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ABSTRACT

In today’s IP networks, any host can send packets to any other host irrespective of

whether the recipient is interested in communicating with the sender or not. The downside

of this openness is that every host is vulnerable to an attack by any other host. We ob-

serve that this unrestricted network access (network ambient authority) from compromised

systems is also a main reason for data exfiltration attacks within corporate networks. We

address this issue using the network version of capability based access control.

We bring the idea of capabilities and capability-based access control to the domain of

networking.

CeNet provides policy driven, fine-grained network level access control enforced in the

core of the network (and not at the end-hosts) thereby removing network ambient authority.

Thus CeNet is able to limit the scope of spread of an attack from a compromised host to

other hosts in the network.

We built a capability-enabled SDN network where communication privileges of an

endpoint are limited according to its function in the network. Network capabilities can be

passed between hosts, thereby allowing a delegation-oriented security policy to be realized.

We believe that this base functionality can pave the way for the realization of sophisticated

security policies within an enterprise network.

Further we built a policy manager that is able to realize Role-Based Access Control

(RBAC) policy based network access control using capability operations. We also look at

some of the results of formal analysis of capability propagation models in the context of

networks.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Statement

Our thesis is: A network version of capability-based access control can realize a more

secure network by allowing only explicitly allowed communications, thereby removing the

ambient authority present in the current network architecture. It further enables delegation

oriented policies to be realized within an enterprise network.

We tested our thesis by building a capability enabled SDN network where the communi-

cation privileges of an endpoint are limited according to its function in the network. In pure

capability mode, hosts interact with each other using the capability APIs and delegation

model. On top of this pure capability mode, we built a policy manager that is able to

translate a Role Based Access Control (RBAC) policy into capability operations, thereby

realizing RBAC access control built into the network core. Rights propagate through a

capability system through well-defined graph transformations, which gives us the ability to

strongly reason about the correctness and security properties of the policy realized by that

system.

1.2 Motivation

One fundamental cause for the increase in cybersecurity threats such as malware is the

inability to secure modern operating systems and applications. Specifically, the traditional

approach that security can be achieved by deploying up-to-date patches on the end host

is no longer valid and cannot resist a well-sponsored, targeted attack. Attackers use a

set of automatic bug-finding tools which have demonstrated the possibility of discovering

zero-day vulnerabilities in every layer of computer system: web browsers, file systems,

network protocol stacks, operating system call interface, hypervisors, firmware of network

and graphic cards, trusted platform modules, and even System Management Mode (SMM
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1) [1, 2, 3, 4, 5] of the processor. Despite continued advances in host and application

defenses [6, 7, 8, 9], and in software testing and verification [10], the complexity of network

stacks, operating system kernels, language runtimes, and user applications suggests that

endpoint security vulnerabilities will continue to exist.

Once discovered, endpoint vulnerabilities can be exploited to compromise vulnerable

systems through a variety of “distribution” mechanisms: spear phishing, social engineering,

drive-by downloads, email attachments, etc. Once compromised, infected hosts install

additional malware in the form of key loggers, back doors, and command-and-control

software [11]. This malware in turn allows attackers to steal credentials and perform

reconnaissance of the compromised host and its network environment, thus enabling lateral

movement to other hosts within the organization [12]. This exploratory process might

continue for an extended period of time, while “data of interest” is being exfiltrated by

the attackers via the installed back doors [13]. For example, according to a 2013 data

breach report by the Verizon RISK team [11], 62% of breaches remain undiscovered for

several months, while in 36% of cases data ex-filtration occurs within hours of an initial

compromise.

While endpoint vulnerability might be the beachhead for the common attack pattern de-

scribed above [14, 15], we note that the network presents the second fundamental “enabler”

exploited by attackers. First, the malware distribution mechanisms listed above by design

circumvent network firewalls, which still represent the state-of-the-art network periphery

protection, by delivering their malicious payload to an endpoint that is inside a trusted

domain. (Note that this is true whether that be host-based firewalls or firewalls deployed

at the edge of an enterprise or datacenter network.) Once executing on an endpoint inside

the trusted domain, malware essentially has unrestricted network access: Firewall rules

commonly allow connectivity to the outside world, thus allowing malware to create back

doors and command-and-control channels to allow attackers to reach into the protected

domain and export stolen data. Unrestricted access within the protected domain enables

the discovery and exploitation of other vulnerable systems.

Based on the above observations, it is evident that operating system defenses alone

1SMM mode is intended for use only by system firmware, not by applications software or general-purpose
systems software.
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are fundamentally insufficient to address the cybersecurity problem. When host defenses

are compromised (and history suggests it is a question of when, not if ), the compromised

host will have unfettered network access. We note that this unrestricted access represent

a network version of ambient authority in operating systems [16] in which an application

runs with all the authority of the invoking user.

This state of affairs suggests that current network defenses suffer from two fundamental

deficiencies:

• The inability of the network to constrain network interaction based on policies that

define acceptable patterns of communication.

• When communication is constrained, network mechanisms that enforce such con-

straints are coarse grained and divorced from the nuanced needs of network services

and applications.

We argue that to address current cybersecurity concerns, what is called for is a network

architecture that inherently supports three security related primitives:

• Least privileged communication, where the communication capabilities of an end-

point is limited according to its function in the network. In other words the network

core enforces policy driven access control, thereby removing the ambient nature of

network.

• To have these privileges be determined by fine-grained application-driven policies.

• Strong isolation between arbitrary and dynamically created groups of entities, where

the communication within a group is governed by a common set of policies and the

entities have a shared trust domain.

Note that we are not suggesting that network defenses by themselves will be sufficient to

prevent cyber attacks. Indeed, defense in depth principles suggest that current best-practice

host-based protection mechanisms, e.g., those based on lightweight virtual machine con-

tainers [7, 8, 17, 6], be used together with network-based defenses. We are, however,

arguing that more sophisticated network defenses and network defenses that allow for more

meaningful interaction between endpoints and the network are necessary to address the

problem.
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1.3 Our System
Towards this vision, this thesis presents our work on Capability Enabled Networking

(CeNet). In CeNet the network-interaction between nodes are explicitly controlled via

capabilities that allow network interactions to be governed by fine grained policies.

A key feature of CeNet is the clean separation of the specification and semantics of

such policies and the enforcement thereof. CeNet assumes an underlying SDN fabric

controlled by the CeNet capability system. The combination of CeNet capability system

and SDN fabric removes network ambient authority by allowing only a policy driven access

in the network. The policies based on which the network-core enforces access control

are however determined by applications running on capability-enabled nodes (within the

limits of their authority) that operate outside the network proper. This separation mirrors

the same partitioning of functionality in capability-enabled operating systems where the

kernel enforces capability restrictions, but the policies of collaboration are determined by

applications [16].

While we envision our work to be more broadly applicable, for this thesis we specif-

ically limit our focus to SDN substrates under single administrative control such as data-

centers and enterprise networks.

We make the following contributions:

• We illustrate how the generic capability access control model applies to a principled

approach to network security.

• We present the design of CeNet, a capability-enabled network architecture that en-

ables strong isolation and least-privileged communication driven by fine-grained

application policies.

• We demonstrate the practicality of our approach by showing how CeNet can seam-

lessly incorporate legacy nodes through capability-aware proxies.

• We present a prototype implementation and evaluation of the CeNet primitives.

• In search of more expressive policies, we explore the utility of combining other

access control models with capability-based access control.
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• We use the take-grant(tg) model used to formally analyze the propagation of rights

in a capability system, and how formal models can be leveraged to strongly reason

about the correctness of the security properties of the system in a network context.

1.4 Threat Model
CeNet is designed to operate in a modern datacenter or enterprise network environ-

ment. We assume that hosts can be attacked at any time, with and without cooperation of

malicious users. The malicious code will try to use the compromised host for finding and

exploiting remote vulnerabilities in all hosts reachable over the network. CeNet does not

trust anything on the end hosts.

CeNet assumes that the SDN infrastructure—switches and the controller—is trusted.

CeNet does not protect against attacks on the SDN infrastructure. In a virtual datacenter

environment, CeNet extends its trust to include software SDN switches in the end hosts.

CeNet provides policy-driven, fine-grained network-level access control enforced in the

core of the network (and not at the end-hosts), thereby removing network ambient authority.

Thus CeNet limits the spread of an attack from a compromised host to other hosts in the

network.

1.5 Assumptions and Context
CeNet assumes a fixed network where hosts are not mobile. This is a reasonable

assumption in a network where security is an important goal.

The context of this thesis is to specifically address the ambient authority present in

a single-prefix switched local network (consisting of only switches and hosts). Without

CeNet these link-layer switches forward packets based on MAC addresses using their self

learning capability - the downside of which is that it allows a host to send packets to any

other host in the local network.

1.6 Thesis Structure
The following provides a brief outline of the general structure of the rest of this docu-

ment:

In Chapter 2, we describe the idea and philosophy of the capability model. We touch

upon the concepts of ambient authority, principle of least authority (POLA), object capa-



6

bilities, sample systems, etc. Further, we give an outline of our interpretation of how this

model translates to a network scenario.

In Chapter 3, We describe the core architecture of our SDN-based, capability-aware

network. Further, we present the capability model based APIs to be used by the end

hosts to interact with the controller to realize a network devoid of ambient authority, its

bootstrapping, use cases, implementation, and evaluation.

In Chapter 4, we describe how our network is able to enforce access control according

to a high-level policy by translating it into capability operations. We describe an example

scenario, implementation, and evaluation of this.

In Chapter 5, we describe the take-grant (tg) model which is a classic model used

to analyze the propagation of authority in a capability system. Further we present the

major results from the formal analysis of this model. We present an example scenario

on how rights propagate through a network capability system using well-defined graph

transformations of the tg model. We conclude that this gives us the ability to strongly

reason about the correctness and security properties of the policy realized.

The capability model has a rich history of research and in Chapter 6 we summarize the

relevant related works on which this thesis is built.

In Chapter 7 we summarize our contributions and suggest possible extensions to this

work.



CHAPTER 2

CAPABILITY PHILOSOPHY

In this chapter, we describe the principles and philosophy behind the capability model.

We touch upon the concepts of ambient authority, principle of least authority (POLA),

object capabilities, etc. This is followed by a brief overview of a few systems making use of

the aforementioned concepts from other domains like operating systems and programming

languages. Further we give an outline of our interpretation of how this model translates to

a network scenario.

2.1 Capability Model
Capabilities [18] are unforgeable authority-wielding references (tokens). In this thesis,

we will use the word authority to mean the ability of a subject to access a resource (object).

Access to a resource by a subject in a capability system is allowed by virtue of that subject

possessing the capability to that resource. In other words, access requests in a capability

system can only be authorized by capability presentation. The total authority a subject has

in a capability system is conveyed by the capabilities it holds and the transitive closure

of what the possession of those capabilities permits. Subjects have no ambient authority.

Capability systems restrict the authority of a subject by simply limiting the capabilities

it holds. Isolation between two untrusted subjects may be achieved granting them non-

overlapping capabilities.

Some salient features of capability model are described below:

• No designation without authority. Capabilities are a means of realizing authorization-

based access control, which contrasts with the typical identity-based access control,

which uses Access Control Lists (ACLs) to specify permissions. The ACL model

presumes some namespace, such as the space of filenames, that subjects use to

designate resources. This namespace must be separate from the representation of

authority [19] in an ACL system. Miller claims that this separation (designation
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problem) [19] is arguably one of the deepest problems in computer security. Capa-

bilities combine into one entity the name of the object they are referring to and the

permissions required to access that object.

A deputy is an entity that must manage authority coming from various sources. A

confused deputy can be tricked into wielding its authority inappropriately. Aforemen-

tioned atomicity (grouping the name of the referred object and the permissions re-

quired to access it) provides a strong tool for avoiding confused deputy problem [20]

as it leaves no room for ambiguity about what authority is being exercised during a

request to access a resource. Thus the Capability model simplifies the implementa-

tion of trusted systems by unifying addressing and protection mechanisms [21].

• Principle of least privilege [22]. This principle states that every entity should operate

using the minimal set of privileges necessary to complete its task. Delegation is a

key idea in the capability model that facilitates this principle. A subject can easily

delegate part of its authority to another subject by passing on a capability.

• Only connectivity begets connectivity [23]. The only ways to get a capability in

a capability system are by introduction, endowment (construction) or parenthood

(creation).

A capability system as considered in this work can represent the computer system as a

graph of subjects connected with edges that represent rights, or capabilities. The labels on

the edges indicate the type of the capability (explained in the following chapter).

The object-capability model [24] replaces the traditional subject-object dichotomy with

the notion of objects from programming languages that function as both subjects that

initiate access and objects which are targets of action [25]. In such systems capabilities

are references to objects. In such a system capabilities allow objects to interact with each

other, e.g., invoke functions, send messages, and exchange rights.

In a capability system, the only way to access a resource is to invoke a capability, or a

reference to a capability, that enables access to a particular object. In our context invoking

a capability means invoking operations via our APIs (explained in the following chapter)

with the capability (designating the resource) as an argument.



9

Multiple formulations of the capability model exist [18, 26, 27, 28, 29, 30]. At a high

level, the capability model can be captured with three core operations: create, grant, and

revoke. These operations provide rules for mutating the protection graph, i.e., creating new

objects, adding new edges to the graph, and removing existing edges. The create operation

allows any object (with appropriate capabilities) to create a new object. The new object

is isolated by default. It can be accessed by its creator via a capability returned by the

create operation. The grant operation enables transfer of rights from one object to another.

The grant operation takes an existing capability as an argument and passes it to the grantee

object. Naturally, the grant operation requires that the granter had a capability to access the

grantee. Finally, the revoke operation removes the rights from the object.

Capabilities provide a foundation for both discretionary and mandatory access control.

Capabilities travel only along the edges of the capability graph. By default, all subjects are

created with no authority and receive all rights as capabilities from other subjects.

Capability access control [18, 26, 24] provides a foundation for constructing secure sys-

tems in the face of persistent exploitable vulnerabilities and untrusted components [31, 16].

In the face of exploitable and untrusted components, practical security can be achieved by

partitioning a large, untrusted system into small pieces that have minimal rights. Capabili-

ties are designed as a mechanism that

1. helps minimizing authority of individual applications in a complex environment with

a large number of dynamic principals; and

2. provides a formal control model that defines interactions between untrusted compo-

nents and outcomes of untrusted computations.

The rules of the capability system limit the exchange of capabilities (flow of rights)

across objects. The capability models are shown to be decidable: by looking at the initial

distribution of capabilities it is possible to decide the upper limit of authority for individual

subjects in face of all possible transformations to the system and future exchanges of

rights [26]. By controlling the initial distribution of capabilities, it is possible to ensure

confinement [30]. Confinement in the context of capability systems can be stated as the

ability of the system to limit the propagation of authority. This property can be used to cre-

ate runtime compartments satisfying certain security properties as given in the EROS [30]

work.
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The capability model contrasts with Mandatory access control (MAC) in the following

way [16]:

• Interest of whom - MAC caters to the interest of an administrator, whereas capabilities

cater to the interest of the user or application.

• Policy source - MAC rules are specified in global policy files whereas policy is

embedded in application code for capabilities (capabilities are quite good in allowing

code to express policy)

• Granularity - MAC suffers from coarse granularity (due to broad sweeping policies).

Consequently, it is very hard to isolate rights, whereas capabilities sometimes help in

this scenario.

As observed by Miller in one of his talks, early system security research was focused

only on the needs of individual corporations which had central control and which saw

delegation and propagation of delegation as a problem. Today, decentralized cooperation

between organizations and individuals is becoming increasingly prevalent, and delegation

may be better suited to achieving this. But we should do delegation in ways of least

authority. Literature about capabilities argues that the excessive authority implicitly granted

by traditional access control mechanisms (which does not support least authority delega-

tion) is the reason behind the massive prevalence of security vulnerabilities [32]. The

object-capability paradigm, with its pervasive and extensible support for the principle of

least authority, enables mutually suspicious interests to cooperate more intimately while

being less vulnerable to each other [32].

2.2 Example of Capability Systems from Other Domains
Capability model has been used in multiple domains like operating systems and pro-

gramming language :

• Operating systems: Many systems claim strong security benefits, just by removing

ambient authority. In most cases this just means disallowing global name-spaces for

user processes and allowing them to operate only on explicitly granted file descriptors

(capabilities). Some examples are Polaris [33], Capsicum [34] and Plash [35].
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Another system based on capability model, SEL4 [36] has formal proofs that it can

correctly enforces high level security properties like integrity and authority confine-

ment.

• Programming languages: Various object-capability languages like E, Joe-E, Emily,

and W7 are used to create web mashups that use contents from untrusted third parties,

while allowing rich interactions among the third party contents and also between

embedding page and third party contents. The aforementioned object-capability

languages are restricted (specialized) subsets of larger programming languages, in-

tended to provide capability safety by eliminating language constructs (e.g., static

variables) that could leak authority.

• Networking: Generic capability access control model has not been applied to net-

work access control. This thesis is the first work in this direction.

2.3 Capability Principles Applied to Networks
The key principle enabling security in capability systems is the ability to construct

small, isolated computations that operate on a minimal number of isolated resources. By

minimizing the authority of individual computations, a capability system provides a guar-

antee that even if part of the computation is compromised, the possible impact is minimal

and limited to the set of objects reachable through capabilities. (Note that the citations in

the emphasized portion in this section are not capability systems, but systems with certain

desirable security properties. The intention is to point out that a capability based network

can realize those properties.)

• Isolation by default. Capability systems ensure that objects are isolated by default.

Objects are created with no implicit rights to access any resource in the system.

In a capability controlled network all communication is initially blocked [37]. Nodes

receive individual capabilities to open network connections. This model encourages

careful distribution of rights and significantly reduces the attack surface compared

to traditionally “open by default” systems and networks.

• Fine-grained computations and resources. To ensure that authority of individual

computations is minimal, capability systems rely on fine-grained isolation of com-
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putations and resources. The ability to create fine-grained computations is based on

support from underlying hardware and software platforms.

In a networked system, isolation can be provided at the granularity of physical or

virtual machines. Isolation at the level of individual physical machines, even though

fairly coarse grained, is a big improvement over the traditional state of the art in

network security—granularity of an entire network. Virtualization is a de facto part

of the system stack in datacenter environments and is also increasingly being used for

fine-grained isolation in end systems [7, 8, 17, 6]. As such it provides a lightweight,

fine-grained, and practical mechanism for running computations and hosting data

objects in isolation. Combined with fine-grained network isolation, virtualization

becomes a foundation for least-privilege datacenter and enterprise environments.

• Fine-grained delegation of rights. The capability model is designed to extend

fine-grained isolated environments with the flexible, dynamic, and fine-grained man-

agement of rights. In a capability system, delegation is a transfer of rights from one

object to another. Being able to selectively grant subsets of their rights, applications

naturally minimize the authority of individual computations. To isolate itself from

potentially untrusted code, a capability-enabled application follows the following

pattern: The application creates an isolated execution environment. This environ-

ment receives a minimal set of rights required to complete the computation. The

result of the computation is obtained through a narrow, well-defined result protocol.

Even if part of the computation is compromised, the effect of the compromise is

confined by the capability system and underlying isolation mechanisms.

In a capability-enabled network, fine-grained delegation of rights guarantees that

nodes receive minimal rights to access network resources, e.g., constrained to spe-

cific computational resources, or hosts servicing data objects, thus preventing access

to other parts of the network and obstructing multistage attacks [38].

• Local policy decisions. In contrast to traditional mandatory access control models,

capabilities do not rely on the notion of a centralized access control policy. Instead,

capabilities enforce a hierarchy of access control restrictions. High-level policies

define security guarantees and information flow across coarse-grained parts of the
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system. At the same time, applications have complete freedom to enforce their local

access control decisions on the subset of resources they reach through capabilities.

Applications are encouraged to combine the principle of fine-grained compartmental-

ization with their internal logic to minimize the authority of individual computations.

The hierarchical nature of capability access control ensures that in a capability-

controlled network, it is possible to securely split resources across multiple tenants,

but at the same time guarantee that each tenant has freedom to enforce local secu-

rity policies inside its isolated compartment. Natural integration of access control

decisions and application logic allows a maximal realization of the principle of least

authority. The access control policy remains encoded inside the application logic,

not at the level of system interface [39, 40]. Networked applications are free to make

local policy decisions on a per-request basis — a degree of dynamism and granu-

larity that is simply not available in traditional access control frameworks. Further,

the ability to make local policy decisions solves many access control management

problems inherent to the nonhierarchical access control models [39, 41].

• Capability design patterns. The basic capability model enables confinement by

completely isolating parts of the protection graph [30]. Complete isolation is in-

sufficient in a practical system. Parts of the system need to communicate. The

true power of capabilities is revealed when the base capability model is extended

with a small set of trusted objects that serve as security-enforcing abstractions [24].

Similar to design patterns in object-oriented languages, trusted capability objects

implement object capability patterns [24]—composable access control abstractions.

Object capability patterns are designed to enable security guarantees for mutually

mistrusting components [24, 42]. A number of object capability patterns exists to

implement a variety of access control patterns, e.g., one-way information flow (diode

pattern [24]), revocable rights (caretaker pattern [24]), applying a specific policy to

all capabilities reachable from the initial capability (membrane pattern [24]), and

responsibility tracking (Horton protocol [42]).

In a capability-controlled network, a set of well-designed access control patterns that

have well-understood behavior and guarantees enable scaling of secure protocols in
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the face of complex, mistrusting parties.

2.4 Summary
In this chapter, we looked at the principles and philosophy behind capability model.

Further we gave an overview of our interpretation of how this model would translate to a

network scenario.



CHAPTER 3

CAPABILITY NETWORK ARCHITECTURE

In this chapter, we describe the core architecture of our SDN-based, capability-aware

network. We present the capability model-based APIs to be used by end hosts to interact

with the controller to realize a network devoid of ambient authority, its bootstrapping, use

cases, implementation, and evaluation.

3.1 Our Approach
In CeNet we use the fundamental properties of capability systems, discussed in the

previous chapter, as a foundation to realize strong network security. We think of policy-

driven access control being built into the network so that only permitted interactions are

allowed by the network core.

This contrasts with traditional network access control mechanisms in the following

manner:

• Firewalls

– Usually present only at the network periphery. Per host firewalls can provide

fine grained access control within the local network, but they have certain

limitations listed below.

– High-level policy is interpreted by network admin and manually translated into

firewall specifics. This limitation is applicable to both peripheral and per host

firewalls.

– For per-host firewalls — it is difficult to make changes to an implemented policy

as ACLs are distributed at various places.

– For per-host firewalls — it is difficult to reason about the type of access al-

lowed by the network, since the policy is implemented in such an ad hoc and

distributed fashion.
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– For per-host firewalls — if the OS on a host is compromised, it no longer

has control over the attacker probing the internal network via arbitrary pack-

ets, whereas in our approach even if an end-host OS is totally compromised,

networks still enforces access control.

• VLAN

– Creates smaller ambient networks. The inherent ambient authority increases

the potential attack surface for a host. It also increases the damage when things

are compromised at a host.

We start by considering hosts in a network as fundamental objects and go on to identify

other objects which signify ownership, reachability, and delegation to hosts in the network.

We develop the model by identifying a set of operations (based on the capability model)

that allow applications running on hosts to collaborate and utilize the network in a secure

manner.

Our host side control path APIs provide the means for hosts to receive rights over

other network objects. One particular type of right (called a flow capability) gives a

host the permission to send data packets to another specific host. As a result of the

control interactions by which a sender received a flow capability to a specific receiver, the

network is programmed to steer data packets containing flow capabilities to the appropriate

destination host.

Further, we have mechanisms to bootstrap hosts with initial capabilities. We have a

bootstrap policy manager which helps to easily specify a coarse-grained network policy to

start with.

We recognize the following benefits of the capability model in a network scenario:

• Allowing the network owner to specify a coarse grained policy at the top level.

• Allowing a level of dynamism, decentralization, and evolution of policies within the

aforementioned protected domains via the concept of delegation. This can be done

via our host side APIs, which interact with the capability system.

• The ability to reason about the protection state of the system.
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3.2 CeNet Architecture

CeNet is an object capability [24] system that extends traditional networks with fine-

grained access control, dynamic management of rights, and secure collaboration (Fig-

ure 3.1). CeNet treats the hosts of a traditional network as a collection of objects in the

capability system. Network communication, host management (in this work this means

ownership), and exchange of rights are mediated and controlled by the rules of the CeNet

capability system. CeNet builds on two core principles: strong isolation and controlled

communication. To ensure isolation, CeNet operates in the context of an environment

where all hosts are connected to a software defined network (SDN). CeNet uses the under-

lying SDN substrate to prevent all communication until it is explicitly allowed. As shown in

Figure 3.1, the CeNet capability system is implemented as an SDN controller application.

In CeNet all network communication is controlled according to the rules of the capability
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model. Network nodes can open network connections and communicate with each other if,

and only if, they possess a capability for such a connection.

CeNet provides support for both pure capability-enabled and unmodified legacy nodes.

This pragmatic approach eases adoption by being backwards compatible, while at the same

time allowing new functionality to be realized. Capability-enabled nodes run a capability

protocol that allows capability-enabled applications to interact with the capability system,

e.g., exchange rights, establish network connections and specify access control policies.

Legacy nodes do not have any awareness of the capability system, but are seamlessly

incorporated in CeNet through a mechanism of legacy node proxies. Legacy node proxies

are special nodes designed to provide backward compatibility with legacy protocols in a

capability network. Proxies intercept protocol interactions from legacy nodes and translate

them into capability invocations. After the network flows are established with the help

of proxies, legacy nodes directly use the network to interact with other legacy nodes or

capability-enabled nodes.

CeNet provides a clean separation of the policy and mechanism for access control in

computer networks. CeNet implements the mechanism—a clean, flexible layer of access

control. The combination of CeNet capability system and SDN fabric removes network

ambient authority by allowing only a policy driven access among hosts in the network. The

policies based on which the network-core enforces access control are, however, determined

by applications running on capability-enabled nodes (within the limits of authority granted

to them) that operate outside the network proper.

The CeNet separation of policy and enforcement and the delegation of rights inherently

enabled by capability systems provide for a powerful security primitive that cleanly maps

onto existing communication models, while also enabling the realization of novel commu-

nication models.

For example, the degenerate case of a single (or replicated) capability-enabled node that

runs a network management application mimics the prevalent “logically centralized” SDN

control application approach [43, 44]. While such a system would not fully utilize CeNet

features, it would still benefit from realizing higher-level policies in a capability system

with clean delegation and revocation abstractions.

A more sophisticated use case might involve a multitenant datacenter environment
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where a subset of nodes and complete control of the policies associated with that subset

might be delegated to each tenant. For this use case, the applications are essentially

capability-enabled nodes that are allowed to manipulate the capability system (according

to the rights delegated to them) and as a side effect create flows in the SDN substrate

according to application-specific policies.

For both scenarios described above, capability manipulation is essentially limited to

control-plane operations. However, as we describe below, the CeNet API also provides

data send and receive functionality. This allows for complete end-to-end capability-enabled

interaction between applications. For example, in such a scenario, all hosts in the system

may be capability enabled, so that both control and data plane interaction between the

nodes will require the use of capabilities.

In Section 3.2.1 below, we first consider the functionality of CeNet assuming a “pure

capability” environment where all nodes are capability-enabled. In addition to simplifying

the exposition, this represents a realistic scenario for networks with high security require-

ments. Later we describe how CeNet deals with legacy nodes.

Note that the terms application/host/node and endpoint are used interchangeably be-

cause in a security critical scenario, it is likely that an application would be running all

by itself within a physical host, virtual machine, lightweight container, or would have a

lightweight network stack linked directly into its address space [45, 46]. Our host-side APIs

are geared more toward these single-function security use cases. In this initial version of our

work, our APIs do not satisfactorily address the security requirements for a general-purpose

network stack that must demultiplex the packets to various application processes.

3.2.1 CeNet Capability System

CeNet exposes the resources of a computer network through a capability interface.

Capabilities mediate all network operations, e.g., the ability to open and accept new con-

nections, the exchange of rights and the management of network hosts.

3.2.1.1 Capabilities

The core of CeNet is the capability system (Figure 3.2). Network hosts access resources

of the network by invoking capabilities. Capabilities both name specific objects and provide

authority to perform operations on them. Objects represent resources of the network.



20

Rendezvous

Flows Proxies

Capability
Object 

Nodes

Node B

recv (       , ...)

Capability 
System

SDN Controller

Node A

send(       , ...)

CSpace

SDN Network

64-bit Capability
Name

Figure 3.2. CeNet capability system

Possession of a capability allows a node to perform a specific operation on the object.

However, hosts do not have any intrinsic authority beyond that accessible via capabilities.

Hosts refer to capabilities by their local names—64-bit capability identifiers that have

no special meaning outside of the host. For each host the CeNet capability system maintains

a capability space (or a CSpace), a datastructure that resolves local capability identifiers

into capability references that contain specific rights to a specific object. The difference

between capability identifier and capability reference is merely an implementation detail

and the translations are handled automatically by the system. In the context of our system

if we merely mention the term capability (without being specific of whether it is a capability

identifier or reference), it usually means a local capability identifier in the context of a host,

which is translated (by the capability system in the central SDN controller) to an object

pointer (reference) referring to a unique object (Section 3.2.1.2 below provides a detailed

description of object types supported by CeNet) in our system.

Hosts invoke capabilities via the CeNet capability application programming interface

(API). The API maps onto a simple capability protocol that conveys API invocations to

the CeNet controller. Each capability protocol message contains a capability identifier

which designates a receiving object, an operation to perform on the object, and one or
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more arguments.

A host is identified by its location on the network. A location is the switch identifier

and the port-number, through which the host attaches to the network. The unforgeable

property of capability identifiers in our system is based on the fact that capability creation

or transfer happens (via CeNet APIs) only with the knowledge of the capability system

in the controller. Later, when a host presents a capability, for exercising its authority, the

RPC messages are tagged with the originating switch and port identifier by the Openflow

switches. The capability system can easily validate whether this token was indeed granted

to this particular host. Since switch firmware is part of our Trusted Computing Base (TCB),

it is impossible for a malicious host to exercise a nongranted capability token.

3.2.1.2 Objects

Objects encapsulate the logic of host management, connection establishment, and capa-

bility management operations. Objects provide the only interface for a CeNet application

to interact with the environment of the network. For example, the invocation of a capability

on a flow object allows a node to establish a unidirectional flow to the host pointed to by

the flow object. State and code of the objects is part of the CeNet capability system. CeNet

defines four object types:

• Node: Each physical or logical node (VM) in the system is represented by a node

object. Node objects implement a management interface to the physical and logical

hosts of the CeNet system. A capability to a node allows its owner to reclaim the node

and reset it to a clean state by power cycling the node, controlling its boot protocol,

and reseting its capability space. By controlling the distribution of node capabilities,

CeNet enables flexible partitioning of the network resources. Control over any node

can be delegated to any node within the system.

• Rendezvous point: A rendezvous point is a communication primitive that enables

nodes to exchange capabilities via send and receive operations. A rendezvous point

maintains a queue of messages from the sender. When the receiver invokes a receive,

the capabilities are transferred to the receiver.

• Flow: A flow object enables establishing a unidirectional flow for data-path com-

munication between nodes. Only the receiving end of the flow is fixed when the
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flow object is created. Like any capability, capability to a flow object can be passed

around and invoked multiple times. Any node that possesses a capability to a flow

object can open a network flow to the receiving end. CeNet relies on support from

the underlying SDN to establish flows.

• Proxy: Proxy objects allow proxy nodes to proxy all the control plane traffic (DHCP,

DNS and ARP) of a legacy node (to the proxy node) and translate them to capability

operations, thereby mediating its exchange of rights. Thus CeNet uses proxy objects

to allow legacy nodes to interact with the capability system in a transparent manner.

The proxy object allows a node which holds a capability to the proxy to invoke

capability exchange operations on behalf of the legacy node associated with the

proxy object. When the proxy object capability is passed into a capability exchange

operation, the operation is performed on the CSpace of the legacy node that is pointed

to by the proxy object.

3.2.1.3 Operations

Capability operations define the rules for modifying the state of the protection graph of a

capability system. CeNet implements a version of the take-grant capability model [26, 47].

The CeNet capability model allows the following operations:

• Create. The create operation creates a new object of a requested type. Create returns

the capability pointing to the new object to its caller. Create operations can be used to

create new RP and flow object types. Node and Proxy objects are not usually created

(as semantically it doesn’t make sense) by endhosts. They are created and their

capabilities are received by admin and proxy hosts, respectively, during bootstrap.

• Mint. The Mint operation creates a new capability that points to an existing object.

Mint is typically done before a grant (delegation) as it allows for the revocation of

a minted capability by the minter at a later point of time (by passing the original

capability to the revoke operation). This operation is object type agnostic.

• Send and receive. Nodes exchange capabilities by passing them into the send and

receive operations. Send and receive operate on rendezvous objects. Any node which
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has a capability to a specific rendezvous point can send and receive messages to the

RP.

• Send and receive data. Send and receive data operations allow nodes to use the

CeNet API for data plane communication.

• Revoke. The revoke operation allows the invoking host to delete the object pointed

to by the capability. This renders useless all the minted capabilities which it might

have delegated to others. It is object type agnostic.

• Reset. The reset operation cleans the capability space of a node and resets it with a

single rendezvous point available to the node through the well-known CAP0 capa-

bility identifier. The invoker should have a node capability to the target node for this

operation to succeed.

3.2.2 CeNet Host-Side APIs

Capability operations are exposed to hosts via an API. The primary function of the

capability API is to enable hosts to interact with the controller to manipulate the protection

state of the system. The API can also be leveraged for datagram-based messaging functions.

3.2.3 Bootstrapping Capability-Enabled Nodes

In this section we first explain how nodes are bootstrapped into the capability system.

We then consider how such a bootstrapped node can use the CeNet communication primi-

tives to establish communication between nodes.

In any network administrative domain, enterprise, datacenter or cloud, there are certain

high-level network management policies that govern the roles and functionalities of nodes

in the system and effectively form the context within which any detailed policies are

applied. For example, in a datacenter or enterprise environment, specific nodes would

be designated to run “infrastructure services” like DHCP and DNS. Likewise, in the cloud

infrastructure, specific nodes will be designated to run the “cloud control” software stack

while other nodes will be designated as compute nodes.

Our goal with CeNet is to provide a generic framework that can accommodate and

enhance the functionality of any of these scenarios (and indeed enable alternative scenar-

ios). Without loss of generality, in our exposition below we assume that some higher level



24

management function has designated a master node that has full control over a number

of other nodes in the system. Because a master node can in turn dynamically delegate

“submaster” capabilities to any of the nodes it controls, this setup applies to all of the

scenarios mentioned above. For example, the master node might be the sole master node in

a datacenter or enterprise environment, or it might be a master node for a subset of nodes

belonging to a specific customer or department in a datacenter or cloud infrastructure.

3.2.3.1 Bootstrapping Master Node

Figure 3.3 depicts the scenario in which Master0, a node which has control over three

physical nodes, creates a new isolated network partition. Master0 chooses one of the three

nodes to become the master inside the partition (Master1). The master bootstrap protocol

allows Master0 to pass control over the partition to Master1. Figure 3.3 (a) shows the initial

state of the capability system. Master0 possesses capabilities to the three nodes. To start

the master boot protocol, Master0 invokes the following operations:

capRP0 = create (TYPE_RP)

reset (capM1, capRP0)

capM1_M1 = mint (capM1)

send (capRP0, capM1_M1)

capN1_M1 = mint (capN1)

send (capRP0, capN1_M1)

capN2_M1 = mint (capN2)

send (capRP0, capN2_M1)

Master0 creates a new rendezvous point RP0. It then invokes a reset operation on

Master1. The reset operation performs two things. First, it cleans the capability space

of the node. Second, it inserts the rendezvous object RP0 in the empty CSpace of the

reset node (Master1). After reset, the node has no capabilities besides a capability to the

rendezvous object. Similar to the UNIX environment, the rendezvous object serves as the

“standard input” for Master1. It is used to exchange capabilities while performing the boot

protocol. The reset operation arranges that the rendezvous object is available to the node

through a capability with a well-known name, 0.

Master0 uses the mint operation to create copies of capabilities referring to three nodes

and the send operation to send these capabilities to the rendezvous point RP0. The master

mints capabilities, so it can revoke them later without losing its own control over the nodes,
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which it has through capabilities capM1, capN1, and capN2.

Given this initial state, Figures 3.3 (b) and (c) depict the bootstrapping actions when

the master node starts up. The master invokes the receive operation on its “standard

input” capability “0” to receive the node capabilities waiting in the rendezvous queue.

Figure 3.3 (c) shows how this results in the enqueued capabilities being imported into the

capability space of Master1. Note that the manipulation of the capability space shown in

these figures occurs in the data structures of the capability system (associated with the SDN

controller), as a result of invocations via the CeNet API (shown in Figure 3.2).

3.2.3.2 Bootstrapping Other Nodes

The above bootstrap protocol is followed to bootstrap any capability-enabled node

into the system. For example, to bootstrap Node1, the Master1 executes the following

commands:

capM1_N1RP0 = create (TYPE_RP)

reset (capN1, capM1_N1RP0)

capN1_N1 = mint (capN1)

send (capM1_N1RP0, capN1_N1)

The master node creates a new rendezvous object capM1 N1RP0. The master then

invokes the reset() operation on the node referred by the capN1 capability, and passing the

capM1 N1RP0 rendezvous capability as an argument, thus establishing Node1’s RP0. The

master mints the capability to the node and sends it to the rendezvous object. Figure 3.4

shows that Node1 follows the same startup procedure (i.e., performing a receive operation

on the capability “0”). After receive, Node1 is fully bootstrapped into the capability system.

It has a capability to itself, which allows it to create new objects, e.g., rendezvous points and

N1M N2

Master1
Node1

Node2

RP0
(Master1's RP0)0

N1RP0
(Node1's RP0)

CapM1_N1RP0

0

CapRP0

Master0

CapM1_M1

CapN1_M1

CapN2_M1

Figure 3.4. Bootstrap node into capability system
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flows, and to receive more capabilities from the master through its standard input capability

zero.

3.2.3.3 Allowing Nodes to Exchange Capabilities

Once nodes are bootstrapped into the capability system, the master node (or any node

with appropriate capabilities) can create a rendezvous point to allow nodes to exchange

capabilities directly. Figure 3.5 presents an example of three nodes, in which a new

communication channel is set up between the two nodes Node1 and Node2. Master1

can exchange capabilities with Node1 and Node2 through the existing rendezvous objects

N1RP0 and N2RP0 (from the bootstrap of those nodes). Master1 executes the following

commands to create a new rendezvous point and share it with both nodes:

capN1N2RP = create (TYPE_RP)

capN1_RP_N2 = mint (capN1N2RP)

send (capM1_N1RP0, capN1_RP_N2)

capN2_RP_N1 = mint (capN1N2RP)

send (capM1_N2RP0, capN2_RP_N1)

The master creates a new rendezvous object. The master then mints two new capabili-

ties from the rendezvous point capability and sends these capabilities to Node1 and Node2

via the rendezvous points they share with the master (N1RP0 and N2RP0). Both nodes

receive capabilities to the new rendezvous object with the receive operation. The receive

operation imports the appropriate capabilities into the capability space of the receiver. The

end state, with the new rendezvous point shared between Node1 and Node2 is depicted in

Figure 3.5. (To simplify the figure we show only the relevant CSpaces and objects.)

Master1

Node2

N2RP0capM1_N2RP0
0

capM1_N1RP0

N1RP0

Node1

0
Client

ServerN1N2RP

capN1_RP_N2

capN2_RP_N1

Figure 3.5. Allow nodes to exchange capabilities
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3.2.3.4 Communication Primitives

With the ability to exchange capabilities in place, nodes in a CeNet system can create

communication-related objects (flow objects) and exchange the associated capabilities to

enable communication. Again, the semantics associated with such communication will

be application-specific, according to the delegation of capabilities amongst participating

applications, while the enforcement of the policies will lie with the capability-driven SDN

infrastructure. For example, to realize the common “logically centralized” policy manager

approach, a centralized master node can create flow objects on behalf of nodes under its

control and pass the capabilities associated with these objects to the nodes in question

(via shared rendezvous points). Nodes receiving these capabilities will thus be enabled to

communicate according to the policies enacted by the master node.

CeNet’s ability to delegate capabilities, however, also enables the realization of fine-

grained, distributed policies. For example, Figure 3.6 depicts the scenario where a client

and a server are explicitly enabled to exchange capabilities (as illustrated in Figure 3.5)

and use this ability to create flow objects and exchange the associated capabilities to enable

client/server communication.

With reference to Figure 3.6, Node2, acting as a server and wanting to enable com-

munication with a client (Node1), will perform the following invocations via the CeNet

API:

capInUFlow = create (capN2, TYPE_UFLOW, flow_spec)

send (capN2_RP_N1, capInUFlow)

...

recv (capN2_RP_N1, &capOutUFlow)

Figure 3.6 (a) shows the result of these invocations. The server creates a new flow

object and shares it with the client through a rendezvous point they share. The flow is of

type, TY PE UFLOW , indicating that it is a unidirectional flow towards the server and with

a optional flow specification. flow spec can be used to demux packets at the receiving host

to multiple applications if required (somewhat like port numbers). Note that at this point,

the flow object only exists in the capability system; no flow has actually been realized in

the SDN substrate. CeNet can also proactively push flow specification to the substrate if
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Figure 3.6. Unidirectional flows

the flow-type is specified as TY PE UFLOW PUSH.

The client, Node1, will receive the unidirectional flow object. The client then creates a

flow pointing in the other direction as follows:

recv (capN1_RP_N2, &capOutUFlow, &type)

capInUFlow = create (capN1, TYPE_UFLOW, flow_spec)

send (capN1_RP_N2, capInUFlow)

senddata (capOutUFlow, data)

The client API invocations essentially mirror that of the server in terms of creating

a unidirectional flow object towards the client and sharing it with the server via the ren-

dezvous point. The client then starts sending on the flow capability it received from the

server. As shown in Figure 3.6 (b), receiving data on the flow capability will result in the

flow specification being pushed into the SDN substrate so that subsequent interaction will

not involve the controller. In a similar fashion, once the server has performed a receive
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to import a flow capability generated by the client, capOutUFlow, the server can use

senddata() with the capability to send data to the client. Again, this flow of data will

serve as a trigger to push the flow specification into the SDN substrate as depicted in

Figure 3.6 (c).

A key property of the take-grant capability system is the transitive, reflexive, and

symmetric closure over all Grant connections (discussed in more detail in Chapter 5).

This closure provides an authority bound which is invariant over system execution. Our

bootstrap protocol is based on this. In other words, any amount of capability transfer from

the initial bootstrapped state cannot introduce a new connection between two objects that

were not already connected by some path in the closure.

3.2.4 Dealing with Legacy Nodes

We envision that complete autonomous environments, e.g., high security datacenters,

could run the CeNet system and protocols. However, to ease adoption, backwards com-

patibility with legacy nodes is an important requirement. As described earlier, CeNet deals

with legacy nodes by delegating control of such nodes to proxy nodes capable of interacting

with both the legacy nodes (via legacy protocol handlers) and with the capability system

through the CeNet API (and protocol).

Two scenarios are of interest. The first is a domain consisting of only legacy nodes.

With appropriate higher-level policies driving the CeNet capability system and with dele-

gation to different master nodes, this scenario still benefits from CeNet’s least-privileged

communication and strong isolation primitives.

In the second scenario, legacy nodes are integrated into a CeNet environment and

allowed to seamlessly communicate with capability-enabled nodes. For example, in such a

mixed-node deployment, a capability-enabled server could grant or deny access to clients

based on fine-grained application-level policies and have those policies be enforced by the

SDN infrastructure.

The mechanisms involved with both scenarios are essentially the same. Without loss of

generality we consider the mixed deployment scenario below in more detail.
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3.2.4.1 Bootstrapping Proxy and Legacy Node

Our approach to integrating legacy nodes into CeNet builds on two insights. First, most

protocols used by legacy nodes are of a request/response nature. These protocols readily

map onto the send and receive functions exposed by the CeNet API to share capabilities

and import them into a node’s capability space. Below we consider one possible mapping

making use of DHCP, DNS, and ARP protocols.

Second, since the capability identifiers used by hosts for invocations across the CeNet

API have local significance only, the proxy can maintain a mapping between capability

identifiers and legacy “protocol identifiers.” For example, the IP and MAC layer addresses

used by legacy protocols in effect become “proxy capability identifiers.”

Figure 3.7 illustrates this scenario. Node2 is a capability-enabled server. Node1 is a

legacy client. The Master node sets up a system in which nodes Node1 and Node2 are

allowed to communicate. The master designates a Proxy node to act on behalf of Node1.

Proxy node is responsible for performing capability operations on behalf of a legacy node,

so as to seamlessly integrate the legacy node into the capability-enabled network. The

master then creates a proxy object. Note that this instance of create() invocation takes a

capability to the legacy node as the first argument. The create operation associates the

proxy object with the legacy node. The master shares the proxy capability with the proxy

node:

// On Master

capP = create (capN1, TYPE_PROXY) //CapP points to ProxyN1 object in figure

capP_N1 = mint (capP) //CapP, CapN1 in master’s CSPace are not shown

send (capM_RP_P, capP_N1)

// On Proxy

recv (capP_RP_M, &capProxy_N1, &type)

When the proxy node receives the proxy capability, the CeNet capability system con-

figures the SDN substrate in such a way that all control plane traffic, e.g., DHCP, DNS and

ARP, from the legacy node is routed to the proxy node.

Figure 3.7 (a) depicts the result of Master resetting the legacy node Node1 for boot-

strapping it into the capability-enabled network. The rendezvous point N1RP becomes the

standard input for Node1. Another rendezvous point is created for communication between

Node1 and Node2 (N1N2RP). The master has sent associated capabilities to appropriate
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rendezvous points. Note that from Master perspective these operations are exactly the same

as the actions it took to bootstrap a capability enabled node as described in Section 3.2.3.

The legacy node bootstrap continues when Node1 initializes its network interface, e.g.,

after reboot. At this point the legacy node issues a DHCP request. DHCP traffic from the

legacy node is routed to the proxy. The proxy node receives and parses the DHCP request

from the legacy node. The proxy realizes that the legacy node is ready to join the network.

The proxy performs the node part of the bootstrap protocol on behalf of the legacy node.

The receive operation below imports capabilities from the rendezvous point N1RP into the

capability space of the legacy node Node1. (The result of these operations is shown in

Figure 3.7 (b)):

// On Proxy

while (recv(capProxy_N1, 0, &cap, &type)) {

//capability specific processing

}

Although the receive invocation is invoked by the proxy node, the receive operation is

performed on the CSpace of the legacy node, i.e., the node pointed by the capProxy N1
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Figure 3.7. Bootstrap legacy proxy node and and legacy node
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capability. The capability which points to the RP “0” is also taken from the CSpace of

the legacy node. On successful invocation of the functions above, the proxy protocol

handler performs regular DHCP functions based on the received request. It returns a

DHCP response and maintains the mapping between the DHCP parameters and capability

identifiers it received on behalf of the legacy node. (For example the proxy can maintain

a mapping between the IP it issued in response to Node1’s DHCP request, the proxy

capability id corresponding to Node1 and list of Node1 local capability identifiers like

capN1 RP N2, received as a result of the recv in the previous snippet.)

In the code sequence above, the receive operation is used with an additional argument—

a capability to the proxy object.

Once the legacy node and the proxy node are bootstrapped in this manner, the same

protocol is followed for setting up data flows. (The exchange of rights for setting up a

CeNet flow is shown in Figure 3.6.) The proxy intercepts regular protocol exchanges

from the legacy node and translates them into capability operations. Specifically, the

capability-enabled server (Node2) will invoke the exact same capability operations to cre-

ate a unidirectional flow object towards itself (Figure 3.6 and Section 3.2.3.4).

To realize the flow in the other direction, i.e., from the legacy client (Node1), the legacy

node issues a DNS request to resolve the server hostname to an IP address. This request

is directed to the proxy node. Based on the information that the request came from Node1

the proxy node uses the proxy capability associated with Node1 (capProxy N1) to invoke

the receive operation:

// On Proxy

recv (capProxy_N1, capN1_RP_N2, &capOutFlow, &type)

On success, the proxy again proceeds with regular protocol processing, i.e., construct-

ing a DNS response message and responding to the client.

On initiating communication with the server, the client issues an ARP request to resolve

the MAC address of the server. Again this message is intercepted and parsed by the proxy.

The proxy then proceeds to create a flow from the client to the server:

// On Proxy

capInFlow = create(capProxy_N1, TYPE_UFLOW, spec)

send(capProxy_N1, capN1_RP_N2, capInFlow)
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At this point the capability space is in the same state as at the equivalent point in

Figure 3.6 and IP based flow table entries can be pushed proactively to route the packets

between the two hosts (on the intermediate switches connecting them), thus allowing the

two hosts to communicate.

3.2.4.2 Hybrid Nodes

In Sections 3.2.1 and 3.2.3 we assumed that capability-enabled nodes would use the

messaging functionality of the CeNet API for any node-to-node communication (Figure

3.8 (a)). This functionality is not practical for communication between capability-enabled

nodes and legacy nodes. Instead, we make a reasonable assumption that for this type of

interaction, the capability-enabled node would make use of a regular (legacy) network stack

for “data path” interaction with the legacy node, but use the CeNet API for the “control

plane” interaction with the capability system (Figure 3.8 (b)).

3.3 Use Case - Preventing Data Exfiltration
To illustrate the utility of our approach, we consider how the CeNet capability system

can prevent data exfiltration in an enterprise network setting. The requirement here is to

create enterprise network functionality, where different parties need to get their work done,

but at the same time limit the damage and loss of data in the event of a security compromise

at any of the hosts.
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In our example scenario shown in Figure 3.9, the network needs to allow the following

interactions:

• a host with sensitive data needs to be accessed by a data scientist

• a group of three employees working on a project needs to collaborate

• the company needs to serve web pages showing the current inventory status, which

is available on the database hosted on a different machine.

The fine-grained network access control (provided by capabilities) can alleviate the

spread of a malware (e.g., exploiting a zero-day vulnerability, and all hosts are unpatched).

This in turn can reduce the scope of data exfiltration in such a corporate network.

During the bootstrap, the master entrusts each host with only the capabilities it requires

to perform its task.

Here the webserver serves webpages to the external world, so during bootstrap, the

master gives it only the capabilities (flow capabilities) required to interact with the database

server and vice versa. In the event of some security loophole in one of the scripts executed

by the webserver, or some zero-day vulnerability in the web server code or host networking

Figure 3.9. Data exfiltration
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stack code, the attacker (even with root privileges of the webserver) can only reach the

database server, thereby leaving other parts of the network safe from attacks. In this

scenario, the attacker might be able to exfiltrate the webdata, but the network would not

provide him a chance to attack and exfiltrate the sensitive data.

Similarly the master establishes a rendezvous point, which allows the data scientist

and the system hosting the sensitive data to exchange flows that would enable them to

communicate.

In the case of three employees needing to collaborate, the master need not get into

the specifics of their collaboration. The system allows the nature of collaboration of these

three host, to be decided by one of them (submaster). To achieve this, master delegates the

ownership of those three nodes to one among them (say the host designated for the project

manager). Now the project manager can decide the actual nature of collaboration among

the three. By carefully granting just the three node capabilities to the project manager, the

master can accomplish two goals: flexible collaboration and isolation of the three from the

rest of the network. The protection state of the whole system could continue to evolve based

on how the project manager host allows the remaining two to collaborate among themselves

and with him. But no sequence of operations (capability-graph mutations) would enable

these hosts to get a capability to other hosts in the network.

Why capabilities? Functionally this achieves security guarantees similar to running

firewalls on every individual host, but the existing method of placing ad hoc firewall rules

on endhosts leaves many opportunities for misconfiguration (if users are allowed to change

the endhost firewall rules) and is difficult to reason about the overall security state of the

network, as there is no explicit way of tracking rule changes. This level of fine grained se-

curity can be realized more easily in traditional SDN systems (like Ethane [43]). However,

the policies are dictated by a single policy file without any scope of delegation, dynamism

or evolution.

The capability model permits a level of evolvability from the bootstrapped protection

policy of the system. End hosts can determine the policies based on delegated capabilities,

thereby allowing a level of decentralization. However, the nature of evolution of protection

state is using well defined graph transformations and consequently it is possible to reason

about the protection state at any point in time or the possible upper bound of authority
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propagation.

To summarize, the following are the key advantages of CeNet system:

• policy-driven access control by the network core

• delegation of authority with the ability to revoke

• dynamic changes

• reason about the access allowed

3.4 Implementation
To verify the feasibility of our approach, we realized a prototype implementation of the

CeNet architecture. The main components are the capability system, the capability API,

and a bootstrap protocol.

3.4.1 Capability System

The CeNet capability system is implemented as an application in the POX SDN con-

troller. POX is an extendable SDN controller implemented in Python. CeNet relies on POX

functionality for all network management operations, e.g., maintaining a centralized view

of the network, creating network flows, etc. The CeNet capability protocol, objects, and

operations directly extend the functionality of the POX controller application.

Capabilities are implemented as Python objects within the controller process. A ren-

dezvous point is a producer-consumer buffer that allows nodes to exchange capabilities.

The buffer preserves the order in which messages were received. A flow object has the

source and destination host information (source information is populated when the flow

object is received by the senders). Based on these the path between the given hosts can be

calculated based on the network topology. At the time when a flow is pushed into the SDN

substrate, the CeNet system computes the route as a list of switch and input-output port

combinations of intermediate switches. It also has methods to proactively push flows (both

forward and reverse) in all the switches. In our current implementation we are giving the

network topology and paths (between host pairs) as an input to the system, but it should

be possible to hook into the network topology discovery module of POX to automatically

compute the path.
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The capability class maintains a reference to one of the capability objects and some

logic for generating unique capability identifiers. Capabilities are associated with specific

hosts. CeNet relies on a pair of switch identifier and port number to uniquely identify a

host for each capability invocation. The CeNet system keeps track of capabilities for each

node in a capability space, or CSpace, data structure. We use a simplified implementation

of the CSpace—a list. This works well for the small number of capabilities, but does not

scale. In other systems, capabilities are kept in radix trees with guards [48, 10]. Capability

spaces for all nodes are kept in a Python dictionary—a key-value data structure indexed by

a pair (switch id , port number) that uniquely identifies each host.

While we have implemented the logic associated with the reset operation as far as

the capability space is concerned, we have not implemented the external mechanisms that

might be associated with this operation to physically reset nodes.

3.4.2 Capability API and Protocol

CeNet implements the capability API that can be directly utilized by capability-aware

applications. The API provides capability applications with remote access to interact

with the capability system. Remote invocation of the capability operations is built on the

capability protocol. Our realization of this protocol is implemented as a simple request /

response protocol on top of UDP. The payload of each capability protocol message contains

the capability operation to be performed, as well as the capability identifier needed for

that operation. Each message also contains any additional parameters associated with the

specific operation.

3.4.3 Data-path APIs

Our current implementation of data-path APIs Send / receive data overloads the VLAN

field to carry the flow capability (token) and we route based on this capability. We use

rawsockets to construct the packets.

3.4.4 Limitations

The limitations of our implementation include the following:

1. The data APIs currently support only UDP messaging. Connection oriented seman-

tics need to be implemented over this.
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2. Realizing traditional ambient networks (where every host needs access to every other

host) using flow capabilities may create pressure on SDN flow table entries. In our

model, the same destination would be identified by different flow capabilities in the

context of different hosts. While this is a desirable security property, it limits scope

of flow aggregation (to the same destination).

3.5 Performance Evaluation
We did a basic performance evaluation of our primitives. Our evaluation focuses on

an end-to-end evaluation of CeNet, the scalability of the capability system itself, and the

functionality of the legacy node proxy. We evaluated our prototype implementation in a

Mininet network emulation environment controlled by a POX-based SDN controller with

the CeNet capability system and executing on a 2.1 GHz Intel Xeon system running Ubuntu

Linux.

3.5.1 End-to-end Evaluation

Once the appropriate capability operations have been performed to realize flows, CeNet

uses the SDN network directly and there is no further overhead due to capabilities. Our

evaluation therefore focuses on an end-to-end measurement of the overhead introduced by

the CeNet capability system.

Typically, the capability-related overhead would come in two scenarios: (i) the addi-

tional overhead to bootstrap new nodes into the capability system or handing over addi-

tional capabilities to existing nodes and (ii) the additional overhead introduced in setting

up flows between two hosts interested in communicating. The first operation happens when

a master at a particular level delegate authority of a subset of nodes to a master at a lower

level in the delegation tree. As such this operation is not in the communication critical path.

The second operation introduces some overhead as a flow object needs to be created and

the associated capability passed to the other end of the communication.

We evaluated this overhead by instrumenting our implementation to determine the

breakdown of time within end-to-end API invocations for CeNet capability operations.

These results were obtained with the capability system preloaded with 840 nodes and with

the CSpace of each node populated with 1,000 capabilities.

Our results are shown in Figure 3.10. The bars show the average total time for each
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Figure 3.10. End-to-end time split

CeNet operation. Our first observation is that the operations introduce fairly modest over-

head, somewhere between 11 and 13 ms, depending on the operation. Each bar is divided

to show the relative contributions of different components in an end-to-end invocation.

The bottom component (“Host to Controller start”) and top component (“Controller end

to host”) represent the overhead of the capability protocol to get the request from the

invoking host to the capability system. The request/response nature of our capability

protocol is evident, and since this is a remote invocation, these two measures make the

largest contribution to the end-to-end delay.

The three components in the middle of each bar represent the SDN controller receive

processing (“Controller start to Capability Processing start”), the actual capability pro-

cessing (“Capability processing”), and the SDN controller send processing (“Capability

Processing end to Controller end”). Interestingly, the actual capability processing makes

the smallest contribution, with controller-related processing dominating.

3.5.2 Capability System

To get a sense of its scalability, we evaluated our capability system in isolation. Fig-

ure 3.11 shows the capability-related overhead of the receive operation and how this over-

head varies according to the number of capabilities in the CSpace. The shape of the graph
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Figure 3.11. Capability processing time in controller

is in line with our list-based implementation, i.e., O(N) complexity where N is the number

of capabilities in the CSpace. Even with this naive solution the performance is reasonable,

e.g., for a reasonable number of around 1000 capabilities per CSpace, the overhead is

around 0.07 ms. Even in a scenario where there are more than 600,000 capabilities in the

CSpace the capability processing overhead is a tolerable 25 ms.

During node boot up, the controller must create objects and their corresponding capa-

bilities and populate the necessary data structures. We measured the time taken to perform

these operations as a function of the total number of capabilities in the system. Specifically,

the time was measured while performing these operations in a tight loop, so that the number

of capabilities effectively increased with each operation. The results for this experiment are

shown in Figure 3.12. While we do not have a good sense of the total number of capabilities

that would be needed in a realistic system, we note that the time for a system with a 100,000

capabilities is less than a second, and for a 500,000 capabilities it is less than 5 seconds.

This appears to be a reasonable overhead for an operation that is only performed once when

a node starts up.

For our next experiment we created a setup with 850 nodes each having 1,000 capabili-
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Figure 3.12. Controller bootstrap overhead due to capabilities

ties in their CSpace. Figure 3.13 shows the capability-processing overhead in the controller

for a randomly chosen set of 250 hosts from this setup. The graph shows that, since the

first-level indexing is hash based, the capability-related overhead for an operation is more

or less the same irrespective of the host. The graph also shows that the capability processing

is quite stable: the average time for all 850 nodes was 0.07 ms with a standard deviation of

0.01.

Legacy proxy node. We performed a functional evaluation of our proxy node imple-

mentation. Specifically, within our Mininet environment we created the setup depicted in

Figure 3.8 (b). In this experiment the capability-enabled server node invoked appropriate

capability operations to create a flow in the SDN substrate towards itself. We then manually

performed a DHCP request from the legacy node to trigger the client-side operation. On

receiving a successful DHCP response from the proxy node, we manually performed a

ping <hostname> on the legacy node. This first triggered a DNS request to resolve the

hostname and then a subsequent ARP request to resolve the server’s MAC address. We

captured the network interaction for this experiment via tcpdump in the Mininet setup.
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Figure 3.13. Capability access time for different hosts

Figure 3.14 shows an annotated time series of the interactions between the components in

this setup.

3.6 Summary
In this chapter we talked about a mechanism for providing practical security, fine-

grained access control, and least privilege in traditionally open networks. Based on prin-

ciples of capability access control, we develop a powerful access control model which fits

the needs of a modern data center or enterprise network. Capabilities enable fine-grained

isolation and delegation of rights in a hierarchical, dynamic, multitenant environment, with

a large number of mistrusting principals. While ensuring global security properties, CeNet

allows individual hosts to make application-specific decisions. This natural integration

of the application logic and access control enables construction of true least privileged

environments.
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Figure 3.14. Capability-enabled and legacy node interaction



CHAPTER 4

HIGH-LEVEL POLICIES

In this chapter, we describe how our network is able to enforce access control according

to a high-level policy by translating it into capability operations. We describe an example

scenario, implementation, and evaluation of this.

We refer to the component that does the aforementioned translation as a policy man-

ager. It sits above the capability system in the SDN controller as shown in Figure 4.1

and translates a high-level policy into a set of capabilities and hands them over to the

relevant CSpaces using capability operations. The CSpaces now mirror that policy and our

capability-based SDN controller enforces it over the network. This essentially bootstraps

the network with an initial coarse grained policy.

The primary advantage of the network enforcing policy-based access control (versus an

ambient network) is that this approach of least privileged networking reduces the potential

attack surface for a host (in a network). It also reduces damage (to other hosts in the

network) when the integrity of a host (in a network) is compromised.

We have experimented with the following two policies: sandbox master policy and

Role-Based Access Control (RBAC).

4.1 Sandbox Master Policy
This policy mirrors what we called Master0 in the previous chapter. This allows spec-

ifying the master which has full control over a number of other nodes in the system. The

policy manager grants the relevant capabilities (node capabilities to hosts in the sandbox)

to the master.

The sandbox master, during its bootstrap, receives the capabilities granted as per the

network bootstrap policy and now using the capability APIs it can decide on the nature of

fine-grained collaboration among the other nodes in the sandbox. Thus the system allows

policy evolution.
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Figure 4.1. CeNet Policy manager and RBAC engine

Except for some implementation details later on, we do not discuss this further in this

chapter as this corresponds to Master0 bootstrapping Master1 from the previous chapter.

4.2 Role-Based Access Control (RBAC)
Role-Based Access Control (RBAC) [49] is used for protection of resources in struc-

tured organizations like hospitals, universities and companies [50]. RBAC regulates access

to resources based on the roles of individual users within an enterprise.

In addition to reducing the attack surface, introducing RBAC in our system simplifies

the task of bootstrapping a large network with the correct access control policy. We observe

that while the bootstrapping procedure as mentioned in the last chapter works well for

a small network (providing fine-grained control), it might be overwhelming to specify

it in the same fine-grained fashion for a large network. With RBAC, we do not assign

capabilities directly to hosts (users); instead, we use RBAC to manage what capabilities a

host gets. RBAC introduces the role concept; capabilities are assigned to roles, and roles

are assigned to hosts.
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RBAC Parameters and Policies: Consider a simplified hospital network scenario

as given in Figure 4.2. We have hosts belonging to doctors (with varied specializations

like cardiologist, physician etc.), nurses, and file servers (hosting medical records, payroll

records etc). To simplify the policy specification, we choose to classify the hosts in the

network as subject hosts and object hosts, where object hosts are data repositories like file

servers and subject hosts are client devices from which those data may be accessed.

The following RBAC functionalities are supported by our system:

• Creating/specifying roles in the system. Some examples of roles from the aforemen-

tioned scenario are cardiologist, nurse, etc.

• Host to role assignment. Again in the context of our example scenario, this means,

host N1 belongs to a physician and host n4 belongs to a nurse.

• Permission (capability to a host) to role assignment. Reachability (flow) to a partic-

ular host would naturally be the fundamental permission (capability) in our system.

It is possible to augment this with other types of capabilities like admin (node capa-

bility), delegation (rendezvous point capability) rights, etc.

Staff

NurseDoctor

CardiologistPhysician

Record

host N1 host N2

host N4

Medical Rec Payroll Rec

vm host 
N3 host N5

Policy : Allow 
role = Cardio

Policy : Allow 
role = Staff

a. Subject Role hierarchy and 
host associations

b. Object Role hierarchy , 
host association and policies

admin

Figure 4.2. CeNet RBAC roles and polices in a hospital network
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To be more precise the assignment of permissions to roles can be represented as a

tuple:

(sub j role× capability type(FL)×ob ject role) (4.1)

Note that for convenience our system allows to specify an obj host instead of an

obj role as the third parameter in the above equation. An example of this from our

sample scenario is (doctor× f low capability×host N3) which allows connectivity

between hosts that are assigned doctor roles and the object host N3. We synony-

mously call this association a policy. (Again, to be more correct, the whole policy of

the network would be comprised of many such individual policy items.)

• Role hierarchies - RBAC has the concept of a role hierarchy, which is a natural

means for structuring roles to reflect the lines of authority and responsibility in

an organization. Figure 4.2 shows the hierarchy of roles in our hospital network

scenario. We show general roles towards the top of the tree and specific roles toward

the bottom.

There is a natural concept of delegation (along the lines of organizational authority

and responsibility) embedded in this role hierarchy tree. This allows us to obtain the

desired policy granularity by specifying the policy in terms of roles at any level of

the tree. Say for example, with reference to Figure 4.2, if a policy specifies allow <

sta f f > access to < hostN5 >, this is enough to allow the cardiologist role to access

N5, by virtue of being a more specialized version of the doctor role, which is a

specialized version of the staff role. This further simplifies policy specification.

4.3 Realizing RBAC Policies Through
Capability Operations

Assume the aforementioned four parameters — roles, host to role assignments, permis-

sions to role assignments, and role hierarchies — are provided for an enterprise network.

It is then possible to evaluate which hosts are entitled to receive which capabilities. This

allows us to populate the CSpaces of our subject hosts, thereby enabling us to easily

bootstrap the capability systems for our network.

Our policy manager in a sense precalculates the closure over all allowed connectiv-

ity between hosts based on the role-hierarchy tree and a given policy. Then it invokes
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the CeNet API to instantiate the lower-level polices in the appropriate CSpaces (thereby

freeing us of the burden of invoking the capability APIs manually to realize a policy).

This translation (closure calculation) is straightforward and more details are present in the

implementation section.

4.4 Sample Use Case Scenario

Our system allows us to specify network access control in the form of a high-level

RBAC policy. The policy manager consults an input file to gather roles, host to role

assignments, role hierarchies, and policies, which are the basic parameters of an RBAC

system.

Coming back to our hospital network scenario in Figure 4.2, one of the policy items

specified is (role cardiologist × f low capability× role med rec). During bootstrap the

RBAC policy manager, based on the aforementioned RBAC parameters in the policy file,

would identify the hosts between which the network should allow connectivity based on

this policy. Based on this, it would invoke the CeNet API to instantiate the lower-level

polices in the appropriate CSpaces.

For this simple case and policy, we have only one subject host with the role cardiologist

(host N2) and only one object host with the role medical record (VM host N3). As per the

policy, the network would allow this interaction. The cardiologist host (host N2) can use

the flow capability (endowed by the policy manager as a result of composing this policy)

and data-path APIs to interact with the medical record host (VM host N3). Simultaneously,

the switches would be programmed to recognize this flow capability and would route them

to the relevant output port, which ultimately leads to the destination.

This system is sufficiently higher-level than the pure capability system, as the RBAC

policy specified can be at a high level (based on coarse/fine roles), and the policy manager

realizes the corresponding network access control using CeNet APIs. Mostly the end-hosts

need to be only aware of the capability-aware data-path APIs. The creation and delegation

of capabilities mirroring the high level policies are handled by the policy manager.

Discussion. It is possible to achieve RBAC and similar levels of delegation at a higher

level (e.g., at the level of files) using capability-based authentication services (at the appli-

cation layer) running over a traditional ambient network. But if the integrity of a host OS is
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compromised, these higher level protection schemes fail to be of much use in constraining

the attacker from targeting other vulnerable hosts in the network.

The difference in our approach is that we are implementing security at a lower layer.

This gives us the advantage that even when a host OS is compromised, policy-driven access

control enforced by the network provides a layer of protection.

For example, in the event that a nurse’s host is compromised, the attacker can only

reach (attack) hosts that the nurse had reachability to. In a traditional network, assuming

all hosts had some zero-day vulnerability in their network stack, the attacker would be able

to target every host once it gains a foothold on the nurse’s host.

4.5 Rich Sharing
Until now we have considered flow capabilities, which deal with subject to object host

connectivity, and this is enough to realize a basic RBAC system. The policies are specified

with respect to object hosts (object roles). Once bootstrapped, the policies are static in this

basic RBAC system.

CeNet allows for a more dynamic approach by factoring in other types of capabilities

like node capability, RP capability etc. CeNet allows delegation of flow capabilities at

run time between permitted subject roles that are in unrelated branches of the subject role

hierarchy tree. The policies that allow such delegation can be specified in terms of roles in

the subject role-hierarchy tree. The format of such a policy would look like:

(sub j role1× capability type(RP)× sub j role2) (4.2)

A specific example of the above policy is (role doctor×RP× role nurse), which would

create RPs between doctor hosts and nurse hosts (during bootstrap), thereby allowing a doc-

tor to delegate a flow capability (to a patient medical record) temporarily to a nurse, if the

need arises. This delegation can be done through capability APIs via the aforementioned

RP.

The primary difference between this policy 4.2 and the former one 4.1 is that, here the

policy involves two subject roles, whereas in the former the policy was between a subject

role and an object role. This allows fine-grained delegation thereby allowing dynamism

and policy evolution.
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Use case: To appreciate the utility of fine-grained policies and delegation, it is nec-

essary to consider a system with a large number of hosts, where each requires different

policies. Assume a hospital stores medical records in a virtualized (cloud) environment

where it would be possible to realize fine-grained, isolated access to such data. For ex-

ample, as an extreme design point, each medical record might be made available via its

own light-weight VM and virtualized network environment, so that CeNet network-level

policies can be applied. For this part of our work we assume such an environment.

Assume that the RBAC host to role associations are as shown in the Figure 4.3 — i.e.,

hosts h1, h2, h3 are subject hosts with roles of admin, cardiologist, and nurse, respec-

tively. lvm1 is an object host with the role medical record container. Assume that the

role-hierarchy tree for this scenario corresponds to that of Figure 4.2. The following are

the high-level policies specified:

(role cardiologist×FL× role medical rec) (4.3)

(role doctor×RP× role nurse) (4.4)

Based on the first policy item above, the cardiologist host h2 would have access to

medical record VMs. It is possible that many medical records match the object role of

role medical rec and that the cardiologists would have access to all of them (as shown

in Figure 4.3). Further, the second policy item would allow the cardiologist host h2 to

delegate the flow capability of a specific patient’s medical record to his nurse host h3 for

some temporary purpose and later take the delegation back when desired. This shows the

flexibility and granularity achieved by our approach of augmenting RBAC with capabilities

and delegation. This achieves the flexibility of allowing an authorized nurse to access the

medical record even though the pure RBAC policy (Equation 4.3 alone) does not allow this

access. Conventional systems would require an administrator to set up an adhoc policy to

allow nurse access or would require the doctor to hand over his credentials.

The following steps lists a workflow which demonstrates the utility of rich sharing:

1. During bootstrap the policy manager looks at the policy in Equation 4.4. The policy

manager recognizes this as a delegation policy and identifies the matching hosts

between whom RPs have to be created to enable controlled delegation. In this
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Figure 4.3. CeNet rich sharing scenario

scenario, it creates an RP between the cardiologist (h2) and nurse (h3), updates their

CSpaces, and queues the capability to this new RP in their RP0s.

2. The policy manager consults the policy in Equation 4.3 and recognizes it as a flow

policy. Based on this, it creates flow capabilies to the three medical records matching

obj role = role med rec and gives them to the only subject host matching the role

cardiologist (i.e., host h2).

3. Using one of the above granted capabilities for (lvm1), cardiologist’s host h2 can

access the medical record lvm1.

4. The cardiologist wants his nurse to update a patient’s medical record. For this he

delegates the flow capability of that patient’s medical record to a nurse via the shared

RP.

5. The nurse can access the patient’s medical record via the flow capability received as

a part of the above delegation.
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6. The doctor can later revoke the previously granted flow.

4.6 Implementation
The policy manager sits above the capability framework on the SDN controller. Fig-

ure 4.1 shows the relative position of the policy manager with respect to the capability

system and the SDN controller. The policy manager invokes the CeNet capability API

directly as a function call (and not RPC - as is the case when hosts invoke it) to realize a

policy. The policy manager consults a policy.xml file to input the bootstrap policy.

The policy manager currently supports two policies:

The Sandbox Master policy specifies the master host and its slaves. The policy realiza-

tion in this scenario involves creating RP0s for all the hosts. In addition, node capabilities

to all the slave nodes are queued up in the master’s RP0. On booting up, the master can

use the authority of these granted capabilities to write a control-path application (next level

policy manager) using the CeNet APIs to realize a desired pattern of collaboration among

the slave nodes, or designate a submaster and so on.

<sandbox>sandbox1<name> sbox1</name>

<master>(2,1)</master>

<node>(2,2)</node>

<node>(3,1)</node>

<node>(3,2)</node>

<node>(3,3)</node>

</sandbox>

The above snippet shows a policy specification designating a master and its slaves. Note

that the tuple (x,y) in the snippet uniquely identifies the host attached to switch x’s port y

in the mininet environment.

For the RBAC policy, the parameters mentioned in Section 4.2 need to be provided as

input in the policy.xml file. A simple RBAC policy snippet related to our running example

is given below, followed by an explanation of the tags.

<rbac>

<SubjRole_Hierarchy>[("staff", "none") , ("doc", ["staff"]),

("nurse", ["staff"]), ("cardio", ["doc"]),
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("physician", ["doc"])]</SubjRole_Hierarchy>

<SubjRole_Assocn>[((2,1), ["cardio"]),

((2,2), ["nurse"]),

((3,2), ["physician"])]</SubjRole_Assocn>

<ResourceRole_Hierarchy>[("record", "none"),("med_rec",["record"]),

("payroll_rec", ["record"])]</ResourceRole_Hierarchy>

<!-- Jithu’s medical record lies in (3,1)-->

<RsrcRole_Assocn>[(((3,1),"jithu"), ["med_rec"])]</RsrcRole_Assocn>

<policies>[("allow" , ("doc", "flow" ,((3,1),"jithu")))]</policies>

</rbac>

• Roles and role hierarchies are specified using tags < Sub jRole Hierarchy > and

< RsrcRole Hierarchy >. Note that the contents of these tags loosely encode the

hierarchy given in Figure 4.2.

• Host to role assignments are specified using tags < Sub jRole Assocn > and

< RsrcRole Assocn >

• Policies and permissions to role assignments are specified using tag < policies >.

Note that loosely encodes the relation (role doctor×FL× host (3,1)). Here, the

third parameter in this policy is very specific (i.e., it specifies a host) and not a role

like med rec as in Equation 4.3. The policy manager is flexible enough to allow

specifying either a role or a host as the third parameter of this policy.

The policy rules are composed in conjunction with the role hierarchies and role associ-

ations specified in the policy input file. The RBAC engine is based on a simple-rbac Python

library. During the policy composing and capability translation phase, for every object host

matching parameter 3 of a given policy, the above module identifies the list of matching

subject hosts. The policy manager uses this knowledge to create appropriate capabilities

(flow caps in this scenario - illustrated in Figure 4.1) to the object hosts and queue them to

the subject hosts RP0 using the capability operations discussed in the previous chapter. In

addition, the policy manager creates RP0 to all hosts.

//In the Doctor host

cap_fl,cap_type = cap.rpc_recv(cap_rp0)
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cap.send_data_udp(cap_fl, "GET medical record")

Those matched subject hosts can now operate using those capabilities as shown above.

In this particular scenario of flow capabilities, the network switches would be configured

to route data packets carrying flow capabilities to the corresponding object hosts.

4.6.1 Evaluation

4.6.1.1 Security Properties

The network is in an off-by-default state. As explained in the RBAC policy translation

section, policy rules are composed in conjunction with role hierarchies and role associations

specified. Only explicitly allowed hosts satisfying the policy are granted flow capabilities

(allowed data path access to an object host) or given permission to delegate (by establishing

RP between hosts matching policies) to another subject host.

In addition, since all policies are translated to capability operations, at any point looking

at the CSpaces within the controller, we would be able to answer any reachability queries

at present or a later point in time.

It should be possible to identify and explore a suitable metric which can quantify the

security property better.

4.6.1.2 Ease of Use

The policy manager automates the task of realizing certain useful network access con-

trol properties as compared to the manual bootstrapping procedure. Also, as explained in

the rich sharing section, the concept of delegation allows evolution from the initial state

within the authority bounds.

Clearly we are not in a position to quantify this. It would be worthwhile to explore a

suitable metric which can quantify this property better.

4.6.1.3 Scalability

The policy manager consults the policy file, instantiates the RBAC library with the

parameters given in the input file, and identifies the matching flows and RPs to be created

to enforce the policy. This is a one-time initial overhead and is not on any critical path.

The time taken by the RBAC library to identify the matching flows and RPs based on

the policy can vary based on the number of hosts, roles, and shape of the role-hierarchy
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tree. A small issue we faced with the library was that, while it had an interface that was

able to tell whether a given host matches a specific policy, it didn’t have an interface that

directly provided a list of all matching subject hosts (given a policy). Consequently we had

to iterate over all the subject hosts, with the first interface to obtain the desired answer.

This makes the task of identifying if a given host matches a specified policy a critical

one. Figure 4.4 shows the result of our analysis of the time taken by simple-rbac to

determine if a subject host matches a given policy or not. The time increases as we increase

the number of roles in the system.

We evaluated the worst-case time for this operation for a balanced binary tree host/role

subject hierarchy layout (with host numbers in power of 2, with upto 16,384 hosts implying

a depth of upto 14 role levels) keeping the object hierarchy tree constant. We observe that

there is a slight increase in the worst-case time to complete this operation as we increase

the number of hosts. However, for practical numbers the time per operation seems to be

well within a reasonable limit. This overhead is incurred during the bootstrap phase, not

on the critical path. It should be possible to write our own simple RBAC implementation,

which provides our required interfaces and which should be able to answer this query in

near-constant time.

The policy translation and realization involves the following additional overheads:

1. Creating flow capabilities for the matching hosts.
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2. RPC overheads from object hosts to receive flow capabilities and invoke data trans-

fers.

RPC overhead has been studied in the end-to-end analysis (previous chapter) and pro-

vides an idea of (2). Since the RBAC engine, policy manager, and capability system are

within the SDN controller’s address space, the overhead of (1) is negligible (much less than

RPC overheads, as they are local function calls).

4.7 Summary
In this chapter we looked at how our network is able to enforce access control according

to high-level policies by translating it into capability operations. Specifically we looked at

RBAC policy in the context of a hospital network and augmenting RBAC model with the

concept of delegation using capabilities.

The primary advantage of network enforcing policy-based access control (vs. ambient

network) is that this approach reduces the potential attack surface for a host. It also reduces

damage when a host is compromised.



CHAPTER 5

FORMAL REASONING

Capability systems allow formal reasoning about the access control allowed in a system.

In this chapter we consider how such formal reasoning would apply in the CeNet system.

Specifically, we describe the take-grant (tg) model which is a classic model used to

analyze the propagation of authority in a capability system. We capture the major results

from a formal analysis of this model. We then discuss an example scenario about how rights

propagate through a network capability system using well-defined graph transformations of

the tg model. We conclude by saying how systems based on tg model and formal analysis

give us the ability to reason about the correctness and security properties of the policy

realized.

5.1 Formal Models and Security
In “Formal Models of Capability-Based Protection Systems” [51], Snyder states that

protection systems are usually described informally with implementation details dominat-

ing the majority of discussions. Snyder further claims that the following pertinent questions

cannot be answered merely based on implementation details or by looking at the code.

1. Does the system actually limit access to information to those users designated by the

owner?

2. Can common sharing relationships actually be established with the given rules?

3. Under what circumstances can information be disseminated within the system?

4. What protection policy does the system implement?

A “model” favors an abstract formulation where questions similar to the above can be

precisely stated and answered. In this chapter we attempt to deviate a bit from the hitherto

implementation specific discussions and try to develop a minimal, intuitive study that aims
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to precisely state relevant questions and hopefully answer them in the context of network

access control.

5.2 Take-Grant Model
tg protection model represents a system as a labeled directed graph whose nodes cor-

respond to entities of the protection system. The directed edge from subject s to entity

e denotes that s has α rights over e. Active entities are called subjects, passive entities

(resources) are called objects and entity means either a subject or object.

s© α−→ e©

Two special rights take (t) and grant (g) characterize this model. The meaning of these

rights are:

• Take If Subject s has take right to an entity e then it can assume any right that e has

to other entities in the system.

• Grant If Subject s has grant right to an entity e then it can transfer any right it has for

other entities to e.

The dynamic state of the system moves from one protection state to another only using a

fixed set of graph rewriting rules R. These rules transform the protection state of the system

along a sequence of graphs G0,G1, ...,Gn such that Gi follows from Gi−1 by some rule in

R. The analysis of the model focuses on answering if Gn has some particular property (like

the undesirable propagation of an access rights implying a security violation). Typically

the graph rewriting rules (governing transfer of rights) comprises of take, grant, create

and remove. Additional system specific access rights like read, right, etc., can be present.

Invoking regular access rights (like read , write) do not transform the protection graph.

5.3 Modeling CeNet System
A capability grants some right to an object or subject (network host in our context of

network) to its owner (another network host). This can be represented as a directed graph:

A© α−→ B©

This can be interpreted as A has a capability to B with α rights. α can be a set with one or

more rights. (The single edge represents multiple capabilities if |α|> 1). For modeling our
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system, three rights are used: R = { f low,grant, take}. The flow right gives the ability for

data transfer (A sending packets to B, through which attacker on A can try to compromise

B), while the other two rights (grant, take) are control-plane operations — explained below

— aiding in controlled sharing. Consequently, in our system, α ⊆ R for any edge. The

protection state of our overall system captures all relationships concerned with information

sharing within the network, and can be represented as a directed graph over all hosts in our

network.

To make things concrete, let us take the example of the protection state of a simplified

hospital network shown in Figure 5.1. The aim is to apply the take-grant model of rights

propagation and view the results of a formal analysis of the model in the context of network

access control. This example scenario is analogous to the computer science department ex-

ample scenario from Snyder [51], which was in the context of access to files in a computer

(with a different set of rights).

In our example scenario, the circles represent network hosts. We have the hosts of a

medical professor, student resident, radiologist, medical researcher and a Head of Depart-
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Figure 5.1. Protection graph of a simplified hospital network scenario
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ment (HOD). In addition there are a few hosts serving data like a radiology archive server,

an X-Ray record VM server, a clinical data server, etc.

The labels indicate the rights. Note that the radiology archive host is owned by the

Radiologist and the access to this server is not shared with anyone (though rights may be

granted to the HOD). The medical prof has access to a patient’s X-ray record on an instan-

tiated file server/VM, which he later intends to share with his student resident. The access

to the X-ray record is shared with the radiologist and nobody else. The student resident

has two roles. One role is of assisting the medical professor during patient consultation

(consequently he has access to the patient health server) and the other role is that of an RA

for a research project.

The protection graph abstracts the relationship among hosts at a point in time (say, the

initial state). To answer the questions listed above, we must define the graph transformation

rules. We closely model our graph-rewriting rules along the lines of the take-grant model.

Let us look at the graph-rewriting rules allowed by our system:

• Grant: In our implementation, we call the exchange mechanism which facilitates the

grant operation the rendezvous point.

An application of the grant rule to the protection graph of Figure 5.1 would result in a

graph transformation as shown in Figure 5.2. This transformation can be interpreted

as “the medical professor grants (flow to the Xray record) to student resident.” The

effect of this operation is to establish a new sharing relationship that permits the

student resident to have data path access (flow capability) to X-Ray record VM, so

that he can do some analysis on the prof’s behalf.

• Create: An application of the create rule to the protection graph that results from the

above (grant) operation is given in Figure 5.3. This can be interpreted as “the student

resident creates/instantiates a new object/VM containing his analysis of X-Ray report

to which he has flow access.”

• Take: This operation can be invoked by a host which possesses ownership over

another host in the protection graph (in our implementation this loosely corresponds

to a node capability). An application of the take rule to the protection graph from

the above (create) operation can be considered next. This can be interpreted as “the
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Figure 5.2. Grant rule applied to G0 [G0 is the Figure 5.1]. “The medical professor grants
(flow to Xray record VM) to student resident.”
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Figure 5.3. Create rule applied to G1 [Figure 5.2]. “The student resident cre-
ates/instantiates a new VM containing his analysis of X-Ray record to which he has flow
access.”

medical professor takes (flow to analysis) VM from student resident to whom he had

‘ownership’.” This is given in Figure 5.4.

• Remove: This operation can remove any subset of rights from an edge on the graph.

This transformation can be initiated by node from which the edge originates.

Due to the similarities of our system with Snyder’s take-grant model, in the following

sections we attempt to summarize the main results and formal analysis of the model on his

work (but adapted to fit our network model). We treat every host in the network as a subject

and thereby effectively restricting G to a single colored graph (equivalent of saying every

host can invoke take/grant, i.e., control path APIs) whereas in their formal model they
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Figure 5.4. Take rule applied to G2 [Figure 5.3]. “The medical professor takes (flow to
analysis) VM from student resident (over whom he has ownership rights).”

consider two colored graphs for modeling subject and object vertices distinctively (only

subject hosts invoke take/grant operations). The results of two colored analyses would

equally hold well in our case if we were keen on having a set of hosts that are not allowed

to invoke control path APIs.

5.3.1 What Are the Questions ?

A relevant question for the professor would be

Can the X-ray record be stolen? (q.1)

The question (q.1) is a bit imprecise and we can make it more clear by asking:

“Can any host other than the medical professor or radiologist acquire a flow right to Y’s

X-ray record VM, without the professor or radiologist explicitly granting the right?” (q.2)

(q.2) puts the question in the perspective of our system and it clarifies “stolen” to mean

that another host acquires flow rights (to Y’s X-Ray record VM/server) without explicitly

receiving it from either the medical professor or the radiologist who possess that in the

original system.

We can express this more formally as: If there exists a sequence of rule applications

G0`ρ1 G1`ρ2 G2...`ρn Gn such that there is no rule ρi(1 ≤ i ≤ n) where the medical pro-

fessor or radiologist grants (flow to X-Ray report) to y for any y, and for which there is a

vertex z in Gn (other than the radiologist or professor) with an edge from z to medical-record

VM/server labeled f (flow), then X-ray record can be stolen.
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Note that take and create make this question particularly challenging. For this particular

case the answer is no. This is because no amount of allowed rule applications can result

in another vertex (other than medical prof or radiologist) having an edge labeled flow to

X-ray record VM. But if the HOD is permitted to take information from the radiologist

(Figure 5.5) (may be intended to access some data from Radiology archive server) then Y’s

X-ray record can be stolen. A sequence of steps resulting in this is given towards the end

of section 5.3.2.

The question can be generalized as given below

can.steal(α, p,q,G)

The analogy to our example:

• α =⇒ the right being stolen (flow)

• p =⇒ the recipient of the right (the student resident, the question is: is it possible

for him to steal Y’s X-ray record)

• q =⇒ the right to whom is being stolen (X-ray record VM)

RadiologistMedical 
Prof

Medical 
Researcher

Student 
Resident

Clinical
Data

Repository

Patient
Health 
Record 
Server

Patient
Xray 

Record
VM/Server

Radiology
Archive 
Server

 

{g, take}

{g}

{g}

 

{t}

{f}

{t}

{f}

{f,t,g}
{t,g}

{f}

{f,t,g}

 

{f}

{f,t,g}

f  = flow (data)
g = grant (rp)
t  = take (master)

HOD (Head)

Figure 5.5. Protection graph in which the X-Ray record can be stolen
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• G =⇒ the original graph (G0 from Figure 5.1)

We want to know the conditions which can result in can.steal being true for a particular

graph G. This is crucial in answering our original questions regarding the model.

The condition of stealing is formally expressed with the help of another term can.share.

In the following section 5.3.2, we define this term, then we express the conditions which

can result in can.share being true. And finally we define can.steal formally and express

the conditions which can.steal can be true in terms of can.share.

5.3.2 Sharing and Stealing

To share some right, the recipient host first needs to acquire relevant rights to the target

host. As per our model this means that an edge from the recipient to the target must be

added to the protection graph based on a valid sequence of graph transformations.

This can be written formally as below:

can.share(α, p,q,G0). p can share (α rights to q) with someother host if and only if

there are graphs G1, ...,Gn such that

G0
ρ̀1

G1
ρ̀2

G2...
ρ̀n

Gn

and p α−→
Gn

q, which means that there is an edge from vertex p to vertex q labeled β and

α ⊆ β

We should appreciate the distinction between take and grant rights and flow rights in

our system. take and grant rights have the ability to transform the protection state of the

system (by applying the rules), whereas the flow right is of passive in nature and aids only

in data path access to a host.

We say two vertices are tg-connected if, ignoring the directionality of edges, there is a

path between them such that each edge on the path is labeled with t or g or both.

Theorem 1: can.share(α, p,q,G0) is true if and only if the following two conditions

hold true [26]:

Condition 1: There exist vertices s1, ...,su such that for each i, 1≤ i≤ u

si
γi−→
G0

q and α = γ1∪ ...∪ γu

Condition 2: p is tg-connected to s1, ...,su
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Intuitively, condition 1 states that some vertex (combination of vertices) in G0 must

possess the rights to the target. Condition 2 requires the existence of paths along which

rights can be transferred from those vertices to the recipient p.

In our particular example, since the question is just about data path access to X-Ray

record VM, a single right α = f low would suffice. However for a more general case, in our

system α can be {take,grant, f low}

Discussion: In the formulation of can.share, complete cooperation from all relevant

hosts in the protection graph was assumed. But in formulating the can.steal predicate, we

assume that those possessing the rights will not cooperate in transmitting it, since otherwise

“steal” does not make sense. In other words, an owner cannot claim a capability was stolen

when he has aided in the dissemination of it [51].

can.steal(α, p,q,G0) is true if and only if !p α−→
G0

q and there exist protection graphs

G1, ...,Gn such that:

1. G0`ρ1 G1`ρ2 G2...`ρn Gn

2. p α−→
Gn

q

3. if s α−→
G0

q, then no ρi has the form s grants (α to q) to x for any x ∈ Gi−1

Informally it means that one cannot steal a right one already owns, nor can a theft occur

if someone having the right in the initial graph grants it away.

The condition under which rights can be stolen in a protection graph can be formally

stated as:

Theorem 2: For vertices p and q in a protection graph G0 and right α , can.steal(α, p,q,G0)

is true if and only if [52]:

1. !p α−→
G0

q

2. there is a subject p′ such that p = p′ or there is a tg-path between p and p′

3. there is a vertex s such that s α−→
G0

q and can.share(t, p′,s,G0) is true (note that

can.share talks about t and not α)

The theorem states that the right must be stolen directly from someone possessing it. The

importance as per Snyder is that it is the only means of stealing the right.
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The following sequence of steps tells how Y’s X-Ray record may be stolen by the student

resident in Figure 5.5.

The aim of the following sequence of operations is to set up a mail box between student

resident and medical researcher — an innocuous activity from the professor’s point of view.

1. Medical researcher creates a new object VM m (with {t,g} rights).

2. Professor takes (t to m) from research assistant.

3. Professor grants (t to m) to student resident.

comment- “steal” Y’s X-ray record.

4. HOD takes (g to m) from Medical researcher.

5. HOD takes (f to Y’s X-ray record) from radiologist.

6. HOD grants (f to Y’s X-ray record) to m.

7. Student resident takes (f to Y’s X-ray record) from m.

Discussion: From the definition of stealing, it seems the model is interested in finding

out if anyone can get rights without the owners explicitly granting the right. And from the

last theorem it looks like take/create is the path through which an unintended (nongranted)

subject is able to steal a capability. The importance as per Snyder is that it is the only means

of stealing the right. The intuitive interpretation of this theorem in a network context can

imply that a rogue admin (admin can be modeled with take) is the path through which rights

can be stolen.

The implications in network access control scenario are the following. Looking at

the SDN controller capability datastructures (the current state of protection graph), it is

possible to answer whether the network allows access between any given hosts. Further,

the model is not very rigid and allows reasonable evolution from the initial state. Again,

looking at the current state of the datastructures, the model would be able to answer whether

any transformation can ultimately result in the network allowing access between a given

pair of hosts (similar to the questions in Section 5.3.1). The model is decidable meaning it

is possible to answer these questions in finite time.
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Further, as shown in [52], it is possible to synthesize specific systems based on the anal-

ysis. The analysis enables us to make an informed choice as to which initial configurations

to bootstrap the system into and it helps us determine what sharing can be achieved.

5.4 Conclusion
In summary we can say that a key property of take-grant capability system is the tran-

sitive, reflexive, and symmetric closure over all Grant connections. This closure provides

an authority bound which is invariant over system execution. Our bootstrap protocol is

designed based on this fact.

The theorems summarized with respect to classic TG model, especially the conditions

for can.steal(α, p,q,G0) have guided our model to be slightly different from the classic TG

model. Similar to SEl4’s modified TG system, we do not have the take-rule. This has the

advantage of giving each subject control over the distribution of its authority at the source

and we have this notion of reset operation. Removing the take rule and the addition of reset

operation/node capability (which may be interpreted as a much lighter version of take)

doesn’t invalidate the desirable properties of TG model and a strong formal analysis would

be able to provide tighter theorems in our case. We could come up with other predicates

like can.reach() which might make more sense in a network scenario.



CHAPTER 6

RELATED WORK

6.1 Capability Architectures
Initially formulated by Dennis and Van Horn [18], capability systems became a popular

mechanism for constructing secure, least-privilege environments in the areas of operating

systems [10, 48, 53, 54, 55] and languages [24, 56]. For many years, capability access

control was a target of misinterpretations [57, 58, 59]. The development of the object

capability model [24] revived capabilities as a viable security abstraction for constructing

least-privilege security environments [10, 16]. Miller et al. [19], and later Watson et

al. [16], provide a good discussion of the advantages of the capability model for construct-

ing practical security environments. The CeNet capability model builds on the design

principles developed by the systems research community [53, 48, 47, 60]. Similar to

seL4 [47], CeNet uses send and receive [61] to model the grant operation. Barrelfish

extends the seL4 with support for scalable capability data structures [60]. The work on

capability design patterns extends the basic capability model with the design principles

for constructing secure systems in the face of mutually mistrusting principals and diverse

security requirements [24].

Murray [62] provides an interesting discussion on principle of least authority (POLA)

versus mandatory access control (MAC) and talks about a system called PULSE - Pluggable

User-space Linux Security Environment, which implements a MAC-enforced, dynamic,

user-level POLA implementation.

6.1.1 Take-Grant Model

The need for access control management arose in the 1970s and the notion of an access

control matrix was introduced to keep track of which subjects have what types of access to

which objects. The Harrison, Russo, and Ulmann (HRU) model [63] showed in 1976 that

security is inherently undecidable in a conventional access control matrix. Specifically, for

the HRU model, the question of whether a given right can reach a given subject, for a given
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set of macro commands, was undecidable. The underlying reason for their conclusion is the

fact that users can give away access rights on their own initiative and without constraints.

To study under what conditions it was decidable, Jones, Lipton, and Snyder developed

a model of protection called the take-grant protection model [26] in which questions of

security were not only decidable, but decidable in time linear with the number of objects

and rights [64]. Information and authority flow in the take-grant model is elegantly mod-

eled using directed graphs and can be viewed as a generalization of the transitive closure

problems [65]. The formal analysis of the TG model was studied by Snyder [51], who tries

to answer questions as done in the previous chapter of this thesis.

Initially the tg model was used to analyze the transfer of authority (rights) through the

repeated application of de jure rules - take, grant, create , and remove. These rules were

useful in studying the case where the subject acquires direct rights (authority) to access

the object (information). In 1979, Bishop and Snyder [27] added the notion of information

(versus authority) transfer to the take-grant model by creating a set of rules called de facto

rules - post, pass, spy and find rule. De facto rules are useful in studying the situation where

the subject acquires the information without necessarily being able to get direct authority to

access the information (e.g., by accessing a copy of the information with the assistance of

others). These rules represent possible information flow paths in the graph using a new type

of edge called implicit edge. Similar to can.steal and can.share from the formal analysis of

classic tg model, here we have other predicates like can.know which can reason about flow

of information. This might be a potential future exploration path in the network context for

a network with even more stringent security guarantees.

The notion of theft of rights was introduced in 1981 [66], and described how one

vertex acquires rights over another without cooperation of any owner of those rights. This

was generalized to cover the theft of information [67], and was applied to the take-grant

model to analyze a theft of information over a network [68]. This work came up with the

predicates alluded to earlier like can.steal and can.know which can be useful in our network

context as explained in the previous chapter.

Based on the TG model Shahriari [69] provides an approach to analyze network vul-

nerabilities and reason about the consequences of exploiting those vulnerabilities. Their

approach of using the take rule to model a vulnerability is quite interesting and we can use
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a similar approach to model the effect of our administrative capability (node capability and

reset operation) and understand the security implications in the presence a rogue admin.

Australian Governments Defense Science and Technology Organization’s Annex [21]

system’s security and network architecture geared towards providing a Network Centric

Warfare (NCW) platform — that can facilitate autonomous, mutually suspicious organi-

zations to collaborate — is built on top of a distributed object-capability system. Annex

claims tight integration of their very strong security architecture with next generation net-

working technologies as a unique contribution of their work. Their capability system’s

TCB seems to have a trusted component in both the device and the network. While the

actual utility of their system was not very clear from the publication, their high level goals

seemed to be in the direction of allowing a number of mutually suspicious, autonomous

participants with differing security policies and interests to allow access to and sharing of

networked resources within a Global Information Grid. In the face of their goals, it looks

like the capability model is an apt framework for allowing collaboration among multiple

parties with different goals, and CeNet was started with the observation that capability

model can provide such similar goals (thus facilitating various interesting usecases) in a

multitenant cloud provider network. While we haven’t reached this end goal yet, this thesis

takes the first step of replacing an ambient network with a network capable of enforcing

dynamic policy driven access control (based on capability model).

6.1.1.1 Capability/Security Systems Based on the TG Model /
Formal Reasoning

Summarized below are some popular systems which claim formal security as their

advantage and which frequently comes up in capability and security communities.

The Security Enhanced L4 (SEL4) model is based on capabilities and modified take-

grant model. Elkaduwe [70] prove that it is feasible to implement isolated subsystems using

seL4 mechanisms, where an isolated subsystem can be viewed as a collection of processes

or entities encapsulated in such a way that authority can neither get in nor out.

SEL4 model is slightly different from the classic TG model in that it is aimed at

reasoning over the distribution and control of physical resources like memory. They do

not use the take-rule in SEL4. This has the advantage of giving each subject control over

the distribution of its authority at the source, and they have a more complex create rule.
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Their proof shows that the desirable properties of TG still hold and can be generalized to a

statement on full subsystems. They use Annabelle/HOL theorem prover which they claim

is better than graph transformation.

Boyton [71] extends the aforementioned formalization by Elkaduwe with nondetermin-

ism, explicit sharing of capability storage, and a delete operation for entities. He formally

proves that this new high-level access control model of the SEL4 microkernel can enforce

system-global security policies as well as authority confinement.

Sewell [36] proves that seL4 correctly enforces two high level security properties namely

integrity and authority confinement. These properties are defined with reference to a

user-supplied security policy, which specifies the maximum authority a system component

may have. The integrity property gives useful guarantee conditions for components (e.g, a

Linux guest operating system with millions of lines of code) without the need to consult

their code. Based on these guarantees we can safely and formally compose such parts with

the rest of the system.

EROS is a fast capability system for commodity processors whose higher-level security

properties are based on the diminish-take [72] model, which is a variant of TG. Several

design patterns in EROS, including confinement, protected subsystems, and user-supplied

memory managers, are formally reasoned [72] using the formal analysis of this model.

The above two works indicate that systems based on the capability model provide much

stronger security properties and much of their security claims has been formally verified.

This was a motivation for exploring this security model in the context of network access

control.

6.1.1.2 Capability/Security Systems Based on POLA

Many systems claim strong security benefits, just by removing ambient authority. In

most cases this just means disallowing global name-spaces for user processes and allowing

them to operate only on explicitly granted file descriptors (capabilities).

Plash (the Principle of Least Authority shell) [35] uses chroot() to take authority away

from a process thereby preventing it from directly accessing the normal file-system. File

descriptors to only the relevant files are then granted (like capabilities) to give only the

required limited authority back to the process. This is achieved by linking applications to

modified version of libc so that file open() operations are mediated by a trusted server that
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performs the open operation on behalf of application as per the policy. In default mode of

operation to maintain compatibility with legacy apps, POLA is applied to files in the user’s

home directory.

CeNet proxy approach (Section 3.2.4) of seamlessly integrating legacy hosts into the

CeNet syetm is quite similar to the approach taken by plash. The proxy intercepting

protocol messages from the legacy client in CeNet system is quite analogous to the trusted

server intercepting and mediating the open syscall in plash.

By adding capability primitives to standard UNIX APIs, Capsicum [34] gives applica-

tion authors a means to realize least-privilege operation. Capsicum introduces capabilities

and a capability mode that help in compartmentalization. Capsicum capabilities are an

extension of UNIX file descriptors, and reflect rights on specific objects, such as files or

sockets. Processes in capability mode are denied access to global name-spaces such as the

file-system and PID name-spaces.

Polaris [33] is a package for Windows XP that allows users to configure the applications

they launch with only the rights they need to do the job the user wants done. A polaris con-

strained application is launched in a restricted user account with few permissions (whereas

the usual approach is to start an application using the user’s account). Authority to access

system libraries is provided to an application on startup. Also, when the the user chooses

to open a specific file, the dynamic authority to that file is provided to the application.

6.1.1.3 Access Control Policy Systems

Few systems attempt to integrate capability-based access control mechanism with other

access control models, with the aim of realizing flexible delegation and reduced admin-

istration cost. This motivation is quite similar to the utility of rich sharing scenario we

explained in 4.5.

Capability-role-based access control (CRBAC) [50] model integrates capability-based

access control mechanism into the RBAC model. It supports delegation of permissions

and roles by capability transfer, said to be useful in clinical information systems scenario.

One particular advantage they claim by basing their approach on capability model is that

cross-domain delegation can be achieved without any authentication or administrator in-

volvement. They claim that this makes flexible and smooth user-to-user delegation possible

even in unusual situations such as an emergency in clinical systems.
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While the motivation of rich sharing scenario we explained in 4.5 is similar to CRBAC

above, the key difference is that we enforce access control in the network level and not in

an application context as done in CRBAC.This gives us the security advantage that even

when a host OS is compromised, the access control enforced by the network can play a key

role in preventing the attacker from targeting other hosts in the network.

6.2 Networks and Capabilities
Capability concepts have been applied to networking in previous works, mostly in

the context of denial-of-service (DoS) attacks. For example, capability tokens have been

applied to the data path as a means to prevent DoS attacks [73]. In that work, senders

were required to obtain tokens (capabilities) from potential receivers, and routers in the

network were equipped to check the validity of the tokens. The capability mechanisms

used in this earlier work are quite different from the classic capability access control model

which forms the basis of our work. More recent work also proposed to deal with unwanted

traffic through capability mechanisms, but instead of issuing capabilities, proposed to use

dynamically changing IP addresses as the capabilities [74]. Superficially, this work is

related to our approach of mapping legacy protocols to capability operations in a CeNet

proxy.

In CeNet, no network communication is possible, unless explicitly allowed by a capa-

bility. As such our work is related to an earlier “off by default” approach [37]. This work

explored the feasibility of an Internet-scale reachability protocol whereby a host could

explicitly signal to the network its willingness to communicate with other hosts. Our work

in CeNet is more pragmatic in that we limit our focus to SDN networks under a single

administrative control.

The CloudPolice work [75] takes an approach that is philosophically different from our

own. For access control in cloud environments they argue that the network should not be

involved in this task at all, and that access control should be handled through hypervisor-

based mechanisms. We argue that the CeNet approach, with the network enforcing policies,

while the semantics of the policies are determined from capability enabled hosts, provides

for a partitioning of functionality that allows a unique balance of flexibility and security.

CeNet utilizes an SDN substrate and as such is related to a variety SDN related works [43,

76, 77, 44, 78, 79]. The participatory networking work [79], allows control of an SDN
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network to be delegated to applications. This is somewhat similar to capability delegation

in CeNet. However, the PANE work is about safely delegating network control, whereas

CeNet delegates capabilities associated with network security access control.



CHAPTER 7

CONCLUSION AND FUTURE WORK

CeNet provides policy driven, fine-grained network level access control enforced in the

core of the network (and not at the end-hosts) thereby removing network ambient authority.

Thus CeNet limits the scope of spread of an attack from a compromised host to other hosts

in the network.

We built a capability enabled SDN network where communication privileges of an

endpoint are limited according to their function in the network. In pure capability mode

hosts exchange rights, establish network connections and specify access control policies

using the capability APIs which are mediated and controlled by the rules of the CeNet

capability system. Rights propagate in a capability system through well defined graph

transformations which gives us the ability to strongly reason about the correctness and

security properties of the policy realized. Further, we built a policy manager which is able

to realize a RBAC policy based network access control using capability operations. Finally

we looked at some of the results of formal analysis of capability propagation models in the

context of networks.

Thus we have proved our thesis statement “A network version of capability-based

access control can realize a more secure network by allowing only explicitly allowed

communications, and thereby removing the ambient authority present in current network

architecture. It further enables delegation oriented policies to be realized within an enter-

prise network” to be true.

7.1 Future Work
• Basic networking capability: IP address and port have no relevance in a pure ca-

pability sense (and one can argue that they resemble the shared namespace which

capability literature mentions as an attack vector). It is possible to eliminate IP and

port from the packet structure and route the packet based on a flow capability which
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would encode both the destination host and the process / socket buffer.

Our current implementation of data-path APIs send and receive data achieves this

by overloading the VLAN field to implement the flow capability, and we solely

route based on this capability. This implementation in its current form does not

consider multiprocess scenarios. One could implement a capability aware host-side

networking stack capable of demuxing the packets into multiple socket buffers based

on capabilities.

• High level policy: We explored the approach of realizing a high-level RBAC policy

based network access control, by translating it into CeNet API operations. It is

possible that other useful, high-level, policy-based network access control may be

realized via this approach of translating to this intermediate point of capability API.

Further, one could explore whether it is feasible to automate this translation from

any high level policy to capability operations. One could also look into the usability

versus security trade-off involved in manually hand-coding policy via capability API

versus using high level-policy (and translating into a capability API).

• Formal models: We can use the guarantees provided by a capability based approach

to develop tools that can answer practical questions about the guarantees of policies

in real systems.

Further, in our chapter on formal reasoning, we looked into the main results of

capability systems based on the flow of rights (de jure rules). A more stringent system

is possible based on flow of information (de facto rules). We need to understand

the utility of reasoning based on information flow in the context of networks to

understand if it makes sense in our setting. Pointers to the relevant related works

were mentioned in the previous chapter [ [27] , [67]].

• Use cases: We believe that the full blown utility of capability model is in multi-

party scenarios, for example, a cloud provider setup where multiple isolated tenants

share the cloud infrastructure, while making their own local policy decisions and

co-operating (with other untrusted tenants) in a secure manner.
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