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Abstract - We present a distributed elastic intrusion detection
architecture called DEIDtect. DEIDtect exploits the increasing de-
ployment of cloud computing and software defined networking tech-
nology in enterprise and campus environments to deal with current
inflexibilities associated with compute and network resources re-
quired by security tools. We present the detailed design and imple-
mentation of DEIDtect’s networking functionality and illustrate its
functionality in an emulated environment.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

Keywords
distributed intrusion detection; software defined networking; cloud
computing

1. INTRODUCTION
Intrusion detection and prevention systems (IDS/IPS) are widely

deployed as critical tools in the toolkit of security professionals.
For example, among the open source IDS/IPS systems, Snort boasts
millions of downloads and approximately 400,000 registered users,
while it is estimated that as many as 10,000 organizations make use
of Bro [1, 14]. Despite its widespread use, current IDS/IPS deploy-
ments are plagued by a number of practical concerns that limit their
utility. First, the compute and network resources required to effec-
tively run an IDS/IPS often present problematic cost versus func-
tionality tradeoffs: Compute requirements for an IDS/IPS system
varies over time depending on the volume of traffic and the type
of analysis that security personnel are performing. For example, a
developing security event might require more detailed deep packet
inspection, which would demand running an IDS/IPS instance con-
figured for this purpose. In practice this results in two undesirable
options. Either, compute resources are deployed to accommodate
anticipated peak requirements, leading to over provisioning during
off-peak times; or more typically, compute resources are knowingly
under-provisioned. Under-provisioning results in a loss of visibility
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during peak times, which, in instances like a DDoS attack, might
be when intelligence is most needed.

Network requirements for IDS/IPS deployment involve a tap point
in the network infrastructure and sufficient capacity from the tap
point to the compute resources hosting the IDS/IPS. A network tap
is typically realized using an optical splitter or, in smaller deploy-
ments, a switch span/monitoring port. Both approaches are highly
inflexible: Once deployed, monitoring is constrained to the cho-
sen tap location which is typically deployed at the ingress/egress
point of a campus or enterprise network. The implication is that
intrusions that remain within the enterprise network might go un-
detected.

A more fundamental concern is that current IDS/IPS deploy-
ments are typically strictly local concerns. (This remains true in
practice despite various earlier efforts towards distributed intru-
sion detection systems [5, 7, 16].) Specifically, while security pro-
fessionals at different organizations readily exchange intelligence
through personal communication, there is no systematic way to fol-
low a lead to a remote location to investigate the potential source
of an attack. Further, it is typically not possible to utilize remote
expertise or resources to investigate a local problem.

A final concern is the fact that managing an IDS/IPS system is
quite complex. For example, setting up a small scale Snort instance
is a well documented activity, typically well within reach for a com-
petent system administrator. However, performing the same activ-
ity to scale to campus or enterprise environments quickly becomes
a significant engineering challenge [10]. Further, systems like Bro
provide more flexibility, customization and analysis capabilities,
however, is significantly more involved to set up and requires on-
going management by domain experts.

We argue that the inflexibility associated with the compute and
network resources needed for IDS/IPS is the root cause for these
concerns and prevent richer cross-domain security models and in-
vestigation. In this paper we address these concerns by present-
ing our work on a distributed elastic intrusion detection architec-
ture, called DEIDtect. DEIDtect exploits two technology trends
in campus and enterprise network environments: The widespread
and continued use of cloud computing to consolidate compute re-
sources, and the increasing deployment of software defined net-
working (SDN) technology.

Within a specific campus or enterprise domain, DEIDtect uses
a general purpose shared cloud infrastructure to elastically scale
compute resources needed by IDS/IPS. DEIDtect exposes a new
network abstraction through the cloud control interface to allow
for IDS/IPS specific traffic distribution within the cloud platform.
DEIDtect uses SDN within the campus or enterprise environment
to realize flexible and safe tapping of network traffic. DEIDtect



allows for remote and distributed access to both cloud and network
tapping resources. Where available, DEIDtect utilizes wide area
SDN networks to realize this distributed functionality in a flexible
manner.

DEIDtect involves three forms of inter-domain SDN interaction.
First, interaction between the campus/enterprise SDN and the cloud
SDN is required to allow tapped traffic to be delivered to the cloud
environment for inspection. Second, DEIDtect allows for interac-
tion between cooperating distributed campus or enterprise environ-
ments. This distributed functionality enables the remote monitoring
of networks, or conversely, the use of remote resources to monitor a
network. Finally, DEIDtect requires interaction between wide area
and campus/enterprise networks to realize its distributed function-
ality end-to-end.

DEIDtect’s flexible use of compute and network resources di-
rectly addresses the core resource related concerns described above.
Variable compute resource needs are addressed by allowing general
purpose cloud resources to be used for IDS/IPS functions. Flexi-
ble network tap realization and flexible routing of tap traffic allow
DEIDtect to deal with network resource concerns. DEIDtect does
not directly address the management complexity of IDS/IPS, but
because it allows great flexibility in terms of networking monitor-
ing and IDS/IPS placement, it does enable a number of scenarios
that mitigates the problem. Specifically, the ability to run IDS/IPS
remotely allows for outsourcing all, or part, of network security
monitoring functionality. Similarly, because of the flexibility it
provides, DEIDtect lays the foundation for systematic cross-site
IDS/IPS functionality.

We make the following contributions:

• We present the DEIDtect architecture which provides a dis-
tributed elastic framework for cross-site security functions.

• We present a detailed design of the networking component
of DEIDtect which involves: (i) SDN primitives for safely
tapping arbitrary traffic at arbitrary locations in an enterprise
network, (ii) cloud abstractions for the precise distribution of
traffic in a cloud environment, (iii) a number of inter-domain
SDN interactions, including security specific inter-site com-
munication.

• We present the implementation of our design and evaluate it
in an emulated SDN environment.

2. CHALLENGES & OPPORTUNITIES
A fundamental concern with current deployments of network se-

curity tools is the inflexibility associated with network and compute
resources. In DEIDtect we address these fundamental concerns by
exploiting software defined networking and cloud computing. The
DEIDtect approach effectively enables a decoupling of the loca-
tion of the network being monitored/protected, and the location of
the security tools performing security functions. The DEIDtect ap-
proach also enables rapid scaling of security resources during a se-
curity event. This flexibility provides the opportunity to explore
new distributed network security functionality and potentially en-
able better visibility and coordination among partnered organiza-
tions.

2.1 Inflexible resource usage
Network tapping: State-of-the-art network security deployments

typically involve security groups installing optical tap points at strate-
gic vantage points of the core of an enterprise or university network.
Due to cost, availability and scalability issues, these optical taps
cannot cover the breadth of the network. As a result, many areas

are therefore unseen and unmonitored by security tools. Optical
taps also require dedicated fiber and aggregate switch infrastruc-
ture, leading to increased costs and deployment complexity. Alter-
native solutions involve the use of SPAN/mirror ports on switches
and routers. This approach can introduce additional load on net-
work devices and under high load captured packets will be dropped
in favor of forwarding “normal” data.

DEIDtect dynamic and comprehensive network tapping: DEI-
Dtect exploits SDN functionality to allow the network and system
administrators to tap at any point in the network and feed back the
tapped traffic stream to security collectors and analyzers. Though
limited to the bandwidth of the aggregate links, administrators can
implement tap points rapidly at arbitrary points in the network.
With a fully instrumented network, administrators can deploy taps
anywhere at the access edge, distribution, core, or internet border.
With a partially instrumented network, administrators can leverage
SDN taps in a flexible manner and optical taps and SPAN/mirror
ports at traditional key areas. DEIDtect also allows for fine grained
tapping of specific sets of flows.

Compute resources: Network and security administrators have
traditionally leveraged a handful of dedicated hardware boxes for
security analysis. These boxes may be stand-alone or operated in a
cluster. Each of these individual boxes have limits on the amount
that they can process. Different flows must be spread across multi-
ple machines in order to scale appropriately. Higher capacity con-
nections or the addition of more tap ports requires more hardware,
which takes time to deploy.

DEIDtect elastic security compute platform: The DEIDtect
approach allows security and network administrators to leverage
cloud resources to spin up virtual or ‘bare metal’ images of security
tools. DEIDtect adds the capability to the normal cloud orchestra-
tion architecture to spin up the image and to create a network path
from the border of the cloud to the specific host with the security
image. By leveraging this technique, DEIDtect can balance multi-
ple flows across multiple security images quickly in order to scale.

2.2 Distributed Network Security Functions
DEIDtect’s flexible resource usage enable distributed network

security functions. One possible scenario involve a cloud vendor
or a large entity, such as a university, company or government with
a large private internal cloud, offering elastic cloud based secu-
rity functions to internal or external customers. Assuming a fully
DEIDtect-enabled network and cloud, i.e., DEIDtect controlled SDN
in both enterprise and cloud, internal customers can be readily served
by dynamically exposing selected tap points to cloud-based secu-
rity tools. Serving external customers will be possible by similarly
deploying DEIDtect technology in the customer network and utiliz-
ing wide area SDN infrastructure (or at least semi-static pre-defined
circuits) between the customer network and the cloud location.

Another scenario might involve a university or company with a
number of remote sites, i.e., small campus sites, field stations or
clinics. With the current set of security tools, security adminis-
trators rarely have the ability to deploy tap infrastructure with a
dedicated feed into the central campus security tool suite. With a
DEIDtect-enabled network and cloud this scenario becomes feasi-
ble.

A corollary scenario might involve a university or entity that has
“sister" sites or smaller campuses with a tight business, academic,
research or healthcare association. These discrete sites may wish
to leverage common computational resources, security tools or ex-
pertise. This arrangement would also allow for greater visibility
into emerging security concerns, thus providing a foundation for
detecting more subtle attacks.
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Figure 1: DEIDtect Architecture

3. ARCHITECTURE
DEIDtect exploits two current trends namely the increased use

of cloud computing technologies to consolidate compute resources
and the increasing deployment of software defined networking (SDN)
technology in enterprise, cloud and wide area networks. DEIDtect
uses cloud computing resources to flexibly and efficiently deal with
the computing needs of security tools, like IDS and IPS, while SDN
is utilized to flexibly and safely tap and distribute network traffic
between monitored networks and IDS/IPS instances.

A high level view of the DEIDtect architecture is depicted in Fig-
ure 1. The figure shows three campus or enterprise networks, i.e.,
Sites A, B and C, of which sites A and C also have their own cloud
computing platforms. The different sites are interconnected via a
wide area network (WAN). For ease of exposition, we assume that
all networks in question are SDN enabled, although hybrid deploy-
ments, e.g., with static or dynamic WAN circuits, would certainly
be feasible. We note that the sites could be distributed locations
of the same institution, such as a university, or they could be as-
sociated with different organizations that have a collaboration or
business arrangement to work together on security functions.

Given this underlying physical infrastructure, the DEIDtect ar-
chitecture involves DEIDtect systems deployed at each site. As
shown in Figure 1, the DEIDtect system at each site is involved
with five types of interactions. The interaction with: (1) The cam-
pus or enterprise network to realize network taps and to transfer
tapped traffic towards the IDS/IPS systems in the cloud infras-
tructure. (2) The cloud computing platform to realize IDS/IPS in-
stances and to manipulate the distribution of tapped traffic towards
these instances. (3) The IDS/IPS instances in the cloud to control
their intrusion detection and prevention functionality. (4) Remote
DEIDtect systems to request and manipulate cloud, network and
IDS/IPS resources at remote sites. (5) The wide area network to
realize inter-site connectivity.

DEIDtect Use Cases: Different scenarios enabled by DEIDtect
are depicted in Figure 2. Figure 2 (a) shows the default case that
mimics current common practice. As shown in the figure, an IDS
instance is assumed to be operational in the (general purpose) cloud
environment. This IDS is fed by a single tap point at the network
ingress/egress. A key difference between DEIDtect and conven-
tional deployments is depicted in Figure 2 (b), where a security
professional, or the system by itself, determines the need to realize
another tap point inside the campus network and spin up another
IDS instance (IDS2) in the cloud platform to monitor this new tap

point. Finally, Figure 2 (c) depicts an inter-site scenario whereby
another IDS instance (IDS3) is realized in the cloud, and in this
case traffic from a network tap at a remote site is being monitored
by the new IDS instance.

The setup in the last scenario accommodates several different
use cases. For example, the security administrator of a remote site
may wish to have traffic from its network be analyzed by a more
sophisticated setup elsewhere. E.g., site B in Figure 1, which does
not have its own cloud infrastructure, might routinely outsource the
security functions of its network to sites A or C. Or site C might
run its own Snort instance, but might have a need to perform more
detailed analysis using a Bro instance administered at site A. Al-
ternatively, the security administrator of site A in Figure 1, might
want to investigate an attack originating from site B and since site
B does not have a cloud platform to allow dynamic instantiation of
IDS instances, the remote tap traffic is relayed back to site A.

Note that the scenarios illustrated in Figure 2 and discussed here
are example configurations. A key strength of DEIDtect is its flexi-
ble use and manipulation of distributed resources related to security
which enables many alternative scenarios.
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DEIDtect Inter-domain SDN: From an SDN perspective the
DEIDtect architecture involves several types of inter-SDN domain
interactions. First, within each site the cloud platform and campus
network represent two separate SDN domains. As shown in Fig-
ure 2 (a), the campus network is directed by an enterprise network
controller to realize the functionality and policies associated with
such an environment. The cloud network, on the other hand, is
controlled by a cloud control architecture, to realize cloud specific
functionality. The inter-SDN requirement here involves DEIDtect
coordinating with both the network control and cloud control enti-
ties, i.e., across two different domains, to realize distributed elastic
detection. Specifically this includes creating tapping resources in
the campus network, creating distribution resources in the cloud
network and finally orchestrating the interconnection of these re-
sources between the two domains. This is depicted in Figure 2 (a)
with the solid line interconnecting the tap resources in the cam-
pus network with the distribution resources in the cloud platform,
respectively depicted as different types of dotted lines.

A similar set of inter-SDN domain interactions are involved with
the inter-site DEIDtect functionality depicted in Figure 2 (c). First,
the DEIDtect systems in each site need to interact to realize the re-
quired functionality. E.g., setting up a (possibly remote) network
tap or instantiating a local or remote IDS instance. Following these
application specific interactions, DEIDtect again needs to orches-
trate the connection of these sets of resources to realize end-to-end
functionality. In this case, however, the orchestration would typi-
cally involve interaction with a network controller responsible for
interconnecting the distributed sites across the WAN.

DEIDtect System: A system level view of DEIDtect is depicted
in Figure 3. At the center of the system is the DEIDtect Core Mod-
ule which interacts with and orchestrates actions across other sys-
tem components. Specifically, as shown in the figure and described
earlier, the Core Module interacts with five other components in the
system: (1) the Enterprise SDN Network to create tap points in the
network and to deliver monitored traffic to the cloud, (2) the Cloud
Computing Platform to instantiate cloud based IDS/IPS instances
and to route traffic from the network to the appropriate IDS/IPS in-
stance, (3) the instantiated IDS/IPS instances to orchestrate intru-
sion detection and prevention, (4) remote DEIDtect systems to en-
able distributed security functions and (5) the WAN SDN network
to allow delivery of tapped network traffic between distributed lo-
cations.

Figure 3 also shows how DEIDtect components (shaded boxes)
integrate with existing systems, specifically the cloud computing
platform and the enterprise SDN network. As shown in the figure,
a DEIDtect Network Module associated with the enterprise SDN
network, allows DEIDtect to tap the enterprise network. Similarly,
the DEIDtect Cloud Module allows DEIDtect to distribute tapped
traffic to appropriate IDS/IPS instances in the cloud.

4. DESIGN & IMPLEMENTATION
In this section we present the design and implementation of the

key DEIDtect components. Our current implementation involves
the shaded components shown in Figure 3. I.e., our current im-
plementation is limited to the cloud and enterprise network frame-
work, and distributed interactions thereof.

4.1 DEIDtect Network Module
We assume that the enterprise network in question is SDN en-

abled and specifically supports OpenFlow (version 1.1 or higher).
A key DEIDtect requirement is to be able to safely tap arbitrary net-
work traffic at arbitrary points in the network without impacting ex-
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Figure 3: DEIDtect System

isting traffic flows. Further, tapped traffic need to be transparently
transported to the cloud platform for processing by the IDS/IPS.

Transparent transportation of tapped traffic in DEIDtect is achieved
by adding a tunneling tag (e.g., a VLAN tag) to tapped traffic at
the tap switch, and to route the tagged traffic to the cloud plat-
form. DEIDtect takes advantage of the multi-table functionality
available in OpenFlow version 1.1 (or higher) to achieve safe tap-
ping. Specifically, for flows to be tapped, the normal (existing) flow
entry is augmented so that in addition to the existing flow actions
the flows are also routed to an IDS specific flow table, which adds
the tunneling tag and forwards the packet towards the cloud plat-
form.

Figure 4 shows a single switch tapping example. The top part
of the figure shows an existing flow entry that forwards packets
received on port 5 out on port 3. The bottom part of the figure shows
the modified existing flow entry which continues to output packets
on port 3, but also copies the packet for processing to the IDS table
goto IDS_table. The IDS table entry in turn adds a VLAN tag and
sends the packet out on port 2 to complete the tapping action.

Network Switch
Table 0

Match

inport = 5

Action

Output = 3, goto IDS_table

Table : IDS

Match

inport = 5

Action

push_vlan = 100, output = 2

Port 5

Port 3

Port 2

Network Switch
Table 0

Match

inport = 5

Action

Output = 3

Table : IDS

Match

-

Action

-

Port 5

Port 3

Port 2

Existing flow entry

Modified flow entry and tapped flow

Figure 4: DEIDtect flow tables

Listing 1 shows the pseudo-code associated with flow table ma-
nipulation to realize tapping. As shown, DEIDtect allows for ports
to be tapped irrespective of whether they function as ingress or
egress ports in flow table entries. For ingress ports, DEIDtect looks
for the port in question in table 0 and performs the appropriate ta-
ble manipulation to perform tapping. For egress ports, however,



DEIDtect has to consult all flow tables to find tap port entries, and
direct appropriate entries to the IDS table. Our current implemen-
tation taps all the traffic from a port in a switch. This can be readily
extended to allow more specific traffic to be delivered to the IDS.

Listing 1: Tap flow table manipulation

TAPPING_FLOW_TABLE = X,
and no other application must use this table X.

ingress(switch, port_to_tap, IDS_PORT){
if(table=0 has ingress_port == port_to_tap){

1. add(goto_table(,TAPPING_FLOW_TABLE))
for the existing flow

2. add flow entry table:X :
actions:add_tag(packet),output:IDS_PORT

}
}
egress(switch, port_to_tap, IDS_PORT){

for(all_table)
if(actions has output == port_to_tap){

1. add(goto_table(,TAPPING_FLOW_TABLE))
for the existing flow

2. add flow entry table:X :
actions:add_tag(packet),output:IDS_PORT

}
}

The Network Module maintains state for each switch and each
tap request. Tap requests can be removed on demand in which
case the state is restored as it was before the tap was realized. The
Network Module can also react to the removal of flows by other
SDN applications by removing the associated tapping flows. The
Network Module exposes the following API functions:

1. tapFlowEntry(switch_id, port_of_interest, ids_port,vlan_id):
This goes through the flow table and as described above mod-
ifies all the flows having the port of interest as the outport
in the action of the flow entry. The modification is accord-
ing to the pseudo-code in Listing 1. I.e., the flow is mod-
ified to copy the traffic to the IDS table, where the traffic
is tunneled by adding a vlan_id and pushed to the ids_port.
A FLOW_MOD_REMOVE message is set when modified
flows are installed by the tapping module so that the con-
troller module is notified if the flows are removed by other
applications.

2. clearTapEntry(switch_id, port_of_interest): This removes the
modification flows associated with the switch and port and
reverts back to the old flow entry. This is also invoked in
case of a flow removal event by an external application to do
the cleanup of the tunnel flows created.

Implementation: We have implemented the Network Module
functionality as a module in the RYU controller. Our implementa-
tion exports the functions listed above as a RESTful API.

4.2 DEIDtect Cloud Module
The purpose of the DEIDtect Cloud module is to deliver the traf-

fic from the cloud gateway to the appropriate IDS instance. This is
done by finding the topology of the network and finding the short-
est path between the cloud gateway and the IDS instance and in-
stalling the required flows. The flow installation procedure checks
for existing flows and split at the lowest possible subtree. This also
takes into consideration that the VM’s existing traffic must not be
disrupted.

As described in Section 3, the DEIDtect Cloud Module forms
part of and extends the functionality of an SDN capable cloud com-
puting platform. We abstracted the Network Module functionality
into a higher level API that a cloud control architecture would ex-
pose to allow DEIDtect to orchestrate cloud network functionality:

1. createTrafficRoute(tunnel_id, traffic_type, VM_instance) tells
the cloud controller to create an isolated tunnel flow between
the cloud gateway switch and the VM instance. Traffic tagged
with tunnel_id in the cloud gateway, with the particular traf-
fic_type are delivered to the VM_instance

2. removeTrafficRoute(tunnel_id, VM_instance) removes all the
flow entries which was installed for createTrafficRoute API
for the particular VM_instance identified by the tunnel_id.

3. removeAllRoutes(VM_instance) removes all the flow entries
associated with that VM_instance. In other words, removes
all flows installed for createTrafficRoute API calls which is
associated with VM_instance.

The above higher level DEIDtect cloud API maps to the lower
level API of the Cloud Module which is part of the cloud SDN
network as shown in Figure 3. The lower level API exposes the
following functions:

1. tapTunnelEntry(src_switch_id, dst_switch_id, dst_port, vlan_id):
This creates a tunnel from the source switch to the destina-
tion switch with the given vlan_id. The dst_port specifies the
port which is connected to the VM with respect to the cloud
environment and at the destination switch the vlan_id tag is
removed and the traffic is delivered as it is seen by the actual
destination.

2. tapTunnelDelEntry(src_switch_id, dst_switch_id, dst_port, vlan_id):
This removes the tunnel created by tapTunnelEntry.

3. splitTunnelEntry(src_switch_id, dst_switch_id, dst_port, vlan_id,
traffic_type): This splits the traffic tagged with vlan_id from
the source switch and pushes the specified type of traffic_type
to the destination switch via the dst_port.

4. splitTunnelDelEntry(src_switch_id, dst_switch_id, dst_port,
vlan_id, traffic_type): This removes the changes done by
splitTunnelEntry.

Implementation: As with the Network Module, we implemented
the Cloud Module as a module in the RYU controller. With our cur-
rent implementation, we have not performed the integration of the
higher level DEIDtect cloud API extension with a cloud platform;
The DEIDtect Core Module interacts directly with the Cloud Mod-
ule.

4.3 DEIDtect Core Module
The DEIDtect Core Module performs orchestration functions by

interacting with the enterprise network controller, the cloud con-
troller and other DEIDtect Core Modules. The Core Module ex-
poses the following API to enable orchestration across the system
as a whole:

1. CoreSet(switch_id, port_of_interest, ids_port,vlan_id): Sends
a create tap request to the Enterprise SDN Controller.

2. CoreDelete(switch_id, port_of_interest): Sends a remove tap
request to the Enterprise SDN Controller.

3. CloudSet(src_switch_id, dst_switch_id, dst_port, vlan_id): Sends
a create tunnel request to the Cloud SDN Controller.
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Figure 5: Experimental topology

4. CloudSplitSet(src_switch_id, dst_switch_id, dst_port, vlan_id,
traffic_type): Sends a create split traffic request to the Cloud
SDN Controller.

5. CloudDelete(src_switch_id, dst_switch_id, dst_port, vlan_id):
Sends a remove tunnel request to the Cloud SDN Controller.

6. CloudSplitDelete(src_switch_id, dst_switch_id, dst_port, vlan_id,
traffic_type): Sends a remove split traffic request to the Cloud
SDN Controller.

Implementation: We have implemented the Core Module as a
Python library. We have also implemented a simple command-line-
interface (CLI) DEIDtect application to use in our evaluation.

5. EVALUATION
We evaluated our DEIDtect implementation by using Mininet

and setting up the topology shown in Figure 5. As shown in the
figure we emulated a cloud platform and enterprise network under
control of one DEIDtect instance. The topology also contains a
remote enterprise network under control of a second DEIDtect in-
stance. We emulated two sets of “normal” traffic flows in this setup
using the sendip utility (shown by the blue lines in Figure 5): First,
in the enterprise network between H1 and H2, representing traffic
entering the enterprise network from an external network (such as
the Internet). Second, between H7 and H6 in the remote enterprise
network, representing traffic local to that enterprise network. We
demonstrate the DEIDtect functionality by using the DEIDtect CLI
application described in Section 4.3 to perform a number of DEI-
Dtect operations. We monitor the traffic in the network topology at
a number of experimental monitoring points (the numbered black
circles in Figure 5), using the ifstat utility.

Figure 6 shows a number of time series corresponding to these
monitoring points to show the flow of tapped traffic through the
topology. We now describe each event shown in the figure: (1) Start
TCP and UDP traffic from H1 to H2 and send ping traffic from H7
to H6. The effect of this event is the initial step increase in the
amount of traffic shown in all the plots. (Plots 1 to 3 corresponding
to the traffic between H1 and H2 and plots 4 and 5 for the H7 to H6
set.) (2) Create a DEIDtect tap for switch S3’s port 2 (tap point A
in Figure 5) and redirect it towards S6 (and tag it with VLAN_ID
200). The effect of this event is shown in plot 1 with the step in-
crease in traffic associated with monitoring point 4. (3) Create a
tunnel between S7 and S9 for all traffic with VLAN_ID 200. The
effect of this event is shown in plot 2 where the tapped traffic is now
visible at monitoring point 5. (4) Create a split tunnel between S8
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Plot 2: Data activity between Tap Point A and Monitoring Point 5 - Full tap
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Plot 3: Data activity between Tap Point A and Monitoring Point 6 - TCP split
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Figure 6: Experimental time series

and S10 for TCP traffic with VLAN_200, i.e., monitoring point 6.
The effect of this event is shown in plot 3 where only the TCP traf-
fic associated with the tapped traffic from the enterprise network
is directed towards H4. (5) Create a remote tap between S13 and
S12 with VLAN_300. (Tap point B in Figure 5.) The effect of this
event is shown in plot 4 where the tapped traffic is now visible at
tap point 3. (6) Create a tunnel between S1 and S6 for the remote
traffic having VLAN_300. As shown in plot 1 after this event the
remote traffic shows up at monitoring point 4. (7) Create a tun-
nel between S7 and S11 for all the remote traffic with VLAN_300.
The effect of this event is shown in the traffic step increase in plot 5
associated with monitoring point 7.

6. RELATED WORK
DEIDtect combines cloud computing resources and software de-

fined networking across a variety of domains to realize a distributed
network security framework. We touch upon the most relevant re-
lated work below.

A variety of SDN cloud networking efforts exist. For example,
the use of OpenFlow to develop a networking infrastructure for the
cloud which can support millions of IP and MAC addresses by vir-
tualizing layer 2 network has been proposed [12] . The Cloud Bro-
ker work [6] uses OpenFlow to connect multiple data centers via



flow based networking. Support for SDN in the popular OpenStack
cloud has also been developed [4]. In contrast to these works, DEI-
Dtect exposes an SDN cloud abstraction to allow control of the
delivery of network traffic to specific virtual machine instances in
the cloud. SDN has also been used in the context of enterprise
security functionality. OpenFlow capabilities have been used for
the distribution of traffic load from routers into multiple IDS in-
stances [10]. This approach uses SDN in localized fashion with a
static set of IDS resources, lacking DEIDtect’s network-wide tap-
ping and elastic compute capabilities. Perhaps most related to DEI-
Dtect’s enterprise and cloud interworking, the use of SDN to enable
communication between enterprise and cloud platforms and to en-
able inter-cloud workflow is suggested in [3]. DEIDtect realizes a
framework to enable a security related workflow that spans across
distributed cloud and enterprise instances. To enable the wide area
part of our architecture, DEIDtect also assumes the use of inter-
domain “stitching” protocols, either using SDN technology [8], or
more conventional dynamic circuit establishment [9].

DEIDtect also follows in the footsteps of a variety of distributed
security efforts over a long period of time. Dshield [2] is part of
the SANS’ Internet Storm Center program, allowing firewall users
to share intrusion detection information so as to analyze and make
them publicly available. Snapp et al. [15] demonstrated a prototype
of Distributed IDS (DIDS) that combines distributed monitoring
and data reduction with centralized data analysis (through the DIDS
Director). A Distributed Intrusion Prevention System (DIPS) has
been proposed by Sproull et al. [16]. Our work is complementary to
these approaches focusing on the flexible use of network and cloud
resources across different domains to realize security functions in a
distributed setting.

The scalability of security tools have been addressed by a num-
ber of earlier works. For example, IDS clusters to improve the
scalability of intrusion detection have been proposed [5, 17]. In [5]
a load balancing system is proposed which splits responsibilities of
a node to others, replicates traffic to NIDS clusters and aggregate
results to split expensive processing at the NIDS. The NIDS clus-
ter work [17] realize highly scalable intrusion detection by running
individual IDS instances in a cluster, exchanging low level infor-
mation among instances. With a complete DEIDtect realization we
expect to use similar approaches for the DEIDtect cloud-based IDS
instances.

Finally, IDS/IPS in the cloud has been proposed to provide se-
curity for cloud tenants [11, 13]. A cooperative IDS network is
proposed in [11] to prevent DDOS attacks on the cloud. The in-
tegration of an IDS into a cloud environment was demonstrated
using Eucalyptus [13]. The focus of these existing approaches is
on providing cloud security. In contrast DEIDtect uses the elastic
properties of cloud for the security of enterprise networks.

7. CONCLUSION
In this paper we presented our work on the DEIDtect architec-

ture. DEIDtect exploits increased cloud and software defined net-
working deployments to realize an elastic distributed intrusion de-
tection framework. DEIDtect effectively decouples the location of
a network being protected from the location of the security tools
performing security functions. This flexibility enables DEIDtect
to realize new distributed security functions between partnered or-
ganizations. We presented the detailed design and implementa-
tion of the networking component of DEIDtect and illustrated its
functionality in an emulated network environment. To realize the
full potential of DEIDtect our future work includes full integration
with a cloud computing platform, developing a policy framework
to govern inter-organization security functions, and most impor-

tantly developing security applications that can exploit the unique
cross-domain functionality of DEIDtect.
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