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ABSTRACT
We present MobiScud, an evolutionary mobile network
architecture that integrates cloud and SDN technologies
into a standard mobile network in backwards compat-
ible fashion. MobiScud enables personalized virtual
machines to seamlessly “follow” mobile network users
as they move around.

CCS Concepts
•Networks→Network architectures; Cloud com-
puting; Mobile networks;

Keywords
Mobile Network; Cloud Computing; Service Offloading;
Software Define Networking (SDN).

1. INTRODUCTION
Recent years have seen phenomenal growth in wireless

communications with the advent of smartphones and
various other wireless devices that have transformed
our lifestyle and communication patterns. Further, with
the rapid adoption of wearables and Internet of Things
(IoT), new devices and ideas are emerging at an unimag-
inable speed, dramatically changing the way we interact
with cyber space (e.g., the Google Glass, smart wrist-
bands, the iWatch etc.).

Imagine what amazing things we can do with them:
You wear a pair of Google glasses. It continuously does

∗Scud clouds are low clouds that often move faster than
their associated storm clouds.
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facial recognition for you. Whenever you meet someone
you recently met, it reminds you of his name and when
you two met the last time. More magically, maybe your
Google glasses can analyze the other person’s subtle fa-
cial expressions and body gestures, telling you whether
he is lying or not. Another example is a smart wrist-
band that carries a lot of sensors. It collects and records
statistics of your body, like your heart rate, blood pres-
sure and body fat. With sufficient data, it performs
data mining and analysis, giving you suggestions on
your diet, the amount of sleep you should have and rec-
ommended types and amount of exercise. To quote the
CloudLet paper [10], we are entering an “entirely new
world in which mobile computing seamlessly augments
users’ cognitive abilities via compute-intensive capabil-
ities such as speech recognition, natural language pro-
cessing, computer vision and graphics, machine learn-
ing, augmented reality, planning, and decision making.”
We echo the CloudLet vision that to realize such com-
putationally demanding applications with strict latency
requirements, we need an infrastructure that allows a
mobile user to instantiate and interact with a resource-
rich customized virtual compute instance, i.e., a person-
alized cloud [10, 11].

However, the current cellular network architecture,
typically composed of monolithic hardware boxes de-
ployed in a few centralized operator locations, is ill-
suited to deal with the phenomenal growth of mobile
devices and demanding application requirements [13].
Hence, operators are gradually moving towards highly
distributed mobile network architectures [9], leverag-
ing emerging technological trends like network function
virtualization (NFV) and software defined networking
(SDN), to meet the requirements (e.g., scalability, flexi-
bility, low latency) of future applications [9]. Additional
constraints like backward compatibility and standards
compliance render the job of realizing a CloudLet-like
architecture in the current cellular network even more
challenging.

Aligned with these trends and challenges, we propose
MobiScud, an evolutionary mobile network architec-
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ture that integrates cloud and SDN technologies into
a standard mobile network in a backwards compatible
fashion. MobiScud assumes the presence of a highly
distributed cloud platform in, or close to, the RAN (Ra-
dio Access Network) [9], where user-specific customized
private VMs are instantiated, and leverages SDN capa-
bilities to offload low-latency, compute-intensive appli-
cations to the private VM instances [10, 11]. Further-
more, MobiScud monitors the control plane message
exchanges between the user and the mobile network,
and migrates the private VM to the nearest cloud loca-
tion as the user moves (hands over) from one base sta-
tion to another. MobiScud leverages existing live VM
migration techniques and dynamically updates SDN flow
rules to ensure that ongoing connections are not dis-
rupted due to user mobility.

Our contributions are summarized as follows,

•We design MobiScud, a practical cloud computing
architecture for mobile (LTE/EPC) networks that in-
tegrates cloud and SDN technologies into a standard
mobile network in backwards compatible fashion.

•We explore how this architecture can support low la-
tency services/applications in a distributed mobile net-
work. Specifically, we use the example of a personal
VM [10, 11] moving with the user to show how fu-
ture applications can benefit from a close interaction
between the cloud and the mobile network.

•We show the feasibility of MobiScud using a pro-
totype implementation in PhantomNet, an LTE/EPC
testbed [7].

2. BACKGROUND AND MOTIVATION
Current LTE/EPC Architecture. We briefly de-

scribe the LTE/EPC mobile network architecture, typ-
ical deployment and user-plane (data plane) protocol
stack. As shown in Figure 1, the LTE/EPC architec-
ture consists of two main components, the radio access
network (RAN) and the evolved packet core (EPC) net-
work. The RAN consists of eNodeBs (access points)
which connect to User Equipment (UE), like cellphones,
through a radio link and sends packets received from

the UE to Serving Gateway (SGW) in the core net-
work. The EPC consists of the Mobility Management
Entity (MME), Serving Gateway (SGW), and Packet
Data Network Gateway (PGW). The MME performs
UE registration, authentication, and mobility manage-
ment. The SGW and the PGW are responsible for
routing/forwarding the data packets from all UEs to
and from the external network. When a UE attaches
to the mobile network, control messages are exchanged
between the eNodeB, MME and SGW. A successful at-
tach procedure will result in tunnels being established
between the eNodeB and the SGW and between the
SGW and the PGW, (e.g., t1 and t2 in Figure 1). These
tunnels realize the data path (user plane) which the UE
uses to send and receive packets.

Figure 1 also depicts typical deployment information
that is relevant to our approach. EPC components
(MME, SGW and PGW) are typically deployed in a
small number of centralized locations (or central of-
fices), e.g., on the order of ten in the US [13]. This
means that each such centralized location serves a large
geographic area, with thousands of eNodeBs. LTE/EPC
is a packet-based architecture, which means that there
exist a packet“transport network“, i.e., a regular IP net-
work, in between the eNodeBs and the centralized EPC
locations. For efficiency, connectivity from a set of eN-
odeBs gets aggregated at regional aggregation points.
As shown in Figure 1 these aggregation points are called
(or co-located with) mobile telephone switching offices
(MTSOs) and there are an order of magnitude more
MTSOs than centralized EPC locations in a typical de-
ployment. Finally, since eNodeBs realize the RAN func-
tionality in mobile networks, the eNodeB footprint is
highly distributed with hundreds of thousands of cell
sites for a typical provider [1].

Motivation. MobiScud is strongly motivated by
the CloudLets [10] work. CloudLets envisions the pres-
ence of a private virtual compute instance in a cloud,
located very close to a mobile user, to enable offloading
of compute-intensive applications with extremely low
latency requirements, (e.g., facial recognition, speech
translation, augmented reality etc.). With the advent
of next-generation devices like Google Glass, the iWatch
and autonomous cars, the vision of CloudLet is now an
imminent reality. Unfortunately, the centralized nature
of the current mobile network architecture is ill suited
to support the requirements of a CloudLet-like archi-
tecture. First, all user traffic is currently routed (tun-
neled) to centralized operator gateways before exiting
to the Internet and cloud instances, leading to path
inflation which results in unpredictable and long de-
lays [14]. Second, applications like cognitive augmen-
tation and personal healthcare require exchange of ex-
tremely sensitive and private information between the
mobile devices and the cloud. As others have argued,
sending such data over untrusted networks to a far away
third-party cloud exposes them to unnecessary privacy
related attacks [11]. Last, the current cellular network is



composed of costly, closed-source, standards compliant
vendor specific equipment. It is difficult to add cus-
tomized functionality to these elements to support new
application requirements.

We designed MobiScud to address these limitations
and challenges. We take inspiration from our earlier
work on the SMORE architecture [4] which allows of-
floading of selected traffic to an in-network cloud plat-
form using SDN capabilities, but does not require any
change to the existing standards-based interactions. Mo-
biScud follows the same practical design principle of
backward compatibility.

Finally, we observe that mobile operators are grad-
ually moving towards a highly distributed mobile net-
work architecture and leveraging emerging technological
trends, like network function virtualization (NFV) and
software defined networking (SDN), to meet the require-
ments of the future applications [9]. Our work is aligned
with these current trends and we assume the presence
of a highly distributed cloud platform in or close to the
RAN, where a user-specific customized private VM is
instantiated. We leverage SDN capabilities to offload
low-latency, compute-intensive applications to the pri-
vate VM instance.
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3. ARCHITECTURE
The MobiScud architecture is depicted in Figure 2.

The figure also attempts to depict the fact that, as mo-
bile operators adopt NFV and SDN technologies [2],
we can expect the distinction between RAN, transport
and core networks to become less well defined as func-
tionality can be more flexibly realized on virtualized
platforms. Specifically, for our work on MobiScud, we
assume the presence of an operator cloud platform at
each eNodeB location.

The MobiScud control (MC) function interfaces with
the mobile network, the operator cloud and the SDN
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Figure 3: MobiScud workflow

substrate to selectively offload traffic to a private VM
hosted in the cloud for low latency user applications.
The MobiScud control function consists of two logical
entities. First, the monitor is responsible for monitoring
the control plane signaling messages exchanged between
mobile network elements and extracting the necessary
data to allow MobiScud to be aware of mobile net-
work activity (e.g., connection and handover requests).
Second, the controller uses this data extracted by the
monitor and orchestrates between the SDN substrate
and the provider cloud to realize MobiScud function-
ality. Specifically, the controller uses the extracted data
plane parameters to construct relevant flow rules (rout-
ing, GTP encapsulation and decapsulation) for the SDN
substrate to enable application-specific offloading, and
further interacts with the cloud platform to instantiate
and migrate the private VM instance across the oper-
ator cloud as the user moves from one location to an-
other. We assume connectivity between the distributed
SDN and cloud instances, providing connectivity be-
tween MobiScud controllers and enabling the migra-
tion of personalized VMs between cloud instances. Note
that MobiScud allows the flexibility of offloading only
selected application traffic that can leverage the benefit
of a closely located private VM. All other user traffic
continues to flow through the default path via the cen-
tralized gateways.

Figure 3 depicts a workflow of MobiScud’s opera-



Figure 4: Combined handover, SDN and personal VM migration signaling

tion. Figure 3(a), shows the initial state when a UE
connects to the network. A private VM (PVM) in-
stance is created for it in the operator cloud co-located
with the corresponding eNodeB (eNB1, Cloud1). The
MobiScud monitor function monitors the control plane
messages exchanged for the attach procedure between
the eNodeB and the MME, and extracts the necessary
data and control plane parameters like GTP tunnel IDs,
S1AP session identifiers etc., for offloading. The Mo-
biScud controller uses this information to construct
flow rules for the SDN substrate (SDN1) that decap-
sulates uplink GTP-U packets (from the eNodeB to the
SGW) belonging to the offloaded application and routes
the same to the private VM instance. Similarly, the
downlink packets from the private VM instance are en-
capsulated as GTP-U packets with relevant tunnel-IDs
before they are routed back to the eNodeBs. (#1 in
Figure 3.) This encapsulation/decapsulation allows the
offloading function to be transparent to the eNodeBs
and does not require any change to the standard inter-
action between the eNodeB and the core network [4].

As the UE moves towards eNB2, signaling messages
are exchanged between the source eNodeB (eNB1) and
the target eNobeB (eNB2) via the MME. The MobiS-
cud monitor function watches for handover events in
the control plane message exchanges. In this case MC2
will detect the imminent handover to eNB2 and will
trigger the PVM migration actions. MC2 extracts the
GTP tunnel IDs for the SGW and the target eNodeB
(eNB2) from the S1AP Handover Request message and
Handover Request Acknowledgement message respec-
tively. The target MC (MC2) then adds flow rules in

the target SDN (SDN2) to enable path switch (#2) and
also sends a flow modification request to the source MC
(MC1) (#3). The source MC (MC1), in turn, performs
the necessary flow rule modifications in the source SDN
(SDN1) (#4), to ensure that offloaded traffic from the
target eNodeB can still reach the private VM located
at the source cloud (Cloud1) once the handover is com-
pleted. At this point, the source MC (MC1) also proac-
tively starts live VM migration (#5 in Figure 3(b)), to
migrate the personal user VM from the source cloud
(Cloud1) to the target cloud (Cloud 2) (#6). Once the
handover completes, data between the UE and the PVM
will flow via eNB2, SDN2, SDN1 to the PVM which is
still active in Cloud1 (#7). Once VM migration is com-
pleted, the target MC (MC2) is notified and it changes
the flow rules in SDN2 (#8 in Figure 3(c)), so that the
user traffic is directly offloaded to the new PVM loca-
tion in Cloud2 (#9). At the same time, the source MC
(MC1) deletes the old flow rules from the source SDN
(SDN1) (#10), thereby disconnecting the indirect path
between the target eNodeB and the source cloud.

Figure 4 shows a ladder diagram depicting this inter-
action between handover signaling and MobiScud sig-
naling related to SDN and PVM migration in slightly
more detail.

4. EVALUATION
We have prototyped the MobiScud architecture in

the PhantomNet testbed [7]. We have implemented all
components as described in Section 3. For PVM migra-
tion we used standard Xen live migration [6]. For our
prototype we further simplified the VM migration pro-



Figure 5: Evaluation setup in PhanomNet

Figure 6: RTT of different services

cess by making use of network-based storage (iSCSI) for
the VM and the storage is not migrated. Since solutions
to migrate storage together with the VM memory state
exist [3, 12], this is not a fundamental limitation.

Our evaluation setup is depicted in Figure 5. For our
evaluation we used a simple emulated RAN as well as
an emulated UE available in PhantomNet. This mode
is sufficient for our purposes as our focus is on the in-
tegration of SDN and cloud technologies on the mobile
core side of the eNodeBs. As shown in the figure we
added delay nodes in the evaluation setup to represent
realistic delay between the various network elements.
Specifically, the delay between the UE and each of the
eNodeBs is 4ms, between eNodeB and MTSO is 5ms,
between SGW and PGW is 18 ms and between PGW
and Internet is 8ms. Additionally, we set 2ms delay be-
tween eNodeBs and assume the MTSO and SGW/MME
are co-located (0 ms delay).

To perform our evaluation we compared the round-
trip-time (RTT) of MobiScud with that of accessing
a website in the Internet, as well as with an offloading
solution where the cloud platform is deployed at the
MTSO location, i.e., the solution presented in SMORE [4].
To show the value of the moving PVM solution in Mo-
biScud, we also compare this with the case where the
VM is not migrated. In our evaluation, the UE is ini-
tially attached to eNodeB1. We then trigger an S1
handover procedure from eNodeB1 to eNodeB2. Af-

ter a short time we similarly trigger a handover from
eNodeB2 to eNodeB3. We send ping packets from the
UE to a network based server in each case to determine
the RTT.

RTT Comparison: The RTT results for our evalua-
tion is shown in Figure 6. To allow for easy comparison
we plot the results of all four experiments in one figure.

The red line in Figure 6 is the RTT between the UE
and an Internet-based server (Google’s public DNS).
The average RTT in this case is 85.7 ms and S1-Interface
handover does not impact the RTT value. The blue line
in Figure 6 is the RTT between the UE and SMORE
offloading, with the cloud server located at the MTSO.
The average RTT is 19.3 ms and the S1-Interface han-
dover again has no impact on the RTT. The yellow line
in Figure 6 is the RTT between the UE and the PVM in
the MobiScud setup for the case where no VM migra-
tion is triggered. I.e., in this case the PVM is allocated
at the cloud associated with eNodeB1 and it remains
there while the UE move to eNodeB2 and eNodeB3 re-
spectively. As can be expected, the RTT increases with
a small step after each S1 handover. The first han-
dover happens at packet sequence number 3300 and the
average RTT increases from 9.05 ms to 13.4 ms. The
second handover occurs at sequence number 7200 and
the average RTT increases from 13.4 ms to 17.6 ms.
Finally the green line is the RTT between the UE and
the PVM for the case where a handover triggers VM
migration. After the first handover, at around sequence
number 600, the average RTT initially increases from
9.03 ms to 13.66 ms. Once VM migration completes,
at sequence number 4000, the PVM is located at eN-
odeB2 and the average RTT reduces back to 9.06ms.
Similarly, after the second handover the RTT increases
to 13.99 ms and returns to 9.1 ms once the PVM is
successfully migrated.

Figure 6 also shows packet loss due to the final step
of the VM migration process after each migration [6].
(The green line is interrupted just before the RTT re-
duces.) This period of VM “downtime” is 2.87 s and
1.44 s respectively for the two migrations. This down-
time is the result of the (unoptimized) default Xen mi-
gration used in our setup. Finally, the figure shows the
migration time during the first handover to be approx-
imately 14 s, while the second migration took almost
7 s. The difference between the respective downtimes
and migration times for the two handovers appears to
be a function of the performance and location of phys-
ical nodes allocated as cloud nodes in the PhantomNet
experiment.

While the downtime related to VM live migration can
be optimized [12], the downtime due to migration does
present a potential tradeoff point in our approach. De-
pending on factors such as the application’s tolerance
for loss versus latency, the nature of user mobility and
cloud and network conditions, the system may adapt
the frequency of VM migration. We plan to explore
these tradeoffs as part of our future work.



5. RELATED WORK
Our work is motivated by, and related to, industry

trends towards more distributed mobile network archi-
tectures [9] and the use of network function virtualiza-
tion (NFV) and software defined networking (SDN) [2].
MobiScud borrows from our own earlier work on the
SMORE architecture [4]. Architecturally, however, Mo-
biScud takes a much more extreme position in assum-
ing a highly distributed cloud platform close to (or co-
located) with the RAN footprint, to enable very low
latency applications.

From a service perspective, MobiScud’s personal VM
approach was motivated by the Cloudlet work [10] and
also more recent work that used personal VMs in the
context of online-social-networks to store user personal
data [11]. However, unlike our work in MobiScud,
these previous efforts did not address the networking
aspects of such an approach, effectively treating the net-
work as a black box.

Our use of live VM migration is related to a fairly well
explored space [6, 12], and indeed we use this compo-
nent unmodified in MobiScud. However, to our knowl-
edge, MobiScud is the first attempt to apply this tech-
nology in the context of mobile networks.

Our work is also related to various cloud offloading
efforts [5, 8]. These efforts largely focused on how and
when to perform offloading, and again largely treated
the network as a black box.

6. CONCLUSION
We presented the MobiScud architecture. To en-

sure that low latency between the mobile device and
the cloud platform is maintained as users move around,
MobiScud makes use of live virtual machine migra-
tion to move a personal VM associated with each user
in concert with mobile network handovers associated
with the user. We prototyped and evaluated the Mo-
biScud architecture in an LTE/EPC testbed. As part
of our future work we plan to explore the appropriate
“distributedness” and scalability tradeoffs of cloud plat-
forms in mobile networks.
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