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Abstract
Deduplication is widely used to improve space effi-
ciency in storage systems. While much attention has
been paid to making the process of deduplication fast
and scalable, the effectiveness of deduplication can vary
dramatically depending on the data stored. We show
that many file formats suffer from a fundamental de-
sign property that is incompatible with deduplication:
they intersperse metadata with data in ways that re-
sult in otherwise identical data being different. We
examine three models for improving deduplication in
the presence of embedded metadata: deduplication-
friendly data formats, application-level post-processing,
and format-aware deduplication. Working with real-
world file formats and datasets, we find that by separating
metadata from data, deduplication ratios are improved
significantly—in some cases as dramatically as 5.6×.

1 Introduction
The amount of digital data continues to grow rapidly.
Data deduplication has been shown to be effective in
improving space efficiency for backup/archive storage
systems [3, 9, 20] and there is an increasing interest
in applying deduplication to general-purpose file sys-
tems [16,19]. The effectiveness of deduplication is there-
fore crucial to the efficiency of such storage systems.

Generally, there are three types of deduplication:
whole-file (also known as single-instance store [1]),
fixed-size blocks [14], and variable-size content-defined
chunks [12, 20]. Whole-file and fixed-block deduplica-
tion work well in some environments [7,11,15], but using
the content itself to determine deduplication unit bound-
aries is popular for two reasons. First, within a file, a
small edit that shifts the remaining content would cause
fixed-size blocks to align differently such that they would
not deduplicate. Second, even small unmodified files
may be written to the backup system by applications such
as EMC NetWorker or Symantec NetBackup as part of a
larger aggregate file to amortize overheads [18]; these
aggregate files resemble UNIX tar files.

In this position paper, we show that many file formats
suffer from a fundamental design property that is incom-
patible with deduplication: they intersperse metadata

with data in ways that result in otherwise identical data
being different. Metadata is changed more frequently,
sometimes in trivial ways, leading to poor deduplication.

We observe that there are at least three ways to adapt
ill-behaved data to deduplicating storage:

Deduplication-friendly formats The best solution is
to design file formats that separate metadata and data in a
way that preserves potential deduplication. We provide a
case study of EMC NetWorker, which has migrated to a
new deduplication-friendly data format for backup data.

Application-level post-processing When it is hard to
change the file format for an established application,
it is often possible to post-process files to produce a
new format that is better suited to deduplication. We
describe mtar, which transforms tar files into a more
deduplication-friendly format.

Format-aware deduplication Sometimes, neither of
the previous approaches is feasible, and special logic is
required within the deduplicating system. We describe
how EMC Data Domain appliances handle two cases of
file formats that use special markers interspersed with
data: tape markers for virtual tape libraries and block
headers within the Oracle RMAN backup format [13].

This paper makes three contributions. 1) It is the first
detailed study that identifies the impact of metadata on
deduplication. 2) It proposes two new formats (Common
Data Format and mtar) that improve deduplication. 3)
It evaluates the new formats with real-world datasets and
shows quantitative improvements to deduplication ratios.
We hope that this study contributes to an increased un-
derstanding of the role of metadata in deduplication, and
thus improved storage efficiency in future deduplicating
systems and file formats.

2 Deduplication-friendly Formats
In this section, we discuss our experiences with EMC
NetWorker, a commercial backup software system. Net-
Worker was first developed in the age of tape-based back-
ups and has since evolved. It uses application-specific
data formats that describe data in different formats for
different types of backup devices: disk backups and tape
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Figure 1: Deduplication ratios for workstation backups,
using the original NetWorker and deduplication-friendly
CDF formats. X-axis labels are X:Y, where X is the num-
ber of full backup generations analyzed and Y is the av-
erage internal deduplication ratio. Hosts were sorted by
the CDF deduplication ratio. The number above each bar
shows the improvement due to CDF.

backups use different formats. The format is proprietary,
but we discuss it here in general terms.

For disk-based file systems, the NetWorker save for-
mat includes these fields, among others: internal file
identifier, file name, offset and size, and file attributes.
These metadata fields precede the data of each saved file,
and some of these fields are unfriendly to deduplication.
In particular, the internal file identifier is a monotonically
increasing sequence number, so adding a file to a direc-
tory shifts the sequence number of every file that follows,
and the blocks are no longer identical. Attributes such
as timestamps can thwart deduplication; we discuss this
further in the context of tar in Section 3.

We have designed a new Common Data Format
(CDF), which separates data from metadata. The meta-
data of all files is grouped together and stored in one sec-
tion, where it references file data stored in another sec-
tion. This separation has a substantial impact on dedupli-
cation, and as a result, EMC’s backup software products
are migrating to this new format.

We evaluated CDF by estimating the deduplication
across the backups of 15 hosts using content-defined
chunks (8 KB average, 4 KB min, 12 KB max). Fin-
gerprints are checked using Bloom filters. This dataset
is a subset of the workstations dataset used by Douglis,
et al., in an earlier study [2]; here we have fewer work-
stations and evaluate deduplication ratios (defined as

original size
deduplicated size ) only for the full backups. There were
15–25 backups per workstation, totalling up to about
420 GB. The more backups there are for a host, the
higher its deduplication ratio is likely to be, since the
same data may appear more times. In addition, some
hosts have remarkably high internal deduplication: the
fraction of data within even a single backup that is elim-

inated by deduplication with other data in the same
backup.

Figure 1 shows the deduplication within each of the
datasets using the original NetWorker data format and
the deduplication-friendly CDF format. Since both the
number of backups and the internal deduplication affect
the overall deduplication ratio, these are shown (colon-
separated) as the x-axis labels for each host. (We ignore
traditional LZ compression, which is applied after dedu-
plication.) The datasets are sorted in decreasing order of
deduplication.

The backups in the original format deduplicated rather
poorly, with deduplication ratios of 3.6–6.1× even with
over 20 backups stored. Moving to the CDF format
produces deduplication ratios from 17.0–33.4×, with an
average improvement (shown in red) of 4.9×. Many
systems had aggregate deduplication better than simply
finding the same data once in each backup. We attribute
this to these workstations being engineering workstations
containing multiple copies of certain data such as source
code, leading to internal deduplication as high as 1.9×.

In addition we found that inter-host duplication re-
ported in the earlier study [2], using the original Net-
Worker format, understated the available deduplication.
For instance, the most content in common across two
hosts reported in that study was 74% of one host’s
chunks, but when considering only the data without the
impact of metadata, it rose to 93%.

3 Application-level Post-processing
Next, we look at tar as an example of an application that
has a well-defined data format that is 1) unfriendly to
deduplication; and 2) in wide use for decades, and is thus
hard to change for compatibility reasons. For this class of
applications, we propose post-processing as a way to de-
interleave data and metadata, improving deduplication.

3.1 tar
tar [6] was initially designed for archival storage on mag-
netic tapes, and the format was optimized for sequential
IO. A tar file is a sequence of entries, one per file, each
containing a file header and data blocks. The file header
includes metadata for that file, including its path, own-
ership and modification time. The tar program works in
512-byte blocks. Thus, each file entry consists of one
header block1 and many data blocks. File headers are
placed immediately before the corresponding data blocks
to avoid multiple “seeks” when extracting a single file.
An illustration of the tar format is presented in the top
half of Figure 2.

While the tar format works well for tape backups, it is
now also commonly used to store and distribute source

1Multiple header blocks are used when the file path is too long to fit
in a single header block.
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Figure 2: The tar and mtar formats and transformations
between them.

Version 1 

Header block 

Data blocks 

File 1 File 2 

Version 2 

Modified  
Header block 

Chunk1 Chunk2 Chunk3 

Chunk1 Chunk2 Chunk3 

Figure 3: In tar, changes in header blocks lead to many
new unique chunks. Chunk1 and chunk2 in version 2 are
different from those in version 1 because of changes in
header blocks.

code, binaries, and disk-based backups. tar’s decision to
place metadata and data together in its file format, how-
ever, interacts poorly with deduplicating storage. Specif-
ically, we found that when storing tar files of multiple
releases of source code, we were only able to achieve
deduplication ratios of about 2×; if we simply concate-
nated the files (thus throwing out the metadata), we were
able to achieve deduplication ratios of up to 18× (with
an average chunk size of 8 KB). The tar format clearly
interferes with deduplication.

The underlying reason is that metadata changes more
frequently than data blocks: we found that the modifica-
tion time for the same file in two consecutive releases of
Linux source code distributions is different, even when
the file’s content remains the same. By mixing more fre-
quently changing metadata with data blocks, the tar for-
mat unnecessarily introduces many more unique chunks.
An illustration of this problem is presented in Figure 3.

3.2 Migratory tar
We propose a new Migratory tar format (mtar for short),
in which we separate metadata from data blocks by co-
locating metadata blocks at the end of the mtar file.
Changes in metadata are localized and isolated from data
blocks, enabling better deduplication of the data.

An mtar file can be created by migrating a tar file.
Specifically, we scan a tar file, output all data blocks to

Software Versions Size (MiB)
automake 64 304.72
bash 23 276.69
coreutils 37 1284.49
fdisk 13 21.61
gcc 68 20315.45
gdb 32 4004.77
glibc 43 3811.48
smalltalk 33 685.39
tar 21 219.86
linux 308 98444.58

Table 1: Datasets for evaluating mtar

the mtar file and all header blocks to a temporary file,
and then concatenate the two.2 We store the offset of
the metadata block in the first block of a mtar file for
efficient access. To get back the original tar file, a re-
store operation reads the first block, finds the first header
block, reads all data blocks for that file starting from the
second block and outputs it. This process is repeated for
every file, resulting in re-creation of the original tar file.
This dynamic reorganization of the tar file is similar to
migratory compression (MC) [10]. An illustration of the
mtar format and the migrate and restore operations are
shown in Figure 2.

mtar works best when a tar file includes many small
files, because metadata interleaves with data more fre-
quently. This is generally true for source code distri-
butions, which we evaluate. For tar files that include
mostly large files, we expect less benefit from mtar. We
implemented mtar by extending GNU tar version 1.27.1
(the extension is available at https://github.com/

xinglin/mtar).

3.3 Evaluation
To evaluate mtar, we use source code distributions of
the Linux kernel and 9 GNU software packages from
ftp://ftp.gnu.org/gnu/. For each package, we ex-
amine deduplication for multiple released versions. The
software packages are shown in Table 1.

For each dataset, we download compressed tar files
and decompress them. We remove padded blocks at the
end of each tar file,3 then use our modified tar pro-
gram to convert each tar file into an mtar file. We com-
pared deduplication for tar and mtar using the fs-hasher
tool, released by Stony Brook University [4]. We use
variable-size chunking, with 8 KB as the average chunk

2Putting metadata at the end of the mtar file allows us to make a
single pass over the input tar file: the amount of metadata and data
cannot be known without reading the entire file, and appending the
smaller metadata to the larger data is more efficient than the reverse.

3tar does IO in fixed multiples of blocks, called records. It pads the
last few blocks to be a full record.
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Figure 4: Deduplication ratios for tar and mtar. The
number above each bar shows the improvement due to
mtar.

size (4 KB min, 16 KB max). An MD5 hash value is
generated for each chunk; note that this is not collision-
resistant but for our analysis an occasional error is unim-
portant. We compare bytes in unique chunks to bytes in
all chunks.

Figure 4 shows that mtar improves deduplication ra-
tios over tar by 1.1–5.3×. Using a 2 KB average chunk
size, with the same ratio for the minimal and maximal
chunk sizes, mtar achieves 1.1–3.3× improvements. For
a 32 KB average chunk size, the improvements range
from 1.1–6.2×. These results show mtar improves dedu-
plication significantly.

Next, we examined deduplication ratios for metadata
blocks and data blocks separately. We found that meta-
data blocks have no duplication, while data blocks show
high deduplication ratios: up to 16.62× for Linux. Dedu-
plication ratios for data blocks are close to our earlier ex-
periment which simply concatenates source files, show-
ing that mtar’s improvement over tar comes from in-
creased deduplication among the data blocks. It is in-
teresting to note the effect on stored (post-deduplication)
blocks: as mtar improves the deduplication ratios for
data blocks, the fraction of stored blocks that consist
of undeduplicatable metadata blocks increases signif-
icantly. For the Linux kernel, before deduplication,
95.61% are data blocks and only 4.39% are metadata
blocks. After deduplication, the unique data blocks be-
come 5.75% (16.62× deduplication ratio) while we still
have the same metadata blocks. While the percentage
of metadata blocks is small in the original data, the
weight becomes much more significant after deduplica-
tion: here, 43.3% of post-deduplication storage comes
from metadata( 4.39

(4.39+5.75) ). Future work should also
study how to store metadata efficiently.

4 Format-aware Deduplication
Formats that are not designed with deduplication in mind
may needlessly degrade deduplication effectiveness. If it

is not possible to change the data format or post-process
prior to writing it to storage, then the storage system
needs to understand and address the effects on the fly.
Here we describe two examples of format-aware dedu-
plication in EMC Data Domain appliances [20].

One of the earliest data types requiring special han-
dling was the existence of “block markers” intended for
magnetic tapes. When using a disk-based system to em-
ulate tape, the incoming stream for a “virtual tape li-
brary” (VTL) device continues to periodically include
block markers with a special bit pattern. Since these
block markers appear at fixed intervals, a shift in content
results in the marker appearing at a different point within
a chunk, and the chunk does not deduplicate. Worse, the
block markers can also contain variable metadata, even
preventing deduplication of unmodified data. Data Do-
main addressed this by allowing the system to scan for
block markers while performing chunking and finger-
printing. If one is identified, then it is removed from the
content and stored in a separate location, thus the finger-
prints of the remaining data are unaffected. Upon a read,
the marker is inserted at the specified offset to restore the
original data. Marker handling can have significant im-
pact: for example, one customer saw deduplication im-
prove from 9.9× to 16.8× with proper treatment of the
interspersed metadata (a 70% improvement).

Another data type requiring special handling arises in
Oracle RMAN backups [13]. RMAN writes fixed-sized
blocks, configurable between 2KB and 64KB, each con-
taining a block header and footer. Portions of the header
and footer can change from backup to backup even when
the block data remains unchanged, due to internal Or-
acle data formats. Additionally, RMAN may multiplex
multiple data files together into a backup and the or-
dering of multiplexing can change; this affects content-
defined chunk creation. Without special handling, there-
fore, deduplication would be degraded due to the modi-
fied metadata in the header and footer and the possibility
of a change to the order in which files were multiplexed.

To solve the above problem, Data Domain modified
the system to use block headers to delineate Oracle
blocks as the (fixed-size) unit of deduplication and to re-
move portions of the block header and footer similar to
tape marker handling: the variable portion is stripped out
and stored as a small inlined data unit within the file sys-
tem metadata, and the remaining content is fingerprinted.
By doing this deduplication becomes impervious to mul-
tiplexing order or changes isolated to the header.

In experiments doing 6 backups of an Oracle database
with a 5% change rate between backups, we observed
a 1.2–2× improvement in deduplication (4.5→5.28×
without multiplexing and 2.48→5.07× with multiplex-
ing). Thus removing block headers restores the dedupli-
cation to that expected from the underlying data.
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While we see promising results by making deduplica-
tion systems aware of data formats, this approach has a
significant drawback, requiring deduplicating appliance
manufacturers to track a moving target. Changes to the
format cause deduplication to drop, requiring engineers
to address the change. This results in a cycle of analysis,
implementation, testing, and finally a patch release—a
process that can take substantial time and effort.

5 Related Work
Most work in the deduplication space has focused on im-
proving write throughput (e.g., Data Domain [20] and
Sparse Indexing [9]), with a significant recent effort on
improving restore performance [5, 8]. However, little
work has been done to examine the impact of input data
in deduplication. The closest work to both RMAN block
special handling and mtar is a poster proposing a tar-
format aware chunking algorithm [17]. To prevent the
interference from metadata blocks, Sung, et al., partition
every header block as a deduplication chunk while in our
mtar approach, we group header blocks together and sep-
arate header blocks from data blocks. Their approach
requires changes in the chunking algorithm for existing
deduplication systems, to make them aware of the tar for-
mat. mtar does not require any changes. Their chunking
algorithm produces small chunks in the tar block size
(512 bytes). This could break minimal chunk size re-
quirements; in addition, small chunks dramatically in-
crease deduplication system metadata overhead [18].

MC [10] has similarities to mtar: both reorganize data
to improve space efficiency, but mtar uses knowledge
of the tar format to improve deduplication while MC
rewrites generic data to improve traditional compression.

6 Conclusion
We have examined the effect of metadata on deduplica-
tion effectiveness. When metadata changes frequently
over time, it is essential to separate it from data that stays
more stable and would otherwise deduplicate. This sep-
aration can occur within the deduplication process, but
that leads to complexity as well as dependencies on both
data formats and deduplication environments. It can be
done as a post-processing step, which makes the bene-
fits more generic: any deduplication back-end can ben-
efit from the conversion process, but the post-processor
still must closely track the input format. Designing a
data format to be deduplication-friendly has the best ben-
efits of all, as the application improves deduplication in a
platform-independent manner while isolating the storage
system from the data format.
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