
Harnessing GPU Computing
in System Level Software

Weibin Sun

2

2

Software stack needs
fast system level base!

2

Software stack needs
fast system level base!

System functionality
can be expensive!

2

Software stack needs
fast system level base!

System functionality
can be expensive!

‣ Crypto: AES, SHA1, MD5, RSA	

‣ Lookup: IP routing, DNS, key-value store, DB	

‣ Erasure coding: RAID, distributed storage,

wireless	

‣ Pattern matching: NIDS, virus, searching	

‣ Compression: storage, network	

‣ …

2

Software stack needs
fast system level base!

System functionality
can be expensive!

2

Software stack needs
fast system level base!

System functionality
can be expensive!

Modern digital
workloads are big!

2

Software stack needs
fast system level base!

System functionality
can be expensive!

Modern digital
workloads are big!

System software
needs high throughput

processing!

3

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

3

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable! packets, sectors, data blocks, …

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

GPUs are the de-facto
standard parallel processors!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

GPUs are the de-facto
standard parallel processors!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

GPUs are the de-facto
standard parallel processors!

4

Software stack needs
fast system level base!

System software
needs high throughput

processing!

System functionality
can be expensive!

Modern digital
workloads are big!

Many system tasks are
data-parallelizable!

GPUs are the de-facto
standard parallel processors!

Using GPUs in
system software!

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

5

Thesis statement

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

5

Thesis statement

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

5

Thesis statement

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

5

Thesis statement

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

5

Thesis statement

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory efficient and

throughput oriented designs.	

Thesis work
• Generic principles	

• Concretely:	

• Two generic frameworks for representative
system tasks: storage and network	

• Example applications on top of both
frameworks	

• Literature survey *

6

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor
L2 Cache

Constant
Memory

Texture
Memory

Global
Memory
(Device
Memory)

GPU

Main Memory
(Host Memory)

PCIe

GPU essentials

7

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor
L2 Cache

Constant
Memory

Texture
Memory

Global
Memory
(Device
Memory)

GPU

Main Memory
(Host Memory)

PCIe

GPU essentials

7

CUDA

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor
L2 Cache

Constant
Memory

Texture
Memory

Global
Memory
(Device
Memory)

GPU

Main Memory
(Host Memory)

PCIe

GPU essentials

7

SIMT wimpy cores:	

32-core warp

CUDA

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor
L2 Cache

Constant
Memory

Texture
Memory

Global
Memory
(Device
Memory)

GPU

Main Memory
(Host Memory)

PCIe

GPU essentials

7

SIMT wimpy cores:	

32-core warp

wide memory
interface: 384bits!

CUDA

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor

Registers

Shared
Memory

L1 Cache

Stream Multiprocessor
L2 Cache

Constant
Memory

Texture
Memory

Global
Memory
(Device
Memory)

GPU

Main Memory
(Host Memory)

PCIe

GPU essentials

7

SIMT wimpy cores:	

32-core warp

wide memory
interface: 384bits!

necessary
memory copy

CUDA

Related work: pioneers

• Gnort [RAID ’2008]	

• PacketShader [SIGCOMM ’2010]	

• SSLShader [NSDI ’2011]	

• EigenCFA [POPL ’2011]	

• Gibraltar [ICPP ’2010]	

• CrystalGPU [HPDC ’2010]	

• …

8

Related work: pioneers

• Gnort [RAID ’2008]	

• PacketShader [SIGCOMM ’2010]	

• SSLShader [NSDI ’2011]	

• EigenCFA [POPL ’2011]	

• Gibraltar [ICPP ’2010]	

• CrystalGPU [HPDC ’2010]	

• …

8

Specialized and Ad-hoc
solutions to one particular

application!

GPU computing frameworks/models

• Hydra [ASPLOS’08]	

• CUDA-Lite [LCPC’08]	

• hiCUDA [GPGPU’09]	

• ASDSM [ASPLOS’10]	

• Sponge [ASPLOS’11]	

• CGCM [PLDI’11]	

• PTask [SOSP’11]	

• …

9

GPU computing frameworks/models

• Hydra [ASPLOS’08]	

• CUDA-Lite [LCPC’08]	

• hiCUDA [GPGPU’09]	

• ASDSM [ASPLOS’10]	

• Sponge [ASPLOS’11]	

• CGCM [PLDI’11]	

• PTask [SOSP’11]	

• …

9

• Simple workflow	

• Long computation, PCIe
copy and synchronization
not matter	

• No batched data
divergence

GPU computing frameworks/models

• Hydra [ASPLOS’08]	

• CUDA-Lite [LCPC’08]	

• hiCUDA [GPGPU’09]	

• ASDSM [ASPLOS’10]	

• Sponge [ASPLOS’11]	

• CGCM [PLDI’11]	

• PTask [SOSP’11]	

• …

9

• Simple workflow	

• Long computation, PCIe
copy and synchronization
not matter	

• No batched data
divergence

System level GPU

computing needs its own

generic frameworks!

Rest of this talk

• Generic principles	

• GPUstore : for storage systems	

• Snap : for packet processing

10

System level GPU computing: 	

generic principles

11

Problems

12

Latency-oriented system code V.S. throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Double buffering for GPU DMA

Problems

12

Latency-oriented system code V.S. throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Double buffering for GPU DMA

Latency-oriented system code V.S. throughput-oriented GPU

Latency V.S. throughput

13

Latency V.S. throughput

Batched processing: wait for enough workload

13

Latency V.S. throughput

Batched processing: wait for enough workload

• how much is enough?

13

Latency V.S. throughput

Batched processing: wait for enough workload

• how much is enough?

• increased latency

13

Latency-oriented system code V.S. throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Problems

14

Wasted PCIe data transfer

Double buffering for GPU DMA

CPU-GPU synchronization hurts asynchronous systems

Problems

14

Wasted PCIe data transfer

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systems

Problems

14

Wasted PCIe data transfer

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systems

CPU-GPU synchronization

15

CPU:

GPU:

Blocking:

CPU-GPU synchronization

15

CPU:

GPU:

Blocking:

CPU-GPU synchronization

15

CPU:

GPU:

Blocking:

CPU-GPU synchronization

15

CPU:

GPU:

sleep for syncBlocking:

CPU-GPU synchronization

15

CPU:

GPU:

sleep for sync

CPU:

GPU:

Blocking:

Non-blocking:

CPU-GPU synchronization

15

CPU:

GPU:

sleep for sync

CPU:

GPU:

keep working

Blocking:

Non-blocking:

CPU-GPU synchronization

15

CPU:

GPU:

sleep for sync

CPU:

GPU:

keep working

Blocking:

Non-blocking:

System code (network, disk, etc.) likes:	

Callback	

Polling

Problems

16

Latency-oriented system code VS throughput-oriented GPU

Wasted PCIe data transfer

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systems

Problems

16

Latency-oriented system code VS throughput-oriented GPU

Wasted PCIe data transfer

Double buffering for GPU DMA

Batched processing

Asynchronous non-blocking GPU programming

Problems

16

Latency-oriented system code VS throughput-oriented GPU

Wasted PCIe data transfer

Double buffering for GPU DMA

Batched processing

Asynchronous non-blocking GPU programming

Wasted PCIe data transfer

How PCIe transfer wasted?

17

How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

What you need:

How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

4
bytes

What you need:

How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

4
bytes

What you need:

What you may transfer:

How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

4
bytes

≥ 64 bytes

What you need:

What you may transfer:

Compact your workload data

18

GPU memory

PCIeCompaction

Host memory

For ``use-partial’’ data usage pattern

Problems

19

Latency-oriented system code VS throughput-oriented GPU

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systemsAsynchronous non-blocking GPU programming

Wasted PCIe data transfer

Problems

19

Latency-oriented system code VS throughput-oriented GPU

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systemsAsynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

Problems

19

Latency-oriented system code VS throughput-oriented GPU

Double buffering for GPU DMA

Batched processing

CPU-GPU synchronization hurts asynchronous systemsAsynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

Double buffering for GPU DMA

GPU DMA contraints

20

GPU DMA contraints
• DMA only on locked memory pages

20

GPU DMA contraints
• DMA only on locked memory pages

• GPU drivers only recognize their own locked memory
pool

20

GPU driver’s memory area

DMA
locked
mem

DMA on PCIe
GPU mem

GPU DMA contraints
• DMA only on locked memory pages

• GPU drivers only recognize their own locked memory
pool

20

GPU driver’s memory area

DMA
locked
mem

DMA on PCIe
GPU mem

External
mem

GPU DMA contraints
• DMA only on locked memory pages

• GPU drivers only recognize their own locked memory
pool

20

GPU driver’s memory area

DMA
locked
mem

DMA on PCIe
GPU mem

External
mem

GPU DMA contraints
• DMA only on locked memory pages

• GPU drivers only recognize their own locked memory
pool

20

GPU driver’s memory area

DMA
locked
mem

DMA on PCIe
GPU mem

External
mem

Make GPU driver and system

code use the same locked

memory for zero-copy DMA!

Problems

21

Latency-oriented system code VS throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

Double buffering for GPU DMA

Problems

21

Latency-oriented system code VS throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

21

Latency-oriented system code VS throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Generic principles

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

GPUstore: 	

Harnessing GPU Computing

in OS Storage Systems

22

[Weibin Sun, Robert Ricci, Matthew L. Curry @ SYSTOR’12]

GPUstore overview

23

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

23

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

23

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Disk

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

• Minimally invasive GPU integration

23

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Disk

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

• Minimally invasive GPU integration

• Small changes

23

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Disk

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

• Minimally invasive GPU integration

• Small changes

• Preserve interface and semantics

23

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Disk

GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

• Minimally invasive GPU integration

• Small changes

• Preserve interface and semantics

• Keep efficient

23

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Disk

GPUstore integration

24

Syscall

VFS

Filesystems… e.g.
eCryptfs

Page Cache

Block device drivers

Functional virtual block drivers…
e.g. dm-crypt, MD RAID6

GPUstore integration

24

Syscall

VFS

Filesystems… e.g.
eCryptfs

Page Cache

Block device drivers

Functional virtual block drivers…
e.g. dm-crypt, MD RAID6

!...
CPUCipher(buf);
!...

!...
CPURSCode(buf);
!...

GPUstore integration

24

Syscall

VFS

Filesystems… e.g.
eCryptfs

Page Cache

Block device drivers

Functional virtual block drivers…
e.g. dm-crypt, MD RAID6

!...
GPUCipher(buf);
!...

!...
GPURSCode(buf);
!...

GPUstore integration

24

Syscall

VFS

Filesystems… e.g.
eCryptfs

Page Cache

Block device drivers

Functional virtual block drivers…
e.g. dm-crypt, MD RAID6

!...
GPUCipher(buf);
!...

!...
GPURSCode(buf);
!...

G
PU
sto

re

GPU Ciphers

GPU RAID6

Computation
 Requests

Computation

Requests

GPU Services

GPUstore request workflow

25

GPU

Service Users ...

Service-specific
Scheduling

Execution
Preparation

GPU Execution

Post-execution

sys-calls

requests

CPU

GPUstore request workflow

25

Service interface

GPU

Service Users ...

Service-specific
Scheduling

Execution
Preparation

GPU Execution

Post-execution

sys-calls

requests

CPU

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

26

Apply generic principles

Batched processing

Asynchronous non-blocking GPU programming

26

Apply generic principles

Batched processing

Asynchronous non-blocking GPU programming

26

Apply generic principles

Merge small requests

Batched processing

Asynchronous non-blocking GPU programming

26

Apply generic principles

Merge small requests

Split large requests

Batched processing

Asynchronous non-blocking GPU programming

26

Apply generic principles

Merge small requests

Split large requests

Callback-based request processing

Request scheduling

27

Merge small requests

Split large requests

How to define “small” and “large”?

Request scheduling

27

Merge small requests

Split large requests

How to define “small” and “large”?

Up to specific services.

Request scheduling

27

Merge small requests

Split large requests

Apply generic principles

28

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

Apply generic principles

28

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Apply generic principles

28

All use the same locked memory for zero-copy DMA

Apply generic principles

28

All use the same locked memory for zero-copy DMA

User space CUDA library dependency

Apply generic principles

28

All use the same locked memory for zero-copy DMA

User space CUDA library dependency

In-kernel CUDA’s locked memory
allocator

In-kernel CUDA locked memory allocator

29

CUDA mem	

continuous VA

Physical pages Continuous VA

Kernel vmap

User space (helper)
Kernel space

In-kernel CUDA locked memory allocator

29

CUDA mem	

continuous VA

Physical pages Continuous VA

Kernel vmap

User space (helper)
Kernel space

What’s next?

Replace kmalloc()/vmalloc()/
get_free_pages() with
GPUstoreMalloc()?

In-kernel CUDA locked memory allocator

29

CUDA mem	

continuous VA

Physical pages Continuous VA

Kernel vmap

User space (helper)
Kernel space

What’s next?

Replace kmalloc()/vmalloc()/
get_free_pages() with
GPUstoreMalloc()?

Sometimes it is infeasible!

Why infeasible?

30

Why infeasible?

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Why infeasible?

➡ Who allocates the memory?

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

‣ page cache, buffer cache
‣ object cache
‣ packet pool
‣ …

Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block
Driver

Block Driver

‣ page cache, buffer cache
‣ object cache
‣ packet pool
‣ …

Can we use arbitrary memory

for GPU DMA?

Remap external memory for GPU DMA

31

Remap external memory for GPU DMA

31

GPU mem

External
mem

Remap external memory for GPU DMA

31

GPU mem

GPU driver’s locked memory area (vma)

External
mem

Remap external memory for GPU DMA

31

DMA
locked
mem

GPU mem

GPU driver’s locked memory area (vma)

External
mem

set page-table 	

entries

Remap external memory for GPU DMA

31

DMA
locked
mem

DMA on PCIe

GPU mem

GPU driver’s locked memory area (vma)

External
mem

set page-table 	

entries

Apply generic principles

32

All use the same locked memory for zero-copy DMA

Apply generic principles

32

All use the same locked memory for zero-copy DMA

In-kernel CUDA locked memory allocator

Apply generic principles

32

All use the same locked memory for zero-copy DMA

In-kernel CUDA locked memory allocator

Remap external memory into GPU driver’s locked
memory area

Implementation and evaluation

33

Implementation and evaluation

• Case studies of major storage residents:
• dm-crypt: disk encryption layer
• eCryptfs: encrypted filesystem
• md: software RAID6

33

Implementation and evaluation

• Case studies of major storage residents:
• dm-crypt: disk encryption layer
• eCryptfs: encrypted filesystem
• md: software RAID6

33

31

engineering work to make use of the immature open source GPU drivers and CUDA libraries

they depend on.

4.2 Implementation
GPUstore has been prototyped on Linux kernel to accelerate three existing kernel storage

components. We enhanced encrypted storage with dm-crypt and eCryptfs, and the software

RAID driver md. We chose these three subsystems because they interact with the kernel in

di↵erent ways: md and dm-crypt implement the block I/O interface, and eCryptfs works

with the virtual filesystem (VFS) layer. The architecture of these implementations is shown

in Figure 4.3.

VFS

eCryptfs

Block-IO

dm-cryptmd RAID6

GPUstore

GPU Encryption
Service

GPU RAID
Recovery Service

Block-IO

Figure 4.3. Storage services implemented with GPUstore.

Subsystem Total LOC Modified LOC Percent

dm-crypt 1,800 50 3%
eCryptfs 11,000 200 2%
md 6,000 20 0.3%

Table 4.1. Approximate modified lines of code required to call GPU services using
GPUstore.

The design of GPUstore ensures that client subsystems need only minor modifications

to call GPU services. Table 4.1 gives the approximate number of lines of code that we had

to modify for our example subsystems. The lines of code reported in this table are those

in the subsystems that are modified to call GPUstore, and do not include the lines of code

used to implement the GPU services. Linux storage subsystems typically call out to other

re-usable kernel components to perform common operations such as encryption: essentially,

we replace these with calls to GPUstore and make minor changes to memory management.

• Integration cost:

AES cipher performance

34

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU" Base"GPU"

Buffer Size

AES cipher performance

34 Buffer Size

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

AES cipher performance

34 Buffer Size

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

GPU"no"RB"

AES cipher performance

34 Buffer Size

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

GPU"no"RB"

GPU"no"RB"with"Split"

Faster than SSD: dm-crypt

35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o RB, w/ Split
GPU w/o RB
GPU w/ Split

Base GPU
CPU

Figure 4. GPU AES cipher throughput with different opti-
mizations compared with Linux kernel’s CPU implementa-
tion. The experiments marked “w/o RB” use the techniques
described in Section 2.2.2 to avoid redundant buffering.

 0

 50

 100

 150

 200

 250

 300

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

Faster than SSD: dm-crypt

35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o RB, w/ Split
GPU w/o RB
GPU w/ Split

Base GPU
CPU

Figure 4. GPU AES cipher throughput with different opti-
mizations compared with Linux kernel’s CPU implementa-
tion. The experiments marked “w/o RB” use the techniques
described in Section 2.2.2 to avoid redundant buffering.

 0

 50

 100

 150

 200

 250

 300

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

SSD:	

250MB/s

Working with existing optimization

36

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 8. eCryptfs throughput on a RAM-backed filesystem.

for the CPU, a 70% speed increase. Unlike our earlier bench-
marks, read speeds remain nearly constant across all block
sizes. This is explained by the Linux page-cache’s readahead
behavior: when small reads were performed by iozone, the
page-cache chose to issue larger reads to the filesystem in
anticipation of future reads. The default readahead size of
128 KB is large enough to reach the SSD’s full read speed of
250MB/s. This illustrates an important point: by designing
GPUstore to fit naturally into existing storage subsystems,
we enable it to work smoothly with the rest of the kernel.
Thus, by simply implementing the multi-page readpages

interface for eCryptfs, we enabled existing I/O optimizations
in the Linux kernel to kick in, maximizing performance even
though they are unaware of GPUstore.

Another surprising result in Figure 7 is that the GPU write
speed exceeds the write speed of the SSD, and even its read
speed, when block size increases beyond 128 KB. This hap-
pens because eCryptfs is, by design, “stacked” on top of
another filesystem. Even though we take care to sync writes
to eCryptfs, the underlying filesystem still operates asyn-
chronously and caches the writes, returning before the actual
disk operation has completed. This demonstrates another
important property of GPUstore: it does not change the be-
havior of the storage stack with respect to caching, so client
subsystems still get the full effect of these caches without any
special effort.

We tested the throughput limits of our GPU eCryptfs
implementation by repeating the previous experiment on
a RAM disk, as shown in Figure 8. Our GPU-accelerated
eCryptfs achieves more than 700 MBps when reading and
420 Mbps when writing. Compared to the CPU, which does
not perform much better than it did on the SSD, this is a
speed increase of nearly five times for reads and close to three
times for writes. It is worth noting that Linux’s readahead
mechanism not only “rounds up” read requests to 128 KB, it
“rounds down” larger ones as well, preventing eCryptfs from
reaching even higher levels of performance.

Finally, we used filebench to evaluate eCryptfs under
concurrent workloads. We varied the number of concurrent

Figure 9. eCryptfs concurrent write throughput on a RAM
disk for two different block sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o Rednt Buffers
GPU w/ Rednt Buffers

CPU

Figure 10. Throughput for the RAID 6 recovery algorithm
with and without optimizations to avoid redundant buffers.

writers from one to one hundred, and used the RAM-backed
filesystem. Each client writes sequentially to a separate file.
The effects of GPUstore’s merge operation are clearly visible
in Figure 9: with a single client, performance is low, because
we use relatively small block sizes (128 KB and 16 KB) for
this test. But with ten clients, GPUstore is able to merge
enough requests to get performance on par with dm-crypt at
a 1 MB blocksize. This demonstrates that GPUstore is useful
not only for storage systems with heavy single-threaded
workloads, but also for workloads with many simultaneous
clients. While block size still has a significant effect on
performance, GPUstore is able to amortize overheads across
concurrent access streams to achieve high performance even
for relatively small I/O sizes.

4.4 md RAID 6 Data Recovery
As with encryption, the performance of our GPU-based
RAID 6 recovery algorithm increases with larger block sizes,
eventually reaching six times the CPU’s performance, as seen
in Figure 10.

We measured the sequential bandwidth of a degraded
RAID 6 array consisting of 32 disks in our S2 experiment
environment. The results are shown in Figure 11. We find
that GPU accelerated RAID 6 data recovery does not achieve

eCryptfs on RAM disks	

Linux max 128KB read-ahead effects on read

GPUstore Summary

• Enables efficient GPU-accelerated storage in Linux
kernel with small changes	

• https://github.com/wbsun/kgpu	

• Details not presented: user-space helper, non-blocking K-
U comm, more exp result

37

https://github.com/wbsun/kgpu

Snap: 	

Fast and Flexible Packet Processing

With GPUs and Click

38

[Weibin Sun, Robert Ricci @ ANCS’13]

Click background [Kohler, et.al. TOCS’00]

39

• Elements	

• Ports	

• push/pull

FromDevice(eth0)

CheckSum

IPLookup

ToDevice(eth1) ToDevice(eth2)

Configurations Throughput
Slow
down

FromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Simple Forwarder:

Simple SDN Forwarder:

SDNClassifierFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

30.97 Gbps

17.7 Gbps 42.7%

40

N/A

Why using GPUs in Click?

Configurations Throughput
Slow
down

FromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Simple Forwarder:

Simple SDN Forwarder:

SDNClassifierFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

30.97 Gbps

17.7 Gbps 42.7%

40

N/A

Why using GPUs in Click?

!

Packet processing needs 	

more computing power!	

Why using GPUs in Click?

41

Why using GPUs in Click?

41

0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K
 Th

ro
ug

hp
ut

s
(M

pp
s)

Number of packets per batch

GPU

CPU

(a) IP lookup algorithm (radix tree)

0.1

1

10

100

1000

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (M

pp
s)

Packet Sizes (Bytes)

GPU-64-batch GPU-256-batch
GPU-1K-batch GPU-2K-batch
GPU-8K-batch CPU

(b) IDSMatcher algorithm (Aho-Corasick)

0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K
 Th

ro
ug

hp
ut

 (M
pp

s)

Number of packets per batch

GPU
CPU

(c) SDN forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more
complex than a single processing function. In particular, they do
not directly provide efficient support for splitting packets across
divergent processing paths–for example, sending packets through
different downstream code paths as a result of routing lookups or
IDS matches. This limits their use to simple linear pipelines, rather
than the complex element graphs supported by Click. Snap draws
inspiration from this work, and seeks to simply and efficiently in-
tegrate GPU processing into complex, fully-functional routers and
other packet processors. Snap will be an enabler for future work in
this area.

PTask [22] is a GPU framework that supports complex dataflow
graphs; however, its model of data processing, which is based on
Unix pipes, is different from the model used by a packet processor.
In PTask, each processing element consumes its input data and pro-
duces one or more new streams of output data. Packet processing, in
contrast, passes the same data, packets, through a series of elements
that modify, annotate, drop, or deliver them. This leads to a different
set of design decisions regarding how to allocate, store, manage,
and reuse data memory.

Click has existing support for multiple processors [6]; however,
this support was designed for the level of parallelism seen on PC
CPUs; ie. dozens of cores, not hundreds or thousands. Route-
Bricks [7] showed that Click-based software routers can be scaled
up by using a network of PCs. In contrast, Snap focuses on the
routing performance of a single PC, and is thus complementary to
RouteBricks; by increasing each PC’s throughput, Snap could be
used to reduce the number of PCs needed in a RouteBricks-like
routing cluster. Kim et al. demonstrated another strategy for improv-
ing Click performance by batching packets [13]. Here, batching
refers to executing the same element on a set of packets in series,
in contrast with standard Click, which executes a set of elements
on the same packet in series. This work is also complementary to
Snap, as it could be used to accelerate the CPU portions of a Snap
pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION
OF SNAP

We designed Snap with two goals in mind: enabling fast packet
processors through GPU offloading while preserving the flexibility
in Click that allows users to construct complex pipelines from sim-
ple elements. Snap is designed to offload specific elements to the
GPU: parts of the pipeline can continue to be handled by existing
elements that run on the CPU, with only those elements that present
computational bottlenecks re-implemented on the GPU. From the
perspective of a developer or a user, Snap appears very similar to
regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that
move packets to and from batch elements. Internally, Snap makes
several changes to Click in order to make this pipeline work well at
high speeds. Several themes appear in our design choices. In many
cases, we find that if we do “extra” work, such as making copies
of packets in main memory, or passing along packets that we know
will be discarded, we can decrease the need for synchronization and
reduce our use of the relatively slow PCIe bus. We also find that
scheduling parts of the pipeline asynchronously works well, and fits
naturally with Click’s native push/pull scheduling. In this section,
we walk through the design and implementation of Snap, starting at
a high level with the user-visible changes, and progressing through
the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline
As shown by the experiments in Section 2.3, in order to see large
benefits from GPU offloading, we need to provide the GPU with
relatively large batches of packets. In standard Click, the connection
between elements is a single packet wide: the push() and pull()
methods that pass packets between elements yield one packet each
time they are invoked. To efficiently use a GPU in the pipeline, we
added wider versions of the push() and pull() interfaces, bpush()
and bpull(). These methods exchange a new structure called a
PacketBatch, which will be described in more detail in the following
section. We also made Click’s Port class aware of these wider inter-
faces so that it can correctly pass PacketBatches between elements.
bpush() and bpull() belong to a new base class, BElement, which
derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-
ates a new class derived from Element and overloads the push()
and pull() methods. This is still supported in Snap; in fact, most of
our pipelines contain many unmodified elements from the standard
Click distribution, which we refer to as “serial” elements. To imple-
ment a parallel element in Snap the programmer simply derives it
from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU
side, which consists of GPU kernel code, and a CPU side, which re-
ceives PacketBatches from upstream elements and sends commands
to the GPU to invoke the GPU kernel. Snap provides a GPURun-
time object to help Click code interact with the GPU, which is
programmed and controlled using NVIDIA’s CUDA toolkit [18].
GPU-based elements interact with GPURuntime to request GPU
resources such as memory. The GPU kernel is written in CUDA’s
variant of C or C++, and is wrapped in an external library that is
linked with the element sources when compiling Snap. Typically,
each packet is processed by its own thread on the GPU.

Why using GPUs in Click?

41

0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K

Thro
ughputs

 (M
pps)

Number of packets per batch

GPU CPU

(a) IP lookup algorithm
(radix tree) 0.1

1

10

100

1000

64
128

256
512

1024
1518

Thro
ughput (

Mpps)

Packet Sizes (Bytes)

GPU-64-batch
GPU-256-batch

GPU-1K-batch
GPU-2K-batch

GPU-8K-batch
CPU

(b) IDSMatcher algorithm
(Aho-Corasick) 0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K

Thro
ughput (

Mpps)

Number of packets per batch

GPU CPU

(c) SDN
forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more

complex than a single processing function. In particular, they do

not directly provide efficient support for splitting packets across

divergent processing paths–for example, sending packets through

different downstream
code paths as a result of routing lookups or

IDS matches. This limits their use to simple linear pipelines, rather

than the complex element graphs supported by Click. Snap draws

inspiration from
this work, and seeks to simply and efficiently in-

tegrate GPU
processing into complex, fully-functional routers and

other packet processors. Snap will be an enabler for future work in

this area.
PTask [22] is a GPU

framework that supports complex dataflow

graphs; however, its model of data processing, which is based on

Unix pipes, is different from
the model used by a packet processor.

In PTask, each processing element consumes its input data and pro-

duces one or more new streams of output data. Packet processing, in

contrast, passes the same data, packets, through a series of elements

that modify, annotate, drop, or deliver them. This leads to a different

set of design decisions regarding how
to allocate, store, manage,

and reuse data memory.

Click has existing support for multiple processors [6]; however,

this support was designed for the level of parallelism
seen on PC

CPUs; ie. dozens of cores, not hundreds or thousands.
Route-

Bricks [7] showed that Click-based software routers can be scaled

up by using a network of PCs. In contrast, Snap focuses on the

routing performance of a single PC, and is thus complementary to

RouteBricks; by increasing each PC’s throughput, Snap could be

used to reduce the number of PCs needed in a RouteBricks-like

routing cluster. Kim
et al. demonstrated another strategy for improv-

ing Click performance by batching packets [13]. Here, batching

refers to executing the same element on a set of packets in series,

in contrast with standard Click, which executes a set of elements

on the same packet in series. This work is also complementary to

Snap, as it could be used to accelerate the CPU
portions of a Snap

pipeline, and could be driven by Snap’s batch scheduling.

3.
THE DESIGN AND IMPLEMENTATION

OF SNAP

We designed Snap with two goals in mind: enabling fast packet

processors through GPU
offloading while preserving the flexibility

in Click that allows users to construct complex pipelines from
sim-

ple elements. Snap is designed to offload specific elements to the

GPU: parts of the pipeline can continue to be handled by existing

elements that run on the CPU, with only those elements that present

computational bottlenecks re-implemented on the GPU. From
the

perspective of a developer or a user, Snap appears very similar to

regular Click, with the addition of a new
type of “batch” element that

can be implemented on the GPU
and a set of adapter elements that

move packets to and from
batch elements. Internally, Snap makes

several changes to Click in order to make this pipeline work well at

high speeds. Several themes appear in our design choices. In many

cases, we find that if we do “extra” work, such as making copies

of packets in main memory, or passing along packets that we know

will be discarded, we can decrease the need for synchronization and

reduce our use of the relatively slow
PCIe bus. We also find that

scheduling parts of the pipeline asynchronously works well, and fits

naturally with Click’s native push/pull scheduling. In this section,

we walk through the design and implementation of Snap, starting at

a high level with the user-visible changes, and progressing through

the lower level changes that stem
from

these high-level decisions.

3.1
W

idening Click’s Pipeline

As shown by the experiments in Section 2.3, in order to see large

benefits from
GPU

offloading, we need to provide the GPU
with

relatively large batches of packets. In standard Click, the connection

between elements is a single packet wide: the push() and pull()

methods that pass packets between elements yield one packet each

time they are invoked. To efficiently use a GPU
in the pipeline, we

added wider versions of the push() and pull() interfaces, bpush()

and bpull(). These methods exchange a new
structure called a

PacketBatch, which will be described in more detail in the following

section. We also made Click’s Port class aware of these wider inter-

faces so that it can correctly pass PacketBatches between elements.

bpush() and bpull() belong to a new
base class, BElement, which

derives from
Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-

ates a new
class derived from

Element and overloads the push()

and pull() methods. This is still supported in Snap; in fact, most of

our pipelines contain many unmodified elements from
the standard

Click distribution, which we refer to as “serial” elements. To imple-

ment a parallel element in Snap the programmer simply derives it

from
BElement and overrides the bpush() and bpull() methods.

A
GPU-based parallel element is comprised of two parts: a GPU

side, which consists of GPU
kernel code, and a CPU

side, which re-

ceives PacketBatches from
upstream

elements and sends commands

to the GPU
to invoke the GPU

kernel. Snap provides a GPURun-

time object to help Click code interact with the GPU, which is

programmed and controlled using NVIDIA’s CUDA
toolkit [18].

GPU-based elements interact with GPURuntime to request GPU

resources such as memory. The GPU
kernel is written in CUDA’s

variant of C
or C++, and is wrapped in an external library that is

linked with the element sources when compiling Snap. Typically,

each packet is processed by its own thread on the GPU.

0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K
 Th

ro
ug

hp
ut

s
(M

pp
s)

Number of packets per batch

GPU

CPU

(a) IP lookup algorithm (radix tree)

0.1

1

10

100

1000

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (M

pp
s)

Packet Sizes (Bytes)

GPU-64-batch GPU-256-batch
GPU-1K-batch GPU-2K-batch
GPU-8K-batch CPU

(b) IDSMatcher algorithm (Aho-Corasick)

0.1

1

10

100

1000

32

64

12
8

25
6

51
2

1K

2K

4K

8K
 Th

ro
ug

hp
ut

 (M
pp

s)

Number of packets per batch

GPU
CPU

(c) SDN forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more
complex than a single processing function. In particular, they do
not directly provide efficient support for splitting packets across
divergent processing paths–for example, sending packets through
different downstream code paths as a result of routing lookups or
IDS matches. This limits their use to simple linear pipelines, rather
than the complex element graphs supported by Click. Snap draws
inspiration from this work, and seeks to simply and efficiently in-
tegrate GPU processing into complex, fully-functional routers and
other packet processors. Snap will be an enabler for future work in
this area.

PTask [22] is a GPU framework that supports complex dataflow
graphs; however, its model of data processing, which is based on
Unix pipes, is different from the model used by a packet processor.
In PTask, each processing element consumes its input data and pro-
duces one or more new streams of output data. Packet processing, in
contrast, passes the same data, packets, through a series of elements
that modify, annotate, drop, or deliver them. This leads to a different
set of design decisions regarding how to allocate, store, manage,
and reuse data memory.

Click has existing support for multiple processors [6]; however,
this support was designed for the level of parallelism seen on PC
CPUs; ie. dozens of cores, not hundreds or thousands. Route-
Bricks [7] showed that Click-based software routers can be scaled
up by using a network of PCs. In contrast, Snap focuses on the
routing performance of a single PC, and is thus complementary to
RouteBricks; by increasing each PC’s throughput, Snap could be
used to reduce the number of PCs needed in a RouteBricks-like
routing cluster. Kim et al. demonstrated another strategy for improv-
ing Click performance by batching packets [13]. Here, batching
refers to executing the same element on a set of packets in series,
in contrast with standard Click, which executes a set of elements
on the same packet in series. This work is also complementary to
Snap, as it could be used to accelerate the CPU portions of a Snap
pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION
OF SNAP

We designed Snap with two goals in mind: enabling fast packet
processors through GPU offloading while preserving the flexibility
in Click that allows users to construct complex pipelines from sim-
ple elements. Snap is designed to offload specific elements to the
GPU: parts of the pipeline can continue to be handled by existing
elements that run on the CPU, with only those elements that present
computational bottlenecks re-implemented on the GPU. From the
perspective of a developer or a user, Snap appears very similar to
regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that
move packets to and from batch elements. Internally, Snap makes
several changes to Click in order to make this pipeline work well at
high speeds. Several themes appear in our design choices. In many
cases, we find that if we do “extra” work, such as making copies
of packets in main memory, or passing along packets that we know
will be discarded, we can decrease the need for synchronization and
reduce our use of the relatively slow PCIe bus. We also find that
scheduling parts of the pipeline asynchronously works well, and fits
naturally with Click’s native push/pull scheduling. In this section,
we walk through the design and implementation of Snap, starting at
a high level with the user-visible changes, and progressing through
the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline
As shown by the experiments in Section 2.3, in order to see large
benefits from GPU offloading, we need to provide the GPU with
relatively large batches of packets. In standard Click, the connection
between elements is a single packet wide: the push() and pull()
methods that pass packets between elements yield one packet each
time they are invoked. To efficiently use a GPU in the pipeline, we
added wider versions of the push() and pull() interfaces, bpush()
and bpull(). These methods exchange a new structure called a
PacketBatch, which will be described in more detail in the following
section. We also made Click’s Port class aware of these wider inter-
faces so that it can correctly pass PacketBatches between elements.
bpush() and bpull() belong to a new base class, BElement, which
derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-
ates a new class derived from Element and overloads the push()
and pull() methods. This is still supported in Snap; in fact, most of
our pipelines contain many unmodified elements from the standard
Click distribution, which we refer to as “serial” elements. To imple-
ment a parallel element in Snap the programmer simply derives it
from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU
side, which consists of GPU kernel code, and a CPU side, which re-
ceives PacketBatches from upstream elements and sends commands
to the GPU to invoke the GPU kernel. Snap provides a GPURun-
time object to help Click code interact with the GPU, which is
programmed and controlled using NVIDIA’s CUDA toolkit [18].
GPU-based elements interact with GPURuntime to request GPU
resources such as memory. The GPU kernel is written in CUDA’s
variant of C or C++, and is wrapped in an external library that is
linked with the element sources when compiling Snap. Typically,
each packet is processed by its own thread on the GPU.

0.1

1

10

100

1000

32

64

12
8

25
6

51
2 1K

2K

4K

8K

Th
ro

ug
hp

ut
s

(M
pp

s)

Number of packets per batch

GPU

CPU

(a) IP lookup algorithm (radix tree)

0.1

1

10

100

1000

64 128 256 512 1024 1518 Th
ro

ug
hp

ut
 (M

pp
s)

Packet Sizes (Bytes)

GPU-64-batch GPU-256-batch

GPU-1K-batch GPU-2K-batch

GPU-8K-batch CPU

(b) IDSMatcher algorithm (Aho-Corasick)

0.1

1

10

100

1000

32

64

12
8

25
6

51
2 1K

2K

4K

8K

Th
ro

ug
hp

ut
 (M

pp
s)

Number of packets per batch

GPU

CPU

(c) SDN forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more

complex than a single processing function. In particular, they do

not directly provide efficient support for splitting packets across

divergent processing paths–for example, sending packets through

different downstream code paths as a result of routing lookups or

IDS matches. This limits their use to simple linear pipelines, rather

than the complex element graphs supported by Click. Snap draws

inspiration from this work, and seeks to simply and efficiently in-

tegrate GPU processing into complex, fully-functional routers and

other packet processors. Snap will be an enabler for future work in

this area.
PTask [22] is a GPU framework that supports complex dataflow

graphs; however, its model of data processing, which is based on

Unix pipes, is different from the model used by a packet processor.

In PTask, each processing element consumes its input data and pro-

duces one or more new streams of output data. Packet processing, in

contrast, passes the same data, packets, through a series of elements

that modify, annotate, drop, or deliver them. This leads to a different

set of design decisions regarding how to allocate, store, manage,

and reuse data memory.

Click has existing support for multiple processors [6]; however,

this support was designed for the level of parallelism seen on PC

CPUs; ie. dozens of cores, not hundreds or thousands. Route-

Bricks [7] showed that Click-based software routers can be scaled

up by using a network of PCs. In contrast, Snap focuses on the

routing performance of a single PC, and is thus complementary to

RouteBricks; by increasing each PC’s throughput, Snap could be

used to reduce the number of PCs needed in a RouteBricks-like

routing cluster. Kim et al. demonstrated another strategy for improv-

ing Click performance by batching packets [13]. Here, batching

refers to executing the same element on a set of packets in series,

in contrast with standard Click, which executes a set of elements

on the same packet in series. This work is also complementary to

Snap, as it could be used to accelerate the CPU portions of a Snap

pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION

OF SNAP

We designed Snap with two goals in mind: enabling fast packet

processors through GPU offloading while preserving the flexibility

in Click that allows users to construct complex pipelines from sim-

ple elements. Snap is designed to offload specific elements to the

GPU: parts of the pipeline can continue to be handled by existing

elements that run on the CPU, with only those elements that present

computational bottlenecks re-implemented on the GPU. From the

perspective of a developer or a user, Snap appears very similar to

regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that

move packets to and from batch elements. Internally, Snap makes

several changes to Click in order to make this pipeline work well at

high speeds. Several themes appear in our design choices. In many

cases, we find that if we do “extra” work, such as making copies

of packets in main memory, or passing along packets that we know

will be discarded, we can decrease the need for synchronization and

reduce our use of the relatively slow PCIe bus. We also find that

scheduling parts of the pipeline asynchronously works well, and fits

naturally with Click’s native push/pull scheduling. In this section,

we walk through the design and implementation of Snap, starting at

a high level with the user-visible changes, and progressing through

the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline

As shown by the experiments in Section 2.3, in order to see large

benefits from GPU offloading, we need to provide the GPU with

relatively large batches of packets. In standard Click, the connection

between elements is a single packet wide: the push() and pull()

methods that pass packets between elements yield one packet each

time they are invoked. To efficiently use a GPU in the pipeline, we

added wider versions of the push() and pull() interfaces, bpush()

and bpull(). These methods exchange a new structure called a

PacketBatch, which will be described in more detail in the following

section. We also made Click’s Port class aware of these wider inter-

faces so that it can correctly pass PacketBatches between elements.

bpush() and bpull() belong to a new base class, BElement, which

derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-

ates a new class derived from Element and overloads the push()

and pull() methods. This is still supported in Snap; in fact, most of

our pipelines contain many unmodified elements from the standard

Click distribution, which we refer to as “serial” elements. To imple-

ment a parallel element in Snap the programmer simply derives it

from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU

side, which consists of GPU kernel code, and a CPU side, which re-

ceives PacketBatches from upstream elements and sends commands

to the GPU to invoke the GPU kernel. Snap provides a GPURun-

time object to help Click code interact with the GPU, which is

programmed and controlled using NVIDIA’s CUDA toolkit [18].

GPU-based elements interact with GPURuntime
to request GPU

resources such as memory. The GPU kernel is written in CUDA’s

variant of C or C++, and is wrapped in an external library that is

linked with the element sources when compiling Snap. Typically,

each packet is processed by its own thread on the GPU.

!And the GPU rocks!	

Snap: the idea
• Moving parts of Click

pipeline onto GPUs	

• CPU for sequential	

• GPU for parallel	

• Keep Click’s modular
style

42

SomeSource

SequentialElement

ParallelWork

MoreParallelWork

SequentialWork

Drop MoreSeqWork

AgainParallelWork

FurtherSequential

SomeDestination

On CPU On GPU

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

43

Apply generic principles

Batched processing

43

Apply generic principles

Batcher

Single Packet Path

Debatcher

Single Packet Path

Multi-Packet Path

push/pull

bpush/bpull

Packet

PacketBatch

Element
 + push()
 + pull()

BElement
 + bpush()
 + bpull()

Snap batched processing

44

Batcher

Single Packet Path

Debatcher

Single Packet Path

Multi-Packet Path

push/pull

bpush/bpull

Packet

PacketBatch

Element
 + push()
 + pull()

BElement
 + bpush()
 + bpull()

Snap batched processing

44

Batcher

Single Packet Path

Debatcher

Single Packet Path

Multi-Packet Path

push/pull

bpush/bpull

Packet

PacketBatch

Element
 + push()
 + pull()

BElement
 + bpush()
 + bpull()

Snap batched processing

44

Batcher

Single Packet Path

Debatcher

Single Packet Path

Multi-Packet Path

push/pull

bpush/bpull

Packet

PacketBatch

Element
 + push()
 + pull()

BElement
 + bpush()
 + bpull()

Snap batched processing

44

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Two choices:

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Two choices:

1. Split the batch into two
copies

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Two choices:

1. Split the batch into two
copies

➡ needs PCIe copy, sync!

Batched packet divergence

45

GPUClassifier

GPUChecksum GPUEncPacket

• Packets in a batch go to different paths

Two choices:

1. Split the batch into two
copies

➡ needs PCIe copy, sync!

2. Keep the batch, skip some
packets on GPUs

Predicated execution in a batch

46

GPUElement-1

Dispatcher

Predicate 0 Predicate 1

Predicate 0 Predicate 1

All Packets

PacketBatch

. . .

. . .

GPUElement-2

GPUElement-3

Debatcher

Predicated execution in a batch

46

GPUElement-1

Dispatcher

Predicate 0 Predicate 1

Predicate 0 Predicate 1

All Packets

PacketBatch

. . .

. . .

GPUElement-2

GPUElement-3

Debatcher

void	
 ge2kernel(…)	
 {	

	
 	
 if	
 (pkt.predicates[0])	
 {	

	
 	
 	
 	
 …	
 //	
 GPUElement-­‐2	
 logic	

	
 	
 }	

}

Predicated execution in a batch

46

GPUElement-1

Dispatcher

Predicate 0 Predicate 1

Predicate 0 Predicate 1

All Packets

PacketBatch

. . .

. . .

GPUElement-2

GPUElement-3

Debatcher

void	
 ge2kernel(…)	
 {	

	
 	
 if	
 (pkt.predicates[0])	
 {	

	
 	
 	
 	
 …	
 //	
 GPUElement-­‐2	
 logic	

	
 	
 }	

}

void	
 ge3kernel(…)	
 {	

	
 	
 if	
 (pkt.predicates[1])	
 {	

	
 	
 	
 	
 …	
 //	
 GPUElement-­‐3	
 logic	

	
 	
 }	

}

Predicated execution in a batch

46

GPUElement-1

Dispatcher

Predicate 0 Predicate 1

Predicate 0 Predicate 1

All Packets

PacketBatch

. . .

. . .

GPUElement-2

GPUElement-3

Debatcher

void	
 ge2kernel(…)	
 {	

	
 	
 if	
 (pkt.predicates[0])	
 {	

	
 	
 	
 	
 …	
 //	
 GPUElement-­‐2	
 logic	

	
 	
 }	

}

void	
 ge3kernel(…)	
 {	

	
 	
 if	
 (pkt.predicates[1])	
 {	

	
 	
 	
 	
 …	
 //	
 GPUElement-­‐3	
 logic	

	
 	
 }	

}

if	
 (pkt.predicates[0])	

	
 	
 output(0).push(pkt);	

else	
 if	
 (pkt.predicates[1])	

	
 	
 output(1).push(pkt);	

…

Batched processing

Asynchronous non-blocking GPU programming

47

Apply generic principles

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

Each batch binds a CUDA stream

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

Each batch binds a CUDA stream

BElement only does async GPU ops

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

Each batch binds a CUDA stream	

BElement only does async GPU ops	

Use GPUCompletionQueue to check
stream status

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Batched processingAsynchronous non-blocking GPU programming

47

Apply generic principles

“Region-of-interest” (ROI) based packet
slicing

All use the same locked memory for zero-copy DMA

Reduce PCIe data transfer with compacted workload

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Protocol

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Protocol

Src	
 IP

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Protocol

Src	
 IP Dst	
 IP

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Protocol

Src	
 IP Dst	
 IP
Src	
 Port

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

Protocol

Src	
 IP Dst	
 IP
Src	
 Port

Dst	
 Port

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

ROIs

Protocol

Src	
 IP Dst	
 IP
Src	
 Port

Dst	
 Port

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

ROIs

Protocol

Src	
 IP Dst	
 IP
Src	
 Port

Dst	
 Port

Slicing

Packet slicing for ``use-partial’’

48

Packet Classification’s regions-of-interest (ROI):

Packet

ROIs

Protocol

Src	
 IP Dst	
 IP
Src	
 Port

Dst	
 Port

Slicing

Coalescable memory access on GPUs

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

49

Apply generic principles

Batched processingAsynchronous non-blocking GPU programmingReduce PCIe data transfer with compacted workloadAll use the same locked memory for zero-copy DMA

49

Apply generic principles

Batched processingAsynchronous non-blocking GPU programmingReduce PCIe data transfer with compacted workloadAll use the same locked memory for zero-copy DMA

49

Apply generic principles

ROIs stored in CUDA locked memory

Evaluation

• Basic forwarding I/O improvement	

• Example applications:	

• Classification	

• IP routing	

• Pattern matching for IDS	

• Latency, re-order	

• Flexibility and modularity

50

Classifier+routing+pattern matching

51

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(a) SDN Forwarder

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(b) DPI Router

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(c) IDS Router

Figure 5.8. Performance of Click and Snap with three di↵erent applications.

Classifier+routing+pattern matching

51

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(a) SDN Forwarder

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(b) DPI Router

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click Snap-CPU
Snap-GPU Snap-GPU w/ Slicing

(c) IDS Router

Figure 5.8. Performance of Click and Snap with three di↵erent applications.

Evaluation

52

Evaluation

52

62

rate of 10Gbps represents 100% utilization on a 10Gbps interface. Forwarding tables were

designed such that all packets were forwarded back out the interface they arrived on. This

ensured that all outgoing tra�c was perfectly balanced so that any drops we observed were

due to e↵ects within the Snap host, rather than congestion on unbalanced outbound links.

5.5.1 Packet I/O

Our first set of experiments are simple micro-benchmarks that evaluate the packet I/O

optimizations described in Section 5.3.4. We measured the forwarding rate for minimum-

sized (64 byte) packets using Click’s Netmap packet I/O engine and Snap’s improvements

to that engine. These experiments use the simplest possible forwarder, which simply

passes packets between interfaces with no additional processing. We test both a one-path

arrangement, which passes packets from a single input NIC to a single output, and a

four-path arrangement that uses all four NICs in our test machine. Click’s existing Netmap

support is not thread-safe, allowing only one packet I/O thread to be run. We added

multi-threading support to standard Click’s Netmap code, and also report performance for

four threads, one per NIC. Snap adds support for multiple threads per NIC, each using a

di↵erent MQ/RSS queue, so we use sixteen threads for the Snap configuration.

Configuration

Throughput

Click 1 Path

4.55Gbps 6.5Mpps

Click 4 Paths (1 thread)
8.28Gbps 11.8Mpps

Click 4 Paths (4 threads) 13.02Gbps 18.5Mpps

Snap 1 Path

8.59Gbps 12.2Mpps

Snap 4 Paths

30.97Gbps 44.0Mpps

Table 5.2. Base Forwarding Performance of Snap and Click

The performance numbers are found in Table 5.2. Snap’s improvements to the I/O

engine introduce a 1.89x speedup for single path forwarding and 2.38x speedup for four-

path forwarding. One interesting result is that Snap’s four-path performance is not quite

four times that of its single-path performance. This suggests that there may be room

to improve the forwarding performance of Snap using more cores; our test CPU has four

physical cores and hyper-threading, meaning that there are two I/O threads mapped to

each hyper-threaded core. A recent (at the time of writing this thesis) evaluation of Snap’s

forwarding performance confirms this guess. We use a recent six-core high-end CPU: Intel

Core i7-3930K, and six 10Gb ports to do the basic forwarding, and get 49.62Gbps forwarding

rate, which is a little bit higher than the quad-core machine when considering the per-port

Forwarding

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figu
re 5.8. P

erform
ance

of Cli
ck and Snap

with
three

di↵er
ent ap

plicat
ions.

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figu
re 5.8.

Perfo
rmance

of Cl
ick and

Snap
with

three
di↵er

ent a
pplic

ation
s.

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figure 5.8. Performance of Click and Snap with three di↵erent applications.

66

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Figu
re 5.9.

Forw
ardi

ng perf
orm

ance
whe

n usin
g a GPUS

DNCl
assi

fier
that

dive
rges

to

two
GPUI

DSMa
tche

r elem
ents

.

pack
et is

proc
essed

by one
IDS

elem
ent;

the d
i↵ere

nce i
s tha

t in
the d

iverg
ing c

onfig
urat

ion,

ther
e are

two
IDS

elem
ents

, eac
h of w

hich
proc

esses
half

of th
e pa

cket
s. T

hus,
we c

an expe
ct

that
, if

the
over

head
of o

ur dive
rgen

ce hand
ling

strat
egy

is low,
the

confi
gura

tion
with

two
GPUI

DSMa
tche

rs sh
ould

achi
eve

similar
thro

ughp
ut to

the
confi

gura
tion

with
a sing

le

one.
We eva

luat
ed this

dive
rgin

g co
nfigu

ratio
n with

di↵e
rent

pack
et si

zes a
nd measu

red the

thro
ughp

ut, w
hich

is sh
own

in Figu
re 5.

9. T
he p

erfor
mance

unde
r div

erge
nce i

s ver
y similar

to the
IDS

Rou
ter r

esult
show

n in Figu
re 5.8(c

). It is
only

sligh
tly slow

er at
small p

acke
t

sizes
: the

dive
rgin

g confi
gura

tion
achi

eves
26.8

Gbp
s ver

sus t
he ID

S Rou
ter’s

28.0
Gbp

s for

64 byte
pack

ets,
39.4

Gbp
s vs.

39.6
Gbp

s for
128

byte
pack

ets,
and

39.9
Gbp

s vs.
40.0

Gbp
s

for 2
56 byte

s pa
cket

s. At a
nd abov

e 512
byte

pack
ets,

both
achi

eve
a full

40.0
Gbp

s. We

conc
lude

that
the

laun
ch of ex

tra GPU
thre

ads
that

have
no work

to do caus
es a sligh

t

slow
dow

n, b
ut th

e e↵
ects

are m
inim

al.

5.5.
5 Flex

ibili
ty and

Modu
larit

y

Fina
lly,

we dem
onst

rate
that

Snap
can

be used
to build

not
only

high
ly spec

ializ
ed

forw
arde

rs, b
ut a

lso a
com

plete
stan

dard
s com

plian
t IP

rout
er. T

his t
ask is sim

ple,
beca

use

such
confi

gura
tion

s alrea
dy exist

for
Click

. Spec
ifica

lly,
we base

our
IP rout

er o↵ of

the
confi

gura
tion

show
n in Figu

re 8 of th
e Click

pape
r [83],

whic
h inclu

des
supp

ort
for

erro
r ch

eckin
g of h

eade
rs, f

ragm
enta

tion
, IC

MP redir
ects,

TTL
expi

ratio
n, a

nd ARP
. We

repla
ce th

e Lo
okup

IPRo
ute

elem
ent w

ith our
GPUI

PLoo
kup

elem
ent (

and
the a

ccom
pany

ing

Batc
her,

etc.)
, and

add
an IDS

elem
ent t

o both
the

CPU
and

GPU
confi

gura
tion

s.

Due
to the

com
plex

ity of th
is rout

er, w
e do not

atte
mpt to illus

trate
the

entir
e Snap

confi
gura

tion
here

. Ins
tead

, we
illus

trate
the

major
chan

ges t
hat

we m
ade

to the
stan

dard

Click
rout

er co
nfigu

ratio
n in Figu

re 5.10
. The

left
part

of th
e figur

e show
s ou

r GP
U pro-

cessi
ng path

, and
the r

ight
part

is th
e ori

gina
l CP

U rout
e loo

kup
path

plus
an IDSM

atch
er

Evaluation

52

62

rate of 10Gbps represents 100% utilization on a 10Gbps interface. Forwarding tables were

designed such that all packets were forwarded back out the interface they arrived on. This

ensured that all outgoing tra�c was perfectly balanced so that any drops we observed were

due to e↵ects within the Snap host, rather than congestion on unbalanced outbound links.

5.5.1 Packet I/O

Our first set of experiments are simple micro-benchmarks that evaluate the packet I/O

optimizations described in Section 5.3.4. We measured the forwarding rate for minimum-

sized (64 byte) packets using Click’s Netmap packet I/O engine and Snap’s improvements

to that engine. These experiments use the simplest possible forwarder, which simply

passes packets between interfaces with no additional processing. We test both a one-path

arrangement, which passes packets from a single input NIC to a single output, and a

four-path arrangement that uses all four NICs in our test machine. Click’s existing Netmap

support is not thread-safe, allowing only one packet I/O thread to be run. We added

multi-threading support to standard Click’s Netmap code, and also report performance for

four threads, one per NIC. Snap adds support for multiple threads per NIC, each using a

di↵erent MQ/RSS queue, so we use sixteen threads for the Snap configuration.

Configuration

Throughput

Click 1 Path

4.55Gbps 6.5Mpps

Click 4 Paths (1 thread)
8.28Gbps 11.8Mpps

Click 4 Paths (4 threads) 13.02Gbps 18.5Mpps

Snap 1 Path

8.59Gbps 12.2Mpps

Snap 4 Paths

30.97Gbps 44.0Mpps

Table 5.2. Base Forwarding Performance of Snap and Click

The performance numbers are found in Table 5.2. Snap’s improvements to the I/O

engine introduce a 1.89x speedup for single path forwarding and 2.38x speedup for four-

path forwarding. One interesting result is that Snap’s four-path performance is not quite

four times that of its single-path performance. This suggests that there may be room

to improve the forwarding performance of Snap using more cores; our test CPU has four

physical cores and hyper-threading, meaning that there are two I/O threads mapped to

each hyper-threaded core. A recent (at the time of writing this thesis) evaluation of Snap’s

forwarding performance confirms this guess. We use a recent six-core high-end CPU: Intel

Core i7-3930K, and six 10Gb ports to do the basic forwarding, and get 49.62Gbps forwarding

rate, which is a little bit higher than the quad-core machine when considering the per-port

Forwarding

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figu
re 5.8. P

erform
ance

of Cli
ck and Snap

with
three

di↵er
ent ap

plicat
ions.

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU

Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figu
re 5.8.

Perfo
rmance

of Cl
ick and

Snap
with

three
di↵er

ent a
pplic

ation
s.

64

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

a

)

S

D

N

F

o

r

w

a

r

d

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

b

)

D

P

I

R

o

u

t

e

r

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Click

Snap-CPU

Snap-GPU
Snap-GPU w/ Slicing

(

c

)

I

D

S

R

o

u

t

e

r

Figure 5.8. Performance of Click and Snap with three di↵erent applications.

66

0

10

20

30

40

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Bytes)

Figu
re 5.9.

Forw
ardi

ng perf
orm

ance
whe

n usin
g a GPUS

DNCl
assi

fier
that

dive
rges

to

two
GPUI

DSMa
tche

r elem
ents

.

pack
et is

proc
essed

by one
IDS

elem
ent;

the d
i↵ere

nce i
s tha

t in
the d

iverg
ing c

onfig
urat

ion,

ther
e are

two
IDS

elem
ents

, eac
h of w

hich
proc

esses
half

of th
e pa

cket
s. T

hus,
we c

an expe
ct

that
, if

the
over

head
of o

ur dive
rgen

ce hand
ling

strat
egy

is low,
the

confi
gura

tion
with

two
GPUI

DSMa
tche

rs sh
ould

achi
eve

similar
thro

ughp
ut to

the
confi

gura
tion

with
a sing

le

one.
We eva

luat
ed this

dive
rgin

g co
nfigu

ratio
n with

di↵e
rent

pack
et si

zes a
nd measu

red the

thro
ughp

ut, w
hich

is sh
own

in Figu
re 5.

9. T
he p

erfor
mance

unde
r div

erge
nce i

s ver
y similar

to the
IDS

Rou
ter r

esult
show

n in Figu
re 5.8(c

). It is
only

sligh
tly slow

er at
small p

acke
t

sizes
: the

dive
rgin

g confi
gura

tion
achi

eves
26.8

Gbp
s ver

sus t
he ID

S Rou
ter’s

28.0
Gbp

s for

64 byte
pack

ets,
39.4

Gbp
s vs.

39.6
Gbp

s for
128

byte
pack

ets,
and

39.9
Gbp

s vs.
40.0

Gbp
s

for 2
56 byte

s pa
cket

s. At a
nd abov

e 512
byte

pack
ets,

both
achi

eve
a full

40.0
Gbp

s. We

conc
lude

that
the

laun
ch of ex

tra GPU
thre

ads
that

have
no work

to do caus
es a sligh

t

slow
dow

n, b
ut th

e e↵
ects

are m
inim

al.

5.5.
5 Flex

ibili
ty and

Modu
larit

y

Fina
lly,

we dem
onst

rate
that

Snap
can

be used
to build

not
only

high
ly spec

ializ
ed

forw
arde

rs, b
ut a

lso a
com

plete
stan

dard
s com

plian
t IP

rout
er. T

his t
ask is sim

ple,
beca

use

such
confi

gura
tion

s alrea
dy exist

for
Click

. Spec
ifica

lly,
we base

our
IP rout

er o↵ of

the
confi

gura
tion

show
n in Figu

re 8 of th
e Click

pape
r [83],

whic
h inclu

des
supp

ort
for

erro
r ch

eckin
g of h

eade
rs, f

ragm
enta

tion
, IC

MP redir
ects,

TTL
expi

ratio
n, a

nd ARP
. We

repla
ce th

e Lo
okup

IPRo
ute

elem
ent w

ith our
GPUI

PLoo
kup

elem
ent (

and
the a

ccom
pany

ing

Batc
her,

etc.)
, and

add
an IDS

elem
ent t

o both
the

CPU
and

GPU
confi

gura
tion

s.

Due
to the

com
plex

ity of th
is rout

er, w
e do not

atte
mpt to illus

trate
the

entir
e Snap

confi
gura

tion
here

. Ins
tead

, we
illus

trate
the

major
chan

ges t
hat

we m
ade

to the
stan

dard

Click
rout

er co
nfigu

ratio
n in Figu

re 5.10
. The

left
part

of th
e figur

e show
s ou

r GP
U pro-

cessi
ng path

, and
the r

ight
part

is th
e ori

gina
l CP

U rout
e loo

kup
path

plus
an IDSM

atch
er

• GPU reached 40Gb/s line rate at 128B	

• CPU just 1/3 or 1/4	

• Latency tolerable in LAN for non-latency-
sensitive app, negligible in WAN

Preserving Click’s flexibility:
full IP router

53

12 · E. Kohler et al.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Fig. 8. An IP router configuration.

Preserving Click’s flexibility:
full IP router

53

68

0

10

20

30

40

64 128 256 512 1024 1518
Th

ro
ug

hp
ut

 (G
bp

s)

Packet Size (Bytes)

Click Snap-CPU Snap-GPU (w/ Slicing)

Figure 5.11. Fully functional IP router + IDS performance

of elements, some of which are duplicated sixteen times, once for each thread. As future

work, we believe that the throughput can be significantly improved by moving some of these

to the GPU and applying the techniques from Kim et al. [79] to optimize the remaining

CPU portions of the configuration.

5.6 Summary and Future Work
Snap expands Click’s composable element structure, adding support for batch processing

and o✏oading of computation. At small packet sizes (128 bytes), Snap increases the

performance of a combined IP router, SDN forwarder, and IDS on commodity hardware

from 10.6Gbps to 39.6Gbps. This performance increase comes primarily from two sources:

an improved packet I/O engine for Click that takes advantage of multi-queue NICs, and

moving computationally expensive processing tasks to the GPU. A trivial forwarder created

with Snap can forward at a rate of 44.0Mpps, while the complex SDN/IDS router reaches

90% of this rate (39.8Mpps). These results suggest that there is likely potential for elements

that are even more computationally complex than the ones we investigated, pointing to

future work in complex packet processing. The fact that we are able to saturate all NICs

in our test platform with such small packets suggests that it will be possible to reach even

higher throughputs when PCIe 3.0 devices are available for testing, allowing us to double

the number of NICs on a bus.

The elements and techniques proposed and implemented in Snap are not GPU-specific

only. While some of the new Elements implemented for Snap, such as HostToDeviceMemcpy

and GPUCompletetionQueue, are GPU-specific, the extensions we made to the Click archi-

tecture should be applicable to other parallel o✏oad engines (such as network processors

12 · E. Kohler et al.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Fig. 8. An IP router configuration.

Add a pattern
matching
element

Preserving Click’s flexibility:
full IP router

53

68

0

10

20

30

40

64 128 256 512 1024 1518
Th

ro
ug

hp
ut

 (G
bp

s)

Packet Size (Bytes)

Click Snap-CPU Snap-GPU (w/ Slicing)

Figure 5.11. Fully functional IP router + IDS performance

of elements, some of which are duplicated sixteen times, once for each thread. As future

work, we believe that the throughput can be significantly improved by moving some of these

to the GPU and applying the techniques from Kim et al. [79] to optimize the remaining

CPU portions of the configuration.

5.6 Summary and Future Work
Snap expands Click’s composable element structure, adding support for batch processing

and o✏oading of computation. At small packet sizes (128 bytes), Snap increases the

performance of a combined IP router, SDN forwarder, and IDS on commodity hardware

from 10.6Gbps to 39.6Gbps. This performance increase comes primarily from two sources:

an improved packet I/O engine for Click that takes advantage of multi-queue NICs, and

moving computationally expensive processing tasks to the GPU. A trivial forwarder created

with Snap can forward at a rate of 44.0Mpps, while the complex SDN/IDS router reaches

90% of this rate (39.8Mpps). These results suggest that there is likely potential for elements

that are even more computationally complex than the ones we investigated, pointing to

future work in complex packet processing. The fact that we are able to saturate all NICs

in our test platform with such small packets suggests that it will be possible to reach even

higher throughputs when PCIe 3.0 devices are available for testing, allowing us to double

the number of NICs on a bus.

The elements and techniques proposed and implemented in Snap are not GPU-specific

only. While some of the new Elements implemented for Snap, such as HostToDeviceMemcpy

and GPUCompletetionQueue, are GPU-specific, the extensions we made to the Click archi-

tecture should be applicable to other parallel o✏oad engines (such as network processors

12 · E. Kohler et al.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Fig. 8. An IP router configuration.

Add a pattern
matching
element

Snap Summary

• A generic parallel packet processing framework	

• flexibility of Click	

• fast parallel power from GPUs	

• https://github.com/wbsun/snap	

• Details not presented: network I/O, async
scheduling

54

https://github.com/wbsun/snap

The throughput of system software with
parallelizable, computationally expensive tasks

can be improved by using GPUs and
frameworks with memory-efficient and

throughput-oriented designs.	

55

Thesis statement

56

Conclusion

56

Conclusion

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

Generic principles:

56

Conclusion

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

Generic principles:

Concrete frameworks:
GPUstore with high throughput storage applications

Snap with high throughput network packet processing

Thanks!	

Q&A

57

Backup slides

58

ROI for memory access coalescing

59

packet

ROIs

How ROI slicing works?

• To Click insiders:	

• Batcher accepts ROI requests from BElements	

• Batcher merges requested ROIs into result ROIs	

• Each BElement asks for its ROIs’ offsets	

• GPU kernels invoked by BElements use variables
for offsets

60

How predicated execution works?

• To Click insiders:	

• Manually assigned: where and what!

61

Path-encoded predicate

62

GPUElement-1

GPUElement-3GPUElement-2

GPUElement-7GPUElement-6 GPUElement-8GPUElement-4 GPUElement-5

GPUElement-9 GPUElement-10

0 1

00,0 01,0
10,0 0,1 1,1

0,0,1
1,0,1

