and SR-IOV. In the case of direct assignment
of a device, instead of full emulation of the device interface,
a replay platform must implement a simpler interposition
logic for the low-level device interface (the PCI configuration
space, BAR regions, DMA engine, etc.).

KVM implements a hypervisor as part of the Linux kernel.
While different than Xen, KVM is built on architectural ideas
similar to those in Xen, and thus can benefit from the general
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mechanisms and principles presented here. Furthermore, we
argue that our replay debugging and analysis techniques—
page guarding of the VMCS region, BTS tracing, and run-
time state comparison—can significantly aid in the analysis
of nondeterminism. While originally dependent on QEMU-
based device emulation, recent versions of KVM leverage
virtio [39], a fast, paravirtualized device stack. Similarly to
split-device drivers in Xen, virtio relies on shared-memory
ring buffers for high-throughput communication. While hav-
ing a different ring interface, virtio devices can leverage our
ideas for implementing general device interposition.

7. Related Work
Techniques to log and replay state date back to the earliest
computing systems. In 1948, the ENIAC relied on system
checkpointing to recover computations interrupted by fre-
quent component failures [34]. An excellent overview of the
early work in the area of reversible execution is given by Lee-
man [34]. Several surveys provide taxonomies of early [20]
and more recent work [16, 30] in the area of replay debugging.
Chen et al. provide a good overview of recent approaches
to multiprocessor replay [13]. Contemporary notions of sys-
tem replay originated as parts of distributed checkpoint pro-
tocols [6], replay debuggers for parallel systems [18], and
fault-tolerant replication approaches [8].

A major drawback of all early replay systems is their
inability to handle asynchronous events. Mellor-Crummey
and LeBlanc were the first to implement an instruction-
counting algorithm in software [36]. Cargill and Locanthi
were the first to advocate the implementation of a simple
instruction-counting mechanism in hardware [10]. Bressoud
and Schneider relied on one of the first hardware branch-
counting implementations in their hypervisor-based, full-
system replication solution [9]. Precise instruction counting
on modern hardware is still a problem [37]. VMware has
articulated the details of a precise branch-counting algorithm
that operates in the face of System Management Mode
(SMM) interrupts [46].

A process-level replay solution can be implemented in-
side [17, 41] or outside [26, 27, 40] of an operating system
kernel, i.e., as an extension to a kernel or as a library within
a process. Facing the complexity of implementing precise
hardware branch counting, most existing process-level re-
play frameworks do not provide support for replaying asyn-
chronous events [33]. Mozilla’s rr is a notable exception that
implements instruction counting and replay of asynchronous
events for a process-level replay solution [37].

In contrast to process-level solutions, full-system replay
can provide a complete implementation of replay that requires
no simplifying assumptions about the replayed system, except
those imposed by the virtualization platform [12, 19, 22, 48].
A commercial replay implementation from VMware can
record and replay the execution of enterprise workloads, e.g.,
Microsoft SQL and Exchange servers, 1 Gbps streams, a

Hadoop cluster, etc., with an overhead of a few percent [43,
44].4 QEMU-based replay solutions [12] simplify their imple-
mentation by relying on the inherently synchronized execu-
tion model of the QEMU emulator, which runs all structural
parts—e.g., device and CPU emulation code—under the “big
lock.” As QEMU tries to depart from coarse-grained lock-
ing, those replay engines will require logging, locking, and
orchestration mechanisms similar to the ones suggested by
our recipe. Facing the challenges of the highly preemptive
Xen environment, we implemented many concepts similar to
those found in SMP-ReVirt [23, 24], which however lacked
high-level abstractions and mechanisms that could help pro-
grammers to translate its implementation to other VMMs.

8. Conclusion
We have presented principles and mechanisms for implement-
ing deterministic replay in a modern VMM. The contribution
of this paper lies not in the implementation of a particular
replay engine, but rather in laying out the issues that are com-
mon to all virtual machine replay systems and presenting a
solution that we believe can be followed. Our architecture is
the result of three person-years of effort spent implementing
XenTT. We believe that if we had had a reference architecture
to follow at the start of our XenTT project, our implemen-
tation effort would have been much smaller. By sharing our
battle-won experience, we hope to encourage other implemen-
tations and thereby promote deterministic replay as standard
equipment for VMMs.
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