Realistic Packet Reordering for
Network Emulation and Simulation

Aisha Syed
University of Utah
aisha.syed@utah.edu

ABSTRACT

We present an algorithm that takes measurements of
the packet Reorder Density (RD) metric and generates
reordering sequences. These sequences can be used by
a simulator or emulator to precisely and repeatably
reorder packets in a way that recreates the original RD.
We show that our algorithm is efficient for a range of
realistic reordering scenarios, and present an extension
to the Dummynet emulator that uses makes use of it.

CCS Concepts

eNetworks — Network performance evaluation;
Network performance modeling; Network exper-
imentation; Network dynamics; Network simulations;

Keywords

Emulation; simulation; packet reordering; RD metric;
realistic traffic shaping; Dummynet

1. INTRODUCTION

Packet reordering is a phenomenon just as fundamen-
tal to Internet traffic as packet loss or delay [13, 11, 6,
10, 12, 14]. Despite studies demonstrating its prevalence
and its ability to significantly degrade application per-
formance [10], reordering is less well-studied than loss or
latency. Bennett, et al. [6] found that reordering is not
just pathological behavior: much of it occurs as a natu-
ral result of increasing parallelism within the Internet.
Reordering can make it hard for TCP to grow its conges-
tion window, cause it to make incorrect estimations of
round-trip times, result in unnecessary retransmissions,
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT’15 December 01 — 04, 2015, Heidelberg, Germany

© 2015 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-3412-9/15/12. .. $15.00

DOI: 10.1145/2716281.2836110

Robert Ricci
University of Utah
ricci@cs.utah.edu

and reduce performance overall. Reordering also has
an adverse effect on delay-based real-time UDP applica-
tions such as video conferencing [12, 9]. This effect has
become especially important as streaming media, VoIP
and IPTV are becoming increasingly prevalent on the
Internet. A study [8] of reordering in a backbone link
found that even a small amount of reordering coupled
with packet loss can cause significant degradation in link
utilization and thus application throughput.

We argue that it is critical to be able to incorporate
precise, repeatable reordering into the emulations and
simulations that we use to evaluate networked systems.
As Piratla, et al. [11] argue, measuring and character-
izing reordering and devising models for understanding
it can help us deal with it in scalable ways. Even when
reordering itself is not the primary subject of study,
ignoring it during traffic shaping in an emulator or simu-
lator results in experimental traffic that is not represen-
tative of real network traffic. As is the case with latency
and available capacity, emulation is most realistic when
it faithfully re-creates measurements taken from real
networks.

There are two basic approaches to emulating (or sim-
ulating) network effects: emulating the underlying cause
in the network, or emulating the effects directly. When
re-creating behavior measured from real networks, it is
often preferable to emulate effects, because they can be
measured from the edge of the network. In contrast,
most causes are not directly observable from the edge,
and it can be difficult or impossible to “reverse engi-
neer” from measured conditions a network that produces
them precisely. So, while there are existing methods to
emulate re-ordering causes (for example, the multipath
feature in Dummynet [7]), our goal is to take end-to-end
measurements of re-ordering and re-create the effects
directly in a simulator or emulator. We also aim for
the ability to accurately apply the same reordering pat-
tern to repeated experiments, and to be able to make
precise adjustments to the degree of reordering in or-
der to perform sensitivity analyses or parameter-space
explorations.

Reorder Density (RD) [1, 10, 12] is a comprehensive

metric for quantifying reordering, and it has been well-
studied. RD is defined in the forward direction: one can
take a sequence or trace of packets and calculate its RD.
What is missing to drive simulations or emulations is the
reverse direction: given a measured RD value, creating
a re-ordering sequence that produces the metric. This
regenerated packet sequence can be used by a traffic
shaper to reorder traffic within an experiment. Devising
such an algorithm for RD is the primary contribution
of this paper. Our algorithm is not specific to any par-
ticular emulator or simulator. As a second contribution,
we have implemented an extension to the Dummynet
emulator [7] that reorders traffic according to the se-
quences produced by our algorithm. Our extension to
Dummynet is agnostic to the source of the reordering
sequences that it uses; while we built it for use with our
RD-based sequences, it can accept reorder sequences
that come directly from traces, are derived from other
reordering metrics [2], or are entirely artificial.

In Section 2, we cover related work and the RD metric.
Section 3 describes our RD sequence regeneration algo-
rithm, and Section 4 describes our Dummynet extension
and how it uses the output from our algorithm to emu-
late reordering. Section 5 presents our results from the
evaluations for both the algorithm and the Dummynet
extension, and we conclude in Section 6.

2. BACKGROUND & RELATED WORK

There are many ways to measure reordering in a packet
stream, including the percentage of reordered packets,
n-reordering, and reordering extent, all of which are stan-
dardized by the IETF [2]). Reorder Density (RD) [12]
is a particularly useful metric, because it provides infor-
mation about both early and late reordered packets. Its
calculation has low space and time complexities (O(1)
and O(N), respectively) and is not affected by other
network phenomena such as loss or duplication. Also,
RD can provide useful information to applications. For
example, it can help in TCP flow control by providing
estimates of the buffer size necessary to recover from
reordering, and can also help in network diagnosis by
hinting about the possible causes of reordering, etc. [10]

RD Calculation. RD captures the amount of reorder-
ing by measuring the displacements of packets from their
original positions [1]. Let us take an example (shown in
Table 1) in which a sequence of N = 6 packets is sent
in-order, and arrives at the receiver in this sequence: [4
1523 6].

The receiver assigns a receive index RI to each packet
according to the order of its arrival. In our example,
packet 4 arrives first and gets RI = 1, packet 1 comes
next and gets RI = 2, and so on. Then displacement D
of a received packet is defined as the difference between
its RI and the order in which it was sent (4), i.e., the

(=}

Received sequence: 4 115 (23
Receive Index (RI): |1 |23 [4]5
Displacement (D): 3121212/ 0

(=]

Table 1: An example RD calculation.

k| FDJk] | RD[k] = FD[k]/N” | Pct. = RD[k] - 100
3 1 0.1667 16.67%
-2 1 0.1667 16.67%
0 1 0.1667 16.67%
1 1 0.1667 16.67%
2 2 0.3333 33.33%

Table 2: RD histogram for [4 1 5 2 3 6]; N’=6

displacement of packet i is RI[i] —i. Thus, a negative
displacement indicates an early packet and a positive
displacement a late packet. A displacement of zero
indicates the packet arrived in order.

The RD calculation algorithm also defines a displace-
ment threshold DT such that a packet is considered lost
if it does not arrive within the window defined by DT,
and similarly, a packet is considered duplicate and dis-
carded if another packet with the same sequence number
has already been received within the current DT window.
The DT value is selected by the user based on the TCP
send /receive windows or the nature of the application
and the network; for example, for VoIP applications,
it can be selected based on the maximum duration the
application waits for a packet’s arrival before considering
it lost.

Finally, a displacement frequency FDIk] is calculated
as the number of received packets having a displacement
of k, for k in range [-DT, DT]. The reorder density RD
is then the distribution of the displacement frequencies
FDIk] normalized with respect to N’, where N’ is the
length of the received sequence after ignoring lost and
duplicate packets (N’ = X(FD[k])). For our example
received sequence, the RD is shown in Table 2.

3. RD SEQUENCE REGENERATION

To use RD in a network emulator or simulator, we
need to be able to regenerate an ordering sequence from
a given RD. The input to our algorithm is an RD table
similar to the one shown in Table 2, consisting of the k
and FD[k] columns.! We run a preprocessing step that
calculates the number of packets, (FD[k]) = N’ and
generates an input sequence (IN) consisting of consec-
utive numbers 1..N’. This sequence is then permuted
by the main algorithm. The output is a reordering se-
quence (OP), which is an array indexed by the packets’
locations in the input array, with the content of each
cell indicating the packet’s sequence in the reordered

!The user can also provide percentages for FD[k] which
can be converted to precise packet counts by our prepro-
Cessor.

stream. The algorithm we present is modeled after the
max-flow problem [5] but is specialized for our problem
due to the presence of the following three constraints:

A. Each packet must be displaced (reordered) by exactly
one displacement—that is, OP is a permutation of
IN (which it itself the sequence 1..N").

B. Two packets cannot be displaced such that they end
up in the same position in the output array. If we
denote the displacement of packet 7 as D;, then:

Vi,je{1.N'}i#j i+D;+#j+D,

C. The number of packets displaced by displacement
k should be exactly equal to F'D[k]. That is, for
every k, there is a subset of IN called INj that
consists of all packets displaced by k so that the
following holds true:

|INy| = D[]

The complexity of these constraints precludes a sim-
ple method for picking a legal permutation. They do,
however, help prune the space of legal permutations,
enabling quick searches through it for typical inputs.

Algorithm. To find a reordering sequence OP, we con-
struct a graph representing the solution space and con-
duct a search through it:

1. For each unique displacement k such that FD[k] >
0, construct a bipartite graph with N’ vertices on
each side. Connect vertex j on the left to vertex
j + k on the right, for j <= N’ — k. The left side
represents packets’ positions in the input stream,
the right side their order in the output stream after
being displaced by k positions.

2. Construct a sub-source vertex s; for each such
displacement k, and connect it via a capacity = 1
edge to each left side vertex of the corresponding
bipartite graph. The limited capacity of the edge
helps to enforce constraint B within the set of
packets displaced by k positions.

3. So far, for each k, we have one bipartite graph plus
its corresponding sub-source s;. Now construct a
super-source vertex S and connect it to all s;. Each
edge has capacity = F D[k] for the corresponding
k, enforcing constraint C.

4. Construct a sub-sink t; for each j=1..N’, repre-
senting packets’ placement in the reordered stream.
From each bipartite graph, connect the right side
vertex j to t;.

5. Connect all the ¢; to a super-sink T'. Each edge
has capacity = 1, enforcing both constraint B.
Combined with the capacities on super-source S,
this also enforces constraint A.

Input RD (N' = 4):
k | FD[K]
1 1

super- Four sub-sources
source (one for each k value)

1
1
1

.
.
.
N
.
.
.
.

Four bipartite graphs

(one for cach k valuc) Four sub-sinks

(based on value of N°)

Figure 1: Graph generated by the RD sequence
regeneration algorithm. Filled black circles show
vertices selected for the solution.

6. Find a set of N’ unit flows through the graph from
S to T without violating capacities on any edges.

The graph constructed in steps 1-5 represents all
possible permutations of displacements from the input
RD table minus the permutations not possible due to
the application of our constraints. In step 6, we use
a greedy graph search with backtracking to get to a
solution packet sequence that satisfies the given RD.
This is accomplished by selecting suitable vertices from
the left side of bipartite graphs (the source side) that
connect to suitable vertices on the right side of bipartite
graphs (the sink side). The position in the left side gives
us the packet’s position in the input stream, and the
position on the right side gives us its position in the
output stream. The construction of the graph ensures
that all input and output positions are used exactly once,
and that each displacement k is used FD[k] times.

Complete pseudocode is in the Appendix and code
can be found at [3]. Additional discussion can also be
found in [15].

Example. Figure 1 depicts a graph constructed using
this algorithm for the RD shown in the top right of
the figure. To reduce clutter, only one sub-source s
is shown as being connected to the corresponding left
side of the bipartite graph; the remaining three s; are
not shown. Similarly, only one sub-sink ¢; is shown as
connected.

As dictated by the algorithm, the number of sub-sinks
and the height of the bipartite graphs are both N’ = 4.
The number of sub-sources, and number of bipartite
graphs is each equal to |K| = 4 where K is the set of
all unique displacements k. The bipartite graph labeled
“1” in the figure represents k = 1, the graph labeled “2”
represents £ = 2, and so on. The two sides of these

kK [FDK] | [k [FD]| [k [FDK | [k | FD[K]
T[1 T [1 1[0 T [0
2 |0 2 10 2 0 2 [0
11 1]0 10 10
21 21 21 2|0

(a) (b) (c) (d)
Table 3: RD table updates for our example

graphs are connected such that a left vertex at position
j connects to the right vertex at position j + k. A
bipartite graph representing displacement k=0, connects
“straight across.” For a bipartite graph representing
k = 2, position 1 on the left connects to position 3 on
the right, position 2 on the left connects to 4 on the
right, etc. If a connection would under- or over-flow
either the left or the right side, no edge is made.

Now, we walk through the graph search to show how
the solution is found. In our example, N’ = 4, so output
solution array OP will also be of size 4. Initially, the
array is empty: [NIL, NIL, NIL, NIL].

Then vertex selection proceeds as follows: we start
with the first horizontal layer of vertices (representing
the first packet in the input stream) of left side of the
bipartite graphs. We first look at the vertex from graph
labeled “-2”: since this vertex is not connected to the
right side, it cannot be a solution and we move on to
the graph labeled “-1”. Its vertex is also not connected,
so we move to the graph labeled “2”; which is connected,
and the corresponding FDIk] value for k = 2 is nonzero,
meaning that this vertex can be selected as part of
the solution. The edge from this vertex connects to
the third vertex in the right side of bipartite graph;
this tells us that packet number 1 should be placed in
position number 3 in the output sequence. We make
this placement: [NIL, NIL, 1, NIL].

Because we have used the graph labeled “2” once, we
decrement the FD[2] count (Table 3(a)), representing the
capacity constraint between S and so. Now, FD[2] = 0—
this zero value means that we can no longer select a
vertex from the graph labeled “2” even if its vertex is
connected, according to constraint C.

Now, we move on to the second horizontal layer of
vertices. In a similar manner, we select a connected
vertex from the graph labeled “-17, decrement FD[—1]
(Table 3(b)), and update the output array: [2, NIL, 1,
NIL]. On the third layer, we select a vertex from graph
“1” (Table 3(c)), giving us [2, NIL, 1, 3]. Note that
we selected from graph “1” even though graph “-2” had a
connected vertex: this is because the selection from “-2”
was not possible due to constraint B. Finally, we move to
the fourth and last layer of horizontal vertices, select the
connected vertex from the graph labeled “-2”, decrement
FD[-2] (Table 3(d)), and update the solution array: [2,
4, 1, 3].

At this point, all FD[k] values are zero and the solution
array is completely filled. If, at any point, we had
been left with no legal options, we would have simply
backtracked “up” a level in the bipartite graphs and
selected a different option. Note that, while our simple
example did not have any in-order packets (k = 0), this
is just an artifact of the example: in most instances of
the problem, this will be the most common case.

Complexity. The space complexity of our algorithm is
O(N x |K|) where K is the set of all unique displace-
ments. Because we modeled it after max-flow, using an
optimized adjacency list representation for implementa-
tion results in O(|Edges|*|Edges_leaving_source|) time
complexity—in our construction, |Edges| is O(N' x |K]|)
while |Edges_leaving_source| is |K| giving complexity
O(N' ¥ |K|?). However, this upper bound does not take
into account the fact that our three constraints sub-
stantially prune the search tree, and we find that the
algorithm is quite efficient in practice, as demonstrated
in Section 5. Additionally, |K| is typically small because
it is bounded by (2 x DT') where DT itself is always less
than the typical buffer size for the network application
over whose traffic RD was calculated.

4. IMPLEMENTATION IN DUMMYNET

We modified Dummynet to support reordering. Our
modified version takes regenerated reordering sequences
as input along with its usual traffic shaping parameters.
Dummynet has modules called “schedulers” that get in-
voked to regulate the processing and traffic shaping of
incoming packets, and to control the release of emulated
traffic towards its destination. We implemented our re-
ordering functionality as a new scheduler. Our scheduler
uses a buffer (the “reorder buffer”) to hold packets that
need to be delivered late. For example, if a packet is
supposed to be reordered as 2 places late, we store it in
the buffer until 2 other packets have arrived that can be
sent before it. Our scheduler is agnostic to the specific
sequence regeneration algorithm used, so users are free
to choose metrics other than RD for emulation. Also,
our scheduler allows users to supply more than one such
reordering sequence as input. The scheduler then simply
iterates over this list of sequences, picks one randomly,
and applies the reordering dictated by it over the traffic
it is emulating.

Our modified version of Dummynet is available on
GitHub [3].

Experimenter Workflow. To create a full emulation,
a user will typically:

1. Generate a set containing one or more RDs; these
could be calculated over traces from a real net-
work, taken from the literature, or derived a public
measurement repository, etc.

2. Run the RD sequence regeneration algorithm over
each RD in the set. This gives a set of reordering
sequences.

3. Take above sequence(s) and input to Dummynet
along with other traffic shaping parameters.

4. Run traffic from the system under test through
Dummynet. Dummynet will reorder, delay, and
drop packets according to the parameters provided
in previous step.

The RD sequence regeneration algorithm is run of-
fline, before the emulation or simulation begins, and the
number of packets used in Step 1 is independent of the
number of packets used in the experiment in Step 4. So,
if Dummynet is made to emulate a million packets, the
user only needs to run the RD regeneration algorithm
in Step 2 once using, for example, 1,000 packets and
Dummynet can use that 1,000-packet output in Step 4
repeatedly to shape the million packets.

S. EVALUATION

In this section, we use real and synthetic traces to show
that our algorithm is scalable and works correctly in
regenerating a reordered packet sequence from the input
RD. We also evaluate our implementation in Dummynet
to show that our modifications work correctly and do
not introduce unnecessary overhead.

5.1 Real Network Traces

We ran the RD calculation algorithm for network
traces taken from [4], consisting of long-lived connec-
tions from a host in Colorado to multiple destinations
located on different continents, with the results col-
lected hour-by-hour. We fed the RDs into our algorithm
to regenerate the reordering sequences. We checked
the correctness of the emulation by configuring our ex-
tended Dummynet using these sequences, sending traffic
through it, and calculating RD’ at the receiver. In all
cases, our algorithm and Dummynet extension worked
correctly, producing RD’ = RD. The output RDs from
two out of the five sets of measurements along with
the corresponding RD’s calculated over the regenerated
sequence are shown in Table 4. The first is to a host in
Cape Town, South Africa (N’ = 138275, 0.3% reorder-
ing, sequence regeneration runtime 0.057s), the second
to a host in India (N’ = 136768, 0.11%, 0.126s). More
results are reported in [15].

5.2 Synthetic Network Traces

This set of evaluations uses synthetic traces to evaluate
scalability as both the number of packets and amount
of reordering increase. Recall from Section 4 that this
algorithm is run as part of the setup of a simulation
or emulation, not as part of the experiment itself; thus,

RD RD’ RD RD’
kK | FDJE] [k | FD[E[| (% | FDJR] | k | FDJE]
52 52 58 58
(3 a3 a5 a5
33 33 310 310
28 28 230 230
T[4 T[4 T 16 T 16
0 | 138239 | 0 | 138239 | [0 | 136626 | 0 | 136626
T[4 T[4 T [32 T [32
2 5 2 (5 2 16 2 16
33 33 379 39
12 12 15 15
5[4 5[4 5 11 5 11

Table 4: RD and RD’ for destinations in Cape
Town and India

100
10
1

0.1

0.01 4

—=== Real traces

Runtime (sec) on log scale

0.001
0 10 20 30 40 50 60 70 8 90 100

Percentage of reordering (%)

Figure 2: Effect of amount of reordering on run-
time.

our goal is to keep times low enough that they do not
become a major overhead in experiment preparation.
We conducted two sets of experiments. Based on
observations from real network traces, we set DT = 5.
For both sets of experiments, we collected preliminary
results over 30 runs of each experiment. These results
were used to decide the number of runs that would be
needed for each data point in each experiment to get a
95% confidence interval with a sample error of £5%. For
comparison purposes, the parameters associated with
the real traces are shown as vertical lines in the graphs.
In the first set, we generated packet traces in which we
varied the amount of reordering while keeping number
of packets, N’, constant at 1,000. The RDs calculated
over the generated traces were then fed to our implemen-
tation and the algorithm running times were calculated.
Results are shown in Figure 2. The graph shows the
mean value for each data point and the 95% confidence
interval, which are narrow enough that they are not vis-
ible. The running time stays quite consistent for up to
about 30% reordering and starts to increase after that;
as the reordering becomes more commonplace, the algo-
rithm runs into more “dead ends” and has to backtrack
more. Up to about 60% reordering, the algorithm fin-
ished less than a second and even with 100% reordering,
it finished within 10 seconds. As can be seen from the

2 T
i === Real traces
1
i
Ol ;
Z i
N i
g 1 ;
. — HI
= i I
= H
3 i i
/05 i —F
i - o SR
i W
0 WLMMM
0 50000 100000 150000 200000 250000 300000

Number of packets (N')

Figure 3: Effect of number of packets on run-
time.

positions of the vertical lines, real Internet traces tend
to be on the low end of this curve, with the algorithm
always finishing in sub-second times.

In the second set of experiments, we generated traces
in which we varied N’ while keeping the amount of
reordering constant. Again, the RDs calculated over the
generated traces were used as input for our algorithm and
running times were observed. The results are shown in
Figure 3. The graph shows the mean value for each data
point and the 95% confidence interval, which remains
tight until the high end of the graph. The vertical lines
again show the position of the real traces used earlier,
at 130K to 140K packets. The running time is quite low
for up to about 250K packets, staying below 2 seconds,
but starts to increase past that point. The algorithm
scales quite well to large traces, processing over a quarter
million packets in less than two seconds.

5.3 Datapath Evaluation

Our final evaluation looks at whether the modifica-
tions we made to Dummynet increased the delay seen
by individual packets during the emulation more than
necessary. To show this, we ran an experiment 20 times
that used flood ping to send 500 packets through the
original Dummynet and M-Dummynet (our modified
version), noting mean and maximum inter-arrival times.
For this test, we used a reorder sequence with no re-
ordering so that we could test the base overhead of our
scheduler. The max inter-arrival times from all runs
of the experiment were averaged using mean and are
reported in Table 5. Statistical tests showed with 95%
confidence level no statistically significant difference ex-
ists between the mean times from the two configurations,
so we conclude that the base operation of our scheduler
does not add unnecessary processing in the datapath.

We ran another experiment with the same configura-
tion, this time using a reorder sequence that did induce
reordering. The RD used for this experiment is shown in
Table 6. The largest displacement in the RD is 19, which
means that the max inter-arrival time we expect to see

Configuration | Mean time(ms) | Max time(ms)
Original 934 o3
Dummynet
M-Dummynet
(Reordering off) 2.32 2.51

Table 5: Mean and max inter-arrival times on
original Dummynet and on M-Dummynet.

k | FD[K | RD[k] = FD[K / N’
19 1 0.05

0o | 18 0.90

19| 1 0.05

Table 6: RD used in datapath evaluation, N’=20

Configuration | Max inter-arrival time (ms)

M-Dummynet

(Reordering on) Expected 47.69
Observed 18.07

Table 7: Expected and observed max inter-
arrival times on M-Dummynet with reordering.

for this traffic is 19 times the base max inter-arrival time
observed previously, or (19 - 2.51) = 47.69ms; this is
the amount of time the most-displaced packet should
have to wait in the reorder buffer. The expected and
observed times for this experiment are reported in Table
7, and a statistical test showed no significant difference
between them with 95% confidence. Hence we conclude
that the datapath in our scheduler does not introduce
any additional latency beyond what is naturally caused
by holding packets for reordering.

6. CONCLUSION

We argue that packet reordering is a prevalent net-
work phenomenon that affects performance of both TCP
and UDP, and cannot be ignored when conducting simu-
lations and emulations. We presented a sequence regen-
eration algorithm that takes as input the RD metric and
generates reordered sequences that can be used by any
emulator or simulator to support fine-grained, controlled,
and repeatable reordering. We built an extension for the
Dummynet emulator to support precise reordering se-
quences. Using real and synthetic traces, we have shown
that our algorithm is scalable and the implementation
works correctly.

Acknowledgments

We thank Suresh Venkatasubramanian for his help in
formulating the problem, and Kobus Van der Merwe,
Shena Kasera, and our anonymous reviewers for their
feedback on the work. This material is based upon work
supported by the National Science Foundation under
Grant No. 0709427.

7. REFERENCES

[1] A. Jayasumana, N. Piratla, T. Banka, A. Bare,
and R. Whitner. Improved packet reordering
metrics. IETF RFC 5236.

[2] A. Morton, L. Ciavattone, G. Ramachandran, S.

Shalunov, and J. Perser. Packet reordering metrics.

IETF RFC 4737.

[3] A. Syed and R. Ricci. Code for the RD sequence
regeneration algorithm and Dummynet extension.
https://github.com/aishasyed/reordering, 2015.

[4] CNRL. Packet reordering trace. http:// www.cnrl.
colostate.edu/ Projects/ PacketReordering/ Trace/
packet_reordering_trace.htm.

[5] L. Ford and D. Fulkerson. Flows in networks.
Princeton University Press: Princeton, 3, 1962.

[6] J. Bennett, C. Patridge, and N. Shectman. Packet
reordering in not pathological network behavior.
IEEE/ACM Trans. Netw., 7:789-798, 1999.

[7] M. Carbone and L. Rizzo. Dummynet revisited.
ACM SIGCOMM Comput. Commun. Rev.,
40(2):12-20, Apr. 2010.

[8] M. Laor and L. Gendel. The effect of packet
reordering in a backbone link on application
throughput. IEEE Network, 16(5):28-36, 2002.

[9] M. Lelarge. Packet reordering in networks with
heavy-tailed delays. Mathematical Methods of
Operations Research, 67(2):341-371, 2008.

[10] N. Piratla, A. Jayasumana, and A. Bare. Reorder
density (RD): A formal, comprehensive metric for
packet reordering. Proc. NETWORKING, LNCS
3462:78-79, May 2005.

[11] N. Piratla, A. Jayasumana, and T. Banka. On
reorder density and its application to
characterization of packet reordering. Proc. IEEE
LON, 1:401-414, Nov. 2005.

[12] N. Piratla and A. Jayasumana. Metrics for packet
reordering — A comparative analysis. Int. J.
Commun. Syst., 21(1):99-113, Jan. 2008.

[13] V. Paxson. End-to-end Internet packet dynamics.
In ACM SIGCOMM Comput. Commun. Reuv.,
1997.

[14] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Measurement and classification of
out-of-sequence packets in a tier-1 IP backbone.
IEEE/ACM Transactions on Networking,
15(1):54-66, 2007.

[15] A. Syed. Realistic traffic shaping in the Dummynet
link emulator. Master’s thesis, University of Utah,
2014.

APPENDIX

Algorithm 1: ConstructGraph(R)

// R is an RD table where R[i].displacement and

R[i].count are the displacement and number of pkts.
K = R.length // total number of displacements
N =sum(R[i=1 to k].count) // total number of packets
G = Empty Graph
bipartite[] = K bipartite graphs, each length N
Source = a vertex representing the super source
Sink = a vertex representing the super sink
s[] = array of K vertices, acting as sub-sources
t[1 = array of N vertices, acting as sub-sinks
foreach vertex s[i] in s:

G.addEdge(Source, s[i], capacity=R[i].count)
for i=1 to K:

for j=1 to N:

G.addEdge(s[i], bipartiteli].left Vertex]j],
capacity=1)

© 00N O Uk W N

[
W N = O

14 for i=1 to K:

15 displacement = R][i].displacement

16 for j=1 to N:

17 k = j + displacement

18 if k > 1 and k <= N:

19 G.addEdge(bipartite[i].left Vertex[j],

bipartite[i].right Vertex[k], capacity=1)
20 for i=1 to N:
21 for j=1 to K:
22 G.addEdge(bipartite[j].right Vertex[i], t[i],
capacity=1)
23 foreach vertex t[i] in t:
24 G.addEdge(t[i], Sink, capacity=1)
25 return G, bipartite

Algorithm 2: DFS(solution, step)

1 if step > N: return true
2 fori =1 to K:
3 if remainingPackets[i] == 0: continue

4 vertex = bipartite[i].left Vertices[step]
5 if vertex.hasRightVertex:
6 rightVertexIndex = vertex.right VertexIndex
7 if solution[rightVertexIndex] != null:
8 continue
9 solution[rightVertexIndex] = vertex
10 remainingPackets[step] ——
11 if solve(solution, step+1): return true
12 remainingPackets[step]++
13 solution[right VertexIndex] = null

14 return false

Algorithm 3: Solve(G)

1 solution[] = array of size N
// solution[1]=5 means input packet 5 should be
placed in position 1 in the solution sequence
2 remainingPackets[] = array of size K, initialized such
that remainingPackets[i]=R[i].count
3 if DFS(solution, 1): return solution
4 else: return null // no solution!

