Using Similarity in Content and Access
Patterns to Improve Space Efficiency
and Performance in Storage Systems

Photos Stored in Facebook

Reference
“Finding a needle in Haystack: Facebook’s photo storage”, in USENIX OSDI ‘10

Photos Stored in Facebook

~« Xing Lin shared Fred Douglis's photo.
o= July9at1:38am - &\ v

Like - Comment - Share

Y Yue Cheng likes this.

5 | Write a comment...

Reference
“Finding a needle in Haystack: Facebook’s photo storage”, in USENIX OSDI ‘10 3

Photos Stored in Facebook

e Xing Lin shared Fred Douglis's photo. ® N um be I Of p h OtOS
== July9at1:38am- & v
uploaded every week

Like - Comment - Share

Y Yue Cheng likes this.

&5 | Write a comment...

Reference
“Finding a needle in Haystack: Facebook’s photo storage”, in USENIX OSDI ‘10 4

Photos Stored in Facebook

| — Xing Linlshared Fred Douglis's photo. ® Number Of phOtOS
uploaded every week

= .,; 1 % 1 billion
(60 terabytes)

ANN \{ RSARY

Like - Comment - Share

Y Yue Cheng likes this.

5 Write a comment...

Reference
“Finding a needle in Haystack: Facebook’s photo storage”, in USENIX OSDI ‘10 5

Photos Stored in Facebook

= Xing Lmiwrel Fred Douglis's photo. ® N um be r Of p h Otos
uploaded every week

1 billion

40 (60 terabytes)

ANNIVERSARY

* Total number of
photos stored by

2010
260 billion

(20 petabytes)

Like - Comment - Share
Y Yue Cheng likes this.

Write a comment...

Reference
“Finding a needle in Haystack: Facebook’s photo storage”, in USENIX OSDI ‘10 0

Amazon S3

Amazon S3 — Two Trillion Objects

Amazon S3 | Permalink | @ Comments

Amazon S3

Amazon S3 — Two Trillion Objects

Amazon S3 | Permalink | @ Comments

5 objects for each star in the galaxy

Amazon S3

Amazon S3 — Two Trillion Objects

Amazon S3 | Permalink | @ Comments

5 objects for each star in the galaxy

(Assume) average object size is 100 KB, total data size is 200 PB

How Much Data Does This Plane
Generate per Flight?

BOEING 787

How Much Data Does This Plane
Generate per Flight?

BOEING 787

@aﬂflﬂa >

= g half a terabyte of data

o . per flight, says Virgin
~_ Atlantic |
- *«69_ Gl ““ Internet of things will create a wide range of |
- R ” R | opportunities and challenges for airline I

By Matthew Finnegan | Computerworld UK | Published 14:27, 06 March 13

11

Exponential
Increase of
Digital Data

Exponential
Increase of
Digital Data

Efficient
Storage
Solutions

Data Reduction Techniques

 Compression: find redundant strings and replace
with compact encodings

— 2x reduction
— LZ ([Ziv and Lempel 1997]), 124, gzip, bzip2, 7z, xz, ...

Data Reduction Techniques

 Compression: find redundant strings and replace
with compact encodings

— 2x reduction

— LZ ([Ziv and Lempel 1997]), 124, gzip, bzip2, 7z, xz, ...
* Deduplication: find duplicate chunks and store

unigue ones

— 10x reduction for backups

— Venti ([Quinlan FAST02]), DataDomain FileSystem
([Zhu FASTO8]), iDedup ([Srinivasan FAST12]), ...

Limitations

 Compression: search redundancy in string
level

— Does not scale for detecting redundant strings
across a large range

Limitations

 Compression: search redundancy in string
level

— Does not scale for detecting redundant strings
across a large range

* Deduplication: interleave metadata with data

— Frequent metadata changes introduce many
unnecessary unique chunks

Proposed Solutions

 Migratory Compression: detect similarity in
block level to group similar blocks (Chap2, FAST14)

Proposed Solutions

 Migratory Compression: detect similarity in
block level to group similar blocks (Chap2, FAST14)

* Deduplication:

— Separate metadata from data, to store same type of
data together (Chap3, HotStorage15)

Proposed Solutions

 Migratory Compression: detect similarity in
block level to group similar blocks (Chap2, FAST14)

* Deduplication:

— Separate metadata from data, to store same type of
data together (Chap3, HotStorage15)

— Use deduplication for efficient disk image storage
(Chap4, TridentCom15)

Proposed Solutions

* Migratory Compression: detect similarity in
block level to group similar blocks (Chap2, FAST14)

* Deduplication:

— Separate metadata from data, to store same type of
data together (Chap3, HotStorage15)

— Use deduplication for efficient disk image storage
(Chap4, TridentCom15)

* Differential 10 Scheduling: schedule same type
of 10 requests for predictable and efficient
performance (Chap5, HotCloud12)

Thesis Statement

Similarity in content and access patterns can be
utilized to improve space efficiency,

by storing similar data together
and performance predictability and efficiency,

by scheduling similar 10 requests to the same hard
drive.

Outline

v" Introduction

v' Migratory Compression

v' Improve deduplication by separating
metadata from data

v Using deduplication for efficient disk
image deployment

v' Performance predictability and
efficiency for Cloud Storage Systems

v' Conclusion

23

Background on Compression

Compression: finds redundant strings within a window size and encodes
with more compact structures

Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures
* Metrics
— Compression Factor (cF) = original size / compressed size
— Throughput = original size / (de)compression time

Background on Compression

 Compression: finds redundant strings within a window size and encodes

with more compact structures
e Metrics

— Compression Factor (cF) = original size / compressed size
— Throughput = original size / (de)compression time

gzip 64 KB LZ; Huffman coding

bzip2 900 KB Run-length encoding; Burrows-
Wheeler Transform; Huffman coding

7z 1 GB Variant of LZ77; Markov chain-based
range coder

20

Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures

* Metrics
— Compression Factor (cF) = original size / compressed size

— Throughput = original size / (de)compression time

gzip 64 KB LZ; Huffman coding

bzip2 900 KB Run-length encoding; Burrows-
Wheeler Transform; Huffman coding

range coder

7z \ 1 GB / Variant of LZ77; Markov chain-based

27

Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures

e Metrics

— Compression Factor (cF) = original size / compressed size

— Throughput = original size / (de)compression time
Example Throughput vs. CF

gzip 64 KB LZ; Huffman
coding

bzip2 900 KB Run-length
encoding; ...

7z 1 GB Markov chain-
based range coder

Compression Tput (MB/s)

T i
o N

N

gzip

o N O @

2.0

2.5 3.0 3.5 4.0 4.5 5.0
Compression Factor (X)

28

Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures
* Metrics
— Compression Factor (cF) = original size / compressed size
— Throughput = original size / (de)compression time

Example Throughput vs. CF

~ 14 ngp
o 12
g 5 10
gzip 64 KB LZ; Huffman 5
coding 2
s °
bzip2 900 KB Run-length 8 4
encoding; ... g 2
S o . ; . . ; .
7z 1 GB Markov chain- ° 20 25 30 35 40 45 50
based range coder Compression Factor (X)

The larger the window, the better the compression but slower.
Fundamental reason: finding redundancy in string level does not
scale to large windows

29

Migratory Compression

* Problem: finding redundancy in string level does not
scale to large windows

* Key idea: group by similarity in block level, enabling
standard compressors to find repeated strings with
small windows

Migratory Compression

Problem: finding redundancy in string level does not
scale to large windows

Key idea: group by similarity in block level, enabling

standard compressors to find repeated strings with
small windows

Migratory compression (Mc): coarse-grained
reorganization to group similar blocks to improve
compressibility

— A generic pre-processing stage for standard compressors

— In many cases, improve both compressibility and
throughput

— Effective for improving compression for archival storage

Migratory Compression

 Compress a single, large file (mzip)
— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

Migratory Compression

 Compress a single, large file (mzip)
— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

[0ee - 88

< >
window

33

Migratory Compression

 Compress a single, large file (mzip)
— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

[0ee 88

————————————————— -~

\

ge= E EEE N B O o S E—
* L4

Standard compressor /

34

Migratory Compression
 Compress a single, large file (mzip)

— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

(e[
\

————————————————— -~

TR
{([[[[&]9}

Standard compressor /

39

Migratory Compression

 Compress a single, large file (mzip)
— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

{IBI =[-8

compress 1

([

-l
1

Migratory Compression
 Compress a single, large file (mzip)

— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

{IBI =[-8

transform

compress 1 !
BEARAA

' ([]

Migratory Compression
 Compress a single, large file (mzip)

— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

{IBI =[-8

transform

compress 1
Bﬂl

compress

o

Migratory Compression
 Compress a single, large file (mzip)

— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)

{IBI =[-8

transform

compress 1 !
Bﬂl

compress

o

mzip Example

Block ID

File

U A W N P O

40

mzip Example

Block ID

File 2

Similarity {3
detector

4

5

41

mzip Example

migrate recipe

4] ..

SOEREE
/ Block ID
0
1
— File

[

C
Similarity ¢
detector] 3 -

4 D

i s (B0

k > [0]2] + [4]5[8]

restore recipe

42

mzip Example

migrate recipe

204 ..

Block ID

HEIRE
C

File

D

U A W N P O

[of2] 4[] s[3].

restore recipe

43

mzip Example

migrate recipe

204 ..

Block ID r\ Migrate

File

U A W N P O

0 b W N = O

[of2] 4[] s[3].

restore recipe

o[l
paziuebioay

44

mzip Example

migrate recipe

).

Block ID
0
1
File 2
3
4 C
5 D

Migrate

0 b W N = O

g -
AN
-
o

5

restore recipe

o[l
paziuebioay

45

mzip Example

migrate recipe

Migrate

- b~ W N B O

restore recipe

o[l
paziuebioay

46

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

48

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal
Value 1

49

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

50

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

51

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

52

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

Super-feature
([Shilane FAST12]) -

Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

Super-feature A match on any super-feature
([Shilane FAST12]) 'is good enough

Efficient Data Reorganization

* Problem: requires lots of random I0s

Efficient Data Reorganization

* Problem: requires lots of random I0s
* Hard drives: does not perform well
e SSD: provides good random |0 performance

Efficient Data Reorganization

Problem: requires lots of random |0s

Hard drives: does not perform well

SSD: provides good random 10 performance
Multi-pass: helps considerably for hard drives

— convert random IOs into multiple scans of input
files

Evaluation

 How much can compression be improved?
— Compression Factor (CF): original size / compressed size

- What is the complexity (runtime overhead)?
— Compression throughput: original size / runtime

 More in the paper

— How does SSD or HDD affect data reorganization
performance? For HDD, does multi-pass help?

— How does MC perform, compared with delta
compression?
— What are the configuration options for MC?

53

= = N N
o (O3 o (O3

Compression Tput (MB/s)
o

Migratory Compression - Evaluation

Dataset: backup of workstationl
(engineering desktop)

gzip

0 1 2 3 4 5 6 7 8 9

Compression Factor (X)

= = N N
o (O3 o (O3

Compression Tput (MB/s)
o

Migratory Compression - Evaluation

Dataset: backup of workstationl
(engineering desktop)

gz(mc)

gzip

2 3 4 5 6 7
Compression Factor (X)

= = N N
o (O3 o (O3

Compression Tput (MB/s)

o

Migratory Compression - Evaluation

Dataset: backup of workstationl
(engineering desktop)

& =mo

bzip2 . A 7z(mc)

Compression Factor (X)

61

Compression Tput (MB/s)

N
(92}

N
o

[EEY
(92

=
o

o

Migratory Compression - Evaluation

Dataset: backup of workstationl
(engineering desktop)

‘ gz(mc)
gzip ¢
rzip

. rz(mc) - intra-file dedupe

o o - bzip2 remainder
. bz(mc)
oo . A 7z(mc)
7z A
0 1 2 3 4 5 6 7 8 2

Compression Factor (X)

62

Compression Tput (MB/s)

N
(92}

N
o

[EEY
(92

=
o

o

Migratory Compression - Evaluation

MC improves both CF and

Dataset: backup of workstation1 | compression throughput
(engineering desktop) v’ Deduplication

® sezmo) v’ Re-organization

gzip O
rzip
. rz(mc) - intra-file dedupe
o - bzip2 remainder
. bz(mc)
bzip2 |+ A 72ma
7z
0 1 2 3 4 5 6 7 8 2

Compression Factor (X)

Compression Tput (MB/s)

Compression Factor vs. Compression Throughput

Exchange2
25
- - .
20 ‘ ¢ gzip
W bzip2
15 ‘ A7z
ﬂ .
. o o rzip
¢ gz(mc)
5 . *ﬁ M bz(mc)
0 A7z(mc)
0 2 4 6 g ®rz(mc)

Compression Factor (X)

Compression Tput (MB/s)

Compression Factor vs. Compression Throughput

25

20

15

10

Exchange2

MC improves CF but slightly
reduces compression
throughput

- ®

¢ gzip

W bzip2

A7z

®rzip

¢ gz(mc)

- A

®bz(mc)
A7z(mc)

2 4 6
Compression Factor (X)

g ©® rz(mc)

Migratory Compression - Summary

 More results in the paper
— Decompression performance
— Default vs. maximal compression
— Memory vs. SSD vs. hard drives
— Application of MC for archival storage

; Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility |
{ Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace :
{ FAST ‘14: Proceedings of the 12th USENIX Conference on File and Storage :
. Technologies, Feb. 2014 :

Migratory Compression - Summary

A
* More results in the paper g 151,
— Decompression performance 210 >
— Default vs. maximal compression % > % - L
— Memory vs. SSD vs. hard drives £ 0
— Application of MC for archival storage = 2.0 BIOCF4.O 5.0

* Migratory Compression

— Improves existing compressors, in both compressibility
and frequently runtime

— Redraw the performance-compression curve!

; Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility
{ Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace

{ FAST ‘14: Proceedings of the 12th USENIX Conference on File and Storage

. Technologies, Feb. 2014

Outline

v" Introduction

v' Migratory Compression

v Improve deduplication by separating
metadata from data

v Using deduplication for efficient disk
image deployment

v' Performance predictability and
efficiency for Cloud Storage Systems

v Conclusion

68

Deduplication

Idea: identify duplicate data blocks and store a
single copy

Deduplication

Idea: identify duplicate data blocks and store a
single copy

Input v1.0

70

Deduplication

Idea: identify duplicate data blocks and store a
single copy

v1.0

Chunks| 2 B C D E F € H
A B C D E G H

v2.0

71

Deduplication

Idea: identify duplicate data blocks and store a
single copy

Chunks| A& B C D E F G H v1.0
A B C D E G H v2.0

Stored on disk
A B C D E F G H

72

Deduplication

Idea: identify duplicate data blocks and store a
single copy

Chunks| A B C D E = G H v1.0

v2.0

Stored on disk
A B C D E F G H

Eliminate nearly all of v2.0 on disk

Expected Deduplication

What if we have many versions?

v1.0

v2.0

Expected Deduplication

What if we have many versions?

Input

75

Expected Deduplication

What if we have many versions?
Dedup ratio = original_size/post_dedup_size

20 | e 2 x

76

Expected Deduplication

What if we have many versions?
Dedup ratio = original_size/post_dedup_size

v3.0

7

Expected Deduplication

What if we have many versions?
Dedup ratio = original_size/post_dedup_size

v3.0

78

Great (Deduplication) Expectations

* In Reality
— 308 versions of Linux source code: 2 x
— Other examples of awful deduplication

Great (Deduplication) Expectations

* In Reality
— 308 versions of Linux source code: 2 x
— Other examples of awful deduplication

* Contributions
— |dentify and categorize barriers to deduplication

— Solutions
 EMC Data Domain (industrial experience)
* GNU tar (academic research)

Metadata Impacts Deduplication

* Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

81

Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

File Metadata i File Data

82

Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

File5 v1.0

File5 v2.0

83

Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

v1.0

chunks L] LN I "1 N
a a a
__{ _»/

File3 File4 File5 v2.0

i

Filel File2
L~

84

Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

— GNU tar, EMC NetWorker, Oracle RMAN backup

v1.0

N N [\ N\ A
chunks | J | I\ I\ |]

v2.0

85

Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

— GNU tar, EMC NetWorker, Oracle RMAN backup

— Videos suffer from a similar problem ([Dewakar
HotStoragel5])

E—._MMM vi.0

chunks | J l J\ I |]
/\ /\ /\ /\

v2.0

86

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

87

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

88

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

89

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

v1.0

90

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

N

/Y

(//

v1.0

91

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

77,
7

(//

v1.0

v2.0

92

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and

metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

N \
ENEEEE] N \

v1.0

N w0

93

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

\ N L0

Chunks | 1 1 i |

v2.0

Chunks | I\ | J | J

94

Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

J\ J1

v1.0

Chunks | J
Locations of block markers are
shifted, leading to different chunks
N J N\
aNesisil R \ N w20
Chunks | I | J | J

95

Solution: Separate Metadata from Data

Solution: Separate Metadata from Data

 Three approaches:

— Recommended: design deduplication-friendly
formats

e Case study: EMC NetWorker

Solution: Separate Metadata from Data

 Three approaches:

— Recommended: design deduplication-friendly
formats

e Case study: EMC NetWorker

— Transparent: application-level post-processing
e Case study: GNU tar

Solution: Separate Metadata from Data

 Three approaches:

— Recommended: design deduplication-friendly
formats

e Case study: EMC NetWorker

— Transparent: application-level post-processing
e Case study: GNU tar
— Last resort: format-aware deduplication
* Case studies: 1) virtual tape library (VTL)
2) Oracle RMAN backup

Solution: Separate Metadata from Data

 Three approaches:

— Recommended: design deduplication-friendly
formats

e Case study: EMC NetWorker
— Transparent: application-level post-processing

— Last resort: format-aware deduplication
* Case studies: 1) virtual tape library (VTL)

2) Oracle RMAN backup

Application-level Post-processing

 tar (tape archive)
— Collects files into one archive file
— File system archiving, source code distribution, ...

* GNU tar format
— A sequence of entries, one per file
— For each file: a file header and data blocks
— Header block: file path, size, modification time

Application-level Post-processing

 tar (tape archive)
— Collects files into one archive file
— File system archiving, source code distribution, ...

* GNU tar format
— A sequence of entries, one per file
— For each file: a file header and data blocks
— Header block: file path, size, modification time

File 1 File 2

lid |

Header block

NN

Data blocks

Application-level Post-processing

 tar (tape archive)
— Collects files into one archive file
— File system archiving, source code distribution, ...

* GNU tar format
— A sequence of entries, one per file
— For each file: a file header and data blocks
— Header block: file path, size, modification time

Header block

File 1 File 2

A

NN

MY

|

I \ \ Data blocks

Metadata Changes with GNU tar

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

SHA1s

105

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

SHA1s

106

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdceO4ead47
linux-2.6.39.4/README |a735c31cef6d19d56de6824131527fdceO4ead47

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

SHA1s

File 1 File 2
7,
|) | // Header block
/
Version 1 Data blocks
L]
::::: MOdified
-1 Header block
Version 2

107

SHA1s

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

File 1 File 2
V//
|) | / Header block
7 7/
Version 1 Data blocks
Ll
::::: MOdifiEd
Chunk1 Chunk2 Chunk3 -] Header block
Chunkl and Chunk2 in
Version 2 version 2 are different.

Chunk1 Chunk2 Chunk3
108

SHA1s

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

_File1 File 2
Version 1 _

Chunk1 Chunk2 Chunk3
Version 2

Chunk1 Chunk2 Chunk3

7
// Header block
Z

Data blocks

- Modified
-1 Header block

Chunkl and Chunk?2 in
version 2 are different.

2 x for 308 versions of
Linux

1VJU

Migratory tar (mtar)

tar
File 1 File 2 1 Header block

% | % ‘ | | | u Data blocks

110

Migratory tar (mtar)

tar
. . V
File 1 File 2 Header block

u Data blocks

Migrate)
l/

Number of

header blocks mtar
111

Migratory tar (mtar)

tar
. . V
File 1 File 2 Header block

D Data blocks

Migrate)
/

€ Restore

Number of

header blocks mtar

112

mtar - Evaluation

e 9 GNU software and Linux kernel source code
* Many versions: 13 ~ 308

mtar - Evaluation

e 9 GNU software and Linux kernel source code

* Many versions: 13 ~ 308

16
tar nanam
14 mtar
— Improvements N.N
X 12}
o
T 5.3
£ 10}
c
e 8 r
5
s Of
S
2 47 1.7 1.5 1.5
2 i .1 ’“1.2 Ir“ I I
0

N ‘(\
5 o2 00‘ \6\6 g°° g&) & 52" \’é‘ \\00*

Datasets

mtar - Evaluation

e 9 GNU software and Linux kernel source code

Deduplication Ratio (X)

Many versions: 13 ~ 308

16

14
12 |
10 f

7 1.5 1.5

o N} BN » (0]
T T T

1.
i | 1 1.2] I I

miar —
Improvements N.N

5.3

N ‘(\
5 o2 00‘ \6\6 g°° g&) & 52" \’é‘ \\00*

Datasets

Improvements:
1. Across all datasets

2. Huge: 1.5-5.3x%

More in the Paper

* Design deduplication-friendly formats
— Case study: EMC NetWorker

* Format-aware Deduplication

— Case studies: 1) virtual tape library
2) Oracle RMAN backup

Summary

Metadata impacts deduplication

— Metadata changes more frequently, introducing
many unnecessary uniqgue chunks

e Solution: separate metadata from data
— Up to 5x improvements in deduplication

' Metadata Considered Harmful ... to Deduplication

i Xing Lin, Fred Douglis, Jim Li, Xudong Li, Robert Ricci, Stephen Smaldone and

' Grant Wallance

| HotStorage ’15: 7" USENIX Workshop on Hot Topics in Storage and File Systems

Outline

v" Introduction

v' Migratory Compression

v Improve deduplication by separating
metadata from data

v’ Using deduplication for efficient disk <i
image deployment

v' Performance predictability and
efficiency for Cloud Storage Systems

v Conclusion

118

Introduction

* Cloud providers or network testbeds maintain
a large number of operating system images
(disk images)

— Amazon Web Service (AWS): 37,000+ images
— Emulab: 1020+

Introduction

* Cloud providers or network testbeds maintain
a large number of operating system images
(disk images)

— Amazon Web Service (AWS): 37,000+ images
— Emulab: 1020+

* Disk image: a snapshot of a disk’s content
— Several to hundreds of GBs.
— Similarity across disk images ([Jin, SYSTOR12])

Introduction

* Cloud providers or network testbeds maintain
a large number of operating system images
(disk images)

— Amazon Web Service (AWS): 37,000+ images
— Emulab: 1020+

* Disk image: a snapshot of a disk’s content
— Several to hundreds of GBs.
— Similarity across disk images ([Jin, SYSTOR12])

Requirements: efficient image storage

What is Image Deployment?

The process of distributing and installing a disk image
at multiple compute nodes

What is Image Deployment?

The process of distributing and installing a disk image
at multiple compute nodes

/\

=

Image server Compute Nodes

What is Image Deployment?

The process of distributing and installing a disk image
at multiple compute nodes

/\

£ “eg

Image server Compute Nodes

What is Image Deployment?

The process of distributing and installing a disk image
at multiple compute nodes

Requirements: efficient image transmission and installation

/\

£ “eg

Image server Compute Nodes

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

/\

S

Image server Switch Compute Nodes

127

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

/\

® =~ S S
TN S
SO
L/\/
Image server Switch Compute Nodes

128

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

Install at full disk bandwidth

/\

® =~ S S
TN S
SO
L/\/
Image server Switch Compute Nodes

129

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATCO03])

* Venti: a deduplicating storage system ([Quinlan FAST02])

/\

S

Image server

Limited bandwidth

Switch

Install at full disk bandwidth

o
’ @
P g
Ny S V%
Compute Nodes

130

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATCO03])

* Venti: a deduplicating storage system ([Quinlan FAST02])

/\

S

Image server

Transfer compressed data

Limited bandwidth

Switch

Install at full disk bandwidth

o
’ @
P g
Ny S V%
Compute Nodes

131

Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

Store compressed data

.. Transfer compressed data Install at full disk bandwidth
(compression is slow)

. ‘*‘r"‘f"‘7'7‘755’_""1"'; —— . .
\/ ” i z
Limited bandwidth U\/
Image server Switch Compute Nodes

132

Integrate Frisbee with Deduplicating
Storage

Deduplicating
<:> storage system

Efficient Image Deployment Efficient Image Storage

133

Integrate Frisbee with Deduplicating
Storage

Frishee : !: Deduplicating
storage system
Efficient Image Deployment Efficient Image Storage

134

Requirements for the Integration

Use compression

Use filesystem to skip
unallocated data

Image installation at full
disk bandwidth

Independent installable
Frisbee chunks

Requirements Solutions 135

Requirements for the Integration

Use compression

Compress each chunk

Use filesystem to skip
unallocated data

Aligned Fixed-size
Chunking

Careful selection of chunk
size

Image installation at full
disk bandwidth

Independent installable

Pre-computation of
Frisbee chunk headers

Frisbee chunks

Requirements Solutions 136

Requirements for the Integration

Use compression

Compress each chunk

Use filesystem to skip
unallocated data

Aligned Fixed-size
Chunking

Careful selection of chunk
size

Image installation at full
disk bandwidth

Independent installable
Frisbee chunks

Pre-computation of
Frisbee chunk headers

III\IJ

Requirements Solutions 137

Use Compression — Store Frisbee Images

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

138

Use Compression — Store Frisbee Images

LT] e

T Partition into chunks

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

139

Use Compression — Store Frisbee Images

[Venti]

T Store

LT] e

Partition into chunks

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

140

Use Compression — Store Frisbee Images

Distribute and
T deploy

LT

T Fetch

[Venti]

T Store

LT] e

Partition into chunks

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

141

Use Compression — Store Frisbee Images

Distribute and

deploy
/////// Compressed data does not
T Fetch deduplicate well
[Venti]
T Store

LT] e

Partition into chunks

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

142

Use Compression — Store Frisbee Images

Distribute and

deploy
/////// Compressed data does not
1 Fetch deduplicate well
[Venti]
[store v efficient image deployment

/////// Chunks X efficient image storage

Partition into chunks

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /

143

Use Compression — Store Raw Chunks

Use Compression — Store Raw Chunks

LLLLTLT LT e

Partition into chunks

[]

145

Use Compression — Store Raw Chunks

[Venti]

T Store

LLLLTLT LT e

Partition into chunks

[]

146

Use Compression — Store Raw Chunks

//////{/FQ{C!///
v
///////Tlpfm_/m/ [e

[o]

147

Use Compression — Store Raw Chunks

T Distribute and
deploy
/ Compressed
Disk

T Frisbee image creation tool

LT

T Fetch

[Venti]

T Store

LLLLTLT LT e

Partition into chunks

[]

148

Use Compression — Store Raw Chunks

T Distribute and

deploy . . .
/ Compressed / Frisbee compression will

Disk become the bottleneck

T Frisbee image creation tool

LT

T Fetch

[Venti]

T Store

LLLLTLT LT e

Partition into chunks

[e

149

Use Compression — Store Raw Chunks

T Distribute and

deploy . . .
/ Compressed / Frisbee compression will

Disk become the bottleneck

T Frisbee image creation tool

LT

T Fetch X efficient image deployment
[Venti] v efficient image storage
T Store

LLLLTLT LT e

Partition into chunks

[

150

Use Compression — Store Compressed Chunks

Use Compression — Store Compressed Chunks

LLLLTLT LT e

Partition into chunks

[]

152

Use Compression — Store Compressed Chunks

T Compression

LLLLTLT LT e

Partition into chunks

[]

153

Use Compression — Store Compressed Chunks

[Venti]

T Store

T Compression

LLLLTLT LT e

Partition into chunks

[]

154

Use Compression — Store Compressed Chunks

A Distribute and
deploy

() Fetch

[Venti]

T Store

T Compression

LLLLTLT LT e

Partition into chunks

[]

155

Use Compression — Store Compressed Chunks

0 SLS;E?,UE and No compression in image
deployment
 Compression of two identical
? Fetch chunks => same compressed
[Venti] chunk
T Store

T Compression

LLLLTLT LT e

Partition into chunks

[

156

Use Compression — Store Compressed Chunks

0 S‘Stlr‘bUte and No compression in image
dad, deployment
 Compression of two identical
? Fetch chunks => same compressed
: chunk
[Venti]
St
T ok v efficient image deployment

v efficient image storage

T Compression

LLLLTLT LT e

Partition into chunks

[

157

Efficient Image Storage

* Dataset: 430 Linux images
— Filesystem size: 21 TB (allocated 2 TB)

Format Size (GB)

Frisbee Images 233

Venti 32KB 75

158

Efficient Image Storage

* Dataset: 430 Linux images
— Filesystem size: 21 TB (allocated 2 TB)

Format Size (GB)

Frisbee Images 233

Venti 32KB 75

3x reduction

159

End-to-end image deployment (seconds)

30

Efficient Image Deployment

'Baseline Frisbee' I
Venti-based Frisbee mmm

1 8 16
Number of clients

End-to-End Image Deployment Performance

160

End-to-end image deployment (seconds)

30

Efficient Image Deployment

Baseline Frisbee ..
Venti-based Frisbee mmmm Similar performance

In image deployment

1 8 16
Number of clients

End-to-End Image Deployment Performance
161

More in the Paper

* Aligned Fixed-size Chunking (AFC)

* I[mage retrieve time based on chunk sizes
— Smaller chunk size: better deduplication

— Larger chunk size: better image deployment
performance

* Image deployment performance with staging
nodes

Summary

Compress each chunk

Aligned Fixed-size

Chunking

v efficient image deployment
Careful selection of chunk v efficient image storage
Size

Pre-computation of
Frisbee chunk headers

... 1

' Usmg Deduplicating Storage for Efficient Disk Image Deployment :
I Xing Lin, Mike Hibler, Eric Eide, and Robert Ricci :
| TridentCom “15: 10" international conference on testbeds and research :
i
|

! infrastructures for the development of networks & communities

Outline

v" Introduction

v' Migratory Compression

v' Improve deduplication by separating
metadata from data

v Using deduplication for efficient disk
image deployment

v Performance predictability and <i
efficiency for Cloud Storage Systems

v’ Conclusion

164

Introduction

* Cloud Computing is becoming popular
— Amazon Web Service (AWS), Microsoft Azure ...

* Virtualization enables efficient resource sharing
— Multiplexing and consolidation; economics of scale

Introduction

* Cloud Computing is becoming popular
— Amazon Web Service (AWS), Microsoft Azure ...

* Virtualization enables efficient resource sharing
— Multiplexing and consolidation; economics of scale

* Sharing introduces interference
— Random and sequential workloads [Gulati VPACT ‘09]
— Read and write workloads [Ahmad WW(C ‘03]

Introduction

Cloud Computing is becoming popular
— Amazon Web Service (AWS), Microsoft Azure ...

Virtualization enables efficient resource sharing
— Multiplexing and consolidation; economics of scale

Sharing introduces interference
— Random and sequential workloads [Gulati VPACT ‘09]
— Read and write workloads [Ahmad WW(C ‘03]

Targeting environments: a large number of
mixed workloads

Random Workloads’ Impact on Disk
Bandwidth

Workloads:

- All sequential
- 1 sequential, adding
more random ones

High disk bandwidth = high disk utilization

160
140

Aggr. Bandwidth (MB/s)
S
N B (@)} (0] o N
o o o o o o

o

Random Workloads’ Impact on Disk
Bandwidth

SR Workloads:

- All sequential
- 1 sequential, adding
more random ones

1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization

160
140

Aggr. Bandwidth (MB/s)
S
N S [e2)] (00} o N
o o o o o o

o

Random Workloads’ Impact on Disk
Bandwidth

" -=sg ==k \WWoOrkloads:

}Lﬂ"z‘ - All sequential
Xaxuﬂu-g-_.:m - 1 sequential, adding

more random ones

1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization 170

Random Workloads’ Impact on Disk
Bandwidth

160
140@% -se <=k \Workloads:
z jt‘lg- - All sequential
Z \u’__.q.g,__;__ﬂ _ -1sequential, adding
g . more random ones
2
8 60
@ 40
<

20

0 _______
1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization 171

Random Workloads’ Impact on Disk
Bandwidth

160

- -=sr ==kr \WoOrkloads:
.

140

JERY
N
o

- All sequential
\u’__—q-i:,__;___J _ -1 sequential, adding
more random ones

100
80
60

Aggr. Bandwidth (MB/s)

40

N
o O

1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization 172

Random Workloads’ Impact on Disk
Bandwidth

160

- -=sr ==kr \WoOrkloads:
.

140

JERY
N
o

- All sequential
\u’__—q-i:,__;___J _ -1 sequential, adding
more random ones

100
80
60

Aggr. Bandwidth (MB/s)

40

N
o O

1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization 173

Random Workloads’ Impact on Disk
Bandwidth

Workloads:

- All sequential

- 1 sequential, adding
more random ones

SR =6=RR

Aggr. Bandwidth (MB/s)
(0,0]
o

— Random workloads are
0 TN T T e harmful for disk bandwidth

1 2 3 45 6 7 8 91011121314 15 1617
Number of co-located workloads

High disk bandwidth = high disk utilization

Differential 1/0O Scheduling (DIOS)

* Opportunity: replication is commonly used in
cloud storage systems

— Google Filesystem, Ceph, sheepdog, etc.

* ldea: dedicate each disk to serve one type of
requests

Differential 1/0O Scheduling (DIOS)

* Opportunity: replication is commonly used in
cloud storage systems

— Google Filesystem, Ceph, sheepdog, etc.

* ldea: dedicate each disk to serve one type of
requests

e System implications (tradeoff)
— High bandwidth for disks serving sequential requests
— Lower performance for random workloads

Architecture

177

Architecture

File(a)

178

Architecture

File(a)

179

Architecture

180

Architecture

181

Architecture

Random access

File(a)

182

Architecture

Random access Sequential access

1 2 3 A B C

File(a) File(b)
183

Architecture

Primary replica Secondary replica

Random access Sequential access

1 2 3 B C

File(a) File(b)
184

Architecture

Primary replica Secondary replica

Random access Sequential access

1 2 3 B C

File(a) File(b)
185

Implementation

* Ceph: distributed storage system that
implements replication

— Use randomness in selecting replicas

* DIOS: modified Ceph with deterministic

replica selections and request type-aware
scheduling

Evaluation — Sequential Workloads

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

Aggr. Bandwidth (MB/s)

Evaluation — Sequential Workloads

300

250

200

150

100

50

ORR

10 RR

20 RR

Ceph

40 RR

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

Aggr. Bandwidth (MB/s)

Evaluation — Sequential Workloads

300

250

200

150

100

50

ORR

10 RR

20 RR

=0=Ceph ===DIOS

40 RR

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

189

Aggr. Bandwidth (MB/s)

Evaluation — Sequential Workloads

300

250

200

150

100

50

ORR

10 RR

=0=Ceph ===DIOS

20 RR

40 RR

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

190

Aggr. Bandwidth (MB/s)

Evaluation — Sequential Workloads

300

250

200

150

100

50

=0=Ceph ===DIOS

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

191

Aggr. Bandwidth (MB/s)

Evaluation — Sequential Workloads

300

250

200

150

100

50

ORR

10 RR

=0=Ceph ===DIOS

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6

DIOS:
e Consistent performance
e Higher bandwidth (disk util)

192

Aggr. IOPS

Evaluation — Random Workloads

T~

800

700

600

500

400

300

200

100

10 RR

20 RR

=0=Ceph

40 RR

193

Aggr. IOPS

Evaluation — Random Workloads

800

700

600

500

400

300

200

100

—

=0=Ceph =@=DIOS

10 RR

20 RR

40 RR

194

Aggr. IOPS

Evaluation — Random Workloads

800

700

600

500

400

300

200

100

—

=0=Ceph

==DIOS

10 RR

20 RR

40 RR

Half of disks are serving
random workloads

195

Aggr. IOPS

Evaluation — Random Workloads

800

700

600

500

400

300

200

100

<>V

N

10 RR

20 RR

=0=Ceph

==DIOS

40 RR

Half of disks are serving
random workloads

High disk utilization for
the other half of disks

196

Summary

It is more efficient and leads to more
predictable performance, by dedicating a disk
to serve a single type of read requests.

Future directions

— Write workloads
— Extension to 3-way replication (load balance)

i Towards Fair Sharing of Block Storage in a Multi-tenant Cloud :
| Xing Lin, Yun Mao, Feifei Li, Robert Ricci :
| HotCIoud ’12: 4th USENIX Workshop on Hot Topics in Cloud Computing, June 2012

Outline

v" Introduction

v' Migratory Compression

v' Improve deduplication by separating
metadata from data

v Using deduplication for efficient disk
image deployment

v' Performance predictability and
efficiency for Cloud Storage Systems

v" Conclusion

N

Conclusion

* Problems:

— Limitations in traditional compression and
deduplication

— Performance interference for cloud storage

* Use similarity in content and access patterns

— Migratory compression: find similarity in block level
and do re-organization

— Deduplication: store same type of data blocks
together

— Differential 10 scheduling: schedule same type of
requests to same disk

Thesis Statement

Similarity in content and access patterns can be
utilized to improve space efficiency,

by storing similar data together
and performance predictability and efficiency,

by scheduling similar 10 requests to the same hard
drive.

Acknowledgements

Advisor, for always supporting my work

— Robert Ricci

Committee members, for providing feedback
— Rajeev Balasubramonian

— Fred Douglis

— Feifei Li

— Jacobus Van der Merwe

Flux members

— Eric Eide, Mike Hibler, David Johnson, Gary Wong, ...

EMC/Data Domain colleagues
— Philip Shilane, Stephen Smaldone, Grant Wallace, ...

Families and friends, for kindly support

Acknowledgements

Advisor, for always supporting my work
— Robert Ricci (HotCloud12, HotStoragel5, TridentCom15)

Committee members, for providing feedback

— Rajeev Balasubramonian (WDDD11)
— Fred Douglis (FAST14, HotStorage15)
— Feifei Li (HotCloud12)

(

— Jacobus Van der Merwe

Flux members
— Eric Eide, Mike Hibler, David Johnson, Gary Wong, ...

EMC/Data Domain colleagues
— Philip Shilane, Stephen Smaldone, Grant Wallace, ...

Families and friends, for kindly support

SOCC15)

Thank You !

Backup Slides

VF - Related Work

* Deduplication analysis for virtual machine images [Jin
SYSTOR ‘09]

— Benefit: 70~80% of blocks are duplicates
— Only analysis

* LiveDFS: deduplicating filesystem for storing disk
images for OpenStack [Ng middleware ‘11]
— Focus on spatial locality and metadata prefetching
— Scales linearly and only 4 VMs; no compression

* Emustore: an early attempt for this project
[Pullakandam Master Thesis 2011]

— Compression during image deployment
— Used regular fixed-size chunking

Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s (60 MB/s)

Read HERNES
compressed compressed
image from image across
server disk network

Decompress

compressed
image

Write image
into disk

206

Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s (60 MB/s)

Read HERNES
compressed compressed

Decompress
compressed
image

Write image

image from image across into disk

server disk network

480 (150) 172.84 (54.26) 149.10 71.07
Effective throughput (uncompressed data) (MB/s)

207

Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s (60 MB/s)

Read HERNES
compressed compressed

Decompress
compressed
image

Write image

image from image across into disk

server disk network

480 (150) 172.84 (54.26) 149.10 71.07
Effective throughput (uncompressed data) (MB/s)

208

Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s|(60 MB/s)

Read HERNES
compressed compressed

Decompress
compressed
image

Write image

image from image across into disk

server disk network

480 (150) 172.84 (54.26) 149.10 71.07
Effective throughput (uncompressed data) (MB/s)

209

Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s|(60 MB/s)

Read HERNES
compressed compressed

Decompress
compressed
image

Write image

image from image across into disk

server disk network

480 (150) 172.84 (54.26) 149.10 71.07
Effective throughput (uncompressed data) (MB/s)

29.68

210

Chunk Boundary Shift Problem

Image A 3 4 5 6 7 8

Image A’ a b ¢ 3 4 5 6 7 8

211

Chunk Boundary Shift Problem

Image A 3 4 5 6 7 8

Image A’ a b ¢ 3 4 5 6 7 8

Regular fixed-size (4 blocks) chunking

12345678

212

Chunk Boundary Shift Problem

ImageA 3 4 5 6 7 8 ..
3 4 5 6 7 8 ..

Image A’ a b c

Regular fixed-size (4 blocks) chunking

5 6 7 8 -
213

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1

Image A’

214

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1

Image A’

215

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1

Image A’

216

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1 '

Image A’

217

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1 '
1

Image A’

218

Aligned Fixed-size Chunking (AFC)

1 1 1
1 1 1
Image A u Y RN VNI WP W Wy -
BlockID 0 1 ' ' 9 '
1

1 1 1
“ 3 4 5 6 7 8 .
: : :

Image A’

219

Aligned Fixed-size Chunking (AFC)

. [N

BlockID 0O 1

! I
1 1

Aligned Fixed-size (4 blocks) chunks

220

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1

Image A’

Aligned Fixed-size (4 blocks) chunks

Image A 3 4 5 6 7 8

221

Aligned Fixed-size Chunking (AFC)

BlockID 0O 1

Image A’

Aligned Fixed-size (4 blocks) chunks

I

Image A

Aligned Fixed-size Chunking (AFC)

BlockID

0O 1

Image A’

Aligned Fixed-size (4 blocks) chunks

Image A

m

Chunking time (s)

AFC - Evaluation

4000 T T T T T T T T
Variable-disk w v

i Variable-stream i
3500 Fixed-disk A

i Fixed-stream W |
3000 AFC
2500 r |
2000 r |
1500 r .
1000 r .
500 ¢ A |

[]
0

5 55 6 65 7 75 8 85 9 95 10
Deduplication ratio (X)

