Using Similarity in Content and Access
Patterns to Improve Space Efficiency
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Amazon S3 — Two Trillion Objects

Amazon S3 | Permalink | @ Comments

5 objects for each star in the galaxy

(Assume) average object size is 100 KB, total data size is 200 PB



How Much Data Does This Plane
Generate per Flight?

BOEING 787




How Much Data Does This Plane
Generate per Flight?

BOEING 787

@aﬂflﬂa >

= g half a terabyte of data

o . per flight, says Virgin
~_ Atlantic |
- *«69_ Gl ““ Internet of things will create a wide range of |
- R ” R | opportunities and challenges for airline I

By Matthew Finnegan | Computerworld UK | Published 14:27, 06 March 13

11



Exponential
Increase of
Digital Data




Exponential
Increase of
Digital Data

Efficient
Storage
Solutions




Data Reduction Techniques

 Compression: find redundant strings and replace
with compact encodings

— 2x reduction
— LZ ([Ziv and Lempel 1997]), 124, gzip, bzip2, 7z, xz, ...



Data Reduction Techniques

 Compression: find redundant strings and replace
with compact encodings

— 2x reduction

— LZ ([Ziv and Lempel 1997]), 124, gzip, bzip2, 7z, xz, ...
* Deduplication: find duplicate chunks and store

unigue ones

— 10x reduction for backups

— Venti ([Quinlan FAST02]), DataDomain FileSystem
([Zhu FASTO8]), iDedup ([Srinivasan FAST12]), ...
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Limitations

 Compression: search redundancy in string
level

— Does not scale for detecting redundant strings
across a large range

* Deduplication: interleave metadata with data

— Frequent metadata changes introduce many
unnecessary unique chunks
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Proposed Solutions

* Migratory Compression: detect similarity in
block level to group similar blocks (Chap2, FAST14)

* Deduplication:

— Separate metadata from data, to store same type of
data together (Chap3, HotStorage15)

— Use deduplication for efficient disk image storage
(Chap4, TridentCom15)

* Differential 10 Scheduling: schedule same type
of 10 requests for predictable and efficient
performance (Chap5, HotCloud12)



Thesis Statement

Similarity in content and access patterns can be
utilized to improve space efficiency,

by storing similar data together
and performance predictability and efficiency,

by scheduling similar 10 requests to the same hard
drive.
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Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures

e Metrics

— Compression Factor (cF) = original size / compressed size

— Throughput = original size / (de)compression time
Example Throughput vs. CF

gzip 64 KB LZ; Huffman
coding

bzip2 900 KB Run-length
encoding; ...

7z 1 GB Markov chain-
based range coder

Compression Tput (MB/s)

T i
o N

N

gzip

o N O @

2.0

2.5 3.0 3.5 4.0 4.5 5.0
Compression Factor (X)
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Background on Compression

 Compression: finds redundant strings within a window size and encodes
with more compact structures
* Metrics
— Compression Factor (cF) = original size / compressed size
— Throughput = original size / (de)compression time

Example Throughput vs. CF

~ 14 ngp
o 12
g 5 10
gzip 64 KB LZ; Huffman 5
coding 2
s °
bzip2 900 KB Run-length 8 4
encoding; ... g 2
S o . ; . . ; .
7z 1 GB Markov chain- ° 20 25 30 35 40 45 50
based range coder Compression Factor (X)

The larger the window, the better the compression but slower.
Fundamental reason: finding redundancy in string level does not
scale to large windows

29
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Migratory Compression

Problem: finding redundancy in string level does not
scale to large windows

Key idea: group by similarity in block level, enabling

standard compressors to find repeated strings with
small windows

Migratory compression (Mc): coarse-grained
reorganization to group similar blocks to improve
compressibility

— A generic pre-processing stage for standard compressors

— In many cases, improve both compressibility and
throughput

— Effective for improving compression for archival storage
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Migratory Compression
 Compress a single, large file (mzip)

— Traditional compressors are unable to exploit redundancy
across a large range of data (e.g., many GB)
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Migratory Compression
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— Traditional compressors are unable to exploit redundancy
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compress 1 !
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mzip Example

migrate recipe

4] ..

SOEREE
/ Block ID
0
1
— File

[

C
Similarity ¢
detector ] 3 -

4 D

i s (B0

k > [0]2] + [4]5[8]

restore recipe

42



mzip Example

migrate recipe

204 ..

Block ID

HEIRE
C

File

D

U A W N P O

[of2] 4[] s[3].

restore recipe

43



mzip Example

migrate recipe

204 ..

Block ID r\ Migrate

File

U A W N P O

0 b W N = O

[of2] 4[] s[3].

restore recipe

o[l
paziuebioay

44



mzip Example

migrate recipe

).

Block ID
0
1
File 2
3
4 C
5 D

Migrate

0 b W N = O

g -
AN
-
o

5

restore recipe

o[l
paziuebioay

45



mzip Example

migrate recipe

Migrate

- b~ W N B O

restore recipe

o[l
paziuebioay

46



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

48



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal
Value 1

49



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

50



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

51



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

52



Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

Super-feature
([Shilane FAST12]) -




Detect Similar Blocks

Similarity feature: hash ([Broder 1997])

Chunk

Maximal Maximal Maximal Maximal
Value 1 Value 2 Value 3 Value 4

Similar
chunk

Super-feature A match on any super-feature
([Shilane FAST12]) 'is good enough
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Efficient Data Reorganization

Problem: requires lots of random |0s

Hard drives: does not perform well

SSD: provides good random 10 performance
Multi-pass: helps considerably for hard drives

— convert random IOs into multiple scans of input
files



Evaluation

 How much can compression be improved?
— Compression Factor (CF): original size / compressed size

- What is the complexity (runtime overhead)?
— Compression throughput: original size / runtime

 More in the paper

— How does SSD or HDD affect data reorganization
performance? For HDD, does multi-pass help?

— How does MC perform, compared with delta
compression?
— What are the configuration options for MC?
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Compression Tput (MB/s)

Compression Factor vs. Compression Throughput

25

20

15

10

Exchange2

MC improves CF but slightly
reduces compression
throughput

- ®

¢ gzip

W bzip2

A7z

®rzip

¢ gz(mc)

- A

®bz(mc)
A7z(mc)

2 4 6
Compression Factor (X)

g ©® rz(mc)




Migratory Compression - Summary

 More results in the paper
— Decompression performance
— Default vs. maximal compression
— Memory vs. SSD vs. hard drives
— Application of MC for archival storage

; Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility |
{ Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace :
{ FAST ‘14: Proceedings of the 12th USENIX Conference on File and Storage :
. Technologies, Feb. 2014 :



Migratory Compression - Summary

A
* More results in the paper g 151,
— Decompression performance 210 >
— Default vs. maximal compression % > % - L
— Memory vs. SSD vs. hard drives £ 0
— Application of MC for archival storage = 2.0 BIOCF4.O 5.0

* Migratory Compression

— Improves existing compressors, in both compressibility
and frequently runtime

— Redraw the performance-compression curve!

; Migratory Compression: Coarse-grained Data Reordering to Improve Compressibility
{ Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace

{ FAST ‘14: Proceedings of the 12th USENIX Conference on File and Storage

. Technologies, Feb. 2014
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Deduplication

Idea: identify duplicate data blocks and store a
single copy

Chunks| A B C D E = G H v1.0

v2.0

Stored on disk
A B C D E F G H

Eliminate nearly all of v2.0 on disk
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Great (Deduplication) Expectations

* In Reality
— 308 versions of Linux source code: 2 x
— Other examples of awful deduplication

* Contributions
— |dentify and categorize barriers to deduplication

— Solutions
 EMC Data Domain (industrial experience)
* GNU tar (academic research)
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interleaved with file metadata
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Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

File5 v1.0

File5 v2.0
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Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

v1.0

chunks L ] LN I "1 N
a a a
\__{ \_»/

File3 File4 File5 v2.0

i

Filel File2
L~
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Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

— GNU tar, EMC NetWorker, Oracle RMAN backup

v1.0

N N [\ N\ A
chunks | J | I\ I\ | ]

v2.0
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Metadata Impacts Deduplication

e Case 1: metadata changes

— The input is an aggregate of many small user files,
interleaved with file metadata

— GNU tar, EMC NetWorker, Oracle RMAN backup

— Videos suffer from a similar problem ([Dewakar
HotStoragel5])

E—._MMM vi.0

chunks | J l J\ I | ]
/\ /\ /\ /\

v2.0
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* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block
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Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

N

/Y

(//

v1.0
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Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

77,
7

(//

v1.0

v2.0
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Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and

metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts

— Tape format

N \
ENEEEE] N \

v1.0

N w0
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Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

\ N L0

Chunks | 1 1 i |

v2.0

Chunks | I\ | J | J
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Metadata Impacts Deduplication

* Case 2: metadata location changes

— The input is encoded in (fixed-size) blocks and
metadata is inserted for each block

— Data insertion/deletion leads to metadata shifts
— Tape format

J\ J1

v1.0

Chunks | J
Locations of block markers are
shifted, leading to different chunks
N J N\
aNesisil R \ N w20
Chunks | I | J | J
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Solution: Separate Metadata from Data

 Three approaches:

— Recommended: design deduplication-friendly
formats

e Case study: EMC NetWorker
— Transparent: application-level post-processing

— Last resort: format-aware deduplication
* Case studies: 1) virtual tape library (VTL)

2) Oracle RMAN backup



Application-level Post-processing

 tar (tape archive)
— Collects files into one archive file
— File system archiving, source code distribution, ...

* GNU tar format
— A sequence of entries, one per file
— For each file: a file header and data blocks
— Header block: file path, size, modification time
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Application-level Post-processing

 tar (tape archive)
— Collects files into one archive file
— File system archiving, source code distribution, ...

* GNU tar format
— A sequence of entries, one per file
— For each file: a file header and data blocks
— Header block: file path, size, modification time

Header block

File 1 File 2

A

NN

MY

|

I \ \ Data blocks
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Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdceO4ead47
linux-2.6.39.4/README |a735c31cef6d19d56de6824131527fdceO4ead47

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

SHA1s

File 1 File 2
7,
| ) | // Header block
/
Version 1 Data blocks
L]
::::: MOdified
-1 Header block
Version 2
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SHA1s

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

File 1 File 2
V//
| ) | / Header block
7 7/
Version 1 Data blocks
Ll
::::: MOdifiEd
Chunk1 Chunk2 Chunk3 -] Header block
Chunkl and Chunk2 in
Version 2 version 2 are different.

Chunk1 Chunk2 Chunk3
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SHA1s

Metadata Changes with GNU tar

linux-2.6.39.3/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7
linux-2.6.39.4/README |a735¢c31cef6d19d56de6824131527fdce04ead4 7

linux-2.6.39.3/README -rw-rw-r-- 1 root root 17525|Jul 9 2011
linux-2.6.39.4/README -rw-rw-r-- 1 root root 17525/Aug 3 2011

_File1 File 2
Version 1 _

Chunk1 Chunk2 Chunk3
Version 2

Chunk1 Chunk2 Chunk3

7
// Header block
Z

Data blocks

- Modified
-1 Header block

Chunkl and Chunk?2 in
version 2 are different.

2 x for 308 versions of
Linux

1VJU



Migratory tar (mtar)

tar
File 1 File 2 1 Header block

% | % ‘ | | | u Data blocks
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Migratory tar (mtar)

tar
. . V
File 1 File 2 Header block

u Data blocks

Migrate)
l/

Number of
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mtar - Evaluation

e 9 GNU software and Linux kernel source code

Deduplication Ratio (X)

Many versions: 13 ~ 308

16

14
12 |
10 f

7 1.5 1.5

o N} BN » (0]
T T T

1.
i | 1 1.2 ] I I

miar —
Improvements N.N

5.3

N ‘(\
5 o2 00‘ \6\6 g°° g&) & 52" \’é‘ \\00*

Datasets

Improvements:
1. Across all datasets

2. Huge: 1.5-5.3x%



More in the Paper

* Design deduplication-friendly formats
— Case study: EMC NetWorker

* Format-aware Deduplication

— Case studies: 1) virtual tape library
2) Oracle RMAN backup



Summary

Metadata impacts deduplication

— Metadata changes more frequently, introducing
many unnecessary uniqgue chunks

e Solution: separate metadata from data
— Up to 5x improvements in deduplication

' Metadata Considered Harmful ... to Deduplication

i Xing Lin, Fred Douglis, Jim Li, Xudong Li, Robert Ricci, Stephen Smaldone and

' Grant Wallance

| HotStorage ’15: 7" USENIX Workshop on Hot Topics in Storage and File Systems
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* Cloud providers or network testbeds maintain
a large number of operating system images
(disk images)

— Amazon Web Service (AWS): 37,000+ images
— Emulab: 1020+

* Disk image: a snapshot of a disk’s content
— Several to hundreds of GBs.
— Similarity across disk images ([Jin, SYSTOR12])

Requirements: efficient image storage
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What is Image Deployment?

The process of distributing and installing a disk image
at multiple compute nodes

Requirements: efficient image transmission and installation
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Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])
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Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATCO03])
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Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATCO03])

* Venti: a deduplicating storage system ([Quinlan FAST02])
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Existing Systems: Frisbee and Venti

* Frisbee: an efficient image deployment system ([Hibler ATC03])
* Venti: a deduplicating storage system ([Quinlan FAST02])

Store compressed data

.. Transfer compressed data Install at full disk bandwidth
(compression is slow)

. ‘*‘r"‘f"‘7'7‘755’_""1"'; —— . .
\/ ” i z
Limited bandwidth U\/
Image server Switch Compute Nodes
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Integrate Frisbee with Deduplicating
Storage

Deduplicating
<:> storage system

Efficient Image Deployment Efficient Image Storage
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Use Compression — Store Frisbee Images

/ Disk / Compressed Frisbee image

T Frisbee image creation tool

Disk /
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Use Compression — Store Frisbee Images
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Use Compression — Store Frisbee Images

Distribute and
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[ Venti ]
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Use Compression — Store Frisbee Images

Distribute and

deploy
/////// Compressed data does not
1 Fetch deduplicate well
[ Venti ]
[ store v efficient image deployment

/////// Chunks X efficient image storage

Partition into chunks
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T Frisbee image creation tool

Disk /
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Use Compression — Store Raw Chunks

T Distribute and
deploy
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T Frisbee image creation tool
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Use Compression — Store Raw Chunks
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Use Compression — Store Raw Chunks
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/ Compressed / Frisbee compression will

Disk become the bottleneck

T Frisbee image creation tool

LT

T Fetch X efficient image deployment
[ Venti ] v efficient image storage
T Store

LLLLTLT LT e

Partition into chunks

[

150



Use Compression — Store Compressed Chunks



Use Compression — Store Compressed Chunks

LLLLTLT LT e

Partition into chunks

[ ]

152



Use Compression — Store Compressed Chunks

T Compression

LLLLTLT LT e

Partition into chunks

[ ]

153



Use Compression — Store Compressed Chunks

[ Venti ]

T Store

T Compression

LLLLTLT LT e

Partition into chunks

[ ]

154



Use Compression — Store Compressed Chunks
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Use Compression — Store Compressed Chunks

0 SLS;E?,UE and  No compression in image
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Use Compression — Store Compressed Chunks
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Efficient Image Storage

* Dataset: 430 Linux images
— Filesystem size: 21 TB (allocated 2 TB)

Format Size (GB)

Frisbee Images 233

Venti 32KB 75
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Efficient Image Storage

* Dataset: 430 Linux images
— Filesystem size: 21 TB (allocated 2 TB)

Format Size (GB)

Frisbee Images 233

Venti 32KB 75

3x reduction
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End-to-end image deployment (seconds)

30

Efficient Image Deployment

Baseline Frisbee ..
Venti-based Frisbee mmmm Similar performance

In image deployment

1 8 16
Number of clients

End-to-End Image Deployment Performance
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More in the Paper

* Aligned Fixed-size Chunking (AFC)

* I[mage retrieve time based on chunk sizes
— Smaller chunk size: better deduplication

— Larger chunk size: better image deployment
performance

* Image deployment performance with staging
nodes



Summary

Compress each chunk

Aligned Fixed-size

Chunking

v efficient image deployment
Careful selection of chunk v efficient image storage
Size

Pre-computation of
Frisbee chunk headers

................................................................................................. 1

' Usmg Deduplicating Storage for Efficient Disk Image Deployment :
I Xing Lin, Mike Hibler, Eric Eide, and Robert Ricci :
| TridentCom “15: 10" international conference on testbeds and research :
i
|

! infrastructures for the development of networks & communities
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Introduction

Cloud Computing is becoming popular
— Amazon Web Service (AWS), Microsoft Azure ...

Virtualization enables efficient resource sharing
— Multiplexing and consolidation; economics of scale

Sharing introduces interference
— Random and sequential workloads [Gulati VPACT ‘09]
— Read and write workloads [Ahmad WW(C ‘03]

Targeting environments: a large number of
mixed workloads



Random Workloads’ Impact on Disk
Bandwidth

Workloads:

- All sequential
- 1 sequential, adding
more random ones

High disk bandwidth = high disk utilization
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Differential 1/0O Scheduling (DIOS)

* Opportunity: replication is commonly used in
cloud storage systems

— Google Filesystem, Ceph, sheepdog, etc.

* ldea: dedicate each disk to serve one type of
requests

e System implications (tradeoff)
— High bandwidth for disks serving sequential requests
— Lower performance for random workloads
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Architecture
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Implementation

* Ceph: distributed storage system that
implements replication

— Use randomness in selecting replicas

* DIOS: modified Ceph with deterministic

replica selections and request type-aware
scheduling



Evaluation — Sequential Workloads

Workload:

20 sequential, mixing
with different numbers
of random workloads.

Total data disks: 6
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Summary

It is more efficient and leads to more
predictable performance, by dedicating a disk
to serve a single type of read requests.

Future directions

— Write workloads
— Extension to 3-way replication (load balance)

i Towards Fair Sharing of Block Storage in a Multi-tenant Cloud :
| Xing Lin, Yun Mao, Feifei Li, Robert Ricci :
| HotCIoud ’12: 4th USENIX Workshop on Hot Topics in Cloud Computing, June 2012
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Conclusion

* Problems:

— Limitations in traditional compression and
deduplication

— Performance interference for cloud storage

* Use similarity in content and access patterns

— Migratory compression: find similarity in block level
and do re-organization

— Deduplication: store same type of data blocks
together

— Differential 10 scheduling: schedule same type of
requests to same disk



Thesis Statement

Similarity in content and access patterns can be
utilized to improve space efficiency,

by storing similar data together
and performance predictability and efficiency,

by scheduling similar 10 requests to the same hard
drive.
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VF - Related Work

* Deduplication analysis for virtual machine images [Jin
SYSTOR ‘09]

— Benefit: 70~80% of blocks are duplicates
— Only analysis

* LiveDFS: deduplicating filesystem for storing disk
images for OpenStack [Ng middleware ‘11]
— Focus on spatial locality and metadata prefetching
— Scales linearly and only 4 VMs; no compression

* Emustore: an early attempt for this project
[Pullakandam Master Thesis 2011]

— Compression during image deployment
— Used regular fixed-size chunking
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into disk
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Disk Image Deployment Pipeline

* Compression factor is 3.18X for this image
* Available network bandwidth: 500 Mb/s|(60 MB/s)

Read HERNES
compressed compressed

Decompress
compressed
image

Write image

image from image across into disk

server disk network

480 (150) 172.84 (54.26) 149.10 71.07
Effective throughput (uncompressed data) (MB/s)

29.68
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Chunk Boundary Shift Problem
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Aligned Fixed-size Chunking (AFC)
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Aligned Fixed-size Chunking (AFC)
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Aligned Fixed-size Chunking (AFC)
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Aligned Fixed-size Chunking (AFC)
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