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Software stack needs 
fast system level base!

System functionality 
can be expensive!

‣ Crypto: AES, SHA1, MD5, RSA	


‣ Lookup: IP routing, DNS, key-value store, DB	


‣ Erasure coding: RAID, distributed storage, 

wireless	


‣ Pattern matching: NIDS, virus, searching	


‣ Compression: storage, network	


‣ …
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Software stack needs 
fast system level base!

System software 
needs high throughput 

processing!

System functionality 
can be expensive!

Modern digital 
workloads are big!

Many system tasks are  
data-parallelizable!

GPUs are the de-facto 
standard parallel processors!

Using GPUs in 
system software!
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Thesis work
• Generic principles	



• Concretely:	



• Two generic frameworks for representative 
system tasks: storage and network	



• Example applications on top of both 
frameworks	



• Literature survey * 
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SIMT wimpy cores:	


32-core warp

wide memory 
interface: 384bits!

necessary 
memory copy

CUDA



Related work: pioneers

• Gnort [RAID ’2008]	



• PacketShader [SIGCOMM ’2010]	



• SSLShader [NSDI ’2011]	



• EigenCFA  [POPL ’2011]	



• Gibraltar   [ICPP ’2010]	



• CrystalGPU  [HPDC ’2010]	



• …
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Specialized and Ad-hoc
solutions to one particular

application!

 



GPU computing frameworks/models

• Hydra [ASPLOS’08]	



• CUDA-Lite [LCPC’08]	



• hiCUDA [GPGPU’09]	



• ASDSM [ASPLOS’10]	



• Sponge [ASPLOS’11]	
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• Simple workflow	



• Long computation, PCIe 
copy and synchronization 
not matter	



• No batched data 
divergence 

 

System level GPU 

computing needs its own 

generic frameworks!



Rest of this talk

• Generic principles	



• GPUstore : for storage systems	



• Snap : for packet processing
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System level GPU computing: 	


generic principles
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Latency V.S. throughput

Batched processing: wait for enough workload

• how much is enough?

• increased latency
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CPU:

GPU:

sleep for sync

CPU:

GPU:

keep working

Blocking:

Non-blocking:

System code (network, disk, etc.) likes:	



Callback	



Polling
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How PCIe transfer wasted?

Do you need the entire packet to do routing lookup?

17

4 
bytes 

≥ 64 bytes 

What you need:

What you may transfer:



Compact your workload data

18

GPU memory

PCIeCompaction

Host memory

For ``use-partial’’ data usage pattern
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GPU DMA contraints
• DMA only on locked memory pages

• GPU drivers only recognize their own locked memory
pool

20

GPU driver’s memory area

DMA 
locked 
mem

DMA on PCIe
GPU mem

External 
mem

Make GPU driver and system 

code use the same locked 

memory for zero-copy DMA!
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Latency-oriented system code VS throughput-oriented GPU

CPU-GPU synchronization hurts asynchronous systems

Wasted PCIe data transfer

Generic principles

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA



GPUstore: 	


Harnessing GPU Computing 

in OS Storage Systems
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[Weibin Sun, Robert Ricci, Matthew L. Curry @ SYSTOR’12]
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GPUstore overview

• A storage framework for Linux kernel to use
CUDA GPUs in filesystems, block drivers, etc.

• Minimally invasive GPU integration

• Small changes

• Preserve interface and semantics

• Keep efficient

23
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Syscall

VFS

Filesystems… e.g. 
eCryptfs

Page Cache

Block device drivers

Functional virtual block drivers… 
e.g. dm-crypt, MD RAID6

!...
GPUCipher(buf);
!...

!...
GPURSCode(buf);
!...

G
PU
sto

re

GPU Ciphers

GPU RAID6

Computation
 Requests

Computation

Requests

GPU Services
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Apply generic principles

Merge small requests

Split large requests

Callback-based request processing
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How to define “small” and “large”?

Up to specific services.

Request scheduling

27

Merge small requests

Split large requests
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CUDA mem	


continuous VA

Physical pages Continuous VA

Kernel vmap

User space (helper)
Kernel space

What’s next? 

Replace kmalloc()/vmalloc()/
get_free_pages() with 
GPUstoreMalloc()?

Sometimes it is infeasible!



Why infeasible?

30



Why infeasible?

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver



Why infeasible?

➡ Who allocates the memory?

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver



Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver



Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver



Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:

30

Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver

‣ page cache, buffer cache
‣ object cache
‣ packet pool
‣ …



Why infeasible?

➡ Who allocates the memory?

๏ “pass-by-ref” interface

➡ Can NOT modify highly-depended cache
allocators:
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Syscall

VFS

Filesystem

Page cache

Block I/O

Virtual Block 
Driver

Block Driver

‣ page cache, buffer cache
‣ object cache
‣ packet pool
‣ …

Can we use arbitrary memory 

for GPU DMA?
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All use the same locked memory for zero-copy DMA

In-kernel CUDA locked memory allocator

Remap external memory into GPU driver’s locked 
memory area
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31

engineering work to make use of the immature open source GPU drivers and CUDA libraries

they depend on.

4.2 Implementation
GPUstore has been prototyped on Linux kernel to accelerate three existing kernel storage

components. We enhanced encrypted storage with dm-crypt and eCryptfs, and the software

RAID driver md. We chose these three subsystems because they interact with the kernel in

di↵erent ways: md and dm-crypt implement the block I/O interface, and eCryptfs works

with the virtual filesystem (VFS) layer. The architecture of these implementations is shown

in Figure 4.3.

VFS

eCryptfs

Block-IO

dm-cryptmd RAID6

GPUstore

GPU Encryption 
Service

GPU RAID 
Recovery Service

Block-IO

Figure 4.3. Storage services implemented with GPUstore.

Subsystem Total LOC Modified LOC Percent

dm-crypt 1,800 50 3%
eCryptfs 11,000 200 2%
md 6,000 20 0.3%

Table 4.1. Approximate modified lines of code required to call GPU services using
GPUstore.

The design of GPUstore ensures that client subsystems need only minor modifications

to call GPU services. Table 4.1 gives the approximate number of lines of code that we had

to modify for our example subsystems. The lines of code reported in this table are those

in the subsystems that are modified to call GPUstore, and do not include the lines of code

used to implement the GPU services. Linux storage subsystems typically call out to other

re-usable kernel components to perform common operations such as encryption: essentially,

we replace these with calls to GPUstore and make minor changes to memory management.

• Integration cost:
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Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU
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Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps
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Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU
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version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

SSD:	


250MB/s
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Figure 8. eCryptfs throughput on a RAM-backed filesystem.

for the CPU, a 70% speed increase. Unlike our earlier bench-
marks, read speeds remain nearly constant across all block
sizes. This is explained by the Linux page-cache’s readahead
behavior: when small reads were performed by iozone, the
page-cache chose to issue larger reads to the filesystem in
anticipation of future reads. The default readahead size of
128 KB is large enough to reach the SSD’s full read speed of
250MB/s. This illustrates an important point: by designing
GPUstore to fit naturally into existing storage subsystems,
we enable it to work smoothly with the rest of the kernel.
Thus, by simply implementing the multi-page readpages

interface for eCryptfs, we enabled existing I/O optimizations
in the Linux kernel to kick in, maximizing performance even
though they are unaware of GPUstore.

Another surprising result in Figure 7 is that the GPU write
speed exceeds the write speed of the SSD, and even its read
speed, when block size increases beyond 128 KB. This hap-
pens because eCryptfs is, by design, “stacked” on top of
another filesystem. Even though we take care to sync writes
to eCryptfs, the underlying filesystem still operates asyn-
chronously and caches the writes, returning before the actual
disk operation has completed. This demonstrates another
important property of GPUstore: it does not change the be-
havior of the storage stack with respect to caching, so client
subsystems still get the full effect of these caches without any
special effort.

We tested the throughput limits of our GPU eCryptfs
implementation by repeating the previous experiment on
a RAM disk, as shown in Figure 8. Our GPU-accelerated
eCryptfs achieves more than 700 MBps when reading and
420 Mbps when writing. Compared to the CPU, which does
not perform much better than it did on the SSD, this is a
speed increase of nearly five times for reads and close to three
times for writes. It is worth noting that Linux’s readahead
mechanism not only “rounds up” read requests to 128 KB, it
“rounds down” larger ones as well, preventing eCryptfs from
reaching even higher levels of performance.

Finally, we used filebench to evaluate eCryptfs under
concurrent workloads. We varied the number of concurrent

Figure 9. eCryptfs concurrent write throughput on a RAM
disk for two different block sizes.
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Figure 10. Throughput for the RAID 6 recovery algorithm
with and without optimizations to avoid redundant buffers.

writers from one to one hundred, and used the RAM-backed
filesystem. Each client writes sequentially to a separate file.
The effects of GPUstore’s merge operation are clearly visible
in Figure 9: with a single client, performance is low, because
we use relatively small block sizes (128 KB and 16 KB) for
this test. But with ten clients, GPUstore is able to merge
enough requests to get performance on par with dm-crypt at
a 1 MB blocksize. This demonstrates that GPUstore is useful
not only for storage systems with heavy single-threaded
workloads, but also for workloads with many simultaneous
clients. While block size still has a significant effect on
performance, GPUstore is able to amortize overheads across
concurrent access streams to achieve high performance even
for relatively small I/O sizes.

4.4 md RAID 6 Data Recovery
As with encryption, the performance of our GPU-based
RAID 6 recovery algorithm increases with larger block sizes,
eventually reaching six times the CPU’s performance, as seen
in Figure 10.

We measured the sequential bandwidth of a degraded
RAID 6 array consisting of 32 disks in our S2 experiment
environment. The results are shown in Figure 11. We find
that GPU accelerated RAID 6 data recovery does not achieve

eCryptfs on RAM disks	



Linux max 128KB read-ahead effects on read



GPUstore Summary

• Enables efficient GPU-accelerated storage in Linux 
kernel with small changes	



• https://github.com/wbsun/kgpu	



• Details not presented: user-space helper, non-blocking K-
U comm, more exp result
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Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more
complex than a single processing function. In particular, they do
not directly provide efficient support for splitting packets across
divergent processing paths–for example, sending packets through
different downstream code paths as a result of routing lookups or
IDS matches. This limits their use to simple linear pipelines, rather
than the complex element graphs supported by Click. Snap draws
inspiration from this work, and seeks to simply and efficiently in-
tegrate GPU processing into complex, fully-functional routers and
other packet processors. Snap will be an enabler for future work in
this area.

PTask [22] is a GPU framework that supports complex dataflow
graphs; however, its model of data processing, which is based on
Unix pipes, is different from the model used by a packet processor.
In PTask, each processing element consumes its input data and pro-
duces one or more new streams of output data. Packet processing, in
contrast, passes the same data, packets, through a series of elements
that modify, annotate, drop, or deliver them. This leads to a different
set of design decisions regarding how to allocate, store, manage,
and reuse data memory.

Click has existing support for multiple processors [6]; however,
this support was designed for the level of parallelism seen on PC
CPUs; ie. dozens of cores, not hundreds or thousands. Route-
Bricks [7] showed that Click-based software routers can be scaled
up by using a network of PCs. In contrast, Snap focuses on the
routing performance of a single PC, and is thus complementary to
RouteBricks; by increasing each PC’s throughput, Snap could be
used to reduce the number of PCs needed in a RouteBricks-like
routing cluster. Kim et al. demonstrated another strategy for improv-
ing Click performance by batching packets [13]. Here, batching
refers to executing the same element on a set of packets in series,
in contrast with standard Click, which executes a set of elements
on the same packet in series. This work is also complementary to
Snap, as it could be used to accelerate the CPU portions of a Snap
pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION
OF SNAP

We designed Snap with two goals in mind: enabling fast packet
processors through GPU offloading while preserving the flexibility
in Click that allows users to construct complex pipelines from sim-
ple elements. Snap is designed to offload specific elements to the
GPU: parts of the pipeline can continue to be handled by existing
elements that run on the CPU, with only those elements that present
computational bottlenecks re-implemented on the GPU. From the
perspective of a developer or a user, Snap appears very similar to
regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that
move packets to and from batch elements. Internally, Snap makes
several changes to Click in order to make this pipeline work well at
high speeds. Several themes appear in our design choices. In many
cases, we find that if we do “extra” work, such as making copies
of packets in main memory, or passing along packets that we know
will be discarded, we can decrease the need for synchronization and
reduce our use of the relatively slow PCIe bus. We also find that
scheduling parts of the pipeline asynchronously works well, and fits
naturally with Click’s native push/pull scheduling. In this section,
we walk through the design and implementation of Snap, starting at
a high level with the user-visible changes, and progressing through
the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline
As shown by the experiments in Section 2.3, in order to see large
benefits from GPU offloading, we need to provide the GPU with
relatively large batches of packets. In standard Click, the connection
between elements is a single packet wide: the push() and pull()
methods that pass packets between elements yield one packet each
time they are invoked. To efficiently use a GPU in the pipeline, we
added wider versions of the push() and pull() interfaces, bpush()
and bpull(). These methods exchange a new structure called a
PacketBatch, which will be described in more detail in the following
section. We also made Click’s Port class aware of these wider inter-
faces so that it can correctly pass PacketBatches between elements.
bpush() and bpull() belong to a new base class, BElement, which
derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-
ates a new class derived from Element and overloads the push()
and pull() methods. This is still supported in Snap; in fact, most of
our pipelines contain many unmodified elements from the standard
Click distribution, which we refer to as “serial” elements. To imple-
ment a parallel element in Snap the programmer simply derives it
from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU
side, which consists of GPU kernel code, and a CPU side, which re-
ceives PacketBatches from upstream elements and sends commands
to the GPU to invoke the GPU kernel. Snap provides a GPURun-
time object to help Click code interact with the GPU, which is
programmed and controlled using NVIDIA’s CUDA toolkit [18].
GPU-based elements interact with GPURuntime to request GPU
resources such as memory. The GPU kernel is written in CUDA’s
variant of C or C++, and is wrapped in an external library that is
linked with the element sources when compiling Snap. Typically,
each packet is processed by its own thread on the GPU.
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efficient, but they are not well suited to building pipelines more
complex than a single processing function. In particular, they do
not directly provide efficient support for splitting packets across
divergent processing paths–for example, sending packets through
different downstream code paths as a result of routing lookups or
IDS matches. This limits their use to simple linear pipelines, rather
than the complex element graphs supported by Click. Snap draws
inspiration from this work, and seeks to simply and efficiently in-
tegrate GPU processing into complex, fully-functional routers and
other packet processors. Snap will be an enabler for future work in
this area.

PTask [22] is a GPU framework that supports complex dataflow
graphs; however, its model of data processing, which is based on
Unix pipes, is different from the model used by a packet processor.
In PTask, each processing element consumes its input data and pro-
duces one or more new streams of output data. Packet processing, in
contrast, passes the same data, packets, through a series of elements
that modify, annotate, drop, or deliver them. This leads to a different
set of design decisions regarding how to allocate, store, manage,
and reuse data memory.

Click has existing support for multiple processors [6]; however,
this support was designed for the level of parallelism seen on PC
CPUs; ie. dozens of cores, not hundreds or thousands. Route-
Bricks [7] showed that Click-based software routers can be scaled
up by using a network of PCs. In contrast, Snap focuses on the
routing performance of a single PC, and is thus complementary to
RouteBricks; by increasing each PC’s throughput, Snap could be
used to reduce the number of PCs needed in a RouteBricks-like
routing cluster. Kim et al. demonstrated another strategy for improv-
ing Click performance by batching packets [13]. Here, batching
refers to executing the same element on a set of packets in series,
in contrast with standard Click, which executes a set of elements
on the same packet in series. This work is also complementary to
Snap, as it could be used to accelerate the CPU portions of a Snap
pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION
OF SNAP

We designed Snap with two goals in mind: enabling fast packet
processors through GPU offloading while preserving the flexibility
in Click that allows users to construct complex pipelines from sim-
ple elements. Snap is designed to offload specific elements to the
GPU: parts of the pipeline can continue to be handled by existing
elements that run on the CPU, with only those elements that present
computational bottlenecks re-implemented on the GPU. From the
perspective of a developer or a user, Snap appears very similar to
regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that
move packets to and from batch elements. Internally, Snap makes
several changes to Click in order to make this pipeline work well at
high speeds. Several themes appear in our design choices. In many
cases, we find that if we do “extra” work, such as making copies
of packets in main memory, or passing along packets that we know
will be discarded, we can decrease the need for synchronization and
reduce our use of the relatively slow PCIe bus. We also find that
scheduling parts of the pipeline asynchronously works well, and fits
naturally with Click’s native push/pull scheduling. In this section,
we walk through the design and implementation of Snap, starting at
a high level with the user-visible changes, and progressing through
the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline
As shown by the experiments in Section 2.3, in order to see large
benefits from GPU offloading, we need to provide the GPU with
relatively large batches of packets. In standard Click, the connection
between elements is a single packet wide: the push() and pull()
methods that pass packets between elements yield one packet each
time they are invoked. To efficiently use a GPU in the pipeline, we
added wider versions of the push() and pull() interfaces, bpush()
and bpull(). These methods exchange a new structure called a
PacketBatch, which will be described in more detail in the following
section. We also made Click’s Port class aware of these wider inter-
faces so that it can correctly pass PacketBatches between elements.
bpush() and bpull() belong to a new base class, BElement, which
derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-
ates a new class derived from Element and overloads the push()
and pull() methods. This is still supported in Snap; in fact, most of
our pipelines contain many unmodified elements from the standard
Click distribution, which we refer to as “serial” elements. To imple-
ment a parallel element in Snap the programmer simply derives it
from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU
side, which consists of GPU kernel code, and a CPU side, which re-
ceives PacketBatches from upstream elements and sends commands
to the GPU to invoke the GPU kernel. Snap provides a GPURun-
time object to help Click code interact with the GPU, which is
programmed and controlled using NVIDIA’s CUDA toolkit [18].
GPU-based elements interact with GPURuntime to request GPU
resources such as memory. The GPU kernel is written in CUDA’s
variant of C or C++, and is wrapped in an external library that is
linked with the element sources when compiling Snap. Typically,
each packet is processed by its own thread on the GPU.
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(c) SDN forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more

complex than a single processing function. In particular, they do

not directly provide efficient support for splitting packets across

divergent processing paths–for example, sending packets through

different downstream code paths as a result of routing lookups or

IDS matches. This limits their use to simple linear pipelines, rather

than the complex element graphs supported by Click. Snap draws

inspiration from this work, and seeks to simply and efficiently in-

tegrate GPU processing into complex, fully-functional routers and

other packet processors. Snap will be an enabler for future work in

this area.
PTask [22] is a GPU framework that supports complex dataflow

graphs; however, its model of data processing, which is based on

Unix pipes, is different from the model used by a packet processor.

In PTask, each processing element consumes its input data and pro-

duces one or more new streams of output data. Packet processing, in

contrast, passes the same data, packets, through a series of elements

that modify, annotate, drop, or deliver them. This leads to a different

set of design decisions regarding how to allocate, store, manage,

and reuse data memory.

Click has existing support for multiple processors [6]; however,

this support was designed for the level of parallelism seen on PC

CPUs; ie. dozens of cores, not hundreds or thousands. Route-

Bricks [7] showed that Click-based software routers can be scaled

up by using a network of PCs. In contrast, Snap focuses on the

routing performance of a single PC, and is thus complementary to

RouteBricks; by increasing each PC’s throughput, Snap could be

used to reduce the number of PCs needed in a RouteBricks-like

routing cluster. Kim et al. demonstrated another strategy for improv-

ing Click performance by batching packets [13]. Here, batching

refers to executing the same element on a set of packets in series,

in contrast with standard Click, which executes a set of elements

on the same packet in series. This work is also complementary to

Snap, as it could be used to accelerate the CPU portions of a Snap

pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION

OF SNAP

We designed Snap with two goals in mind: enabling fast packet

processors through GPU offloading while preserving the flexibility

in Click that allows users to construct complex pipelines from sim-

ple elements. Snap is designed to offload specific elements to the

GPU: parts of the pipeline can continue to be handled by existing

elements that run on the CPU, with only those elements that present

computational bottlenecks re-implemented on the GPU. From the

perspective of a developer or a user, Snap appears very similar to

regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that

move packets to and from batch elements. Internally, Snap makes

several changes to Click in order to make this pipeline work well at

high speeds. Several themes appear in our design choices. In many

cases, we find that if we do “extra” work, such as making copies

of packets in main memory, or passing along packets that we know

will be discarded, we can decrease the need for synchronization and

reduce our use of the relatively slow PCIe bus. We also find that

scheduling parts of the pipeline asynchronously works well, and fits

naturally with Click’s native push/pull scheduling. In this section,

we walk through the design and implementation of Snap, starting at

a high level with the user-visible changes, and progressing through

the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline

As shown by the experiments in Section 2.3, in order to see large

benefits from GPU offloading, we need to provide the GPU with

relatively large batches of packets. In standard Click, the connection

between elements is a single packet wide: the push() and pull()

methods that pass packets between elements yield one packet each

time they are invoked. To efficiently use a GPU in the pipeline, we

added wider versions of the push() and pull() interfaces, bpush()

and bpull(). These methods exchange a new structure called a

PacketBatch, which will be described in more detail in the following

section. We also made Click’s Port class aware of these wider inter-

faces so that it can correctly pass PacketBatches between elements.

bpush() and bpull() belong to a new base class, BElement, which

derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-

ates a new class derived from Element and overloads the push()

and pull() methods. This is still supported in Snap; in fact, most of

our pipelines contain many unmodified elements from the standard

Click distribution, which we refer to as “serial” elements. To imple-

ment a parallel element in Snap the programmer simply derives it

from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU

side, which consists of GPU kernel code, and a CPU side, which re-

ceives PacketBatches from upstream elements and sends commands

to the GPU to invoke the GPU kernel. Snap provides a GPURun-

time object to help Click code interact with the GPU, which is

programmed and controlled using NVIDIA’s CUDA toolkit [18].

GPU-based elements interact with GPURuntime
to request GPU

resources such as memory. The GPU kernel is written in CUDA’s

variant of C or C++, and is wrapped in an external library that is

linked with the element sources when compiling Snap. Typically,

each packet is processed by its own thread on the GPU.
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  {	
  
	
  	
  	
  	
  …	
  //	
  GPUElement-­‐2	
  logic	
  
	
  	
  }	
  
}

void	
  ge3kernel(…)	
  {	
  
	
  	
  if	
  (pkt.predicates[1])	
  {	
  
	
  	
  	
  	
  …	
  //	
  GPUElement-­‐3	
  logic	
  
	
  	
  }	
  
}

if	
  (pkt.predicates[0])	
  
	
  	
  output(0).push(pkt);	
  
else	
  if	
  (pkt.predicates[1])	
  
	
  	
  output(1).push(pkt);	
  
…
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Figure 5.8. Performance of Click and Snap with three di↵erent applications.
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rate of 10Gbps represents 100% utilization on a 10Gbps interface. Forwarding tables were

designed such that all packets were forwarded back out the interface they arrived on. This

ensured that all outgoing tra�c was perfectly balanced so that any drops we observed were

due to e↵ects within the Snap host, rather than congestion on unbalanced outbound links.

5.5.1 Packet I/O

Our first set of experiments are simple micro-benchmarks that evaluate the packet I/O

optimizations described in Section 5.3.4. We measured the forwarding rate for minimum-

sized (64 byte) packets using Click’s Netmap packet I/O engine and Snap’s improvements

to that engine. These experiments use the simplest possible forwarder, which simply

passes packets between interfaces with no additional processing. We test both a one-path

arrangement, which passes packets from a single input NIC to a single output, and a

four-path arrangement that uses all four NICs in our test machine. Click’s existing Netmap

support is not thread-safe, allowing only one packet I/O thread to be run. We added

multi-threading support to standard Click’s Netmap code, and also report performance for

four threads, one per NIC. Snap adds support for multiple threads per NIC, each using a

di↵erent MQ/RSS queue, so we use sixteen threads for the Snap configuration.

Configuration

Throughput

Click 1 Path

4.55Gbps 6.5Mpps

Click 4 Paths (1 thread)
8.28Gbps 11.8Mpps

Click 4 Paths (4 threads) 13.02Gbps 18.5Mpps

Snap 1 Path

8.59Gbps 12.2Mpps

Snap 4 Paths

30.97Gbps 44.0Mpps

Table 5.2. Base Forwarding Performance of Snap and Click

The performance numbers are found in Table 5.2. Snap’s improvements to the I/O

engine introduce a 1.89x speedup for single path forwarding and 2.38x speedup for four-

path forwarding. One interesting result is that Snap’s four-path performance is not quite

four times that of its single-path performance. This suggests that there may be room

to improve the forwarding performance of Snap using more cores; our test CPU has four

physical cores and hyper-threading, meaning that there are two I/O threads mapped to

each hyper-threaded core. A recent (at the time of writing this thesis) evaluation of Snap’s

forwarding performance confirms this guess. We use a recent six-core high-end CPU: Intel

Core i7-3930K, and six 10Gb ports to do the basic forwarding, and get 49.62Gbps forwarding

rate, which is a little bit higher than the quad-core machine when considering the per-port

Forwarding
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rate of 10Gbps represents 100% utilization on a 10Gbps interface. Forwarding tables were

designed such that all packets were forwarded back out the interface they arrived on. This

ensured that all outgoing tra�c was perfectly balanced so that any drops we observed were

due to e↵ects within the Snap host, rather than congestion on unbalanced outbound links.

5.5.1 Packet I/O

Our first set of experiments are simple micro-benchmarks that evaluate the packet I/O

optimizations described in Section 5.3.4. We measured the forwarding rate for minimum-

sized (64 byte) packets using Click’s Netmap packet I/O engine and Snap’s improvements

to that engine. These experiments use the simplest possible forwarder, which simply

passes packets between interfaces with no additional processing. We test both a one-path

arrangement, which passes packets from a single input NIC to a single output, and a

four-path arrangement that uses all four NICs in our test machine. Click’s existing Netmap

support is not thread-safe, allowing only one packet I/O thread to be run. We added

multi-threading support to standard Click’s Netmap code, and also report performance for

four threads, one per NIC. Snap adds support for multiple threads per NIC, each using a

di↵erent MQ/RSS queue, so we use sixteen threads for the Snap configuration.

Configuration

Throughput

Click 1 Path

4.55Gbps 6.5Mpps

Click 4 Paths (1 thread)
8.28Gbps 11.8Mpps

Click 4 Paths (4 threads) 13.02Gbps 18.5Mpps

Snap 1 Path

8.59Gbps 12.2Mpps

Snap 4 Paths

30.97Gbps 44.0Mpps

Table 5.2. Base Forwarding Performance of Snap and Click

The performance numbers are found in Table 5.2. Snap’s improvements to the I/O

engine introduce a 1.89x speedup for single path forwarding and 2.38x speedup for four-

path forwarding. One interesting result is that Snap’s four-path performance is not quite

four times that of its single-path performance. This suggests that there may be room

to improve the forwarding performance of Snap using more cores; our test CPU has four

physical cores and hyper-threading, meaning that there are two I/O threads mapped to

each hyper-threaded core. A recent (at the time of writing this thesis) evaluation of Snap’s

forwarding performance confirms this guess. We use a recent six-core high-end CPU: Intel

Core i7-3930K, and six 10Gb ports to do the basic forwarding, and get 49.62Gbps forwarding

rate, which is a little bit higher than the quad-core machine when considering the per-port
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• GPU reached 40Gb/s line rate at 128B	



• CPU just 1/3 or 1/4	



• Latency tolerable in LAN for non-latency-
sensitive app, negligible in WAN
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Figure 5.11. Fully functional IP router + IDS performance

of elements, some of which are duplicated sixteen times, once for each thread. As future

work, we believe that the throughput can be significantly improved by moving some of these

to the GPU and applying the techniques from Kim et al. [79] to optimize the remaining

CPU portions of the configuration.

5.6 Summary and Future Work
Snap expands Click’s composable element structure, adding support for batch processing

and o✏oading of computation. At small packet sizes (128 bytes), Snap increases the

performance of a combined IP router, SDN forwarder, and IDS on commodity hardware

from 10.6Gbps to 39.6Gbps. This performance increase comes primarily from two sources:

an improved packet I/O engine for Click that takes advantage of multi-queue NICs, and

moving computationally expensive processing tasks to the GPU. A trivial forwarder created

with Snap can forward at a rate of 44.0Mpps, while the complex SDN/IDS router reaches

90% of this rate (39.8Mpps). These results suggest that there is likely potential for elements

that are even more computationally complex than the ones we investigated, pointing to

future work in complex packet processing. The fact that we are able to saturate all NICs

in our test platform with such small packets suggests that it will be possible to reach even

higher throughputs when PCIe 3.0 devices are available for testing, allowing us to double

the number of NICs on a bus.

The elements and techniques proposed and implemented in Snap are not GPU-specific

only. While some of the new Elements implemented for Snap, such as HostToDeviceMemcpy

and GPUCompletetionQueue, are GPU-specific, the extensions we made to the Click archi-

tecture should be applicable to other parallel o✏oad engines (such as network processors
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Snap Summary

• A generic parallel packet processing framework	



• flexibility of Click	



• fast parallel power from GPUs	



• https://github.com/wbsun/snap	



• Details not presented: network I/O, async 
scheduling
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https://github.com/wbsun/snap


The throughput of system software with 
parallelizable, computationally expensive tasks 

can be improved by using GPUs and 
frameworks with memory-efficient and 

throughput-oriented designs.	
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Conclusion
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Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

Generic principles:
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Conclusion

Batched processing

Asynchronous non-blocking GPU programming

Reduce PCIe data transfer with compacted workload

All use the same locked memory for zero-copy DMA

Generic principles:

Concrete frameworks:
GPUstore with high throughput storage applications

Snap with high throughput network packet processing



Thanks!	


Q&A

57



Backup slides
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ROI for memory access coalescing
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packet

ROIs



How ROI slicing works?

• To Click insiders:	



• Batcher accepts ROI requests from BElements	



• Batcher merges requested ROIs into result ROIs	



• Each BElement asks for its ROIs’ offsets	



• GPU kernels invoked by BElements use variables 
for offsets
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How predicated execution works?

• To Click insiders:	



• Manually assigned: where and what!
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Path-encoded predicate
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