POTASSIUM: Penetration Testing as a Service

Dallin Abendroth
Eric Eide

Richard Li
Hyun-wook Baek

Yuankai Guo
Jacobus Van der Merwe

Xing Lin
Robert Ricci

University of Utah
Salt Lake City, UT, USA

licai@cs.utah.edu

Dallin.Abendroth@utah.edu

{xinglin, guoyk, baekhw, eeide, ricci, kobus}@cs.utah.edu

Abstract

Penetration testing—the process of probing a deployed sys-
tem for security vulnerabilities—involves a fundamental ten-
sion. If one tests a production system, there is a real danger of
collateral damage; this is particularly true for systems hosted
in the cloud due to the presence of other tenants. If one tests
against a separate system brought up to model the live one,
the dynamic state of the production system is not captured,
and the value of the test is reduced. This paper presents
POTASSIUM, which provides penetration testing as a service
(PTaaS) and resolves this tension for system owners, penetra-
tion testers, and cloud providers. POTASSIUM uses techniques
originally developed for live migration of virtual machines to
clone them instead, capturing their full disk, memory, and net-
work state. POTASSIUM isolates the cloned system from the
rest of the cloud, providing confidence that side effects of the
penetration test will not harm other tenants. The penetration
tester effectively owns the cloned system, allowing testing to
be more thorough, efficient, and automatable. Experiments
with our POTASSIUM prototype show that PTaaS can detect
real-world vulnerabilities while having minimal impact on
cloud-based production systems.

Categories and Subject Descriptors K.6.5 [Management
of Computing and Information Systems]: Security and
Protection—unauthorized access; D.2.5 [Software Engi-
neering]: Testing and Debugging—testing tools

General Terms Experimentation, Security

Keywords cloud computing; OpenStack; pentesting; PTaaS
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1. Introduction

Security vulnerabilities are a fact of life in networked sys-
tems. Their causes range from application bugs to operating
system loopholes to misconfigurations—even of the appli-
ances designed to protect the network [7, 18, 39]—and more.
Given this reality, penetration testing (pentesting) has become
a critical tool for protecting networked systems. The goal of
a pentest is to uncover vulnerabilities in a target system so
that the owner of that system can take appropriate action to
correct them. A pentester acts like a real attacker, attempting
to compromise the system (“penetrate” it) in order to learn
the effectiveness of particular attacks. The pentester is likely
to employ standard “hacking” tools to check for well-known
vulnerabilities, and sophisticated tests may include attacks
that are custom-made for the specific target system.

Pentesting comes with a fundamental tension. On one
hand, running a pentest on a live, production system is ideal,
because doing so captures the exact dynamic state of the
system. On the other hand, doing so carries a real risk of
damage, causing the system to be unavailable to users (if, say,
a DoS attack succeeds) or losing data (e.g., if the system
crashes). Penetration testers today are thus left with two
choices, neither of which is ideal: test the production system
and run these risks, or set up a model of the system that may
not have exactly the same vulnerabilities. For example, if an
administrator has inadvertently made a configuration change
to the production system that weakens it, but has failed to
document this change, it would be easy to miss the change
when setting up the model. Similarly, user behavior can affect
the state of the system in important ways. For example, users
with poor passwords may provide an initial vector for attack,
or the system may have been previously compromised by a
real attacker who left a backdoor.

Things become even more problematic in cloud environ-
ments. The multi-tenant nature of a cloud means that tests
can affect not only the production system, but potentially
other, unrelated tenants as well. For example, a DoS attack
could exhaust network resources shared by many tenants, or
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attacks on the hypervisor may compromise other VMs. To
protect their infrastructure, public cloud providers typically
require that pentests be registered with them in advance, and
conform to certain types of attacks (for example, not attempt-
ing DDoS) [2]. Additionally, the time period allowed for
pentesting is limited. For example, AWS has a three-month
time limit for each pentesting authorization [2]. While these
precautions are reasonable for the cloud provider to take, the
result is that pentesting in the cloud is a cumbersome and
expensive operation, and not something that can be done
frequently.

To resolve these tensions, we propose penetration testing
as a service (PTaaS). With PTaaS, the cloud provider plays
arole in enabling the pentest, offering benefits for all three
participants: the system owner, the pentester, and the cloud
provider. The cloud provider (likely for a fee) leverages their
control over the hypervisor, network, and storage system
to create an exact clone of the production system to be
tested. The clone gives the pentester a copy of the running
system with the same dynamic state, meaning that it will
exhibit the same vulnerabilities as the production system.
The owner of the production system does not need to worry
about the pentest disrupting normal operations of the system,
and the cloud provider can place the clone in a part of its
infrastructure that will not disrupt other tenants.

We have developed a prototype PTaaS system called
PoOTASSIUM, which is implemented as an extension to Open-
Stack [30]. POTASSIUM takes techniques originally devel-
oped for live migration of virtual machines and repurposes
them for cloning: it “migrates” VMs, but keeps the originals
running instead of terminating them. The original system
continues to run and serve clients, who see only a modest
performance slowdown for the few seconds that cloning takes
to complete. The cloned copy is placed in an isolated environ-
ment, to which only the pentester has access. Because many
cloud-based systems are comprised of many VMs, POTAS-
SIUM creates consistent snapshots of groups of VMs. POTAS-
STUM includes a proof-of-concept, fully automated pentester
based on the Metasploit Framework [32], but we envision that
POTASSTUM opens up a marketplace for a range of pentesting
services in the cloud, from simple, automated tests to cus-
tomized, in-depth campaigns performed by human experts.

We make the following contributions. First, we introduce
the notion of PTaaS and identify the value of having the cloud
provider participate in pentesting: namely, that it simultane-
ously preserves the availability and integrity of the production
system, the validity of the tests run by the pentester, and the
safety of the cloud. Second, we design an architecture for a
PTaaS system, POTASSTUM, that clones entire systems and
places the clones in isolated environments suitable for pen-
testing. Third, we present a prototype of POTASSIUM and use
it to demonstrate a proof-of-concept, automated pentester. We
show that POTASSIUM scales to systems comprising dozens
of VMs and imposes little impact on the production system.
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Figure 1. POTASSIUM’s workflow. POTASSIUM clones a
production project in the cloud for the purpose of pentesting.

2. POTASSIUM Architecture

To set up and perform a penetration test, POTASSIUM
performs the steps illustrated by the example depicted in
Figure 1. The initial state of the cloud is represented in
step A: a tenant has allocated a collection of resources in-
cluding several VMs and a network. Following OpenStack
convention, we refer to such a collection of resources as a
project; we refer to a user-deployed project as a production
project. In step B, POTASSIUM creates a new project: using
the standard APIs of the cloud management system, it obtains
a description of the production project and creates a new
project matching that description. We refer to the copy as the
pentest project. At this point, the pentest project has the same
structure as the production project, but not the same internal
state. In step C, POTASSIUM creates a consistent snapshot of
the production project—including all VM memory contents,
disk contents, and network packets in flight—and inserts that
state into the pentest project. Finally, in step D, POTASSIUM
allocates “attacking” resources, adds them to the pentest
project, and performs the pentest. The pentest project now
contains two parts: the mirror subproject, which is the set
of resources that mirror the production project, and the atz-
tack subproject, which is the set of resources introduced for
pentesting. (“Subproject” is not a standard OpenStack term;
we introduce the terminology to distinguish between the
mirrored resources and the attacking resources.) POTASSTUM
ensures that the pentest project is isolated so that the effects
of the penetration test cannot escape. Step D in Figure 1 illus-
trates an attack subproject that emulates an external attacker.
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Figure 2. POTASSIUM’s architecture. POTASSIUM’s servers
communicate with cloud management services as well as
agents and attackers running on the cloud’s compute nodes.

POTASSTUM can insert attacking VMs into the mirror subpro-
ject’s internal networks, and “commandeer” VMs within the
mirror subproject, to emulate internal attacks.

The software architecture that realizes the workflow is
shown in Figure 2. There is one instance of POTASSIUM that
manages all pentesting requests for projects within the cloud,;
in this sense, POTASSIUM is an extension of the cloud infras-
tructure. It contains a component responsible for each of the
workflow stages described above as well as an overall Con-
troller that receives pentesting requests and orchestrates the
workflow. The Project Creator is responsible for (standard)
cloud-related actions, i.e., creating pentest projects, creat-
ing mirror subprojects from production projects’ metadata,
creating attack subprojects, interconnecting mirror and at-
tack subprojects, and properly isolating pentest projects as a
whole. The Project Creator interacts with the standard cloud
control architecture: in an OpenStack cloud, this involves
interacting with Nova, Neutron, Keystone, and other Open-
Stack components. The Snapshot Manager and the Snapshot
Agents are responsible for replicating the state of a production
project within a mirror subproject. Finally, the Pentest Man-
ager orchestrates the actual pentesting process. Specifically,
every attack subproject contains a Coordinator that manages
the Attackers within the subproject. The Pentest Manager is
PoTASSIUM’s interface to the Coordinators.

POTASSIUM’s software architecture is motivated by sev-
eral design principles that are necessary to enable penetration
testing as a service (PTaaS). These include validity, safety,
availability, scalability, and extensibility.

Validity. First and foremost, the penetration-testing results
obtained by PTaaS must be valid: they should provide the
same information as a pentest performed against the original
production project. To address this principle, POTASSIUM’s
Project Creator, Snapshot Manager, and Snapshot Agents
cooperate to replicate the full state of the production project
within (the mirror subproject of) a pentest project.

POTASSIUM creates the mirror in two steps, as previously
illustrated in Figure 1. The first step is straightforward: the
Project Creator obtains the metadata of the production project
and invokes the cloud platform to create a mirror with the
same metadata. The details of this process are described
in Section 3.1. The second step, recreating the full state of
the VMs and network in the production project, is more
challenging. To implement this step, the Snapshot Agents
perform live, consistent checkpointing over the production
project. Consistency means that the state of the production
project is captured at a single, logical instant of time: in
particular, once a VM has completed its snapshot, any packet
that it sends will not be delivered until the recipient VM
has also completed its snapshot. Our implementation of
consistent, live checkpointing is presented in Section 3.2.

Safety. PTaaS must be safe in the sense that pentesting
activity must not affect production projects or other systems
on the Internet. This includes all the activity within the pentest
project: not only the attacks from the attack subproject, but
also the activity of the mirror subproject, normal or otherwise.
This challenge is addressed by the Project Creator, which
uses the standard APIs of the cloud platform to disconnect
the pentest project from any other network—save for an
access route that allows POTASSIUM’s Pentest Manager to
communicate with the attack Coordinator within the pentest
project (Section 3.4). Only the Coordinator is allowed to send
traffic outside of the pentest project, and it is configured not
to relay traffic between the “inside” and the “outside” of the
pentest project.

POTASSTUM trusts the cloud platform to implement its
network-configuration features correctly. POTASSIUM also
trusts the cloud-provided hypervisors to operate correctly.
POTASSIUM is not intended for pentests that seek to compro-
mise the underlying cloud platform or hypervisors.

Availability. PTaaS seeks to have a low impact on the
availability and performance of the production project. To
meet this goal, POTASSIUM does two things. First, the Project
Creator can place pentest projects on physical resources
that are separate from those used by production projects
(Figure 1). This is possible using standard cloud APIs such
as availability zones (Section 3.4). Second, the Snapshot
Agents perform live consistent checkpointing, as previously
mentioned. Live checkpointing [10] allows the production
system to execute while it is being checkpointed: while
performance may be reduced during the short time it takes to
checkpoint, the project remains available to clients.

Scalability. POTASSIUM’s architecture allows pentesters
to take advantage of the scalability provided by clouds in
two ways. First, POTASSIUM can manage multiple pentest
projects at once. These might correspond to independent
production projects—i.e., two separate users, who happen
to be running pentests at the same time—or they might
correspond to concurrent pentests over a single production



project. Second, POTASSIUM implements multiple strategies
for allocating and positioning Attackers against a mirror
subproject (Section 3.3), e.g., to emulate both external and
internal attacks. The ability to allocate large numbers of
attacker VMs allows POTASSIUM to trade space for time,
by performing pentests against multiple hosts in parallel.

Extensibility. Our prototype POTASSIUM implementation
uses the Metasploit Framework [32] to perform actual pentest-
ing. Our architecture is, however, not specific to Metasploit.
Its design is amenable to different choices for pentesting tools;
the Coordinator serves as an adapter between POTASSIUM’s
Pentest Manager and the implementations of the Attackers.

More generally, the separation between POTASSIUM’s
“core” and the Coordinators and Attackers supports realiza-
tions of POTASSIUM that support various business relation-
ships. We have described POTASSTUM so far in the context
of a cloud provider that itself provides the complete PTaaS
to its customers. In an alternative model, the cloud provider
might simply provide the low-level mechanisms (consistent
project checkpointing and isolation) and allow third parties
to perform the actual penetration testing.

3. Implementation

We implemented a prototype of the POTASSIUM architecture
within the OpenStack cloud environment, using the Open-
Stack Juno release [30]. While we were able to implement
significant parts of POTASSIUM using unmodified OpenStack
APIs, our implementation of live, consistent checkpointing
required modifications to the QEMU hypervisor [6] and the
“libvirt” virtualization API [35] that are underlying compo-
nents of OpenStack. Our POTASSIUM prototype uses the
Metasploit Framework [32] to perform actual pentesting.

3.1 Mirror Subproject Creation

To ensure that the pentesting performed within a pentest
project produces valid results—representing potential vul-
nerabilities in the original, production project—POTASSIUM
requires two things. First, within the pentest project, the mir-
ror subproject’s configuration must be an exact replica of the
production project’s configuration. Second, the mirror subpro-
ject’s state must be initialized from a consistent checkpoint
of the VMs in the production project. This section details
the implementation of POTASSIUM’s Project Creator, which
addresses the first requirement. (The implementation of con-
sistent checkpointing is detailed in Section 3.2.)

The basic steps of creating the mirror subproject are
straightforward. The Project Creator invokes OpenStack’s
standard APIs to obtain all the relevant metadata associated
with the production project, and it then invokes those APIs
again to create the pentest project and its mirror subproject,
which has the same configuration as the production project.
The metadata handled by the Project Creator includes user
accounts, network quotas, compute quotas, network and
subnet IDs, router configuration, port information, security

groups, and all the information related to VMs. The Project
Creator obtains this metadata from three standard OpenStack
services: identity services (Keystone), networking services
(Neutron), and compute services (Nova).

OpenStack uses its own internal conventions in assign-
ing (unique) IDs to cloud components. To properly copy the
configuration of the production project, the Project Creator
maintains a mapping between the IDs used in the produc-
tion project and the corresponding component IDs used in
the mirror subproject. For example, a subnet in the produc-
tion project will be associated with a specific network. By
consulting its mapping from production component IDs to
mirror component IDs, the Project Creator can ensure that
this relationship is maintained in the mirror.

Every VM in the mirror subproject is a clone of a VM in
the production project. For a VM in the mirror subproject to
function properly, it must be created with the same IP and
MAC layer addresses that its original had in the production
project. (Note that, in the production project, the assigned IP
and MAC addresses are typically unimportant and might
simply be allocated via automated mechanisms such as
DHCP.) The Project Creator explicitly creates ports with
the appropriate attributes to ensure this consistency.

To restore a suspended VM (i.e., continue its execution),
OpenStack finds the VM’s state by reading a file. In addition
to the VM’s memory contents, the file also contains metadata
that identifies the VM instance, its virtual NICs, and so on.
The files created from snapshotting the production project in-
clude the IDs of components in the production project; to use
these files for VMs in the pentest project, POTASSIUM must
replace the identifiers within the files to refer to components
of the pentest project.

The Project Creator achieves this in two steps as follows.
First, the Project Creator builds the mirror subproject by
copying the configuration of the production project. Note that
the mirror’s VMs initially refer to the “base images” that were
used to start the VMs within the production project—not the
current snapshots of those VMs. The Project Creator suspends
the VMs in the mirror subproject, and it extracts the relevant
component IDs from the metadata of those suspended VMs.
Second, to “retarget” the snapshot images of the production-
project VMs into the corresponding mirror-subproject VMs,
the Project Creator copies the snapshot image files. In the
copied files, it replaces the component IDs—which refer to
components of the production project—with the IDs that
refer to the corresponding components within the mirror
subproject. To perform snapshotting and retargeting quickly,
the Project Creator uses multithreading to perform work in
parallel: taking snapshots, copying image files, and replacing
IDs. At this point, the VMs in the mirror subproject can
be restored via standard OpenStack mechanisms, and they
execute the cloned state from the production project.

OpenStack supports “floating IP addresses,” which are
public IP addresses that can be dynamically assigned to VMs.



Packet
t0
VMO
t4
VM1
t5 t6
VM2 i l—)

VM paused VM resumed
Snapshot starts Time

Figure 3. Example checkpoint timeline. For live, consistent
checkpointing, packet P2 must be delivered after time #4.

When the Project Creator creates the pentest project, it does
not copy any of the production project’s floating IP addresses,
because doing so would lead to obvious conflicts. Moreover,
because the pentest project is intended to be isolated from
the Internet, there is no purpose to copying the production
project’s floating IPs. Practically speaking, this means that
the production project’s active sessions with external hosts
will not be maintained in the mirror subproject (a desired
outcome) and they will continue in the production project
(also a desired outcome).

POTASSIUM creates closed, isolated pentest projects
(Section 3.4) in order to satisfy its design principles. In
our current implementation, POTASSIUM clones only the
resources that are internal to a production project: e.g., VMs
and their local storage. To bring external resources (such
as cloud-wide storage or database services) into this closed
system, it would be necessary to create exact, isolated copies
of them that would be accessible to pentest projects. For some
services, such as block storage, this may be straightforward
to achieve using existing snapshot mechanisms, while for
others, it may be infeasible. We leave the exploration of these
topics as future work.

3.2 Live Consistent Checkpointing

PoTASSIUM’s Snapshot Manager and Snapshot Agents imple-
ment a live, consistent checkpointing algorithm that creates
snapshots of a production project. Live means that the snap-
shot is taken transparently; consistent means that the final
snapshot captures the state of the production project at a sin-
gle, logical instant of time. If POTASSIUM were to capture the
states of individual VMs in isolation, without regard to their
ongoing communication, the resulting snapshot could be in-
consistent. We explain this problem with the aid of Figure 3,
which also depicts the solution that POTASSIUM implements
to prevent this.

The figure shows an example timeline in which POTAS-
STUM creates a snapshot for a project containing three VMs.
At time 70, the checkpointing algorithm begins: POTASSTUM’s
Snapshot Manager issues commands to the Snapshot Agents,
which in turn command the VMs to snapshot themselves.
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Figure 4. VM state machine for consistent checkpointing.

Each VM starts to save its memory state by performing itera-
tive memory copying, a technique previously developed for
live VM migration [10]. The time required to complete the
snapshot may vary across the VMs, depending on their mem-
ory utilizations and CPU loads. In this example, VMO pauses
itself at time 7/ and starts to save its final dirty memory pages
and create a snapshot of its disk. (Packets such as P1, sent to
a paused VM, are dropped; we revisit this issue later.) When
VMO completes its snapshot at time 72, it resumes normal
execution. VM1 and VM2 perform the same steps, but at
different times.

Without a consistent snapshot mechanism, when VMO
resumes from its snapshot at time ¢2, it may start to send
packets such as P2 to VM1. As shown by the dashed arrow in
the figure, VM1 receives this packet while it is still creating its
snapshot. Thus, in the state represented by VM1’s snapshot
(captured at #3), VM1 has already received packet P2. In
VMO’s snapshot, however, the packet has not yet been sent.
The snapshots of the two VMs are thus inconsistent.

To create consistent snapshots over a collection of VMs,
any packets sent by VMs that have completed their snapshots
must not be delivered to VMs that have not completed their
snapshots. We refer to such packets as inconsistent packets
hereafter. An inconsistent packet must either be (1) dropped
or (2) buffered and released to the receiving VM only after
the receiving VM completes its snapshot.

For our POTASSTUM prototype, we implemented a con-
sistent, distributed snapshot protocol within QEMU and lib-
virt, based on approaches proposed in VNSnap [21] and hot-
Snap [12]. Our implementation uses QEMU’s live-snapshot
mechanism to independently take a live snapshot for each in-
dividual VM in the production project. It uses packet coloring
and buffering to deal with inconsistent packets.

In our distributed live-snapshot implementation, each
VM in a production project is associated with an instance
of the state machine shown in Figure 4. A VM begins in
the DEFAULT state. When POTASSIUM needs to check-
point a production project, the Snapshot Manager sends a
START_SNAPSHOT command to each VM, via the Snapshot
Agents. Each VM transitions to the STARTED state and be-



gins to take its snapshot. When a VM completes its snapshot,
it transitions to the COMPLETED state. The Snapshot Man-
ager periodically checks the status of each VM, and when all
have completed their snapshots, the Snapshot Manager sends
an ALL_SNAPSHOTS_COMPLETE command to every VM.
Each VM then transitions to the ALL._COMPLETED state.

Our implementation uses message coloring and buffering
to achieve consistent distributed snapshots [12]. Any packet
sent from a post-snapshot VM (i.e., one that has completed
its snapshot) is marked as a “red packet” by setting a bit in
the EtherType field of the Ethernet packet header. (That bit
is not normally set for IP-over-Ethernet packets.) When a
VM finishes its snapshot and is in the COMPLETED state,
it starts to send red packets (e.g., P2 in Figure 3). When
a VM receives a red packet but has not yet completed its
snapshot (in the DEFAULT or STARTED state), the red packet
is buffered. The red packet is released to the receiving VM
only when it has finished its snapshot.! When all VMs finish
their snapshots and transition to the ALL,_COMPLETED state,
they resume sending regular packets. POTASSIUM’s Snapshot
Manager resets the VMs to the DEFAULT state when there
are no more red packets in the network.

In our POTASSTUM prototype, packets that are sent to a
paused VM during checkpointing—e.g., PI in Figure 3—are
dropped. We chose not to handle these packets in a special
way in our prototype because (1) pause times are usually
quite short and (2) applications generally either use reliable
transmission protocols such as TCP or are tolerant with
respect to packet loss. While lost packets may have an impact
on the production project, they do not affect the consistency
of the snapshots created by our POTASSIUM prototype.

3.3 Pentesting Modes

By exploiting the flexibility of the cloud platform and the fact
that pentesting is always performed on a (throwaway) copy
of the production project, POTASSIUM can realize a variety
of pentesting modes or scenarios. The modes implemented
in our POTASSIUM prototype are depicted in Figure 5. In
all modes, POTASSIUM injects an attack subproject into
the project that is to be pentested. The attack subproject
encompasses a group of Attacker VMs, connected to a
Coordinator via a control network, that are the “launch points”
for the pentest.

The top diagram in Figure 5 depicts internal mode. POTAS-
SIUM creates multiple Attackers and attaches one to each
network within the mirror subproject. In this way, the At-
tackers can directly perform penetration testing on VMs in
the mirror subproject, regardless of whether those VMs are
reachable from an external network. This mode is useful for
understanding the overall vulnerabilities in the project.

'To ensure that packets are released to the VM in the order they were
received, POTASSIUM buffers all packets to the VM once the VM has
received a red packet.
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Figure 5. Pentesting modes. POTASSIUM uses security
groups to control traffic within a pentest project. In addition,
the mirror subproject is cut off from the external network.

The middle diagram in Figure 5 shows external mode.
In this case, the attack subproject is attached to the mirror
subproject so as to emulate an external attacker. This mode
is therefore useful for understanding how well the project’s
defenses stand up against an external attacker. External mode
might be used, for example, to test the correctness of security
group rules that are deployed to defend against a known
vulnerability in the project that cannot otherwise be fixed.

The bottom diagram in Figure 5 depicts pivot mode. Here,
pentesting is performed in multiple rounds from Attackers
that replace VMs in the mirror subproject. This mode imitates
the way an intruder is able to attack new targets from the point
of view of an already compromised VM [8]. In addition to
potentially discovering actual chained vulnerabilities in the
project, this mode is also useful to perform “what-if” analyses:



i.e., understanding which parts of a multi-tier setup might be
vulnerable if the front tier is compromised.

3.4 Isolated Pentesting

Our POTASSIUM implementation employs multiple isolation
mechanisms to ensure that pentesting activities do not impact
other cloud tenants. First, when creating a pentest project,
POTASSIUM selects an availability zone separate from the
ones where production projects are created. This ensures that
pentest projects are not co-resident with production projects.

Second, as shown in the diagrams of Figure 5, connectivity
between the mirror subproject and the external network is
disabled. This prevents traffic from the mirror subproject—
normal, or related to pentesting—from “leaking” out to the
external world via its normal path to the Internet.

Third, our POTASSTUM implementation uses OpenStack
security groups to allow the Attackers to be controlled by
the Coordinator, and to allow Attackers to reach VMs in the
mirror subproject, while preventing Attackers from reaching
the external network. The dash-outlined regions in Figure 5
depict the application of the different security groups in each
of the three pentesting modes.

e The Coordinator is created with a PublicSG security

group, allowing the Coordinator to send and receive traffic
freely. This allows the Coordinator to be reachable from
PoTASSIUM’s Pentest Manager (Figure 2).
The VMs within the mirror subproject are associated with
a TargetSG security group, in addition to their normal
security groups that were cloned from the production
project. TargetSG acts as a tag that can be used to easily
allow connectivity between the attack subproject and the
mirror subproject, without impacting the original security
group rules associated with the mirror subproject VMs.

e Attackers are associated with an AttackerSG security
group. AttackerSG is only allowed to talk to PublicSG and
TargetSG. This enables Attackers to receive pentesting
commands from, and return results to, the Coordinator.

In pivot mode, security groups alone are insufficient to
prevent Attackers from communicating with the external
network. When an Attacker stands-in for a VM in the mirror
subproject, it effectively “inherits” that VM’s security groups,
which may allow access to the Internet. To prevent this,
POTASSIUM creates an additional network that links only
the Coordinator and the router to the outside world. In this
way, the Attacker can at most reach the Coordinator, even if
its inherited security groups would allow it to go further.

3.5 Automated Pentesting

Our POTASSIUM prototype uses the Metasploit Framework
(MSF) [32] to perform automatic penetration testing. MSF
is the open-source version of Metasploit, the most popular
pentesting software environment today. It comes with literally
thousands of modules for discovering and exploiting vulnera-
bilities in real-world systems. New modules are continually
added to MSF as new vulnerabilities are found [31].

In our POTASSTUM implementation, the pentesting process
is started by a call from the Pentest Manager to the pentest
project’s Coordinator. The Pentest Manager sends informa-
tion about the mirror subproject, including the IP addresses of
the VMs, and an “assignment sheet” that directs Attackers to
particular VMs within the mirror subproject. The Coordinator
then relays commands to the Attackers, which run in parallel.
The Coordinator collects results by asking Attackers for their
“sessions” on the target VMs: a session is a state, created by
an exploit, in which a real attacker could execute arbitrary
code. At the end of pentesting, the Coordinator generates a
report that catalogs the discovered vulnerabilities. For each
successful exploit, the data in the report includes MSF’s name
for the exploit, its description, and the payload used to open
the session. The report may also include the privileges ob-
tained by a successful exploit and the service or application
version targeted by the exploit.

Automated pentesting is a valuable, fast, and inexpensive
way to find vulnerabilities—but it is also limited. A tool like
MSF cannot replicate a human pentester’s ability to make use
of discovered information (e.g., user names and keys) and
to perform new combinations of actions that lead to compro-
mises. We envision, but have not yet implemented, additions
to POTASSTUM to aid human-guided pentesting. In these addi-
tions, systems like MSF would be tools in the human expert’s
arsenal. We have consulted with professional pentesters at
our institution, and they told us that POTASSIUM’s ability to
create isolated copies of production environments for testing
would be a “lifesaver” for their work [17]. More generally,
as a cloud-provided service, POTASSIUM potentially creates
a market for a range of pentesting services, from simple,
automated tests to in-depth, human-driven analyses.

4. Evaluation

We evaluated our POTASSIUM prototype using an OpenStack
Juno instance deployed within the Utah Emulab network
testbed [36]. We measured the end-to-end time to perform
POTASSIUM-style pentesting as a function of the number of
VMs in the production project (Section 4.1). We evaluated
the performance impact of the checkpointing procedure on
a production system in terms of web-server response delay
(Section 4.2). We validated the effectiveness of our live, con-
sistent checkpointing implementation by comparing it to a
per-VM (inconsistent) checkpointing procedure (Section 4.3).
Finally, we tested POTASSIUM’s ability to reveal vulnerabili-
ties with two case studies (Section 4.4 and Section 4.5). Our
overall conclusions are that our prototype scales well for pro-
duction systems comprising up to 100 VMs; that the impact
of live, consistent checkpointing on the production system
is limited and similar to the impact of live, non-consistent
checkpointing; and that our prototype can successfully detect
security vulnerabilities in our test cases.

We set up our OpenStack environment on seven physical
Emulab nodes configured in a LAN. One served as the



Production System Size 1 10 20 30 40 50 60 70 80 90 100
Number of Attackers 1 2 4 6 8 10 12 14 16 18 20
Mirror Creation 35.20 81.83 136.43 189.90 23492 270.05 337.69 382.18 44579 511.89 556.38
Metadata Cloning 2.70 10.05 18.64 26.78 36.00 45.42 53.43 62.33 72.23 80.11 87.38
Taking Snapshot 2.56 3.41 4.87 5.48 7.07 8.26 9.68 10.05 12.51 12.39 13.83
Copying files 16.74 37.82 59.38 81.44 105.10 120.81 167.24 178.84 226.12 271.23 298.78
Replacing IDs 13.20 30.55 53.54 76.20 86.75 95.56 107.34 130.94 13494 148.16 156.39
Attacker Creation 14.31 25.73 44.04 65.84 9234 11694 151.64 19031 234.11 282.79 33442
Penetration Testing 11.00 41.52 48.00 49.00 48.65 49.00 49.03 48.42 48.76 49.72 50.00
Miscellaneous 0.20 0.13 0.14 0.15 0.12 0.17 0.15 0.13 0.14 0.14 0.13
Total 60.71 149.21 228.61 304.89 376.03 436.16 538.51 621.04 729.80 844.54 940.93

Table 1. Time (secs) to perform pentesting on projects up to 100 VMs. Ifalicized rows describe substeps of Mirror Creation.
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Figure 6. Time to perform pentesting on projects up to
100 VMs. The lines in the graph plot data from the major
rows of Table 1.

standard OpenStack “controller node”; a second served as the
standard “network node,” hosting various network services;
and a third hosted our POTASSIUM servers. The remaining
four nodes were configured as “compute nodes”—nodes that
host VM instances—running the Nova Compute service and
our modified versions of QEMU and libvirt. Each compute
node was equipped with four 2.2 GHz Intel Xeon E5-4620
8-core CPUs, 128 GB memory, one 250 GB SATA disk
(7,200 rpm), and six 600 GB SAS disks (10K rpm). The
network link speed between nodes was 1 Gbps.

Each compute node was configured to use three of its
available disks. The 250 GB disk contained the node’s root
file system. One 600 GB disk contained the virtual disks
of VMs created by OpenStack, and a second 600 GB disk
contained the memory-state files of suspended VMs.

Finally, we divided the four computes nodes among two
availability zones: two nodes for hosting production projects,
and two nodes for hosting pentest projects.

4.1 Performance and Scalability of POTASSIUM

To measure the performance and scalability of our system, we
created a series of eleven production projects with increasing
size and measured the time it takes for POTASSIUM to

Figure 7. Time to perform the substeps of Mirror Creation
for projects up to 100 VMs. The lines plot data from the
italicized rows of Table 1.

complete external-mode pentesting. The sizes of the projects
ranged from 1 to 100 VMs. For each project, we used a single
disk image containing a vulnerable version of the WordPress
blogging software to boot all of the project’s VMs. Each VM
is assigned a floating IP address, making it accessible from
the external network and exposing the vulnerability to the
outside world.

We used POTASSTIUM to perform pentesting on each of
our test projects and measured the time taken by the different
steps within the overall process. For each project, POTAS-
SIUM created one Attacker for every five nodes in the produc-
tion project. Because the purpose of these experiments was
to measure the “cloud-related actions” taken by POTASSIUM,
the Attackers did not perform comprehensive testing; instead,
we tailored them to look only for the WordPress vulnerability.
In each run, POTASSIUM detected all of the vulnerable VMs.

The performance results of our end-to-end time trials are
shown in Table 1, Figure 6, and Figure 7. The table shows
that the absolute times suggest the practical feasibility for
our pentesting as a service approach. For example, the total
time for creating a pentest project associated with 30 VM
production project is 940 seconds (less than 16 minutes),
which is a reasonable time for such an operation. Further,
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‘ Median ‘ 95% ‘ Maximum ‘ Average

Baseline 67.4 68.6 71.5 66.93
Non-consistent 69.6 | 526.7 1,397.8 152.49
Consistent 68.5 | 739.3 1,587.3 165.93

Table 2. Characterization of HTTP response times (in ms).

as Figure 6 illustrates, the total time grows linearly with
the size of the production project; we conclude that our
implementation shows practical scalability.

Within each POTASSIUM run, the most time-consuming
step is the creation of the mirror subproject, and the time
within that step is broken down in Figure 7. In that figure,
one can see that copying the memory-state files of check-
pointed VMs—from the production project to the pentest
project, and thus across physical hosts in separate availabil-
ity zones—accounts for the most time, and that time grows
fastest as the size of the production project increases. This is
because our cloud setup included only four compute nodes.
Many VMs were therefore co-resident on our physical hosts,
and consequently, the performance of memory-state image
copying and ID replacement could be limited by available
disk and network I/O bandwidth on our compute nodes. In a
cloud with more physical hosts, we expect that these bottle-
necks would be reduced.

In Table 1, the Taking Snapshot row shows the total time
needed for the Snapshot Agents to complete their work. For
any single VM in the production project, the pause time
is much lower. (Recall from Section 3.2 that VMs in the
production project are only unavailable during their pause
times.) In our production project with 100 VMs, the pause
time of each VM ranged from 88 ms to 757 ms, with an
average of 300 ms.

4.2 TImpact on the Production Project

We further measured the impact of live, consistent checkpoint-
ing on production projects by performing a series of experi-
ments on a pair of communicating VMs within our OpenStack

Snapshot ‘ Memory ‘ Disk ‘ Total

Type Snapshot | Snapshot | Snapshot
Non-consistent 710.9 196.5 907.4
Consistent 692.5 203.6 896.1

Table 3. Average time required to checkpoint a VM (in ms).

setup. Each VM was a “small.m1” machine (2 VCPUs, 2 GB
memory, 20 GB disk) running Ubuntu 14.04. One VM ran
an Apache web server hosting WordPress; the other ran a
MySQL database. We used Autobench [27] to measure the
time it takes for this system to respond to HTTP requests un-
der different situations as described below. We ran Autobench
on a third VM and placed it on a different physical machine in
order to simplify the test being performed. We wrote a script
that repeatedly invokes Autobench to fetch the default Word-
Press “Hello World.” Our script directs Autobench to send
10 requests in one second. Autobench waits for the replies
and then terminates; our script then runs Autobench again.

We measured the HTTP response-time characteristics of
our WordPress setup under three scenarios. In the first, we
added no checkpointing activity to the system: this allowed us
to obtain the baseline performance of the system. In the sec-
ond, we subjected the VMs to periodic, live, non-consistent
checkpointing activity. In the third, we subjected the VMs
to periodic, live, consistent checkpointing as performed by
POTASSIUM. In the second and third scenarios, we performed
ten snapshots during the approximately 120 seconds of the
test. This is an unrealistic checkpointing frequency for a
POTASSIUM deployment: realistically, POTASSIUM would
checkpoint a production project only rarely, once per pentest
run. In our experiments, however, we performed frequent
checkpointing in order to better understand the observable
impact of checkpointing.

Figure 8 illustrates the HTTP response times of our system
under the three test conditions. The graph shows that under
normal (non-checkpointing) conditions, almost all requests
complete within 70 ms. In both of the checkpointing scenar-
ios, approximately 20% of the responses take longer than
70 ms. Table 2 shows the median, 95th percentile, maximum,
and average response time in each of our three test scenarios.

To help explain these results, we measured the time taken
by the various snapshotting steps for both non-consistent and
consistent live checkpointing. By performing ten checkpoints
under each algorithm, we obtained the memory-snapshot and
disk-snapshot times shown in Table 3. The total snapshot time
is about 900 ms, the fourth column in Table 3, for both cases
but the actual pause time is only /220 ms, which includes the
time it takes to save dirty memory pages for the last iteration
and to take a disk snapshot. During the period a checkpoint
is taken, the time to respond to a request can increase, since
more load is present in the system (to save memory and disk
states). Although checkpointing clearly has a performance
impact, we conclude from our experiments that its impact is
limited, because individual checkpoint times are short.
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Our results also show that the performance impacts of non-
consistent and consistent checkpointing are similar. Figure 8
shows that in our experiments, consistent checkpointing
“outperformed” non-consistent checkpointing over a limited
range: under consistent checkpointing, a larger fraction of the
responses were received in under 400 ms. Although consistent
checkpointing buffers packets (which could reduce packet
losses in our experiment), we believe this counterintuitive
result arises mostly from our test setup. Under consistent
checkpointing, the “long tail” of the response-time curve
causes our request generator to send fewer requests during our
120-second test, which reduces the server’s overall workload.

4.3 Validation of Checkpoint Consistency

To evaluate our implementation of live, consistent checkpoint-
ing, we used a cluster of three VMs as illustrated in Figure 9.
Each VM ran Ubuntu 12.04. We configured each VM with
a different memory size—VMO with 1 GB, VM1 with 2 GB,
and VM2 with 3 GB—so that each would take a different
amount of time to save its memory state during checkpoint-
ing. This causes the VMs to pause at different times, and
thus creates the potential for inconsistent packets as defined
in Section 3.2. As shown in Figure 9, VM1 communicates
via UDP with both VMO0 and VM2 in a bidirectional manner.
Each of our UDP senders transmits about 600 packets per
second.

We used this setup to measure lost packets and inconsistent
packets, for normal (non-consistent) checkpointing and our
consistent checkpointing implementation. Lost packets occur
when a receiving VM is paused (P/ in Figure 3), and incon-
sistent packets happen when a packet from a post-snapshot
VM is delivered to a VM that has not completed its snapshot
(P2 in Figure 3). We present the results from one run of each
checkpointing algorithm, in Table 4, with reference to the
timeline of Figure 3 to illustrate events. Table 4 shows the
numbers of lost and inconsistent packets that occurred during
our experiments. Other runs show a similar distribution of
lost and inconsistent packets.

Normal snapshot. A normal checkpoint causes about
130 packet losses for each UDP stream in the three-VM
production project. This is in line with our observations that
our UDP senders transmit about 600 packets per second and
the average VM pause time is about 220 ms. In the mirror sub-
project created from the non-consistent snapshot, we saw a
large number of inconsistent packets for streams VM0— VM1
and VM1—VM?2. Consider the VMO—VM1I stream: VMO

Normal Snapshot | Consistent Snapshot

Prod. Prod.
UDP Stream | Project | Mirror | Project Mirror
VYM0—-VM1 147 527 0 0
VM1—-VMO0 111 702 98 794
VM1-VM2 138 428 0 24
VM2—-VM1 148 603 0 1,300

Table 4. Lost and inconsistent packets during normal (non-
consistent) and consistent checkpointing. Plain-text numbers
count lost packets; boldface counts inconsistent packets.

resumed at time 2 and continued sending packets to VM.
Because this is the normal snapshot case, the packets received
between ¢2 and #4 affected the state of VM1’s snapshot, al-
though with respect to VMO’s snapshot, they had not yet been
sent. In other words, these packets cause an inconsistency
between the VMO and VM1 snapshots.

We also saw packet loss in the mirror subproject, for
streams VM 1— VMO and VM2—VMI. When VM1 is restored
from the snapshot, it starts sending packets from the time at
which it was paused (z3). However, when VMO is restored
from the snapshot, it is still expecting packets sent by VM1
about a second earlier, at /. A similar situation occurs for
the stream VM2—VM].

Consistent snapshot. Under consistent checkpointing, in
the production system, we saw packet loss only in the
VM 1— VMO stream. With reference to Figure 3, these are the
P1 packets that are dropped while VMO is paused between
tI and #2. Once VMO finishes its snapshot, it starts to send
red packets. Once VM1 receives a red packet, it buffers all
subsequent packets until it completes its snapshot. (Even
when a VM is paused during live checkpointing, the network
driver can still buffer incoming packets for that VM.) Thus,
no packet losses happen on VM1 or VM2. VM1 buffered
2,370 packets during t2-t4 and VM2 buffered 785 packets
during t4—15.

In the mirror subproject created from the consistent snap-
shot, we did not see any inconsistent packets. This validates
our implementations of packet coloring and buffering for
creating consistent snapshots.

In the stream VM2—VMI, we saw 1,300 lost packets.
Those occurred because once VMO starts to send red packets
at 12, VM1 starts to buffer packets: this includes the packets
sent by VM2. While these packets are buffered and even-
tually delivered to VM1 in the production system, they are
effectively lost to the snapshot of VM1 that will be resumed
in the mirror system.

We saw 24 packets lost in VM1—VM?2. That could be
because VM1 was restarted a little earlier than VM2.

4.4 Case Study 1: Pentesting a LAMP Stack

We tested our POTASSIUM implementation by using it to
pentest a small but representative cloud server deployment.
LAMP (Linux, Apache, MySQL, and PHP) is one of the most
popular platforms for deploying services within clouds, and
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Figure 10. Project setup for evaluating pivot-mode pentest-
ing. Only the shaded interfaces are vulnerable to attack.

WordPress is one of the most common content-management
systems built atop MySQL and PHP. We used this software
to validate POTASSIUM’s ability to discover vulnerabilities in
cloud-hosted systems.

Metasploit includes 34 (and counting) exploits for various
configurations of WordPress. We focused on a WordPress
plugin with a vulnerability that was disclosed on December 3,
2014 [28]; the Metasploit module that exploits this vulnerabil-
ity was published on December 12. (The Metasploit module
is called wp_downloadmanager_upload.) The vulnerabil-
ity allows uploading arbitrary files to the server by sending
carefully constructed HTTP requests.

We created a production project to host the vulnerable
configuration of WordPress within in our OpenStack environ-
ment. We then invoked POTASSIUM to perform pentesting,
using its various pentesting modes (Section 3.3). From the
configuration of the production project, we could predict
which vulnerabilities should be exposed to which Attackers
within the pentest project. For example, in external mode,
only the “first layer” of the pentest project’s topology was
exposed, mimicking an outsider’s view of the project. POTAS-
SIUM correctly detected the expected vulnerabilities in all
test cases.

4.5 Case Study 2: Pivot-Mode Pentesting

We performed a second case study to highlight the effective-
ness of pivot-mode pentesting. We built a production project
with a carefully distributed set of vulnerabilities and a known,
potential “chain” of compromises. We used POTASSIUM to
perform pentesting against this project to determine whether
it could find the compromise chains.

The network topology and the vulnerability distribution for
this case study are shown in Figure 10. The topology included
three networks with a layered structure: Front, Middle, and
Back. Each of the four VMs ran a vulnerable configuration
of WordPress atop the LAMP stack. Two of the VMs were
equipped with two NICs and connect to two networks, but
on these nodes, the Apache web server listened on only one
interface: thus, those nodes were vulnerable only on a single

Stage Time
Mirror Creation 227.59
Attacker Creation 717.56
Penetration Testing | 35.99
Miscellaneous 0.87
Total 342.01

Table 5. Time (secs) to perform pivot-mode pentesting on
(multiple clones of) the project shown in Figure 10.

VM ‘ Directly Exploited | Indirectly Exploited
Front-1

Front-2 Front-1

Middle-1 | Front-2, Back-1 Front-1

Back-1 Middle-1 Front-2, Front-1

Table 6. Compromise chains found by pivot-mode pentest-
ing. From Middle-1 or Back-1, all the other VMs can be
exploited.

interface. The Front-2 VM was vulnerable only from the
Middle network, and the Middle-1 VM was vulnerable only
from the Back network. Per pivot-mode pentesting, once a
machine is exploited, POTASSIUM assumes that the attacker
can gain full control of the system and be able to start the
next round of attacking.

We used our POTASSIUM implementation to perform
pivot-mode pentesting on this project. As detailed in Section 3,
the process includes mirror subproject creation, attack sub-
project creation, and penetration testing. The time taken for
each stage in this case study is shown in Table 5. Our imple-
mentation of pivot-mode pentesting creates multiple pentest
projects at once so that it can run the pentesting rounds in
parallel. However, only actual pentesting is performed in
parallel: the multiple pentest projects are created one by one.
Thus, most of the time in this case study is consumed by
mirror and attacker creation.

The compromise chains discovered by POTASSIUM are
shown in Table 6. The results correspond to what one would
expect from an analysis of Figure 10. We therefore conclude
that our implementation of pivot-mode pentesting is able to
perform “what-if” analyses and detect possible compromise
scenarios in a cloud project.

5. Related Work

As a cloud service, POTASSIUM is related to a variety of
proposed “as-a-service” cloud offerings [1, 4, 5, 13, 14, 16,
23, 24, 34, 38]. Of these, IT-as-a-service [24] and Disaster-
Recovery-as-a-service [38] are conceptually most related to
our work. Like POTASSTUM, they deal with the use of cloud
computing to facilitate tasks performed by IT professionals.
The panel discussion summarized in [24] deals with IT tasks
in general, while using the cloud to efficiently realize disaster
recovery is proposed in [38]. To our knowledge, however, our
work is the first to propose the use of cloud computing to
realize penetration testing as a cloud service.
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Given the importance of pentesting as a tool for IT security
professionals, it has been explored along several directions
that relate to our work. In Dan Lambright’s invited talk pre-
sented at USENIX LISA 2014 [22], he recognized the inher-
ent tension between cloud tenants who want to run pentests
on their system and cloud providers who do not want to run
the risk of harming their infrastructure or tenants. He sug-
gested that cloud tenants could use Docker containers [26]
to simulate attacks on their cloud resources. To solve the
scalability issues with penetration testing in large and com-
plicated systems, like cloud platforms, Bugcrowd proposed
crowd-sourcing pentests on demand [9, 37]. Commercial pen-
testing services of cloud resources are available. For example,
the “CloudInspect” service allows pentesting of AWS-hosted
VMs [11]. From the company’s web site, cloud users are able
to log into their AWS account and order pentesting services
against their running (production) cloud resources. As a third
party, there are certain restrictions on the types of VMs they
are able to pentest [11].

Previous efforts have proposed the automation of the
actual pentesting process in a manner similar to our approach
in POTASSTUM. Jianbin et al. [15] proposed an architecture
that consists of pentest managers and executors, similar to the
PoTAssTUM Coordinator and Attackers. Kamongi et al. [19]
proposed a system, called Nemesis, for finding and evaluating
vulnerabilities in the cloud. Building on their own earlier
work [20], the Nemesis system interacts with a database of
vulnerabilities and existing knowledge about the production
system. Like POTASSIUM, it makes use of Metasploit to
execute the potential exploits.

The key difference between our work and these earlier
pentesting efforts is that POTASSIUM performs the automated
pentesting on a cloned version of the production system. As
we have shown, this property is critical to reduce the impact
on the production system and to allow more extensive and
potentially invasive tests to be performed.

The consistent checkpointing approach we use in POTAS-
SIUM is inspired by several earlier efforts on building pro-
tocols for taking consistent distributed snapshots. Kangar-
lou et al. [21] proposed to use live migration to realize
live snapshots and they implemented a message coloring
approach in routers to realize consistent snapshots. In their
approach, however, they do not buffer packets that could lead
to inconsistent snapshots, but simply drop them. In hotSnap,
Cui et al. [12] designed a mechanism to rapidly take a snap-
shot by using a Copy-On-Write approach for saving both
the memory and disk state. They also implemented packet
coloring and buffer packets that could lead to inconsistent
snapshots. Our consistent distributed snapshot implementa-
tion is based on the hotSnap system design.

Because of the multi-tenant nature of the cloud, physical
resources are shared by multiple users and this can lead to
interference and unpredictable performance. Schad et al. [33]
observed that the performance of CPU, memory speed, I/O

and network bandwidth in Amazon EC2 is at least an order
of magnitude less stable than an equivalent physical cluster.
At different times of a day, the performance of the AWS
also changes [29]. The “noisy-neighbor” problem [25] has
been discussed in previous work when it comes to VM co-
residence. Many solutions have been proposed, for instance
Angel et al. proposed the Pulsar system to ensure throughput
guarantees across all resources [3]. While these approaches
could be applied to our work, we opted for a pragmatic but
effective solution in realizing POTASSIUM. Specifically, to
avoid performance interference with the production system,
all virtual machines associated with pentesting are placed in
a different cloud availability zone, which does not share any
physical resources with the production system.

6. Conclusion

In this paper, we proposed penetration testing as a service
(PTaaS) to enhance security for cloud platforms. We devel-
oped a PTaaS architecture, called POTASSIUM, and proto-
typed it by extending the OpenStack cloud environment.
Specifically, we realized POTASSIUM by extending Open-
Stack with project mirroring, a live, consistent checkpointing
mechanism, and an automated pentesting module. By taking
a live snapshot of a production system, POTASSIUM captures
the exact state of the running system into a mirror subproject.
By running penetration testing against this mirror subproject,
the impact on the production system can be minimized. In
our evaluation, we showed that our system is practical, can
successfully detect real-world vulnerabilities, and that the
impact on the production system is limited.
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