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Abstract
In addition to growth of data traffic, mobile networks are
bracing for a significant rise in the control-plane signaling.
While a complete re-design of the network to overcome in-
efficiencies may help alleviate the effects of signaling, our
goal is to improve the design of the current platform to better
manage the signaling. To meet our goal, we combine two
key trends. Firstly, mobile operators are keen to transform
their networks with the adoption of Network Function Vir-
tualization (NFV) to ensure economies of scales. Secondly,
growing popularity of cloud computing has led to advances
in distributed systems. In bringing these trends together,
we solve several challenges specific to the context of tele-
com networks. We present SCALE - A framework for effect-
ively virtualizing the MME (Mobility Management Entity),
a key control-plane element in LTE. SCALE is fully compat-
ible with the 3GPP protocols, ensuring that it can be readily
deployed in today’s networks. SCALE enables (i) computa-
tional scaling with load and number of devices, and (ii) com-
putational multiplexing across data centers, thereby reducing
both, the latencies for control-plane processing, and the VM
provisioning costs. Using an LTE prototype implementation
and large-scale simulations, we show the efficacy of SCALE.

CCS Concepts
•Networks → Network services; Wireless access points,
base stations and infrastructure; Network control algorithms;
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1. INTRODUCTION
Factors such as always-on connectivity, the rise of cloud-

computing [1] and the growth of IoT devices projected at
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26 billion by 2020 [2] have implications on the amount of
control signaling in mobile networks. Nokia [3] estimates
the growth in the signaling traffic would be 50% faster than
the growth in data traffic. In some US markets, the peak net-
work usage recorded was as high as 45 connection requests
per device per hour [4]. In a European network, about 2500
signals per hour were generated by a single application [5],
causing network outages. In LTE, this increased signaling
traffic will have a significant impact on the performance of
the MME, the main control-plane entity that handles 5 times
more signaling, than any other entity [6].
As the first step towards evolving their mobile networks,

operators are keen to consider NFV [7]. Recent trends strongly
suggest that virtualized clouds [8] can provide high reliab-
ility at lower cost. With NFV, the virtualized MME entit-
ies would execute as VMs over general-purpose hardware.
However, to ensure quick adoption of NFV in LTE, it is
critical to effectively manage the virtual MME resources to
handle the expected signaling growth. Efficient manage-
ment of the MME resources encompasses 2 key aspects:
performance and lower operating costs. Firstly, overloaded
MME VMs can cause significant delays for connectivity and
handovers, directly affecting the user experience. Secondly,
control signaling does not generate any direct revenue for
the mobile operators. To ensure cost effectiveness, it is im-
portant to dimension the VM resources according to current
load. With the expected growth of certain IoT services that
exhibit signaling-centric behavior, conservative provisioning
may lead to large number of under-utilized VMs.
The transition from dedicated hardware to virtualized soft-

ware based platforms will itself prove beneficial. However,
MME implementations are designed for specialized hard-
ware and cannot be directly virtualized since they are in-
elastic: hard to manage compute resources and rigid: involve
static configurations. It is critical to apply experiences and
concepts from the distributed systems [9] to virtual MMEs
to ensure maximum gains. However, the concepts leveraged
by distributed systems in cloud systems cannot be directly
applied to a telecom service as the latter has unique charac-
teristics that must be considered. Typical telecom services
deal with well defined interfaces and protocols, persistent
sessions, resulting in coupled storage and compute manage-
ment and highly distributed deployments. A well-defined
interface exists between the MMEs and the basestations.A



Figure 1: LTE-EPC Network Architecture.
device is persistently managed by the same MME for time-
periods much longer than the duration of individual applica-
tion flows. MME deployments are well distributed given the
widespread presence of telecom data-centers [10]. On the
other hand, cloud services have higher flexibility to leverage
custom protocols, decouple storage and compute manage-
ment as most sessions are short-lived and have relatively
more centralized deployments (For instance, 3 DCs in the
US in the case of EC2).
We present the design of SCALE, that systematically over-

comes the afore-mentioned challenges in bridging the di-
vide between virtualization andMME implementations. Our
contributions are multi-fold: (1) SCALE re-architects the
MME functionality into 2 parts–a front-end load balancer
that maintains standard interfaces and a back-end elastic MME
processing cluster. (2) SCALE instruments consistent hash-
ing [11] for MME implementations to ensure scalability with
large number of devices. The instrumentation includes a rep-
lication strategy that intelligently replicates states of devices
and places the replicas across VMs. To devise this strategy,
SCALE adopts a stochastic analysis driven approach that ac-
counts for both compute and memory resources. (3) SCALE
gives flexibility to operators to reduce costs by lowering the
VM provisioning based on two key features: (i) leverage
access patterns of devices, if available, to intelligently re-
duce memory usage due to replication and (ii) pro-actively
replicate selective device states externally across data cen-
ters to leverage spatial multiplexing of compute resources.
(4) SCALE is implemented on an end-to-end LTE Release-9
compatible testbed using the OpenEPC [12] platform. We
perform extensive experiments to illustrate the inefficiencies
with the current systems and show the feasibility of SCALE
to work with existing protocols. In a particular instantiation,
SCALE reduces the 99th percentile delay of processing the
control-plane messages from more than 1s with current im-
plementations to about 250ms. (5) We also perform system
simulations to show the efficacy of SCALE at larger scales.

2. BACKGROUND
In this section, we provide a brief background of the LTE

architecture and the MME functionality. LTE networks con-
sists of the Radio Access Network (RAN) and the Evolved
Packet Core (EPC) as shown in Figure 1. The RAN in-
cludes eNodeBs that wirelessly serve the users; the EPC
consists of network entities that bothmanage the devices and
route the data traffic. The control plane elements consists of

the MME (Mobility Management Entity), HSS (Home Sub-
scriber Server) and the PCRF (Policy and Charging Rules
Function). The S-GW (Serving Gateway) and the P-GW
(Packet Data Network Gateway) are routers that provide con-
nectivity to the devices. HSS and PCRF are the database
servers for user subscription information and QoS/billing
policies respectively. MME is the key control node in the
EPC network since it manages both device connectivity and
mobility. In addition to being the entry point for control
plane messages from the devices, it manages other control-
plane entities using 3GPP standard [13] specific well-defined
interfaces: (a) The S1AP interface with the eNodeBs carries
the control protocols exchanged between the MMEs and the
eNodeBs and the MME and the devices; (b) The S11 inter-
face with the S-GW carries the protocols to create and des-
troy the data-path for each device and (c) The S6 interface
with the HSS is used for protocol exchange to retrieve user
information from the HSS.
MME Procedures: When a device is powered-on, it re-
gisters with the network. Henceforth, the device operates
in two modes: Active and Idle mode. There are several pro-
cedures involving signaling between the MME nodes, eN-
odeBs and the devices. We briefly describe the key pro-
cedures: (a) Attach/Re-Attach: When a device powers-on
or needs to transmit a packet while in Idle mode, it sends
either an “attach request” or a “service request” message
to the MME over the S1. The MME (re)-authenticates the
device and (re)-establishes the data plane at the S-GW; the
device moves back to Active mode. (b) Tracking Area (TA)
updates: A device makes a transition into Idle mode after
an inactivity timeout. The MME releases the data plane at
the S-GW. While in Idle mode, the device sends periodic
TA or location updates to the MME. (c) Paging: If a packet
in the downlink is received for a device in Idle mode, the
MME initiates the Paging procedure to all the eNodeBs
in the device’s TA and the device responds with a re-attach
procedure. (d) Handovers: The MME establishes the data-
path between the S-GW and the new eNodeB and tears down
the data-path with the old eNodeB.
MMEProvisioning: In performing the afore-mentioned pro-
cedures, an MME stores an associated state in memory for
each device assigned to it, and executes computational tasks
on the state to respond to the control requests from the device.
Some of the tasks include protocol parsing, authentication,
authorization, inter-eNodeBmobility management, roaming,
WiFi mobility, paging and TA-updates, S-GW load-balancing,
generation of Call-Data Records, billing, and lawful inter-
cepts [14]. The state typically consists of timers, crypto-
graphy keys, S-GW, PGW and other data-path parameters,
eNodeB radio resource management configurations, CDRs
and location. Hence, MMEs have to be provisioned jointly
for memory resources (to store state of all devices) and com-
pute resources (to process requests of Active devices).

3. FUTURE NETWORK EVOLUTION
As the demand for mobile data grows at a significant pace,

current networks need to evolve continuously to keep up
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Figure 2: Limitations of the current MME platform.

with the growth. The 5G vision for the radio access network
(RAN) is to explore higher frequencies (e.g., mmWave) to
increase bandwidth and reduce delays. However, in the case
of the EPC network, the focus is to evolve the current com-
ponents to meet future requirements of flexibility and cost
reduction [15]. While the data-plane entities are critical, it
is equally important to evolve the control-plane of the EPC
network. As a first step to evolve the control-plane, operators
are keen to adopt Network Function Virtualization (NFV)
basedMME deployments [7]. To maximize the effectiveness
of virtualization in managing the expected growth of control-
plane signaling, we list some requirements and opportunities
for future virtual MME deployments:
1. Scale of Operation: MMEs face a unique challenge –
while the number of active devices that generate signaling
may be relatively lower, typically, the number of registered
devices are significantly higher. This trend is going to dom-
inate in future with the proliferation of IoT devices. Hence,
as devices evolve from smartphones to wearables, sensors,
vehicles etc., it is important that the design of the MME is
light-weight to handle the growing number of devices.
2. Elasticity: Historically, scaling MMEs has been a hard-
ware process involving upgrading to faster network processors
while keeping the same architecture and software. To lever-
age virtualization in ensuring lower operating costs, it is
critical to provision and scale-up and down the virtual MME
resources proportional to the current signaling load.
3. Distributed deployments: Although operators have highly
distributed DCs (Data Centers), most MME deployments are
centralized to reduce provisioning costs. Within the NFV
paradigm [10], there is an opportunity for operators to lever-
age virtualization to distribute the MME computation. Do-
ing this efficiently would reduce provisioning costs, by mul-
tiplexing the resources across DCs and increase availability.
4. Lowering Processing Delays: Higher processing delays
for critical requests like handovers have negative impacts on
TCP [16]. Devices make frequent transitions to Idle mode
to reduce battery usage [17]; delays in transitioning back
to Active mode affect the web page download times. Thus,
vendors are focussing on defining strict delays for control-
plane in future systems [18].

3.1 State of the Art: Limitations
To meet future requirements, the idea of evolving the cur-

rent MMEs by simply porting the code to a virtualized plat-
form will be highly inefficient. The fundamental problem

is that the MME design and implementations strictly ad-
here to 3GPP-based standards based on archaic assumptions:
(i) over-provisioned MMEs deployed on specialized hard-
ware, (ii) limited number of devices and (iii) infrequent ca-
pacity expansions. Field studies have shown that over-provisioned
MME systems are also subject to persistent overloads [4].
Future application characteristics such as synchronous mass-
access [19], where multiple event-triggered devices become
active simultaneously , will aggravate the inefficiencies fur-
ther due to spatio-temporal overloads and load-skewness.
Experimental Illustration: The OpenEPC platform [12] is
a software-based implementation of 3GPP standard-compliant
EPC components that executes over general purpose servers.
We use experiments on a OpenEPC testbed (details in Sec-
tion 5) to elaborate inefficiencies with current implement-
ations. We leverage OpenEPC, since it is the only EPC
platform that is readily available. Moreover, it is primarily
a reference design that is implemented similar to current
hardware-based MMEs. Although the absolute performance
numbers from the OpenEPC experiments may not be valid
for other commercial MME platforms, the trends shown in
the experiments will generally hold to virtual MME plat-
forms. The experiments primarily focus on the inefficiencies
of elasticity of current MMEs. However, we break it down
into 4 experiments for the ease of understanding individual
procedures that contribute to the inefficiencies.
1. Static Assignment: The fundamental problem is that an
eNodeB statically assigns devices to a particular MME and
the requests from a device are always forwarded to the same
MME. Specifically, a group of MME servers are clustered to
form a pool and directly connect to all the eNodeBs in spe-
cific geographical areas as shown in Figure 1.When a device
attaches to the network, the corresponding eNodeB selects
an appropriate MME from the pool. After successful attach-
ment, the device is assigned a temporary ID, known as the
GUTI (Globally Unique Temp id), that contains the unique
ID of the MME. Subsequent requests from that device are
routed to the same MME by the eNodeBs using the GUTI.
With static assignment, a sudden surge in the number of
active devices can cause significant overloads in a MME.
To illustrate the adverse effect of overloads, we measured
the processing delays for different types of procedures pro-
cessed by the same MME in Figure 2(a). As the load is
increased by increasing the number of requests per second,
the delays increase significantly after a particular threshold
for each case. Once the compute capacity is reached, the
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requests have to be queued, resulting in high and unpredict-
able delays. As done in current deployments, overloaded
VMs could be avoided by conservatively assigning devices
to each VM in order to handle the worst-case scenario where
all the devices become active at the same time. Hence, static
assignment would lead to provisioning significantly higher
number of VMs.
2. Overload Protection: When overloaded, an MME has
the provision to reassign devices to another MME in the
same pool. The reassignment procedure, however, involves
high overheads. Each device is sent messages asking it to
re-initiate a control connection to ensure that the eNodeB
would assign it to another MME server. In addition, mes-
sages are exchanged between the MMEs to transfer the state
of the devices. The additional signaling causes high delays
and further increase in load. In an experiment with 2MMEs,
Figure 2(b) illustrates this by comparing the delays for two
cases: (i) the devices of MME1 attach to the network when
MME1 is lightly loaded and (ii) devices of MME1 attach
to the network when MME1 is overloaded, and MME1 re-
assigns them toMME2. To show the effect of extra signaling
on increase in load, we plot the average load on both the
MMEs as the percentage of overload on MME1 is increased
in Figure 2(c). The ideal scenario represents the case where
MME2 is able to absorb the additional load from MME1
without any overhead. Clearly, the average load due to the
additional signaling increases on both MMEs compared to
the ideal case as the amount of overload increases. In virtual
MMEs, fine-grained load balancing among co-located VMs
must be: (i) transparent to devices to ensure scalability and
(ii) proactive instead of reactive to ensure low delays.
3. Scaling-out: Although it is possible to add MME servers
to a pool, the procedure is cumbersome and designed for in-
frequently planned capacity expansions. For instance, when
an MME is added, irrespective of its processing capability,
it is initially configured with a lower weight. This ensures
it is aggressively assigned devices by the eNodeBs com-
pared to other MMEs. Moreover, only unregistered devices
can be assigned to the newly added MMEs, limiting the
ability to re-balance the existing load. In an experiment
with an overloaded MME (MME1), MME2 is instantiated at
about 10 seconds. The average load in the system is around
50 requests per second and 10% of the total requests are
from unregistered devices. Figure 2(d) plots the connectivity
delays perceived by the devices every 5 seconds in both the
MMEs. Since the system is unable to rebalance the load

Figure 4: Design Architecture.

from existing devices, it takes approximately 35 seconds for
the delays at both the MMEs to equalize. The effect will be
worse in large-scale deployments. Dynamic partitioning of
device state needs careful thought since the primary driver
for virtualization is the ability to adapt resources propor-
tional to the load.
4. Geo-multiplexing: It is possible to provision resources
across data centers (DCs) in current systems by deploying
certain MME servers of the same pool at remote DCs. How-
ever, it is highly inflexible and inefficient due to static config-
urations: (i) The eNodeBs do not consider the propagation
delays to the MMEs while assigning devices to an MME
server. As shown in Figure 3(a), the propagation delays can
adversely affect the overall control plane delays for different
types of messages. (ii) Once a device is assigned to an MME
placed in a remote DC, the requests from that device are
always forwarded to the remote DC by the eNodeBs, even
when the local DC is not overloaded. Figure 3(b) shows that
such assignment leads to inflated control-plane delays even
under average load conditions. Hence, there is a need to de-
vise ways to opportunistically offload processing to remote
DCs when the local DC resources face persistent loads.

4. SCALE: MME VIRTUALIZATION
Towards addressing the above limitations, we design and

implement SCALE, a framework for efficient managing the
resources of virtual MMEs. The first steps towards the design
of an efficient virtual MME is to address the rigidity in cur-
rent MME platforms. We begin with a description of SCALE’s
architecture followed by the detailed system design.

4.1 Architecture
In architecting a virtual MME framework, SCALE has to

enable elasticity of MME resources while ensuring stand-
ards compatibility. To achieve elasticity, architecture must
ensure that (i) the device assignment decisions taken by the
eNodeBs can be over-ridden by the MMEs and (ii) the MME
resource management procedures, such as VM creation and
deletion should be transparent to the eNodeBs. Addition-
ally, support for standard interfaces is critical for several
reasons: (a) Incremental deployment of virtual MME along-
side legacy EPC nodes, (b) eNodeBs are commoditized and
expensive to replace or upgrade and (c) The presence of
Middleboxes [20, 21] for traffic analytics and optimizations.
In order to meet these two requirements, SCALE decouples

standard interfaces and eNodeB based device assignment from



the MME process implementation. SCALE achieves such
decoupling by architecting the MME cluster as two separate
logical functions as shown in Figure 4. The figure shows
a single instance of an MME pool realized by SCALE that
would be deployed at a particular DC.
1. MLB (MMELoadBalancer): The design of the MLB is es-

sentially similar to that of HTTP load-balancers in IT clouds.
The MLB acts as a MME proxy: each MLB entity represents
a single MME entity by exposing standard interfaces to the
external entities. For instance, it establishes the S1AP and
S11 interfaces with the eNodeBs and S-GWs respectively.
The MLB essentially negates the effect of device assignment
and request routing decisions taken by the eNodeBs. The
eNodeBs simply choose the MLB to route a device request
and the MLB forwards these requests to the appropriate MME
processing VM. Hence, the MLB ensures that the device (re)-
assignment decisions within theMMP processing cluster can
be performed without affecting the eNodeBs or the S-GWs.
2. MMP (MME Processing Entity): The MMP VMs collect-

ively form a MME pool to process requests from all devices
belonging to the geographic area managed by that pool. Es-
sentially each MMPVM of a certain pool can process requests
from devices assigned to different MMEs in that pool. This
requires device-to-MME mapping information to be stored
for each device at the MMPVMs. SCALE adds this information
to the existing state information that the MMP VMs already
store for each device. Such a design improves the utilization
of the cluster as the devices belonging to a particular DC can
be flexibly assigned across the MMP VMs.

4.2 System Design Principles
While the architecture effectively decouples theMME pro-

cessing from the eNodeB interfaces, the MMP VMs of a pool
need to collectively manage all the registered devices. Fig-
ure 5(a) depicts the system components of SCALE. Every
epoch (time granularity of several minutes), SCALE provisions
the appropriate number of MMP VMs independently at each
DC, based on the expected load for the current epoch. The
VM provisioning procedure triggers the State Management
routine, that effectively assigns current devices across the
active MMPVMs. Subsequently, the State Allocation routine
strives to refine the device allocations to reduce VM usage
and assign selected devices to MMP VMs across DCs to avoid
DC overload scenarios. In designing these components, fol-
lowing considerations are key in the context of MMEs:
1. Coupling between state management and computation:
In addition to managing (storing) the state of all the devices,
the MMEs perform intensive processing on the state of the
active devices. While it may be trivial to assign the device
states uniformly across the VMs, performing it dynamically:
(a) to provision and account for the compute resources and
(b) in presence of VM addition or removal, is non-trivial.
Hence, SCALE breaks the problem into two steps, namely
state partitioning and state replication as shown in Figure 5(a).
At a high-level, the problem of state partitioning is similar to
that faced by distributed key-value storage systems, such as
dynamoDB and Cassandra, that have been deployed success-
fully at scale [9, 22]. Thus, SCALE applies the same basic

(a) MMP Design (b) Consistent Hashing
Figure 5: SCALE’s key design components

technique leveraged by such systems, i.e., consistent hashing
and tailors it to the needs of the MME. Additionally, SCALE
relies on state replication to manage the compute resources
at fine time-scales and avoid overload of MMP VMs. How-
ever, several factors need to be considered when devising
the ideal replication strategy: (i) Compute provisioning for
processing the requests from active devices, (ii) Consistency
across the multiple replicas is critical for proper operation of
MME protocols. To this end, SCALE leverages an analytical
framework, that accounts for the above factors, to determine
the right number and placement of the replicas of device
states at appropriate MMP VMs.
2. Resource Provisioning Costs: As opposed to IT clouds
that have the ability to scale infinitely, there is expected to
be an associated cost with every additional VM in an oper-
ator’s DC. Typically, operator clouds have higher presence
and hence, it is harder for operators to over-provision re-
sources at individual DCs. Moreover, multiple network ser-
vices besides the EPC, typically share the resources within a
single DC. Also, the total number of registered devices for
which state has to be stored can be significantly higher than
the number of active devices during most time instances.
Consequently, storing multiple replicas of all devices with
limited memory resources becomes challenging, requiring
SCALE to be prudent about which devices’ state need to be
replicated. To address these challenges, SCALE couples VM
Provisioning with intelligent state allocation as shown in Fig-
ure 5(a). SCALE leverages access awareness or knowledge of
past device connectivity patterns to (i) reduce the number of
replicas for selective devices; and (ii) accommodate replicas
of external (from remote DCs) device states at a local DC -
this enables computational multiplexing across DCs at fine
time-scales without incurring additional VM provisioning.

4.3 State Management
We now describe each component in detail.

4.3.1 State Partitioning: SCALE leverages consistent hash-
ing [11] to uniformly distribute device states across the act-
ive MMP VMs. In consistent hashing, the output range of a
hash function is treated as a “fixed circular ring”. Figure 5(b)
shows a simple instantiation of a consistent hash ring with
output range [1-12]. Each MMP VM is represented by a num-
ber of tokens (random numbers), and the tokens are hashed
to the ring so that each VM gets assigned to multiple points
on the ring. For example, MMP-A gets assigned to points 1, 4
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& 9 on the ring. Then, each incoming device is assigned to
an MMP VM by first hashing its GUTI to yield its position on
the ring. The ring is then traversed in clockwise direction to
determine the first MMPVM that has a position larger than the
device’s position on the ring; this VM becomes the master
MMP for that device. For instance, in Figure 5(b), the MMP-A
is selected as the master MMP for the device with GUTI1. Par-
titioning the device states using consistent hashing ensures
that (a) MMP VMs scale incrementally in a scalable, decent-
ralized way: addition or removal of VM only affects state
re-assignment among neighboring VMs, (b) MLBVMs do not
need to maintain routing tables for device to MMP mapping,
making them efficient in terms of both lower memory usage
as well as scalable with faster lookup speeds. Hence, when
a control message or request from a device is received by
the MLB for processing, it simply forwards the request to the
appropriate MMP using the hash value of the GUTI. In case of
a request from an unregistered device, the MLB first assigns
it a GUTI before routing its request.
4.3.2 State Replication: To counter overloads, SCALE devices
a strategy for the number and placement of replicas.
1.Number of Replicas, R: While increasing the number of
replicas leads to better load balancing, it contributes to higher
memory requirements and synchronization costs to ensure
consistency. To strike a balance between these conflicting
objectives, we employ stochastic analysis to model the im-
pact of replication in consistent hashing on load balancing.
The analysis helps us understand the impact of replication
frequencyR on the average delay (C̄) experienced by a device’s
control request within a DC during a time epoch of duration
T . We defer the proof to the Appendix and instead focus on
the implications. The closed-form expression for the average
delay, C̄ as a function of R given in the Equation 10 in
Appendix-A1. Using the analysis, we now plot the average
cost or delay in processing the requests as a function of
the arrival rate of requests. As seen from Figure 6(a), as
the arrival rate increases, the load on the VMs increases
causing higher normalized cost (processing delays) for re-
quests when no replication is used. However, by replicating
the state of a device in just one other VM drastically re-
duces the delays perceived by the devices. Hence, the utility
of increasing the replication count (R) beyond 2 does not
have significant value. This is promising as it indicates that
most of the load balancing benefits can be realized with just
2 copies of the state. In SCALE, replication is performed
by the master MMP asynchronously as and when a request

for a device is received. After processing the request for a
device, the master MMP may choose to replicate the state of
that device to its neighboring MMP on the hash ring.
2.Placement of Replicas: Although SCALE replicates the state
of each device only once, the notion of “tokens” in con-
sistent hashing aids load balancing. Each node has mul-
tiple neighbor nodes on the ring since each node is repres-
ented by multiple tokens on the ring. Hence, the states of
devices assigned to a particular VM end up getting replic-
ated uniformly across multiple other VMs, thereby avoiding
hot-spots during replication. For instance, in Figure 5(b),
while the master MMP for both devices- GUTI1 & GUTI2 is
MMP-A, their states are replicated at MMPs-B&C resp. Al-
though using higher number of tokens increases the number
of VMs involved in exchanging states during VM addition
or removal, most of the benefit is achieved even with a relat-
ively low number of tokens.

4.4 VM Provisioning
Every epoch, the MMPVMs are provisioned by considering

the maximum of the processing and memory requirements.
While SCALE estimates the processing requirement for the
current epoch based on the load from the past epochs, the
memory requirements are dictated by the storage space re-
quired for the state of the currently registered devices. Let
K(t) be the number of registered devices, and L̄(t) be the
average expected signaling load from the existing devices
at the DC in an upcoming epoch t. Let N is the number
of requests that each MMP VM can process in every epoch,
based on its compute power and S represents the maximum
number of devices whose state can be stored in it, based on
its memory capacity. The number of MMP VMs required to
meet the processing requirements for an epoch t is computed
by dividing the expected signaling load L̄(t) by the com-
pute capacity N of each MMP VM; the number of MMP VMs
required to meet the memory requirements is computed by
dividing the aggregate storage required for all the replicas
of the existing devices K(t) by the memory capacity S of a
MMP VM:

VC(t) =

⌈(

L̄(t)
N

)⌉

, VS(t) =

⌈

β ·

(

R ·K(t)
S

)⌉

(1)

L̄(t) ← αL(t− 1) + (1− α)L̄(t− 1)

where β is a parameter ((0, 1]) used to control the VM pro-
visioning, and R is the number of replicas (R = 2) needed
for each device. The average load for an upcoming epoch
(L̄(t)) is estimated as a moving average of actual (L(t− 1))
and average loads from the prior epoch. Now, the required
number of MMP VMs is V (t) = max{VC(t), VS(t)}.
The choice of β plays a critical role in VM provisioning.

Recall that the total number of registered devices is signific-
antly higher than the active ones in an epoch. Further, a large
fraction of these devices have low probability of access in a
given epoch. Simply storing R copies of the state of each
device would result in the memory component (VS) dom-
inating the VM provisioning costs, unnecessarily driving it
high. While β can be used as a control parameter to restrict
the VM provision costs, this will amount to some devices



not being replicated and could lead to increased processing
delays for those devices. Hence, it is important to appropri-
ately select both, the value of β and the devices that will get
replicated, which we address next.

4.5 State Allocation
SCALE keeps track of the average access frequency of a

device in an epoch (as a moving average) and includes it
with the rest of the state that is already stored for the device.
Future networks are expected to comprise of a large number
of IoT devices; some studies have shown that certain IoT
devices exhibit predictable connectivity patterns [19]. For
instance, smart meters upload information to the cloud peri-
odically. Such predictable access patterns, when available,
contribute to a more accurate profiling of device access fre-
quency. SCALE leverages such access frequency information
of devices to intelligently determine if their state will get
replicated. This can lead to reduced VM provisioning costs
on two fronts: (i) within a DC without an appreciable impact
on load balancing; and (ii) across DCs by making room in
each DC to store state of devices from remote DCs, thereby
allowing for multiplexing of resources across DCs.
4.5.1 Access-aware Replication: Let wi be the access fre-
quency of a device i; highly active devices will have a high
value for wi while devices that are mostly dormant will have
lower values for wi. At every epoch in a DC, SCALE strives
to select a subset of devices for whom a single replica (i.e
R = 1) of the state might suffice without effecting the ef-
ficacy of load-balancing. SCALE selects the number of such
devices appropriately to achieve the required reduction in the
number of VMs. Such reduction is valid in the case when
the memory capacity of the MMP VMs is the main constraint
(VS > VC in Equation 1). Specifically, SCALE estimates the
number of devices:K̂(x), with low access probability, such
that wi ≤ x (eg. x = 0.1). The state of such devices is only
maintained in their master MMP VM. Part of this reclaimed
memory can be used to accommodate new devices (Sn, e.g.,
5% of K) that might register with this DC in the epoch as
well as for state of devices from remote DCs for the purpose
of multiplexing (Sm, explained in the next subsection).Thus,
only K̂(x)−Sn−Sm effectively contributes to reduction in
memory, resulting in

β(x) = 1−
(K̂(x)− Sn − Sm)

RK
(2)

By increasing the fraction of devices whose state is not
replicated (increasing x), we reduce β(x) and hence the VM
provisioning cost. Thus, based on the distribution of ac-
cess probabilities of devices, an appropriate β(x) can be
used to determine the VM provisioning (V ) using Equation
1. Once the provisioning is done, the actual replication of
device states are executed in an access-aware manner as fol-
lows: (i) Each device state is stored in its master MMP VM
(ii) The replica of the state is stored in the neighboring MMP
VM on the hash ring, based on the remaining memory and
proportional to its access probability as,

Pi(rep) =

(

wi
∑

j wj

)

(V S − Sn − Sm −K) (3)

To understand the impact of such access-aware replication,
we extend our stochastic model to incorporate access-awareness.
We defer the proof of the analysis to the Appendix and fo-
cus on the implications. The closed-form expression for the
average delay for a device i in a memory-constrained envir-
onment, C̄i gets modified to Equation 13 in Appendix-A2.
Figure 6(b) shows the normalized cost (processing delay)
comparison of SCALE with a system that randomly picks
devices whose states get a replica (i.e. access unaware).
Clearly, leveraging access patterns helps SCALE reduce the
impact of insufficient memory. For instance, in the plot, to
support a given load of say 0.85, SCALE reduces control-
plane latency by 5x as compared to the baseline system that
performs access unaware replication. Alternately, access-
aware replication allows SCALE to provide a comparable per-
formance at a reduced VM provisioning cost. For instance,
in a particular case with 25% of the devices having low fre-
quency of access, SCALE reduces VMs by 10% (as shown in
Section 5.1).
4.5.2 Geo-Multiplexing: By provisioning resources and main-
taining separate hash rings for MMP VMs at each individual
DC, SCALE ensures that the master MMP VM for every device
is located in the local DC. This allows for minimizing delays
by processing as many requests as possible at the local DC.
However, to load balance the processing across DCs dur-
ing periods of local DC overloads, SCALE needs to (i) make
room (Si

m) in each DC i for state of devices from other DCs
(j ̸= i), and (ii) decide which devices in a DC will have their
state replicated remotely and in which remote DC. While the
former is handled by the DC, the latter is handled by the MMP
VMs independently for scalability. The sequence of steps
are as follows.
1. DC-level operation: Each DC i (i) independently chooses
Si
m (state budget) to capture potential under-utilization in
processing in an epoch (e.g., 10% of net processing V ·N ).
Si
m is the maximum amount of state, DC i will accept from
devices belonging to external DCs; (ii) maintains and up-
dates a variable Ŝi

m, that represents the amount of external
device state from the total Si

m, that is unused; (iii) periodic-
ally broadcasts the value of Ŝi

m to the neighboring DCs. (iv)
periodically updates the value of Si

m, Ŝi
m to track the aver-

age processing load and hence room for processing external
state; and (v) if at any stage Ŝi

m ≥ Si
m or Ŝi

m = Si
m = 0

(over-load), it requests the other DCs to appropriately reduce
their share of device states stored in DC i to reflect the re-
duction in Si

m.
2. MMP-level operation: (1) Choice of devices: With each
DC i making a room of Si

m for external state, it has an
equivalent room for Si

m of its devices to have their state
replicated remotely (to ensure conservation of external state
resources across DCs). However, deciding which devices’
state need to be stored remotely is not straight-forward. Note
that each DC would like to process most of its high prob-
ability devices locally so as to keep the processing delays
low. At the same time, storing low probability device states
remotely will not help multiplex resources from remote DCs,
since the probability of those devices appearing is low to



begin with. To balance between processing delays and re-
source multiplexing, each MMP VM vk (at a DC) in SCALE

selects its share of Si
m

V
devices of high access probability

(wi ≥ 0.5) in an epoch, to be replicated once in the external
space (Sj

m, j ̸= i) reserved by one of the remote DCs. How-
ever, this replication is in addition to the two copies that are
stored locally for the high probability devices so as to not af-
fect their processing delays appreciably. Further, SCALE rep-
licates the state of a device with wi ≥ 0.5 externally, propor-

tional to its access probability as
(

wi∑
j∈vk:wj≥0.5 wj

)

(

Si
m

V

)

.

(2) Choice of remote DCs: Once a device’s state is chosen
by a MMP VM for external replication, it determines the ap-
propriate destination (remote DC) for the state based on two
factors: the remote DC’s current occupancy by external state
(Ŝj

m) and inter-DC propagation delay. Specifically, the MMP
VM executes the following steps: (i) it checks if at least one
DC j has available budget for external state i.e., Ŝj

m ≥ 0;
(ii) if multiple remote DCs have a non-zero budget, it prob-
abilistically selects the appropriate one proportional to the
following metric p:

p =
1

Dik
∑C

i=1

1

Dij

where Dij is the propagation delay between DC i and j; C
is the total number of remote DCs with Ŝj

m ≥ 0. SCALE per-
forms such probabilistic replication to ensure that hot spots
are avoided in cases where certain DCs have low delays
to multiple adjacent DCs. (iv) if requested by a DC j to
reduce its replications by y%, the MMP VM deletes its share
of external state replication ( y

V
%) at DCj by starting with

those states having a relatively low access probability.
(3) Execution: Similar to local replication, geo-replication
is performed asynchronously by the master MMP. After pro-
cessing the request of a device, the master MMP may choose
to replicate its state to a remote DC. The replication is done
using a MLB VM of the remote DC, which selects the MMP
VM based on the hash ring of that DC. Additionally, the
master MMP attaches the location of the external state of a
device (i.e., the remote DC id) to its current state. This
ensures that the requests for the devices can be routed to the
appropriate DC by the local MMP VMs.

4.6 Fine-grained Load-balancing
The state management and allocation appropriately main-

tain the replicas of the state of the devices to ensure the abil-
ity of the MLB VMs to perform efficient load balancing. We
elaborate on key design considerations for load-balancing:
(1) Low-overhead: The online load balancing is designed
with minimal overhead on the MLB, to ensure faster look-
up speeds when routing requests to the MMPs. Specifically,
the MLB is unaware of the (a) number and (b) placement of
the replicas of the state of a device to avoid memory and
exchange of per-device information at the MLB VMs. Hence,
the only meta-data information needed by the MLB VMs are
the (i) updated consistent hash ring as MMP VMs are added
or removed, and (ii) current load (moving average of CPU

utilization) on each MMP VM.
(2) Granularity: As elaborated in Section 2, the (a) pro-
cessing requirements for a device is higher while it is in the
Active mode and (b) the processing delays are more critical
when the device makes a transition from the Idle to Active
mode. Keeping this in mind, the MLB assigns the least loaded
MMP VM among the choices for a device request when it
makes a transition to the Active mode. Subsequent requests
are sent to the same MMP VM until the device make a trans-
ition back to the Idle mode. This design choice was based
on a few key observations: (i) While the device is Active, the
state of the device is larger and the MMP VM maintains sev-
eral timers. Hence, maintaining consistent state across VMs
while the device is Activemakes the system complicated. By
load balancing only when the device enters the Activemode,
SCALE performs updates of the replicas once the device goes
back to Idle mode; (ii) The routing implementation requires
more meta-information since, once the device is in the Active
mode, the subsequent requests do not contain its GUTI.
When a request is received from an existing device, the

MLB extracts the GUTI of the device from the request and
hashes it to obtain both the master MMP and the replica MMP
VMs. The request is forwarded to the least loaded MMP VM.
When a MMP VM receives a request, it performs one of the
following tasks:(1) it processes the request if it has the state
of the device;(2) it forwards the request to the master MMP
if it does not have the state of the device. This may happen
if the device has been replicated only once; (3) it forwards
the processing request to the MLB of the appropriate remote
DC, if its load is above a threshold, and the device’s state has
been replicated externally.

5. PROTOTYPE AND EVALUATION
We implement a prototype of SCALE on the OpenEPC

platform [12], since we licensed it’s source-code. The Ope-
nEPC testbed in our lab is a LTE Release 9 compatible net-
work, consisting of standard EPC entities and an eNodeB
emulator. Each component is written in C, and deployed
over Intel based servers running Linux. Since the original
OpenEPC implementation does not support the split archi-
tecture for the MME from Figure 4, we implemented the MLB
and MMP components by modifying the source code for the
MME. Once the architecture was implemented and tested,
we implemented all the components of SCALE from Fig-
ure 5(a) by modifying the source code for the MLB and MMP
components. Although, our implementation is mainly fo-
cussed on the MLB and MMP components, we spent consider-
able effort on modifying and stabilizing the code for entities
like the eNodeB emulator, S-and P-GWs to ensure that a
reasonable amount of load, in terms of device requests per
second could be supported.
eNodeB: The eNodeB emulator supports the higher-layer
protocols of the eNodeB. The eNodeB includes an interface
that accepts device connections. We implemented a python
based load generator that emulates device connections by
generating attach/reattach/handover requests with different
connectivity patterns.
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MLB: Most of our implementation effort was spent on the
MLB. To implement the MLB, we modified and added code
to the original MME function of the openEPC. The MLB

has three subcomponents: (i) Standard Interfaces: The MLB
supports the interfaces S1AP, S11 and S6 with the eNodeBs,
S-GWs and the HSS resp. as shown in Figure 1. Hence,
the MLB maintains standard compliant interactions with the
other components (eNodeBs, S-GWs etc.) and hence acts
as an MME to them. As devices make transitions between
Active and Idle modes, the MLB is implemented such that it
ensures routing of requests to the appropriate MMP VMs. The
requests may belong to any of the above mentioned inter-
faces. (ii) Load Balancing: We implemented the Consist-
ent Hashing functionality using the MD5 hash libraries and
linked it to the S1AP protocol parsing function in the MLB.
When the MLB receives a (re)-attach request from a device, it
extracts its GUTI and obtains the corresponding master and
replica MMPVMs. The initial request is then forwarded to the
least loaded MMP VM. However, as per the 3GPP standard,
while in the Active mode, the subsequent requests for the
same device from the eNodeB and the S-GW contain other
unique identifiers: S1AP-id and S11-tunnel-id respectively,
each assigned by the associated MMP. Hence, in SCALE, each
MMP embeds its unique ID in both the S1AP-id & S11-tunnel-
id, thus enabling the MLB to route the subsequent requests
to the appropriate active MMP. (iii) MMP Interface: The
requests from the eNodeBs are forwarded by the MLB to the
MMPVMs using SCTP connections using an interface similar
to S1AP. To receive meta-information such as updates on
the consistent hash ring and load information from the MMP
VMs, an existing TCP connection used for the purpose of
management is leveraged.
MMP: The following functionalities were implemented in
the MMP: (i) State Partitioning: The Consistent Hashing func-
tionality was added to (re-)partition the state of devices across
the current MMP VMs. (ii) State Replication: The master MMP
VM is responsible for replicating the state of a device both
within a DC and across DCs. We implemented the replica-
tion framework, such that the master MMP VM replicates the
state of a device after it processes its initial attach request.
In case of within a DC, the master MMP and the replica VM
uses a direct TCP connection for state replication and syn-
chronization to ensure consistency. For inter-DC, a similar
protocol is used except that the master MMP communicates
with the remote replica through the remote DC’s MLB.

5.1 Evaluation
We perform extensive experiments and simulations to show

the efficacy of SCALE based on different metrics. We meas-
ure (a) the end-to-end delay of the control-plane requests as
perceived by the devices; (b) the number of VMs required
to process requests to achieve a target control-plane latency
requirement and (c) the average CPU load of VMs to show
the efficacy in managing overloads in VMs.
1. Prototype Evaluation: We first describe the results of
experiments from our prototype implementation. We were
unable to perform experiments with large number of VMs
on public clouds, such as EC2 due to licensing restrictions.
Additionally, the original OpenEPC implementations do not
support the generation and handling of significantly high
loads. Note that we posses the source-code and did spend
considerable effort to enable higher loads that aided our eval-
uation. Nonetheless, our small-scale prototype provided key
insights that helped the design and a real implementation
proves the feasibility of its components in practice.
E1: Overhead of MLB: It is not intuitive whether the

overhead introduced by the MLB in SCALE’s architecture out-
weighs its benefit in providing elasticity and fine-grained
load balancing in the MMP cluster. To prove the feasibility
of the MLB, we perform an experiment with a single MLB VM
and a MMP VMs. At each step, we add a MMP VMs and also
attach corresponding devices to saturate the CPU load on the
MMP VMs. We stopped the experiment at 4 MMP VMs, since
we observed reasonable CPU load on the MLB VM. We plot
the CPU load of the MLB VM and a couple of the MMP VMs
in Figure 7(a). Clearly, while the CPUs of the MMP VMs are
completely utilized, the maximum CPU load on the MLBVM
is slightly below 80% utilization. This is a promising result
given that MLB code was modified from an existing MME
code base and not optimized to function as a MME proxy.
E2: Replication Overhead: Another key difference of

SCALE from current status quo MME systems is the use of
proactive replication of device states to ensure efficient load
balancing. To study the overhead of replication on the CPU
cycles spent by the MMP VMs, we setup the prototype with 4
MMP VMs. The eNodeB emulator is configured to generate
around 200 active devices whose state is stored at MMP1 and
replicated across other MMP VMs. We plot the CPU load
of MMP1 in Figure 7(b). We force the MLB to forward all
the requests to MMP1. In order to process the requests, the
load on MMP1 reaches almost 90% at around 2-4 seconds into
the experiment. After about 10 seconds of inactivity, all the
devices make a transition into Idle mode (at about 15s). At
this moment, MMP1 updates the copy of the state of all the
devices in the respective replica MMPs. As seen from the
figure, at about 15 seconds, the CPU load due to replication
at MMP1 is less than 8%. Although this result shows the low
overhead of proactive replication, note that the replication
framework on the prototype was built over existing code
base of OpenEPC. With further optimizations for state syn-
chronization, e.g., differential replication and using techno-
logies like remote direct memory access (RDMA) [23], the
overhead can be significantly reduced.
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E3: Placement of Replicas: We compare SCALE with a
system, namely SIMPLE that uniformly distributes the state
of the devices across existing VMs and additionally replic-
ates the states of each VM to another VM. To the best of
our knowledge, the design of SIMPLE is representative of a
few commercially available virtual MME systems. While
such an approach keeps the implementation simple, it has
several drawbacks compared to SCALE: (i) The MLB has to
maintain per-device routing table, hindering scalability to
the future device growth (ii) The load balancing is inefficient
in handling VM overloads. To drive our point, we conduct
an experiment with 5 MMP VMs where we generate high sig-
naling traffic on MMP1, about twice its processing capacity.
As shown in Figure 9(b), the 99th %tile delays perceived
with SIMPLE replication are more than 400ms, while the
same for SCALE are below 200ms. The high delay in the
former is because the state of the devices assigned to MMP1
are only replicated to MMP2. Hence, when the processing
load on MMP1 is sufficiently high, it causes overloads on both
the MMPs as seen in Figure 9(a). However, SCALE replicates
the state of disjoint subsets of devices assigned to MMP1 onto
MMP2, MMP3, and MMP4, causing relatively low loads on both
MMP1 and MMP2. The above results highlights the importance
of SCALE’s choice of utilizing consistent hashing with tokens
for distributed placement of the replicas (Section 4.3).
E4: The Status Quo: We compare the efficacy of SCALE

over with standard-based MME systems that were described
earlier in Section 3. We conduct experiments to show the
benefits of SCALE for two types of scenarios:
(i) VM Overloads Within a DC: While current systems are
reactive to overloads by transferring devices to other MMEs,
SCALE performs proactive replication of device state across
VMs to ensure that fine-grained load balancing. To quantify
the benefit, we conduct an experiment with the same setup

consisting of 2 MMP VMs and configure the testbed such
that MMP1 receives a high number of device requests above
its processing capacity. To emulate current systems with
our setup, the MMPs are statically assigned devices with no
replication of state. When MMP1 gets overloaded, it selects
several active devices and sends messages to the devices to
reconnect again, to ensure they are assigned to the other
MMP by the eNodeBs. In addition, MMP1 transfers the state
of those devices to MMP2 to ensure that MMP2 can continue
the processing. However, in the case of SCALE, the state
of the device assigned to MMP1 are proactively replicated to
MMP2. While in a real deployment of SCALE, the replicas
of the state of devices stored in MMP1 would get replicated
across multiple other MMP VMs, we use only 2 VMs in this
experiment for simplicity. In Figure 8(a), we plot the CDF
of control-plane delays of the devices assigned to MMP1 for
both the cases. Clearly, the 99th %tile delay is more than
1 second with current systems that take a reactive approach
as opposed less than 250 ms with SCALE. Such high delays
affect connectivity times for devices causing degraded QoE.
We also plot the CPU load on both the MMPs in Figures

8(b) and 8(c) respectively. SCALE ensures that the load on
the MMP1 does not reach 100%, thus avoiding high queueing
delays for the requests. SCALE effectively offloads processing
to MMP2 at fine time-scales. While the current system also
strives to offload processing to MMP2, the overhead of the sig-
naling per device to transfer state of the devices between the
MMPs leads to a higher CPU load on both the MMPs compared
to the case with SCALE. Hence, SCALE’s state management
is effective in managing the load across MMP VMs to ensure
low control-plane delays.
(ii) Persistent DC overloads: To show the ability of SCALE to
perform fine-grained load balancing across DCs, we conduct
an experiment with 3 DCs. While the DCs 2&3 are fixed
to be lightly loaded, the load of DC1 is varied. We also
emulate inter-DC propagation delays using netem [24]. We
setup the experiment for 3 different cases: (a) Local DC:
Resources are not pooled across DCs, hence the devices are
always processed at the local DCs. (b) Current Systems: In
current deployments, resources could be multiplexed across
DCs by deploying a MME pool across DCs as explained in
Section 3. (c) SCALE: It proactively replicates selected state
across DCs. In Figure 8(d), we plot the mean and standard
deviation of the 99th %tile delays perceived by the devices
registered with the DC1 under different load conditions of
DC1. In current systems, requests from devices that are
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assigned to a remote DC, are always processed at the re-
mote DC irrespective of the load conditions at the local DC.
Hence, in the case of low loads at DC1, the delays are higher
for current systems due to the propagation delays to the re-
mote DCs. However, SCALE processes all requests locally
at the DC1 since the master MMP for each device is located
at the local DC, resulting in low delays. Even for higher
loads at DC1, SCALE achieves better control-plane delays
than current systems as shown in Figure 8(d). Unlike cur-
rent systems that have to be statically configured, SCALE’s
replication strategy dynamically accounts for both (1) load
conditions at DCs and (2) inter-DC propagation delays. This
replication strategy give SCALE the ability to perform more
efficient and fine-grained load balancing.
2. System Simulations: To show the efficacy of SCALE in
larger setups with higher number of VMs and devices, we
built a custom event-driven simulator in Python. The sim-
ulator is split into a load generator, that generates requests
with different access patterns and a cluster emulator that
emulates the processing at the MMP VMs. We now highlight
the key components of SCALE, with focus not just on their
efficacy but also stress on a few key design considerations.
S1: State Management: Recall from Section 4.3 that

SCALE leverages consistent hashing for state partitioning across
active MMPVMs and maintains 2 replicas of each device state
to ensure efficient load balancing. To verify these design
choices, we setup a cluster of 30 MMPVMs and initialize 80K
devices that are assigned to the VMs based on consistent
hashing. Each VM is represented by 5 tokens on the hash
ring.We repeat the experiments for 4 different load scenarios
and measure the 99th percentile of connectivity delays of the
devices as shown in Figure 10(a). In each run, certain VMs
are selected to have higher number of active devices than
their processing capacity such that the load will be skewed
across VMs. The different scenarios L1-L4 represent in-
creasing skewness with L1 having lowest and L4 having the
highest skewness across the VMs. As shown in the Figure,
irrespective of the degree of load skewness, most of the be-
nefit is obtained by replicating twice and replication beyond
that does not decrease the connectivity delays significantly.
To show the effect of mapping each VM asmultiple tokens

on the ring, we repeat the experiment with the basic con-
sistent hashing without tokens. This algorithm simply maps
each VM directly on the ring, causing (i) uneven distribu-
tion of state, (ii) all the states of a VM are replicated onto
the neighboring VM. Hence, when a VM is overloaded, its
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load can only be offloaded to another VM. Hence, further
replication is required to balance the load (Figure 10(a)).
S2: Geo-Multiplexing: SCALE proactively replicates state

across DCs to ensure higher resource utilization while redu-
cing the end-to-end control-plane delays. Referring to Sec-
tion 4.5, SCALE effectively considers two key parameters:
(1) Current resourceUtilization at each DC and (2) Propaga-
tion delays between the DCs. To focus on the importance
of these factors, we setup a simulation with 4 DCs such
that DCs 1, 3 are overloaded while DCs 2, 4 are lightly
loaded. We plot the 99th %tile processing delays perceived
by the devices belonging to all 4 DCs in Figure 10(b) for
4 different cases. (i) In the first case (IND), the devices
are always processed by their respective local DCs, causing
high delays for the two overloaded DCs. This represents
most deployments today. In the next two cases, RDM1 and
RDM2, each DC uniformly replicates a fixed percentage of
its total device states across the other 3 DCs. (ii) Current
Load: In RDM1, we configure the experiment such that the
current load of DC2 is higher than that of DC4. As seen
in Figure 10(b), although the delays of devices at DCs 1,3
were reduced compared to those with IND, the additional
load from DCs 1, 3 on DC 2 causes much higher delays at
DC2 while the delays at DC4 are lower. (iii) Propagation
Delays: In RDM2, the experiment is configured such that
the propagation delays from DCs 1,3 to DC 2 are higher than
the delays from DCs 1,3 to DC 4. As seen in Figure 10(b),
the delays of devices at DCs 1 and 3 are not significantly
lower than those with IND. The additional propagation delay
to DC 2 causes higher control plane delays for the devices
belonging to DCs 1, 3. (iv) By considering both the current
utilization and propagation delays, SCALE achieves better
load balancing across DCs and causes lower delays for all
the devices as shown in Figure 10(b).
S3: Access-Awareness: This experiment shows the flex-

ibility of VM provisioning with SCALE. Specifically, SCALE
contains a parameter β to control the number of VMs in
scenarios when the state requirement is large due to high
number of registered devices (Refer to Equation 1 in Sec-
tion 4.5). We set x=0.2, i.e., SCALE maintains only a single
replica for all devices that have access frequency below 0.2
(wi ≤ x). We repeat the experiment by varying the number
of low probability devices, while keeping the number of total
devices constant at 100K. This setup gives us a sense of VM
savings that SCALE can achieve depending on the fraction of
devices that have low frequencies of access, a trend that is



visible with the advent of M2M or IOT. As shown in Fig-
ure 11(a), β=1 represents the case where the VMs are provi-
sioned to store 2 replicas of the state of all devices. As the
number of low probability connections increases, the β value
decreases and the VMs provisioned by SCALE decrease as
seen in the figure. Figure 11(b) depicts the delays perceived
in different scenarios. Even in the case with β=0.75, where
almost 50% of device states are not replicated more than
once, SCALE reduces the number of VMs by 25% without
affecting the average delays significantly.

6. RELATEDWORK
Distributed Systems: Distributed key-value store systems [9,
22, 25] face requirements similar to SCALE in their respective
domains. Although they effectively manage data at scale,
there are few key distinctions: (i) they do not consider the
compute provisioning since processing requirements are not
intensive. (ii) such systems are over-provisioned to meet the
stringent SLA requirements. Low latencies leads to direct
revenue, hence over-provisioning is sustainable. (iii) data is
accessed simultaneously by multiple users or applications.
Hence, it benefits to replicate high-access keys in order of
magnitude more than regular keys (upto 10) [26]. Hence,
although SCALE does borrow techniques from such systems,
the key is that SCALE had to additionally solve challenges
involving both the MME protocols and compute workloads.
NFV Trends: Recently, NFV has been a major focus of the
telecom industry leading them to transform their network
functions to execute as software over generalized intel-based
hardware. In the mobile context, it has led to the emergence
of commercial virtual EPC platforms [27, 28]. However,
the primary focus has been on software improvements, such
as hypervisor enhancements to improve the performance of
the functions running as VMs, while using simple, reactive
mechanisms for elasticity. SCALE is complementary to these
approaches since it adopts a system-wide approach to design
MME implementations with better elasticity and scalability.
EPC research: Recent works [29, 30] have proposed new
architectures and protocols for an efficient EPC design. Al-
though effective, such approaches are costly to deploy and
they ignore many aspects of device management prevalent in
current networks. Nonetheless, SCALE is a complementary
solution that can be leveraged to virtualize such architectures
if realized in future. The dMME system [31] proposes a split
MME design with distributed processing nodes accessing
a centralized storage. The dMME design is an alternate
design choice to SCALE. However, the dMME systems has
not been implemented and evaluated with reasonable loads.
It is a good avenue for future work to compare the two design
choices in the scope of virtual MMEs.

7. CONCLUSION
SCALE is a virtualized MME framework designed to meet

the future requirements of mobile access. SCALE intro-
duces a decoupled MME architecture to enable elasticity. To
meet the goal of performance in terms of lowering signaling
delays, SCALE adapts the consistent hashing scheme with

analytically driven replication strategy to achieve efficient
load balancing. To reduce VM footprint, SCALE performs
device-aware replication and leverages geo-multiplexing. With
a prototype using a LTE testbed and large-scale simulations,
we show the feasibility and efficacy of SCALE.
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APPENDIX
Model: Let the number of replications of a device’s state beR, with
N being the limit on the number of devices a VM can process, and
T being the size of the epoch over which decisions are made. With
Poisson processes serving as a representative tool for modeling web
requests, call arrivals, etc., we assume that the devices arriving at
VM j follow a Poisson process with incoming rate λ (Varied arrival
rates across VMs can be easily incorporated).
For the sake of analysis, we assume the following simple strategy

for serving an incoming device: when a device arrives it is ran-
domly assigned to one of the R VMs that containts its state - in
other words, it is equally likely for the device to be assigned to one
of the R VMs. Although simplistic, such a strategy is helpful to
gain useful insights and hence guide the design of the replication
process. Under this strategy, it can be seen that each stream of
incoming devices at a VM j gets split into R sub-streams, which
are sent to one of the R VMs, where the state of the devices in
VM j are replication (based on consistent hashing). Each of these
sub-streams are also Poisson (Poisson splitting), but with rate λ

R
.

Thus, from the perspective of each VM j, it gets a combination of
R sub-streams (fromRVMs including itself), each being a Poisson
process with rate λ

R
, resulting in an aggregate process that is also

Poisson (Poisson combining) with rate λ.
Let us assume that a device incurs a cost C only when it cannot

be served/processed (0 otherwise). Further, let the probability of a
device arriving in an epoch be wi.
A1.Impact of Replication Frequency: We represent the count-
ing process associated with the Poisson arrival at VM j as Nj(t)
indicating the number of devices that have arrived until time t.
Now, we characterize the probility that a device i cannot be served
(represented by /∈S) in a VM j (Vj).
P(i /∈S Vj at t)
= P ({i ∈A (t, T ]} ∩ {i /∈A (0, t]} ∩ {Nj(t) ≥ N})

=
∞
∑

k=N

P ({i ∈A (t, T ]} ∩ {i /∈A (0, t]} ∩ {Nj(t) = k})

=
∞
∑

k=N

P ({i ∈A (t, T ]}|{i /∈A (0, t] ∩Nj(t) = k})

· P ({i /∈A (0, t]} ∩ {Nj(t) = k})

=
∞
∑

k=N

P ({i ∈A (t, T ]}|{i /∈A (0, t] ∩Nj(t) = k})

· P ({i /∈A (0, t]}|{Nj(t) = k}) · P (Nj(t) = k) (4)
where ∈A (/∈A) indicates if a device arrives (otherwise). Given

the arrival process being Poisson, P(i ∈A (0, t]) depends on the
number of devices that have arrived until t. If Nj(t) = k, then we
have,

P(i /∈A (0, t] | Nj(t) = k) =
(

1−
wi

λT

)k

Further, P(Nj(t) = k) =
(λt)ke−λt

k!
and P ({i ∈A (t, T ]}|{i ∈A (t, T ] ∩Nj(t) = k})

=
{

1− e−λ(T−t)
}

· wi

Applying back into Equation 4, we have
P(i /∈S Vj at t)

=
{

1− e−λ(T−t)
}

· wi ·
∞
∑

k=N

(λt)ke−λt

k!
·
(

1−
wi

λT

)k

(5)

The probablity that device i cannot be served at any of the R

VMs where its state resides can be obtained as,
P(i /∈S at t) = (P(i /∈S Vj at t))R (6)

Now, the expected cost incured by device i reduces to,

C̄i = C

∫ T

0

(P(i /∈S Vj at t))R dt (7)

Applying Equation 5 in 6 and simplifying, we obtain the following
closed-form expression for the expected cost of a device for large
T as,

C̄i =
(

C
λ

)

wR
i

∞
∑

k=N

(

1−
wi

λT

)kR
(

Γ(kR+ 1)
(Γ(k + 1))RRkR+1

)

(8)

where Γ(n) = (n−1)! is the Gamma function. For large values of
k, the numerator and denominator of the above equation would be
hard to compute. Hence, we provide the following simplification
for easier computaiton, wherein,

(

Γ(kR+ 1)
(Γ(k + 1))RRkR+1

)

=

(

1
R

)

Πk−1
p=0Π

R−1
q=0

(

1−
q

(k − p)R

)

(9)

Now, the average cost (delay) experienced by a device in an
epoch is given by,

C̄ =

∑

i wiC̄i
∑

i wi
(10)

Using the above, the impact of replication frequency (R) on the
average delay experienced by a device can be easily studied.
A2.Impact of Access-awareness: Here, we aim to understand the
importance of replicating the state of a device in proportion to its
access probabilitywi. This is especially useful, when the total state
in the VMs does not allow all the devices to be replicated R times.
Hence, it becomes important to understand which set of devices
should be replicated more relative to others.
Let S be the total state capacity at each VM, withK be the total

state of all devices that need to be stored. Let V be the number of
VMs in the datacenter. Further, let S′ be the actual state capacity
that is available for devices in local DC after accounting for new
device states (Sn) and external state of devices from remote DCs
(Sm), i..e S′ = S − Sn+Sm

V
. To replicate each device’s state R

times (R = 2 in SCALE), we need a total state capacity of RK. We
need V S′ ≥ K to allow for each device’s state to be stored at least
once. If V S′ < RK, then not all devices can be replicatedR times.
In this case, each device’s state can be replicated R′ =

⌊

V S′

K

⌋

times (R′ = 1 in SCALE). With the remaining
(

V S′

K
−
⌊

V S′

K

⌋)

K

state capacity not being sufficient to accommodate (R − R′) rep-
lications of all the devices, it becomes important to decide which
of the devices will get an additional replication.
Here, we consider two strategies: (i) access-unaware: each of

the device has an equal probability of

Pi(rep) =
V S′

K
−

⌊

V S′

K

⌋

, ∀i (11)

to get an additional replication; and (ii) access-aware: the probabil-
ity of replication is proportional to the device’s access probability:

Pi(rep) = min

{

1,

(

wi
∑

i wi

)(

V S′

K
−

⌊

V S′

K

⌋)

K

}

(12)

Now, let us represent the average cost of a device in Equation 8 as
a function of R as C̄i(R). Then, incase R replicas are not possible
for each device, the average cost of a device gets modified as,

C̄i = (1− Pi(rep))C̄i(R
′) + Pi(rep)C̄i(R

′ + 1) (13)
where, Pi(rep) will depend on the strategy used for replicating
devices in the space remaining after R′ replications of each device
(i.e. Equations 11,12). With the above analysis, we can now easily
study the impact of access-aware replication on the average delay
experienced by a device in a datacenter.


