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ABSTRACT
Repeating research in computer science requires more than
just code and data: it requires an appropriate environment
in which to run experiments. In some cases, this environ-
ment appears fairly straightforward: it consists of a par-
ticular operating system and set of required libraries. In
many cases, however, it is considerably more complex: the
execution environment may be an entire network, may in-
volve complex and fragile configuration of the dependencies,
or may require large amounts of resources in terms of com-
putation cycles, network bandwidth, or storage. Even the
“straightforward” case turns out to be surprisingly intricate:
there may be explicit or hidden dependencies on compilers,
kernel quirks, details of the ISA, etc. The result is that
when one tries to repeat published results, creating an envi-
ronment sufficiently similar to one in which the experiment
was originally run can be troublesome; this problem only
gets worse as time passes. What the computer science com-
munity needs, then, are environments that have the explicit
goal of enabling repeatable research. This paper outlines
the problem of repeatable research environments, presents
a set of requirements for such environments, and describes
one facility that attempts to address them.

1. INTRODUCTION
Many parts of computer science have a strong empirical com-
ponent: for example, research in fields as diverse as operat-
ing systems, networking, storage systems, data mining, for-
mal verification, databases, cloud computing, machine learn-
ing, image analysis, etc. all require experiments to estab-
lish credibility. Conducting and publishing research in these
areas necessarily involves setting up an appropriate exper-
imental environment, running experiments, and analyzing
data. Demonstrating the value of new research usually in-
volves comparing a new system to an existing one to show
better performance, scalability, or functionality under some
set of assumptions.
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Basic repeatability (that is, obtaining the same results un-
der the same conditions) is only a stepping stone to more
complex experimental goals: demonstrating improvement
over previously published results, revisiting results under
changed assumptions, or (less commonly in computer sci-
ence) validating earlier results by reproducing them under
independent implementation, etc. Repeatability is, however,
too often overlooked; many others have noted this problem
as well [29, 4]. The effect is that when a new system is com-
pared to an older one, or new results are compared to old,
it can be difficult to tell how much of the difference between
the systems are attributable to the systems themselves, and
how much are attributable to a difference in environment. If
new experiments are compared directly against older num-
bers, are the environments similar enough in the factors that
matter for the numbers to be directly comparable? What
are “the factors that matter” for a particular set of experi-
ments? If the older system is re-run by the authors of the
newer experiment, are there any differences in the way it was
run, compiled, or configured that might cause the results to
be significantly different than originally reported?1 Without
the basic standard of repeatability, it can be be difficult or
impossible to answer these questions.

On the surface, it would appear that repeating experiments
in computer science should be simple: the artifacts that are
evaluated are usually software, often with some associated
dataset. To repeat published results, “all”one must do is run
the software and analyze its performance or the results that
it returns. Embedded in this seemingly simple sequence of
events, however, is a large obstacle: one must have an ap-
propriate environment in which to run the software. Again,
on the surface, this does not sound like a particularly hard
problem: software by its very nature runs in an artificially-
constructed world, so re-creating a particular environment
should be a simple matter. The problem, of course, is that
the behavior of a piece of software is the result not only of
the software itself, but of a large number of variables that are
part of its execution environment: these include the proces-
sor it runs on, its attached memory and storage systems, the
network, operating system, compiler, libraries, etc. This is
only the tip of the iceberg however, as the version, configura-

1Many times, of course, we vary these factors intentionally,
but when we do so, it should be deliberate and with the
purpose of testing a hypothesis, and not happen by acci-
dent (and perhaps go unnoticed) simply because we had a
different environment easily at hand.



tion options, and even compile-time options for any of these
components can affect an experiment. As an example of
the sensitivity of experimental results to their environment,
Mytkowicz et al. [18] showed that a commonplace compiler
experiment (evaluating speedup due to optimization passes)
can be affected by such seemly innocuous factors as the or-
der in which linking is performed and the size of the UNIX
environment (total size of environment variables.)

Variations of these problems are encountered throughout
computing, and various package management systems [27,
6, 3] have been created to handle software and configura-
tion dependencies. There are two problems, however, that
make package management, in itself, an insufficient solution
to the problem of repeatable experimentation. First, the
standard of scientific repeatability sets a higher bar than
the problem addressed by package managers: the question
we need answered is not “will it run?” but “will it run, and
produce the same results?” Answering the second question
in the affirmative often means having a detailed record of
the exact hardware on which the experiment was originally
performed. Second, most research software is written to
validate a particular scientific hypothesis, after which the
author often moves on to other pursuits. Porting the soft-
ware to environments other than the exact one used by the
original experimenters (operating system, compiler version,
etc.) is extraneous to proving the hypothesis, so it is ne-
glected; this neglect creates an undesirable barrier to use
of that software by others. Because research software often
depends on other research software, frequently configured in
specific and non-standard ways, the proper environment can
be particularly fragile and hard to reconstruct.

A recent study by Collberg et al. [4] attempted to find,
download, compile, and run source code for over 600 pa-
pers published in top-tier conferences and journals. Their
finding was that, when software was available at all (which
was a disappointingly low 44% of the time), it was difficult
to get it to run; the authors were only able to run 44% of
the research code that they could obtain. An (in-progress)
follow-up by another group [9] suggests that, with more time
and domain knowledge, many of the problems encountered
in the first study are surmountable; however, the point re-
mains that it is often difficult to run research software. Of
the 126 compilation problems reported in [4], approximately
half (60) are directly attributable to a difficulty in producing
an appropriate environment (missing or failed dependencies,
unavailability of the appropriate hardware or operating sys-
tem, etc.), and another quarter (35) may be due to this
cause.

We argue that, in most cases, the initial author of a piece
of research software should not be burdened with porting it
to other platforms or future releases of operating systems,
nor should this burden be placed (where it falls by default
today) on subsequent researchers wanting to use that soft-
ware. Instead, the position we take in this paper is that it
should be possible to re-create the original conditions under
which research artifacts were built, executed, and evaluated.
To be clear, we do not claim that research software should
never be well-packaged, made portable, or maintained over
time; on the contrary, much of the software we value most
has these properties. Our claim is instead that these prop-

erties are not necessarily required for all research software,
but that it should nonetheless be possible to repeat pub-
lished experiments. In the remainder of this paper, we lay
out a set of properties for repeatable experimentation envi-
ronments, and describe the design of a facility, Apt, that is
a particular embodiment of them.

2. REPEATABLE ENVIRONMENTS
We begin by defining the terms we use to describe repeatable
research.

2.1 Definitions
For the purposes of this paper, we use a simple definition of
a repeatable experiment : an experiment consists of execut-
ing a system under test (SUT) in some execution environ-
ment with some set of input data. The experiment produces
some some set of output data that is to be used to evalu-
ate the system; this data may be the output of the SUT
itself and/or performance data gathered about the execu-
tion. The execution environment is the closure of all arti-
facts, both equipment and software, needed to execute the
experiment, as well as the configuration of those artifacts:
this includes processors, RAM, disks, networks, operating
systems, libraries, etc. For an experiment to be considered
repeatable, a re-execution of the SUT must produce the same
output data; when the output data are performance data or
some other data with a nondeterministic component, they
should fall within some acceptable ε of the original values.

In some experiments, the output of the SUT is the primary
result of interest: for example, how well does a new algo-
rithm learn features in a dataset, or what are the sizes of
the routing tables produced by a particular routing algo-
rithm? For these types of experiments, getting the same
output may not require an identical execution environment.
It can still be be difficult, however, to re-create a suitable
environment for repeat experimentation: the SUT may re-
quire specific versions of operating systems or libraries, may
require large amounts of computational or storage resources,
may require a network of connected systems for execution,
or may depend on fragile software stacks that are themselves
research artifacts. These all represent barriers to repeating
the experiment. Worse, there can be hidden dependencies
that affect the output of the SUT which are discovered only
when the output cannot be repeated in other environments.

In other experiments, the performance of the SUT is the pri-
mary result of interest: for example, how fast does a routing
protocol converge under various churn rates, or how does the
scaling of a program analysis change as the size of the pro-
gram grows? These experiments necessarily depend even
more heavily on the specifics of the environment. Hidden
effects of the environment are even more insidious for per-
formance experiments, because they can occur anywhere in
the hardware or software stack—detailed knowledge of pro-
cessors, memory, storage, networking, compilers, operating
systems and any software libraries used may be necessary
to understand, or even discover, them. A change to any
of these variables can result in significantly different perfor-
mance. While it is often desirable to understand how these
sorts of factors affect a system, we must be able to establish
baselines, and we have nowhere to start unless their values
can be known and controlled.



Many experiments are a mix of these two styles. Intuitively,
performance evaluations [15] seem more common in com-
puter science than in the domain sciences that use compu-
tation, since the former is concerned with computer systems
themselves, while the latter is focused on their application.

We aim to address both output and performance results,
but in all cases concern ourselves only with closed world
experiments: those in which all factors that affect the output
of the experiment are internal to the execution environment,
and the environment can be defined closely enough that all
factors can be controlled or observed by the experimenter.

2.2 Properties
Building on our description of the problem, we arrive at a set
of properties that are desirable in a platform for repeatable
research:

Consistency. The overriding property of a platform for re-
peatable research must be the ability to re-create the en-
vironment that was used for an earlier experiment. At a
minimum, this consistency must cover the aspects of the en-
vironment that affect the output of the SUT (for all exper-
iments) and the performance of the SUT (for performance
experiments.) In practice, it can very difficult to discover
precisely which aspects of the environment may have these
effects, so repeatable environments must make tradeoffs with
respect to which aspects of the environment they reproduce,
and whether those aspects are determined statically or dy-
namically.

One corollary to consistency is that other activity on the
system executing the SUT must not affect the results of the
experiment. For example, if running on an experimenter’s
desktop computer, other processes must not affect the re-
sults, and if running on a testbed or other shared infrastruc-
ture, simultaneous experiments must not interfere with each
other.

Diversity. While consistency is valuable, it is also impor-
tant to recognize that it has hazards associated with it.
Namely, if a homogeneous platform is used for a large body
of research, artifacts of the experimentation platform can
show up in results and can easily be mistaken for more fun-
damental “truths.” For example, if performance of a set of
algorithms is compared on a system with a particular pro-
cessor, memory system, and set of I/O devices, we learn
valuable things about the performance of these algorithms
on this particular system, but we do not necessarily learn
how these results would generalize to other systems. Run-
ning the SUT on a different system may yield different con-
clusions. It is thus important that, in addition to providing
a consistent environment for repeating existing results, the
experimentation platform provide access to a diverse set of
resources (both hardware and software).

Transparency. A key factor that separates a scientific in-
strument from a general-purpose computing facility is the
ability to understand and control the environment. Any
platform will necessarily have properties that affect the ex-
periments run on it due to its choices of hardware and soft-
ware. It is important in scientific experimentation to under-

stand which variables can be controlled and which cannot,
and for those that cannot, to know what their fixed values
are or to observe these values over the course of an exper-
iment. For example, an experimenter may not be able to
control the network topology of the facility they are using,
but should know what that topology is, and the factors (such
as switching or routing technologies) that may affect their
experiments.

Encapsulation. As discussed earlier, a truly repeatable ex-
ecution environment must capture the closure of both the
hardware and software environment that an experiment was
run in, as well as the configuration of both. This must be
done in sufficient detail that it is possible for later experi-
menters to re-create the original environment precisely. We
refer to the process of capturing this environment as “encap-
sulation,” and refer to the object thus formed (whatever its
specific implementation) as a “capsule.”

Publishing and Archiving. The goal of repeatable exper-
imentation is, of course, not for the individual who initially
ran an experiment to repeat it, but for others to be able
to. It should therefore be possible for experimenters to pub-
lish the capsules they create, to refer to specific capsules in
publications, and for those references to persist over a long
period of time.

Adaptability. Learning a new infrastructure can be a time-
consuming activity; researchers should be free to focus on
the experiments they are interested in, rather than learning
to use the platform. This points to a specific role for domain
experts: those who must take the time to learn to use the
“raw”infrastructure and adapt it (through configuration and
software) to specific research domains.

Longevity. Research results often remain relevant for years
or longer, and authors reporting on new work should be able
to compare to results that may have appeared in the liter-
ature years before. While an indefinite lifespan may not be
feasible for capsules, a long one should be an explicit design
goal of the environment. In particular, it should be possi-
ble to use a capsule even if the original creator is unable or
unwilling to assist; this is a common source of problems to-
day as students graduate, faculty move on to other research
pursuits, etc.

3. APT
Apt (the (A)daptable (P)rofile-driven (T)estbed) is our at-
tempt to build a facility with the properties outlined in the
previous section. Apt takes a hosted approach to building a
repeatable environment: it consists of a cluster and a con-
trol system that instantiates encapsulated experimentation
environments on that cluster. The fundamental philosophy
behind Apt is that the surest way to build the foundation
of a repeatable environment is to have a set of hardware re-
sources that have known properties and are available, long-
term, to all researchers. On top of this, Apt provides the
ability to create an on-disk storage environment that can be
recreated by later experimenters in a bitwise identical fash-
ion. We believe that this represents a minimum requirement
for fully repeatable research; this is especially true for re-
search for which performance is a metric of interest, or that



requires a full network to execute.

Tools for scripting and orchestrating experiments, analyz-
ing results, etc. are also key for repeatable research. Apt
makes the choice not to directly integrate these tools, al-
lowing experimenters to use whichever they wish. This has
the advantage of being flexible with respect to different re-
search domains (which have different needs in terms of ex-
periment automation [28, 21]), working styles, and research
workflows—we believe this maximizes utility. This choice
does have the disadvantage, however, that it does not force
users to adequately automate experiments to make repeata-
bility easy.

Apt is built around profiles, which are a specific realization of
the capsule abstraction. Profiles describe experimental en-
vironments; when a profile is instantiated, its specification
is realized on one of Apt’s clusters using virtual or physical
machines. The creator of a profile may put code, data, and
other resources into it, and the profile may consist of a sin-
gle machine or may describe an entire network. Typically,
everyone who instantiates a profile is given their own ded-
icated resources with the associated code and data loaded;
thus, all experiments are conducted in isolation from each
other. The infrastructure to support the manipulation of
these profiles is based on mature systems, primarily Emu-
lab [30] and GENI [2].

Many different types of users play different roles in their in-
teractions with Apt. New profiles are introduced by profile
creators who are domain experts; they describe and per-
haps perform the original experiment (potentially evolving
it through multiple iterations). Subsequent experimenters
intending to reproduce or tailor the experiment will at first
base their research on that same profile (we label such users
as profile instantiators). Lastly, some experiments will es-
tablish services that might be intended for access primarily
by users of the service itself who never interact with the Apt
infrastructure directly; we call the latter class end users.2

Profile creators must register for an Apt account for per-
mission to publish their profiles. Profile instantiators are
encouraged but not required to register (guest instantiators
are more limited in the types and quantity of resources they
may request). There is no need for end users to register with
or even be aware of Apt.

User interaction with Apt is primarily through a web in-
terface3; there is typically no need for any user to install
software on their own host. For many profiles, the Apt
web pages suffice for all interaction (even ssh login is incor-
porated, via Web-based terminal emulation). The typical
workflow in Apt is:

1. An experimenter starts with a profile provided by Apt,
typically one with a basic installation of a standard
operating system. The experimenter instantiates this

2For example, a user of Apt may set up a service such as a
cloud, a compute cluster, or a service for executing certain
types of experiments; users of this service interact directly
with it, rather than with Apt, and are considered end users.
3http://www.aptlab.net

profile, and is given a set of hardware resources in the
Apt cluster to which he or she has (temporary) exclu-
sive access.

2. The experimenter sets up their experimental environ-
ment by logging into the instantiated resources and
installing software, copying in input data, etc.

3. The experimenter takes a “snapshot” of the state of
the environment that they have created. This creates
a new profile, which belongs to the experimenter.

4. The experimenter runs their SUT through a set of ex-
periments and collects results; when finished, he or she
terminates the experiment, releasing the hardware re-
sources.

5. The experimenter publishes their results, along with a
link to the profile (described in more detail below.)

6. Others may follow this link and instantiate the profile
for themselves. When they do, they are given their own
temporary allocation of resources. These resources are
loaded with the software environment set up in Step
2, and the second experimenter may now run the ex-
periments in Step 4 to reproduce the original results.

3.1 Profiles
Apt’s profiles capture an experimentation environment by
describing both the software needed to run an experiment
and the hardware (physical or virtual) that the software
needs to run. By providing a hardware platform for running
these profiles, Apt essentially enables researchers to build
their own testbed environments and share them with oth-
ers, without having to buy, build, or maintain the underlying
infrastructure.

Each profile clearly needs to record enough information to
recreate the experimental environment on demand. The cen-
tral reference for a profile’s state is its RSpec (resource spec-
ification), a concept borrowed from GENI [26]. An RSpec
is an XML document describing the experiment; each node
and network link has a corresponding element in the RSpec
and detailed information about node or link configuration is
inserted into child elements or attributes. While the RSpec
describes the experiment, it does not and cannot encapsu-
late the entire state of the SUT; some RSpec elements are
merely references to data recorded elsewhere (e.g., disk im-
ages). The RSpec format is specified using XML schemas,
and these schemas are versioned; this will allow Apt to keep
backwards compatibility as they evolve. Apt provides a GUI
for manipulating RSpecs, and users may also inspect or edit
them manually. Work is also underway to provide a script-
ing language—the output of an execution of one of these
scripts is an RSpec, which can be used to describe a profile.
In the general case, the script may be re-executed on each in-
stantiation, but for the purposes of repeatability, published
profiles will refer to a specific RSpec produced by a prior
execution of the script.

An RSpec is not always a complete description of an exper-
iment instance (indeed, such a description would frequently
be either unwieldy or overly specific); many elements and
attributes permitted in RSpecs are optional. When they are
omitted, Apt either assumes default values for the missing

http://www.aptlab.net


parameters, or in certain cases is free to substitute any value
(so that the omitted parameter behaves like a wildcard). For
instance, if a node is requested but no disk image is speci-
fied, a default one will be loaded; if a node is requested and
no hardware type is specified, Apt will choose any of the
free nodes that can otherwise satisfy the request. Before a
profile is shared with others for the purposes of repetition,
these variables should be bound so that the other user gets
the same values. Since Apt is a hosted environment with
a closed set of hardware types, strings identifying hardware
types are used as shorthand for a more exhaustive hardware
specification. An instantiated experiment also produces a
manifest, which records the specific nodes and switches used
for a particular instantiation.

Apt also maintains a repository of disk images to be loaded
on demand [14]. There are several facility-maintained im-
ages globally available, and users have the option of speci-
fying their own images too (which is typically done by re-
questing one of the system images, modifying it appropri-
ately, and then taking a snapshot of the result to be saved
as a user image). Images in Apt currently cover the con-
tents of disks, but not other firmware such as BIOS or NIC
firmware; this is a potential area of future work.

Multiple revisions of a profile can be saved, which avoids
problems associated with irrevocable changes to experiments
or disk images. Therefore, Apt offers repeatability not only
of the most recent version of an experiment, but to any
designated previous snapshot of its prior state as well.

Apt is capable of provisioning either physical or virtual ma-
chines (or even a mixture of both within the same exper-
iment). Unregistered guest users may request virtual ma-
chines only. For experiments studying only the output of
the SUT, VMs might be perfectly adequate; however, when
the results of interest include the performance of the SUT,
running directly on physical hardware might be essential to
guarantee repeatability. Even in the latter case, though,
we encourage users to do development and debugging on
VMs (where we can multiplex nodes to conserve resources),
and only once test runs prove satisfactory is it necessary
to choose to instantiate on hardware to gather publishable
results.

3.2 Repeatability
Apt is designed to meet the repeatability properties pre-
sented in Section 2:

Consistency. In most cases, Apt is able to provide identical
hardware across multiple instantiations of the same profile,
faithfully replicating most or all of the relevant hardware en-
vironment. The profile’s RSpec records the requested hard-
ware, and can provision equivalent resources across multiple
instantiations. By default, each user enjoys exclusive and
unlimited (root) access to each node in the experiment4;
the fact that no other users can interfere with nodes that are
temporarily theirs and only theirs can contribute a great deal
of consistency, difficult or impossible to replicate on clusters

4The alternative is to request VMs hosted on physical ma-
chines potentially shared with other users; we encourage use
of this facility when appropriate to conserve scarce resources.

employing fine-grained time-sharing.

Obtaining this ideal of identical hardware across instanti-
ations does require care on the part of the profile creator.
Given precise specifications in the profile, the Apt infrastruc-
ture will attempt to provide such an environment each time.
In the absence of such constraints, the system will choose
to provision each experiment instance based on whichever
testbed resources are available at the time of the request—
something clearly beyond the control of the experimenter,
and not consistent in the general case. Therefore, it is im-
portant to remember that Apt provides merely a mechanism
experimenters may exploit to enhance consistency, and not
a blanket guarantee of automatic consistency.

Apt is also capable of providing bitwise identical storage
state (which is adequate in most cases to yield an identical
software environment). It is a simple matter for an Apt user
to request a snapshot of a node’s filesystem(s), or an entire
disk. Therefore, once the SUT and its input data have been
prepared, such images can be included in the profile and Apt
will take care of software consistency across instantiations.
Apt uses the Frisbee [14] disk loader to distribute and install
images. Frisbee is fast (generally proceeding at the full write
speed of the target disk) and scalable (fully parallelized using
IP multicast), ensuring quick instantiation.

Another important element of consistency is the degree to
which the experiment environment is isolated from other
experiments (or other unrelated activity elsewhere on the
network). Clearly, when a SUT includes software running
within a VM, there is potential for its performance to be
affected by operations outside that VM but residing on the
same physical host, and so certain types of consistency are
severely limited in those cases.

All Apt nodes offer multiple network interfaces, and the Apt
infrastructure allows experimenters to specify topologies of
private virtual networks connecting the interfaces of their
nodes. The switches and links are conservatively provisioned
so that the requested bandwidth is guaranteed, and exter-
nal influence from any concurrent experiments is minimised.
However, all nodes in Apt share a public control network,
and the traffic on this network is beyond any individual ex-
perimenter’s control. While most experiments will be able to
carry their critical network traffic on dedicated (private) ex-
perimental networks, they should still expect residual effects
from the shared control net (for instance, all experimental
nodes will generally see broadcast ARP traffic belonging to
nodes outside their experiment). Effects like these do place
upper bounds on the quality of consistency Apt can promise.

Diversity. The hardware currently available in Apt is quite
homogeneous, which is a significant barrier to hardware di-
versity. (For instance, there are two classes of x86 nodes
offered: one type with 8 Xeon E5-2450 cores and 16 GB
RAM, and the other with 16 Xeon E5-2650 cores and 64 GB
RAM.) This reflects a tradeoff in Apt’s design, namely the
choice between larger quantities of each of a small number
of distinct hardware types or small quantities of each of a
large number of types. The former is preferable for availabil-
ity, and the latter preferable for diversity. During hardware
evaluation, diversity support was one factor under consider-



ation, and so support for a variety of experiment types has
been added where possible. (For instance, all 192 Apt nodes
are connected via a “flexible fabric” where one network in-
terface per node, and its corresponding switch port, can be
dynamically configured as either FDR Infiniband, 40 Gbps
Ethernet, or non-standard 56 Gbps Ethernet.)

Apt can provide greater software diversity, since there are
few a priori restrictions compared to those inevitable with
hardware. For both physical and VM nodes, profile creators
have complete control over software configuration (to the
point of providing custom filesystems and kernels if neces-
sary). To some extent, Apt also supports artificial gener-
ation of diversity (for instance, hooks are provided where
users can specify actions to be performed during resource
provisioning, and these could be used to automatically vary
parameters of the SUT).

Transparency. Apt makes some attempt to allow the user
to discover properties of the SUT beyond their control which
might nonetheless affect the outcome of their experiment.
The properties the user can control are expressed in the
RSpec associated with the profile (designated as the request
RSpec); at profile instantiation time, this request is anno-
tated with extra information associated with the current in-
stance and becomes the manifest RSpec. The annotations
will include dynamically assigned properties such as IP ad-
dresses on public interfaces, and also specify the values cho-
sen when omitted parameters reverted to defaults or were
otherwise bound. They also include details of the network,
such as the set of switches and links used to connect hosts.

Encapsulation. Apt attempts to support the encapsula-
tion principle; its profiles are intended to map one-to-one
with capsules. A profile’s RSpec primarily addresses the
hardware aspect of a capsule (and to a lesser extent, the
software side too), while any referenced disk images com-
plete the specification of the software environment.

Emulab’s existing whole-filesystem (and optionally whole-
disk) imaging as used by Apt goes a long way toward en-
suring that the entire software environment is contained
in the capsule. However, there are some instances where
per-user software environments (shell, “dotfiles”, environ-
ment variables, etc.) might vary, and there are documented
cases in which certain seemingly innocuous user environment
changes (such as the number or size of UNIX environment
variables) can have surprising effects on experimental re-
sults [18]. In addition, while system-provided disk images
are not routinely updated (in general, old versions are left
alone and newer versions are added as alternative options),
sometimes images might be modified to address critical se-
curity vulnerabilities. If a consistent software environment
is so critical to an experiment that even security patches
should not be applied, then the profile should specify a par-
ticular image version to ensure that encapsulation is not
violated.

Publishing and Archiving. All profiles created in Apt are
given a URL: this URL can be shared via email or the web,
published in papers, etc. Apt profiles are versioned : the
creator of a profile may update it, creating a new version.
Ephemeral versions (the default) are used for development

or debugging. They are typically used only by the original
experimenter, and are not guaranteed to be kept for long by
the system. When the profile creator is ready to share a pro-
file, he or she publishes it, creating a new published version
which gets its own unique URL and can thus be shared.5

Apt keeps all published versions available. A URL may re-
fer to either the profile in general (in which case it resolves
to the most recent published version) or to a specific ver-
sion. When viewing a profile, a user may select any one of
the versions for instantiation. Apt recommends that, when
publishing results, authors publish the versioned link to the
specific version used to gather those results. They may, how-
ever, update the profile after publication to fix bugs, add
new features or additional analysis, etc. This update does
not overwrite the published version, and visitors to the pro-
file have the option of using either the one used for the paper
or the updated one.

In order to save space for storing the disk images associated
with versioned profiles, Apt has enhanced the Frisbee disk
loader [14] to store “base” images and “deltas” containing
only changed blocks. We expect to explore the use of dedu-
plicated storage [24] to further reduce the space required to
store versioned images.

Adaptability. Apt seeks to make the infrastructure as un-
obtrusive as possible, and in doing so, to make it relatively
easy to use for experimenters from a wide variety of domains.
It does take some experience with Apt to create a profile,
but our goal is to require a minimum amount of experience
to use one. When following a URL to a profile, a user is
asked for only three things: a username, an email address
and (optionally) an SSH public key. The process of instan-
tiating a new experiment from a profile typically takes only
a few minutes. For the (common) case of profiles containing
only a single node, a web-based terminal is automatically
opened with a shell on the node. (If the user provides an
SSH key, he or she may also log in using a standard SSH
client.) Apt profiles are also permitted to run services like
webservers to provide an alternate interface to interact with
the experiment.

Apt profiles contain instructions (written by the creator)
explaining how to run the experiment: these instructions
typically point the user to a set of scripts to run and the
location of any input and output data. For more complicated
multi-node profiles, the instructions may include a “tour”: a
tour contains a sequence of steps, each of which refers to a
node or link in the topology. The typical use of a tour is to
explain the different roles of the nodes in the experiment:
“This is the traffic source”, “this is the traffic sink”, etc.

Longevity. While the lifespan of a system in an uncertain
environment can be accurately measured only in hindsight,
there are some reasons to expect that Apt might offer rea-
sonable longevity for the foreseeable future. Firstly, unlike
most clusters dedicated to a particular research project (and
destined to be removed or at least deprecated at the con-
clusion of that project), Apt is developed, maintained and
operated by a team of professional staff. Secondly, predeces-

5An example of a published profile URL is https://www.
aptlab.net/p/tbres/nsdi14

https://www.aptlab.net/p/tbres/nsdi14
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sor systems upon which Apt is based have and continue to
demonstrate significant longevity in practice. For instance,
the original Emulab installation continues to operate, and
despite a great deal of evolution in both its hardware and
software, is still capable of booting Red Hat Linux 7 on the
original 600 MHz Pentium III nodes with which it originated
fifteen years ago.

4. RELATED WORK
While Apt represents one way of addressing the needs of
repeatability, it is by no means the only possible design for
repeatable experimentation. For example, DataMill [22] au-
tomatically incorporates diversity into its testing process,
and OCCAM [21] supports a workflow customized to com-
puter architecture research. Entrants in the Executable Pa-
per Grand Challenge [8] take other approaches, such as fo-
cusing on high-level tools for computational science [19] or
using VMs run on user machines to target output, rather
than performance, experiments [10].

Even stronger consistency can be obtained by simulating
the entire environment [20, 31, 17] rather than executing di-
rectly on hardware. Simulation offers alternative models for
encapsulation (no hosted facility is required) and longevity
(old simulations will continue to work as long as the simu-
lator is maintained). On the other hand, simulators tend to
offer lower diversity and be designed only for certain classes
of experiments.

Apt’s use of disk images for encapsulating software, input
data, and configuration maximizes repeatability and consis-
tency, but it does not help experimenters understand how
the environment was created. Declarative systems for de-
scribing a software environment [5, 23] could provide in-
teresting alternatives or complements to image-based en-
capsulation. Approaches that involve distributing software
environments as virtual machine images or filesystem-level
snapshots [12] have the advantage that they do not require
expensive hosted infrastructure, but give up performance
consistency. Systems designed to capture the process of ex-
perimentation itself [7, 16, 11, 25, 28, 13, 1] (running the
SUT, collecting, and analyzing results) could also provide a
nice complement to Apt; currently, Apt leaves these tasks
in the hands of the experimenter.

While Apt can potentially support a great deal of software
diversity, its hardware diversity is bound by the limited het-
erogeneity of the phyiscal installation. Larger scale testbeds,
especially federated systems where multiple sites contribute
hardware resources independently, are likely to boast greater
hardware diversity than any single facility. GENI [2] is an
example of a system where experimenters might be able to
make use of very diverse hardware, including not only com-
putational and local network resources as in Apt but also
wide-area links, mobile nodes, wireless hardware, and other
resources beyond the scope of Apt. Many of the techniques
Apt exploits to enhance repeatability (such as disk image
snapshots, “bare metal” provisioning, and profile version-
ing) could also be applicable to GENI and similar federated
systems.

5. CONCLUSION
In this paper, we make the claim that it is desirable for com-
puter scientists to have repeatable environments in which to
conduct their experiments. We have described a set of de-
sirable properties for such an environment, and showed that
they are feasible by presenting the design of one system that
addresses them.

Regardless of the mechanism used, it seems clear that more
resources for repeatable experimentation are required for
computer science. We hope that, if they are made sim-
ple enough to use, this will encourage more researchers to
publish their artifacts along with papers, and will generally
increase the quality of published evaluations.
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