
GetMobile April 2015 | Volume 19, Issue 228

Research Infrastructure for
Mobile Networking, Cloud Computing
and Software-Defined Networking

PhantomNet:

Arijit Banerjee, Junguk Cho, Eric Eide, Jonathon Duerig, Binh Nguyen, Robert Ricci,
Jacobus Van der Merwe, Kirk Webb and Gary Wong Flux Research Group, University of Utah

Editors: Sharad Agarwal and Marco Gruteser

[mobile platforms]

Ph
ot

o,
 b

ig
st

oc
kp

ho
to

.c
om

29April 2015 | Volume 19, Issue 2 GetMobile

[mobile platforms]

The PhantomNet facility allows experimenters to combine mobile networking, cloud
computing and software-defined networking in a single environment. It is an end-to-end testbed,
meaning that it supports experiments not just with mobile end-user devices but also with a
cellular core network that can be configured and extended with new technologies. This article
introduces PhantomNet and presents a road map for its future development. The current
PhantomNet prototype is available now at no cost to researchers and educational users.

the University of Utah, but accessible to
researchers and educators everywhere via
the Internet, PhantomNet is an end-to-
end mobility testbed. By this we mean that
it supports experimentation not only with
mobile devices, such as smartphones and
tablets, but also with cellular data networks
that support these devices. Moreover,
because it allows experimenters to control
the core services and topology of a cellular
network, it allows experimenters to blend
mobility with other technologies–especially
cloud computing and SDN.

An experimenter can instantiate a
small but complete cellular network within
PhantomNet, including end-user devices,
cellular base stations, compute nodes for
hosting cellular core network devices and
a network that ties the devices together.
Balancing the trade-off between scale and
realism, and to cater to the differing needs
of researchers, PhantomNet contains
both actual, physical devices, as well as
emulated versions thereof. The experimenter
has complete control over the allocated
devices and can configure them as needed.
Moreover, multiple experimenters can
use PhantomNet at the same time: each
experimenter receives a separate experiment
or “slice” of the testbed resources, and
PhantomNet ensures that concurrent
experiments will not affect each other.

To support both cutting-edge research
and education, we are creating PhantomNet
with four key goals in mind. These are
mobility realism, end-to-end control,
flexibility and repeatability.

Mobility realism. A key challenge with
mobile network testbeds is creating realism
in the movement of mobile devices. Current
approaches include trace-driven robotic
mobility, where devices are mounted on
robots that move according to prerecorded
traces [12, 9]; vehicle-mounted mobility,
where devices are attached to buses or other
vehicles [14]; and volunteer-driven mobility,
where human couriers carry mobile
devices from place to place [3, 5]. While
PhantomNet does not currently attempt
to provide full mobile channel emulation,
a fully programmable attenuator array is
provided to testbed users to mediate the
radio access network (RAN). This facility
is adequate for simulating various mobile
environments under completely automatic
and deterministic control and is capable of
introducing controlled path loss specified
by the user (e.g., as predicted by the widely
used COST 231 RF propagation model [6]).

End-to-end control. A mobile testbed is
most useful when experimenters can control
and change all aspects of their mobile
networks. In particular, one should be able
to change “core network” aspects that deal
with functions such as routing, forwarding,
mobility management, authorization
and authentication. Research into future
mobile network architectures (e.g., [11, 13])
requires the ability to modify most or all
mobile-network functions. PhantomNet
provides this kind of control at multiple
levels, through network configuration and
software extensions.

The need for a mobile
networking testbed
Three technologies are transforming the
Internet as we have known it. The first is
mobile networking, driven by the ubiquity of
cellular networking and devices. The second
is cloud computing, driven by the economics
of server-side computing and the need to
deploy large, elastic services. The third is
software-defined networking (SDN), which
makes it possible for a network manager to
rapidly provision, configure, and reprogram
physical network infrastructure to meet a
wide variety of requirements. How do these
technologies relate to each other? How can
they be combined to better meet the needs
of today’s increasingly mobile population
of Internet users? What new services and
applications will this enable? How can these
technologies be used to realize evolvable
network architectures? Together with the
broader networking research community,
we recognize that current mobile network
architectures are at an inflection point
where the concerted effort of the research
community is needed to unlock the full
potential of mobile networks, cloud
computing and SDN.

To unlock this potential, educators and
researchers need testbeds: facilities where the
next generation of technologists can receive
hands-on training on state-of-the-art equip-
ment and where new ideas can be imple-
mented, deployed and rigorously evaluated
under realistic but controlled conditions.

To address this need we are creating
the PhantomNet testbed. Located at

GetMobile April 2015 | Volume 19, Issue 230

[MOBILE PLATFORMS]

Flexibility. It should be relatively simple
for a beginning researcher or student to
use basic testbed functionality. At the same
time, it must be possible for a more advanced
user to fundamentally change functionality
as required. These requirements can easily
be in tension. For example, if a testbed relies
on a commercial mobile provider (e.g., [3]),
then network functionality is “taken care
of,” but the ability to change that network
functionality is very limited. On the other
hand, if a testbed only provides “bare
metal” functionality, then the knowledge
and effort needed to create even a basic
mobile network can be too much for a
novice user. PhantomNet resolves this
tension by providing both preconfigured
experiments for beginning users and deep
programmability for experts.

Repeatability. As a scientific instrument,
a testbed should allow for repeatability of
experiments. This goal is sometimes in direct
tension with realism. For example, because
volunteer-driven mobility involves a person
carrying an actual device from place to place,
it may provide the greatest realism for an
experiment – but it provides no inherent
repeatability. Conversely, simulated wireless
conditions can provide high repeatability,
but the simulation may not correspond to
realistic conditions. PhantomNet addresses
the challenge of repeatability in two ways.
First, for simulating the conditions of a
mobile network, it uses a programmable
attenuation array mentioned previously.
Thus, mobility experiments in PhantomNet
use real wireless signals over real devices,
and the program that simulates the motion
of those devices is repeatable.

Second, because PhantomNet is
based on the Emulab testbed-management
software [15], it inherits the features of
that software that promote repeatable
experimentation. This includes the ability
to capture experiment setups – e.g.,
complete disk images—and the isolation of
experiments that are running on the testbed
at the same time.

Below, we first provide a brief overview
of the PhantomNet components and
functionality. We then consider examples
of the teaching and research enabled by
PhantomNet, and conclude with the
current status of our infrastructure and our
future plans.

PhantomNet Overview
Figure 1 depicts the PhantomNet infra-
structure and workflow. As shown in the
top part of the figure, PhantomNet is
composed of three top-level components:
a control framework, a set of hardware
components and a set of software compo-
nents. PhantomNet utilizes and builds
on the Emulab control framework [15].

Hardware. PhantomNet hardware
components include traditional network
testbed resources, such as compute nodes
connected by switches. In addition,
PhantomNet provides a number of
hardware resources that are of interest
to researchers working with mobile
platforms. PhantomNet gives access
to off-the-shelf mobile handsets, or UEs
(user equipment) using mobile networking
nomenclature, in the form of Android
handsets. These handsets are paired with
compute nodes, allowing experimenters
with Android Debug Bridge (ADB) access
to the devices. PhantomNet also provides
off-the-shelf small cell base stations, or
eNodeBs according to mobile networking
terminology. We use small cell eNodeBs

from ip.access, operating on LTE (long term
evolution) spectrum bands compatible with
our Android handsets.

PhantomNet also provides access to
software defined radio (SDR) hardware.
The SDR devices are attached as peripherals
to dedicated compute nodes. When
combined with the appropriate software
(see below), these devices can act as base
stations (eNodeBs). We have SDR hardware
in the form of Ettus Research USRP B210
and Nuand bladeRF radios. These devices
perform tuning, amplification and ADC/
DAC in hardware, and then communicate
baseband samples over USB 3.0 links to
the host nodes, allowing a great deal of
flexibility in higher-level signal processing.
Each of the SDR devices offered in
PhantomNet cover (at least) the entire
UHF spectrum, and provide at least 28 MHz
of full-duplex RF bandwidth.

This mix of resource types allows
experimenters to target different areas
of interest from higher-level protocol
interactions down to wireless signal
manipulation. To facilitate clean, repeatable
experimentation, wireless devices are
connected through a programmable

Figure 1. PHANTOMNET infrastructure and workflow.

Emulab
Control

Android
UEs

Small Cell
eNodeB

Software Defined
Radios

Switches
Compute

Nodes
Programmable

Attenuation

Hardware Components Software ComponentsControl
Framework

EnodeB

SGW

PGW

MME

Emulated
RAN

Emulated
UE

OpenEPC

eNodeBUE

Open Air Interface
eNodeB

Emulated
EPC

Open LTE

Infrastructure

User A
Request

Emulab
Control

User B
Request

Experiment A

Experiment B

Workflow

31April 2015 | Volume 19, Issue 2 GetMobile

[MOBILE PLATFORMS]

attenuator matrix. This matrix allows users
to mix and match end-user equipment
(UE devices) flexibly with access point
nodes (off-the-shelf and software-defined
varieties). Relative signal strength between
devices can be programmatically adjusted
with this setup.

Software. Software resources available
in PhantomNet include: an evolved
packet core suite called OpenEPC [1], and
radio access network (RAN) over SDR
implementations from Open Air Interface
(OAI) [10] and OpenLTE [2]. OpenEPC
is discussed in the next paragraph. OAI
includes SDR-based user equipment (UE)
and access point (eNodeB) implementations
and an emerging 3GPP LTE Evolved Packet
Core (EPC) implementation. OpenLTE is
similar, but is built on top of GNU Radio
and does not tread much beyond the
radio access layers of LTE. PhantomNet
allows users to request these resources and
configure them for particular purposes.

A centerpiece in PhantomNet’s set

of software offerings is OpenEPC. This
Evolved Packet Core (EPC) software [1],
developed by Fraunhofer FOCUS (www.
fokus.fraunhofer.de), includes much of
the functionality codified by the 3GPP
LTE version 12 specification. This includes
services for handling end-user device
(UE) attachment, handover (mobility),
policy and charging, etc. Because of license
restrictions, the OpenEPC functionality in
PhantomNet is available only in binary
form. This functionality is, however, fully
composable and configurable. (OAI and
OpenLTE are open source projects with full
source code access.)

Workflow. The bottom part of Figure 1 shows
a simplified depiction of the PhantomNet
workflow. Users of the testbed submit a
description of their desired resources and
topology as an NS script (based loosely on
the ns-2 simulator’s scripting language).
This user-supplied resource and topology
specifications are mapped to available
resources by Emulab’s constraint solver,

and then the actual resources are allocated
and configured as requested. Outside of
individual experiment resource management,
PhantomNet also relies on the Emulab
framework to manage user accounts, project
membership, disk images and storage space.

At the tail end of the provisioning process,
PhantomNet hooks in to the Emulab setup
process to perform tasks that are specific
to its unique resources. For example,
on compute nodes running OpenEPC
services, PhantomNetcode binds and
modifies configurations for the specified
core mobile network “role” (e.g., S-GW),
and also handles address management for
the created experiment. The node-side
setup code also allows for user-provided
hooks, which are run before and/or after
the rest of the PhantomNet setup pieces.
Users specify setup directives via the NS
file, which are opaquely passed through by
Emulab to the PhantomNet setup code.

Experiments. The series of diagrams
in Figure 2 illustrate a number of
different mobile networking setups
that PhantomNet can support. These
are only example configurations. I.e.,
given the flexibility of the PhantomNet
environment, various combinations and
configurations are possible.

Figure 2 (a) shows an evolved packet
core (EPC) setup where all components are
provided by OpenEPC. In this case, the end
user equipment (UEs) and the access point
(eNodeB) radio access network (RAN)
components are emulated. The topology is
simple here; users can add more emulated
UEs, eNodeB access points and other
components as desired. As in a standard
EPC deployment, once a UE attaches, its
data traffic will flow across the eNodeB,
through the S-GW, on to the P-GW, and
finally out to the Internet.

Figure 2 (b) shows a mobility setup
with two off-the-shelf Android devices
and an ip.access small cell in place of the
respective emulated components in diagram
(a). As shown in the figure, these (real)
RAN components are connected through
the programmable attenuator. The rest of
the setup provides the same functionality
as in diagram (a), however, in this case it
is instantiated as virtual machine (VM)
instances on a single physical compute node.

Figure 2 (c) shows a version of the setup

Figure 2. Example of PHANTOMNET experiments.

UE
SGW

eNBUE

MME

PGW

SGW

MME

PGWeNB

UE

UE

RAN

a

b

c SGW

MME

PGWeNB
UE

UE

{
Emulated

d
UE

UE

eNB Emulated
EPC

GetMobile April 2015 | Volume 19, Issue 232

[MoBiLE PLatforMs]

in diagram (b) where the eNodeB access
point has been replaced by one realized
with Open Air Interface soft ware running
on a compute node hosting Soft ware
Defi ned Radio hardware (the pentagon
in the diagram represents the host/radio
combination). RAN communication occurs
via the USRP or bladeRF SDR hardware,
while higher layer protocols are processed
on the host. Th e UEs are still commodity
Android devices and the rest of the EPC is
realized with OpenEPC.

Finally, Figure 2 (d) illustrates an
alternative mobile confi guration where
OpenLTE runs on a compute node and
provides RAN services via SDR. Th e same
OpenLTE node implements just enough
emulated EPC functionality to allow
unmodifi ed, standard UE devices to attach.
UE data traffi c egresses directly from the
Emulated EPC node. Alternative mobile
core technologies under investigation, e.g.,
Soft Cell [8], could be combined with such
an edge topology.

Experiment specifi cation. We have
mentioned that experimental confi gura-
tions are specifi ed through NS fi les via the
PhantomNet front-end. To illustrate the
simplicity of this approach, the following
snippet demonstrates how a user can request
a node running OpenEPC with a combined
S-GW/MME EPC role, and another acting
as PDN-GW:
...
Add node with combined S-GW/MME role.
epcnode sgw “sgw-mme-sgsn”
addtolan net_b $sgw
addtolan net_d $sgw
Add node with PDN-GW role.
epcnode pgw “pgw”
addtolan net_a $pgw
addtolan net_b $pgw
...

As shown in this extract, only a small
number of directives are required to declare
the compute node, set its role, and connect
it to the (wired) topology. Th e “net a,” “net
b,” etc., names in these directives are user-
friendly labels we have used to declare the
various LANs (these align with the labels
used in the OpenEPC documentation). Th e
PhantomNetweb user interface renders a
graphical view and resource report from the
NS specifi cation that a user can inspect to
verify his or her topology.

using PhantoMnEt
PhantomNet off ers signifi cant fl exibility
depending on the teaching or research
goals of the user. For example, setups such
as those shown in Figure 2 (a) and (b),
might be used for teaching or research
related to standard LTE/EPC functionality.
Since core mobile network functions (EPC
functions) can be run as virtual machine
instances, as shown in Figure 2 (b), the
platform might also be used to explore
network function virtualization (NFV).
Setups like Figure 2 (c) and (d) might be
used by researchers who want to modify
low level eNodeB mechanisms, e.g.,
exploring eNodeB scheduling algorithms,
or, in the case of Figure 2 (d), who are
interested in alternative mobile core
functionality, e.g., not using standard EPC
core functions.

Below we consider two additional use
cases in a bit more detail. We note that
variants of these use cases are available as
self-help tutorials and/or lab assignments

from the PhantomNet portal [7] and we
are constantly adding to this collection.

Application and network interaction.
Figure 3 shows a fairly generic experimental
setup that might be used to explore the
interaction between apps (e.g., Facebook)
running on a mobile device and the mobile
network. From left to right, the setup consist
of an Android device, connected to two
small cell eNodeBs via a programmable
attenuator array. Th e eNodeBs are connected
to the core mobile network (MME, SGW,
PGW) via a delay node (available as a
standard component in Emulab) and
fi nally to the (real) Internet. Note that the
fi gure shows both nodes that are part of
the experiment (with solid lines) as well as
shared infrastructure hosts (with dotted
lines), which experimenters can access out-
of-band to control channels and interact
with their experiment. For example, each
Android device is connected to a compute
node via USB to enable Android Debug

figurE 3. Exploring application/network interaction.

eNB

PGWSGW

MME

Delay
Node

Experiment
Control

FB
Control

FAPI

Experiment node

Control node

1

2

3

eNB

4

5

6

6
Internet

figurE 4. SMORE architecture.

UE
eNB

SGW

MME

PGWSMORE
SDN

Offload
Server

SMORE
Monitor

SMORE
Controller

Internet

Frontend
Server

1

2

3

4

5

Offload cloud

33April 2015 | Volume 19, Issue 2 GetMobile

[MOBILE PLATFORMS]

Bridge control from the host (#1). To
ensure repeatability of the experiment,
the user might deploy an orchestration
program (e.g., “FB control”, #2) to control
the application under study. If the user is
interested in understanding the behavior
of the app during a mobile handover, the
relative attenuation between the Android
device and the two eNodeB devices can be
manipulated to cause a handover (#3). If
the user is interested in the behavior of the
radio access network (RAN), the femtocell
API (FAPI) interface on the eNodeB can be
enable to realize this monitoring (#4). If the
user wants to experiment with the impact of
delay in the core network, the delay can be
manipulated via the delay node (#5). If the
user wants to understand the impact of core
network protocol interaction on application
behavior – e.g., when the device goes into
idle state, network resources are released
and requires a subsequent paging request
to be reestablished – the user can monitor
the control plane interaction on the core
elements using Wireshark (#6).

Mobile network architecture. Our second
use case is a mobile offloading architecture,
called SMORE, we have developed and
prototyped on PhantomNet[4]. Figure 4
depicts the SMORE architecture in the
context of PhantomNet. The purpose
of the SMORE architecture is to allow
offloading of selected traffic to an in-
mobile-core-network cloud platform. For
example, offloading might be performed
for delay sensitive applications. In SMORE
this is achieved, without requiring protocol
changes to the mobile core network, by
deploying an SDN framework in the core
mobile network, between the eNodeBs
and the standard core network elements
(SGW, PGW, MME). Figure 4 shows a
simplified workflow for this architecture
in PhantomNet context. A mobile device
(UE) is assumed to attach to the mobile
network as per normal. The SMORE SDN
and SMORE Monitor elements capture
and store relevant information about this
attach procedure, i.e., tunnel identifiers,
by monitoring the normal control plane
interaction (#1). In this scenario, it is
assumed that the user would access a “front-
end server” in the Internet via the normal
data path (#2). The front-end server then
explicitly requests that traffic associated

with its service be offloaded to an offload
cloud instance (#3). For example, the
front-end server might be associated with
a game matchmaking service, and request
offloading of gaming traffic to a specific
gaming engine in the offload cloud. Based
on this request and stored information
about the UE in question, the SMORE
controller will issue an offloading request
to the SMORE SDN framework (#4).
The SMORE SDN framework will then
perform the necessary decapsulation and
encapsulation functions to ensure that only
the traffic associated with the offloaded
service be directed to and from the offload
server in the cloud (#5).

Looking ahead
The PhantomNet testbed is open for
business for academic users [7]. Variants of
the use cases described here are available
from the PhantomNet portal as self-help

tutorials or example lab assignments, and
we are continuously adding to that set.
Because of hardware constraints, some
of the functionality described above,
notably access to physical RAN equipment
(Android devices, small-cell eNodeBs, and
SDR devices) is currently not available
through the PhantomNet automated
framework. (On request, we are making
it available through a semi-automated
process.) However, we are actively building
out the PhantomNet infrastructure
and we expect general availability of
this functionality in the near future. We
are actively looking for educators and
researchers to use PhantomNet, so please
contact us if you are interested.

Acknowledgments
This material is based upon work supported
by the National Science Foundation under
Grant No. 1305384. n

References
[1] OpenEPC. http://www.openepc.com/.
[2] OpenLTE. http://openlte.sourceforge.net/.
[3] Rishi Baldawa, Geoffrey Challen, Murat

Demirbas, Jay Inamdar, Taeyeon K, Steven
Y. Ko, Tevfik Kosar, Lokesh Mandvekar,
and Chunming Qiao. Phonelab: A large-
scale participatory smartphone testbed.
Poster at MobiCom, September 2011.
Whitepaper: http://sensorlab.cs.dartmouth.
edu/NSFPervasiveComputingAtScale/
pdf/1569392923.pdf

[4] Junguk Cho, Binh Nguyen, Arijit Banerjee,
Robert Ricci, Jacobus Van der Merwe, and Kirk
Webb. SMORE: Software-defined networking
mobile offloading architecture. In Proceedings of
the 4th Workshop on All Things Cellular, pages 21
– 26, August 2014.

[5] Eduardo Cuervo, Peter Gilbert, Bi Wu, and
Landon P. Cox. Crowdlab: An architecture for
volunteer mobile testbeds. In Proceedings of the
3rd International Conference on Communication
Systems & Networks, January 2011.

[6] Eraldo Damosso and Luis Correia, editors.
Digital Mobile Radio Towards Future Generation
Systems. European Co-operation in the field of
Scientific and Technical Research, 1996.

[7] Flux Research Group. PhantomNet – Mobility
Testbed. https://www.phantomnet.org/.

[8] Xin Jin, Li Erran Li, Laurent Vanbever, and
Jennifer Rexford. Softcell: Scalable and flexible
cellular core network architecture. In Proceedings
of the 9th ACM Conference on Emerging
Networking Experiments and Technologies, pages
163 – 174, December 2013.

[9] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L.
Stoller, R. Ricci, and J. Lepreau. Mobile Emulab:
A robotic wireless and sensor network testbed.

In Proceedings of the 25th IEEE International
Conference on Computer Communications, April
2006.

[10] MobileCommunicationsDepartmentat
EURECOM.OpenAirInterface. http://www.
openairinterface.org/.

[11] D. Raychaudhuri. MobilityFirst: A robust and
trustworthy mobility-centric architecture for the
future inter- net. PIMRC Keynote, 2011. http://
mobilityfirst.winlab.rutgers.edu/documents/
PIMRC_ keynote_MF_911.pdf.

[12] D. Raychaudhuri, M. Ott, and I. Seskar.
Orbit radio grid tested for evaluation of next-
generation wireless network protocols. In
Proceedings of the 1st International Conference
on Testbeds and Research Infrastructures for the
Development of Networks and Communities,
February 2005.

[13] Ivan Seskar, Kiran Nagaraja, Sam Nelson, and
Dipankar Raychaudhuri. MobilityFirst future
internet architecture project. In Proceedings of
the 7th Asian Internet Engineering Conference,
December 2011.

[14] Hamed Soroush, Nilanjan Banerjee, Aruna
Balasubramanian, Mark D. Corner, Brian Neil
Levine, and Brian Lynn. Dome: a diverse outdoor
mobile testbed. In Proceedings of the 1st ACM
International Workshop on Hot Topics of Planet-
Scale Mobility Measurements, June 2009.

[15] Brian White, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar.
An Integrated Experimental Environment
for Distributed Systems and Networks. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, December
2002.

