
CloudVMI: Virtual Machine Introspection
as a Cloud Service

Hyun-wook Baek∗, Abhinav Srivastava† and Jacobus Van der Merwe∗
∗University of Utah

Email: baekhw@cs.utah.edu, kobus@cs.utah.edu
†AT&T Labs - Research

Email: abhinav@research.att.com

Abstract—Virtual machine introspection (VMI) is a mecha-
nism that allows indirect inspection and manipulation of the
state of virtual machines. The indirection of this approach offers
attractive isolation properties that has resulted in a variety
of VMI-based applications dealing with security, performance,
and debugging in virtual machine environments. Because it
requires privileged access to the virtual machine monitor, VMI
functionality is unfortunately not available to cloud users on
public cloud platforms. In this paper, we present our work on
the CloudVMI architecture to address this concern. CloudVMI
virtualizes the VMI interface and makes it available as-a-service
in a cloud environment. Because it allows introspection of
users’ VMs running on arbitrary physical machines in a cloud
environment, our VMI-as-a-service abstraction allows a new class
of cloud-centric VMI applications to be developed. We present the
design and implementation of CloudVMI in the Xen hypervisor
environment. We evaluate our implementation using a number of
VMI applications, including a simple application that illustrates
the cross-physical machine capabilities of CloudVMI.

I. INTRODUCTION

The flexibility and ease of management that can be re-
alized by virtual machine (VM) technologies have made it a
mainstay in modern data centers and enabled the realization of
cloud computing platforms. The clean abstraction offered by
virtualized architectures has also given rise to the concept of
virtual machine introspection (VMI) [1]. VMI allows visibility
into and control of the state of a running virtual machine by
software running outside of the virtual machine. The indi-
rection offered by this approach is quite attractive, especially
for security related applications, and as a result a variety of
VMI tools have been developed [1], [2], [3]. Because they are
allowed access to the system memory, VMI tools typically run
in the privileged domain (e.g., dom0 in the Xen architecture).

LibVMI is an open source implementation of VMI sup-
porting commodity hypervisors such as Xen and KVM [4].
LibVMI provides the functionality of mapping raw memory
pages of VMs inside the privileged VM and relies on moni-
toring software to interpret the contents of these mapped pages.
Due to the semantic gap between the information present in the
memory pages (raw bits) and the higher-level information used
by applications and the operating system (e.g., data structures,
files), monitoring software builds the higher-level abstractions
by using knowledge of the internals of application or operating
system running inside the VM [5]. For this reason, VMI-
based monitoring software gets closely tied with the specific
operating system, application type, version, or distribution.

Developing and executing VMI-based monitoring appli-
cations in public clouds is more challenging compared to
self-virtualized data centers. In a self-virtualized data center,
customers have complete control over the privileged VM.
Unfortunately, users in a public cloud computing platform do
not have access to the privileged domain which is under the
control of cloud providers. As a result, cloud users cannot
deploy or configure custom VMI tools without the help of
cloud providers. Given that cloud platforms are the predomi-
nant manner in which customers use VMs, this is a serious
impediment. From a cloud provider’s perspective, offering
VMI tools to customers is painstaking. Given that there are
so many operating systems, versions, or distributions that can
be executed inside VMs, supporting all of them are neither
feasible nor a scalable service for providers.

In this paper, we present our work on CloudVMI to address
these concerns. CloudVMI allows VMI to be offered as a cloud
service by a cloud provider to cloud customers. Specifically,
CloudVMI splits the VMI tool development process into two
components. The first component that implements the LibVMI
functionality to map memory pages is implemented by the
cloud provider. The second component that builds the higher-
level semantics from the lower-level information present on
mapped pages is implemented by the customer. The focus of
the work presented in this paper is to look into the first part
of how cloud providers will allow users to perform privileged
memory mapping functionality.

In essence, CloudVMI allows cloud users to request in-
trospection privileges for their VMs running on the cloud
platform. This design solves the aforementioned problems:
(i) By virtualizing the LibVMI interface and allowing cloud
customers to safely invoke it to request introspection obviates
the need of having access to the privileged VM. (ii) Requiring
customers to bring their own policies and implementation of
monitoring software relieves cloud providers from supporting
many application and OS distributions and versions.

We present the design and implementation of the Cloud-
VMI architecture. CloudVMI virtualizes the LibVMI interface
and presents the resulting vlibVMI to customers’ VMI-based
tools in a cloud environment. Invocations to vlibVMI are
multiplexed and policed according to customer information
to ensure that introspection actions are constrained to the
cloud resources allocated to the respective cloud user. The
vlibVMI interface can be remotely invoked. This functionality
enables novel cross-physical-machine introspection capabili-
ties, allowing cloud-centric (as opposed to device-centric) VMI



applications. As expected, our evaluation shows a performance
impact associated with virtualization and specifically, remote
invocations. Nonetheless, our results show adequate perfor-
mance to facilitate a large class of VMI-based applications.
Our implementation utilizes Xen hypervisor-based clouds,
however, our approach is general and equally applicable to
other VMMs such as KVM.

To summarize, we make the following contributions:

• Realizing the drawbacks of existing VMI design, we design
the CloudVMI architecture to allow VMI functionality to be
offered as-a-service by a cloud provider.

• We split the VMI tool design process into two components,
allowing cloud providers to offer only privileged memory page
mapping functionality and requiring customers to bring their
own customized monitoring software.

• We present the prototype implementation of CloudVMI using
the Xen hypervisor and LibVMI. Our evaluation demonstrates
the efficacy of the system by developing a cloud-centric
VMI application which utilizes the cross-physical machine
introspection capabilities of CloudVMI.

II. CLOUDVMI

The primary goal of our work is to enable cloud operators
to provide VMI capabilities as a cloud service, to enable their
users to make use of VMI-based tools to monitor their own
VMs, without compromising the security of other cloud users.
With CloudVMI we achieve this goal by virtualizing the low
level LibVMI interface and exposing the virtualized interface
as-a-service in a cloud environment. Below we first describe
the use of CloudVMI in such a cloud environment, before
describing the virtualized CloudVMI architecture.

A. VMI as a Service

User1:
- PM1, VM1
- PM1, VM2
- PM2, VM3
User2:
- PM2, VM4

Cloud Control

User1
VM1

User1
VM2

User1
VM3

User2
VM4

API

C
on

tro
l

C
on

tro
l

CreateVM(User1,3)

User1:
- PM1, VM1
- PM1, VM2
- PM1, Mon1:
         VM1,VM3
- PM2, VM3
User2:
- PM2, VM4
- PM2, Mon2:
         VM4

Cloud Control

User1
VM1

User1
VM2

User1
VM3

User2
VM4

API

C
on

tro
l

C
on

tro
l

CreateMonitoringVM(User1,(VM1,VM3))

Mon1

CreateMonitoringVM(User2,(VM4))

Mon2

(a)

(b)

CreateVM(User2,1)

Physical Machine Physical Machine

Physical MachinePhysical Machine

Cloud
VMI

Cloud
VMI

Cloud
VMI

U1:
VM1,VM2

Cloud
VMI

U1: VM3
U2: VM4

Fig. 1. CloudVMI: VMI as a Cloud Service

Figure 1 depicts a somewhat simplified cloud architecture
to illustrate how we achieve the above mentioned goals with
CloudVMI. Figure 1 (a) shows two physical machines with
CloudVMI capabilities, a simple cloud control architecture
and two cloud users invoking the cloud control application
programming interface (API) to request the instantiation of
three and one VMs, respectively. (To simplify exposition we
assume a simple CreateVM() API call and further assume
that VMs are named (numbered) from a system wide name
space.) Figure 1 (a) shows the fact that the cloud control
architecture maintains database entries about users, their virtual
resources (VMs) and the physical machines those resources are
realized on.

Given this setup, Figure 1 (b) shows the interac-
tions involved with users requesting VMI monitoring ca-
pabilities for their previously instantiated VMs (using the
CreateMonitoringVM() function). Specifically, User1 re-
quests monitoring of VM1 and VM3 (but not VM2), while
User2 requests the monitoring of its single VM instance,
VM4. Based on these requests, the cloud control architecture
will instantiate monitoring VMs for the users (Mon1 and
Mon2) respectively, and further configure the policy databases
on the CloudVMI instances on the relevant physical machines
with information needed to perform the necessary multi-
plexing/demultiplexing and policing. Note that in our simple
example User1 requested a single monitoring VM to monitor
two of its VMs (VM1 and VM3) that have been instantiated
on two separate physical machines. This implies the ability for
CloudVMI to allow remote monitoring of VMs. I.e., as shown
in the figure, Mon1 is used to monitor VM3 even though the
latter is located on a different physical machine. CloudVMI
enables this new remote VMI capability, which will allow a
new class of VMI-based cloud-centric applications that can
perform VMI functions from a centralized perspective on a
set of distributed VMs.

B. CloudVMI Architecture

We describe the CloudVMI architecture in the context of
the Xen VMM based environment. The CloudVMI architecture
is depicted in Figure 2. As shown in the figure there are two
sets of user VMs. VMs being monitored are shown on the left,
while the monitoring VMs are shown on the right.

vlibVMI: CloudVMI virtualizes the LibVMI interface
and exposes that via the vlibVMI interface. This interface is
realized through a combination of the vlibVMI Server Module
executing in the privileged dom0 and the vlibVMI Client
Library that executes on each of the monitoring VMs.

The vlibVMI Client Library provides a “LibVMI-like”
library against which VMI applications link to invoke the
vlibVMI server API. Our initial approach is to have the vlib-
VMI library mimic the original LibVMI interface as closely as
possible to simplify porting of VMI applications developed for
LibVMI. However, as we discuss later, we expect the vlibVMI
interface to evolve over time to better exploit the fact that
CloudVMI offers VMI capabilities across multiple VMs and
multiple physical machines in a cloud environment.

As shown in Figure 2, the vlibVMI Server Module per-
forms multiplexing and policing of monitoring VM invocations
to ensure that such invocations are constrained to monitored



domUs
dom0

Hypervisor and kernel

domUs

libVMI

vlibVMI Server Module

Server
API

Physical Machine

Policy
DB

Multiplexing/
Policing

MonitoredVMs

vlibVMI
Client
Library

VMI 
Application

Monitoring VMs

Remote
Monitoring VM

Fig. 2. CloudVMI Architecture

VMs that are associated with the requesting cloud user (or
account). As described in Section II-A these actions are driven
from a policy database that the cloud control architecture
maintains. “Under the hood” the Server Module uses existing
LibVMI [4] functionality to introspect monitored VMs. Fig-
ure 2 also illustrates the fact that CloudVMI allows VMs in the
local physical machine to be monitored by VMI applications
executing in remote monitoring VMs. This is enabled by
exporting the vlibVMI interface as a server API that can be
invoked remotely.

State Management: For the original LibVMI and its
applications, a VMI instance is typically created, which serves
as an application-level handle to refer to the state maintained
by the underlying library. This VMI instance is used by the
application to perform introspection actions, typically across
multiple successive introspection requests. Dealing with this
state creation and maintenance requires special attention in
CloudVMI.

In CloudVMI, the actual state associated with accessing
VM memory pages is maintained in the vlibVMI Server Mod-
ule, while the client handle referencing that state is exposed
to VMI applications running on the monitoring VMs via the
vlibVMI Client Library. VMI applications that do not cleanly
terminate and release state associated with its instance handles
might result in stale state and memory leakage on the server
side. A naive solution for this would be to encapsulate each
VMI API call with a pair of VMI instance create and destroy
functions. With such an approach every LibVMI function cre-
ates a VMI instance first, performs the desired VMI function
and destroys the VMI instance. The problem with this solution
is that it incurs the cost of VMI creation and destruction with
every LibVMI function call. Further, VMI instance creation
is relatively heavy-weight compared to other VMI functions:
VMI instance creation takes about ten milliseconds, which is
three to four orders of magnitude longer than invocation of
other VMI functions.

Instead of this secure-but-costly solution, CloudVMI man-
ages a hash table for VMI instances and performs “garbage-
collection” for those that are not used for a certain time.
Figure 3 illustrates how CloudVMI manages this hash table.
CloudVMI maintains a hashtable for VMI instances, and each
entry consists of a VMI instance address, a key, the age of the
entry since it was used for the last time and the parameters
used for its creation and modification. When a user requests
to create a new VMI instance, the server creates the instance,
pushes it into the hashtable and returns its key (Figure 3, flow
1 to flow 4). Then, the user can use the key to access the VMI
instance as they use the pointer value of VMI instance with

1.vmi_init_remote 

(caller_info, params)
2.vmi_init(target_vm_id)

3. return vmi_z

4. return “c”

5. vmi_get_memsize_remote

(caller_info, params={vmi:“c”})

8. vmi_get_memsize(vmi_w)

9. return
10. return

11. vmi_destroy_remote

(caller_info, params={vmi:“c”})
12. vmi_destroy(vmi_w)

13. return

14. return

gc

(age>10)

gc

(age>10)

gc

(age>10)

6. vmi_init(target_vm_id)

7. return vmi_w

key instance age params

"a" …

"b" …

"c" vmi_w 0 …

key instance age params

"a" …

"b" …

vlibVMI

Client Library

vlibVMI

Server
libVMI

key instance age params

"a" …

"b" …

"c" vmi_z 11 …

key instance age params

"a" vmi_x 10 …

"b" vmi_y 11 …

key instance age params

"a" vmi_x 11 …

"b" …

"c" vmi_z 0 …

Fig. 3. vlibVMI Server Module state management

the original LibVMI. The indirection provided by this approach
has the additional security benefit that actual memory location
information is not revealed to the monitoring applications.

A garbage collector periodically checks the ages of VMI
instances since it was last used. VMI instances that have not
been accessed for a specified time are destroyed by the garbage
collector. Maintaining the hashtable entry involves a limited
amount of state. Therefore, the garbage collector does not
delete the hashtable entry, but maintains its key value and
parameter information used for creation and modification. The
information is used when the client who created the VMI
instance requests to use the VMI instance again. When the
server receives a VMI invocation on a garbage-collected VMI
instance, the server implicitly recreate the VMI instance based
on the previously used parameters. (Figure 3, flows 6 and 7.)
This happens only for the VMI instances that are implicitly
destroyed - if a user explicitly destroys a VMI instance,
the server removes not only the VMI instance, but also its
entry in the hashtable (Figure 3, flows 11 to 14). Finally, to
prevent memory leakage by forgotten hashtable entries, the
Service Module limits the number of VMI instance entries that
each user can have. vlibVMI offers an additional function for
this feature. CloudVMI users can check the number of VMI
instance entries they have and their keys, and they can remove
unused entries.

III. IMPLEMENTATION

Our CloudVMI implementation uses Xen and LibVMI. The
current version is running on Xen 3.0 and uses LibVMI version
0.9 alpha. As described in Section II-B, CloudVMI consists
of two modules, the vlibVMI Client Library and the vlibVMI



Service Module. In our current implementation, the vlibVMI
interface is realized using the Linux RPC. The client library
makes RPC calls to the privileged virtual machine hosting the
Service Module for the target virtual machine to be monitored
and returns results to the VMI applications. The vlibVMI
Service Module is a server program that receives VMI requests
from monitoring virtual machines, performs VMI using the
underlying LibVMI interface and returns the results. Our vlib-
VMI Service Module is implemented in C++. For the current
version of CloudVMI, garbage collection, aging and VMI
instance entry managing functions are under implementation,
and the hashtable manages only VMI instances and their key
values.

In addition to the Linux RPC implementation described
above, we have a CloudVMI implementation which exposes
the vlibVMI interface as a RESTful API. This alternative
enables users to perform VMI using HTTP request so that
users can introspect their virtual machines regardless of the
languages and platform they use. Since it uses HTTP, this
implementation has performance limitations, however, we en-
vision that the ease of use of this approach will enable new
uses of VMI. Our RESTful implementation is based on Python
Flask and the Tornado server.

IV. EVALUATION

In this section we present our evaluation of the CloudVMI
prototype implementation. Our evaluation was performed in
the Emulab[6] testbed environment using a pair of Linux
physical machines interconnected via a 100 Mbps link. Each
physical machines was equipped with 12-Gigabyte RAM and
a 64-bit Intel Quad Core Xeon E5530 CPU. Both nodes were
running Ubuntu 12.04 Linux with Xen 3.0. We used Ubuntu
12.04 Linux 3.8.4 for the VMs in our evaluation.

Below we present three evaluation results. First, Sec-
tion IV-A describes a simple application that we developed to
illustrate the cross-physical-machine introspection capabilities
provided by CloudVMI. Section IV-B presents a macro-level
evaluation of CloudVMI by comparing the performance of
a number of simple VMI applications using CloudVMI with
the same applications using the original LibVMI functionality.
This evaluation also demonstrates the ease with which appli-
cations developed to use the original LibVMI can be ported
to CloudVMI. Finally, in Section IV-C we present a detailed
micro-benchmark evaluation of our prototype implementation.

A. Cross-physical-machine VMI

A unique feature of CloudVMI is that it can introspect
virtual machines running on remote physical machines. The
target monitored VM can be either a single virtual machine
or multiple machines spread throughout a cloud infrastruc-
ture, allowing the centralized monitoring of virtual machine
instances in a cloud environment. Moreover, compatibility with
the original LibVMI interface will allow existing VMI-based
applications to be readily ported and deployed in a cloud
environment.

As an illustrative use case of this functionality, we have
modified the module-list example distributed with LibVMI to
show the list of installed kernel modules in several virtual
machines located in different physical machines. This example

illustrates the scenario where multiple virtual machines are
associated with a single cloud user (or account) and the appli-
cation monitors the kernel modules associated with all VMs
from a centralized monitoring applications. Such functionality
might for example be a building block in a cloud security
monitoring or cloud forensic application.

B. Macro-benchmark

TABLE I. APPLICATION AVERAGE RUNNING TIMES

LibVMI Cross-VM CloudVMI Cross-PM CloudVMI

module-list 23.236 ms 24.581 ms 26.021 ms
process-list 22.653 ms 55.647 ms 71.426 ms

To evaluate the overall performance of the CloudVMI, we
first ran two existing LibVMI examples on CloudVMI and
the original LibVMI and compared the result. The exam-
ples we used here are process-list.c and module-list.c which
are distributed with LibVMI. Each of these examples is a
console-based application that shows the list of installed kernel
modules or the list of running processes of the target virtual
machine.

We ran these two examples under three different scenar-
ios: (i) using the original-LibVMI, (ii) using CloudVMI in
a cross-VM setup on the same physical machine and (iii)
using CloudVMI in a cross physical machine (cross-PM)
setup. Specifically, for the original LibVMI case, we ran the
examples on the dom0 and introspected a customer VM (domU
in Xen’s terminology) in the same physical machine. For
the cross-VM case, we ran the examples in a domU and
introspected another domU within the same physical machine.
For the cross-PM case, we ran the examples on a domU and
introspected another domU in a different physical machine.
With reference to Figure 1 (b), the Cross-VM setup is the
case where Mon1 introspects VM1, and the Cross-PM case is
when Mon1 introspects VM3.

Table I shows the runtime for each application, averaged
over a thousand runs. The target (monitored) virtual machine
for this evaluation was a Ubuntu 12.04 system running with
3 kernel modules and 53 processes. In this “static” setup,
the number of LibVMI API function calls invoked by each
example is fixed. Specifically, the number of LibVMI API
function calls were 19 for module-list and 173 for process-
list. This explains why process-list takes significant longer
time to finish than module-list in the CloudVMI cases. More
importantly, however, these results suggest that the serial
nature of the original LibVMI API might need to be refactored
to better suit a cloud-centric VMI.

The performance is of course also sensitive to the size
of request parameters and the resulting return values. The
API functions called by module-list have fewer parameters
and small return values (i.e., primitive variable type) com-
pared to process-list. Naturally, heavier API functions like
vmi read pa( ), which returns specified size of physical mem-
ory in binary will introduce more significant overhead.

C. Micro-benchmark

To evaluate the performance of CloudVMI in more de-
tail, we have measured invocation times for several different



Fig. 4. Invocation Time Sections in CloudVMI

API functions: vmi init(), vmi destroy(), vmi get memsize(),
vmi pause vm() and vmi resume vm(). For each function, we
have called it hundred thousand times and calculated the
average invocation times. As shown in Figure 4, the invocation
times were measured at four different points in the CloudVMI
architecture.

With reference to Figure 4, high-level API invocation
time means the elapsed time from calling a LibVMI-like
function (i.e., vlibVMI function) to its return in the user level
application. RPC section is the elapsed time from calling a
Linux RPC function to its return in vlibVMI library code.
Server Service Routine invocation time is the time from the
start of the mapped service routine for the API function to its
return. Finally, low-level API invocation time is the time taken
to perform the original LibVMI function in the server.

TABLE II. INVOCATION TIMES OF LIBVMI FUNCTIONS

Low-level API calling

vmi init & vmi destroy 11456.07 µs
vmi get memsize 0.64 µs
vmi pause vm 1.79 µs
vmi resume vm 1.66 µs

TABLE III. INVOCATION TIMES OF CLOUDVMI FUNCTIONS UNDER
CROSS-VM SET-UP

High-level API calling Low-level API calling

vmi init & vmi destroy 11403.43 µs 11255.80 µs
vmi get memsize 60.32 µs 0.77 µs
vmi pause vm 59.98 µs 3.53 µs
vmi resume vm 58.97 µs 3.22 µs

TABLE IV. INVOCATION TIMES OF CLOUDVMI FUNCTIONS UNDER
CROSS-PM SET-UP

high-level API calling low-level API calling

vmi init & vmi destroy 11647.26 µs 11267.40 µs
vmi get memsize 180.17 µs 1.13 µs
vmi pause vm 182.98 µs 5.68 µs
vmi resume vm 185.35 µs 5.05 µs

As with the macro evaluation in section IV-B, this evalua-
tion has been performed under three different settings, namely
original LibVMI, cross-VM (same physical machine) and
cross-PM (cross-physical machine).

Table II, III, and IV show the results at the user-level.
For the original LibVMI case, it is the time for performing

the original LibVMI functions (“Low-level” API invocation
time), and, for CloudVMI cases, it is the “High-level” API
invocation time. We also measured the times for the original
LibVMI functions during each evaluation and present this
together with the result of interest for reference. Each entry
is the average invocation time to perform a LibVMI-like (or
LibVMI) function. For vmi init() and vmi destroy(), we have
paired them and measured the invocation time together.

Here, we can see the overhead added by CloudVMI to the
original LibVMI functionality. The overhead varies depending
on the data size of parameters and return values sent and
received, but it is around 60 microseconds for cross-VM case
and around 180 microseconds for cross-PM case. Note that the
entries for vmi init() and vmi destroy() have doubled overhead
because the entries are the sum of invocation times of the
two functions. Also, the parameter and return value size of
vmi init() is relatively larger than other API functions.

TABLE V. DETAILED INVOCATION TIMES FOR CROSS-VM SET-UP

vmi gem memsize( ) vmi pause vm( ) vmi resume vm( )

Low-level API 0.77 µs 3.53 µs 3.22 µs
Service Routine 3.71 µs 6.19 µs 5.91 µs

RPC 58.72 µs 58.57 µs 57.57 µs
High-level API 60.32 µs 59.98 µs 58.97 µs

Table V shows more detailed performance information. We
note that the major overhead is due to the network interaction
associated with the RPC. The average overhead attributable to
RPC is about 50 microseconds. We verified that this overhead
corresponds to the inherent overhead associated with Linux
RPC in our evaluation environment.

TABLE VI. INVOCATION TIMES OF RESTFUL CLOUDVMI FUNCTIONS
UNDER CROSS-VM SET-UP

high-level API calling low-level API calling

vmi get memsize 1105.68 µs 2.50 µs

As mentioned in Section III, CloudVMI exports the vlib-
VMI interface as a RESTful API. Table VI shows an example
of the performance of the RESTful API. This result can be
compared with the vmi get memsize entries in Table II and
III. As might be expected, the RESTful API introduces far
more overhead than API using RPC. The overhead comes from
the many different layers of a RESTful API realization: A
request is encoded in JSON, transmitted via HTTP, decoded
at the server and passed to a Python server before the original
LibVMI interface is invoked. Likewise, results return via the
reverse path.

V. RELATED WORK

Monitoring virtual machines has been an active area of
research. Researchers have proposed various solutions to mon-
itor VMs for attack detection [7], [8], [9], [10], malware
analysis [11], [12], [13], debugging [14], and performance
[15]. Garfinkel et al. [1] developed a system called Livewire
that uses VMI techniques to inspect the runtime security state
of virtual machines. Payne et al. [3] created a similar system
named XenAccess for VMs running atop the Xen hypervisor
[16]. Later, the XenAccess introspection library was ported to
other VMMs such as KVM and named LibVMI. Realizing the



efficacy of VMI techniques, many security applications using
VMI have been developed. Srivastava et al. [2] proposed a
white-list based application-level firewall for the virtualized
environment that performs introspection for each new connec-
tion to identify the process bound to the connection. Ziang et
al. [17] developed out-of-the-box security approach to detect
attacks ocuring inside a VM. While these approaches have
demonstrated the usefulness of VMI, they were developed
for the self-hosted virtualized environment and did not take
the complexity of elastic computing environment such as
clouds into account. In contrast, with CloudVMI, we offer
VMI-as-a-cloud service, empowering cloud users to develop
their own customized monitoring applications. Further, existing
approaches of VMI was device-centric, i.e., limited to the
VMs on a single physical machine. In contrast, CloudVMI
allows cloud-centric introspection by enabling virtual machine
introspection across physical machines.

Realizing that the security concern is the main obstacle
in the wider adoption of cloud computing, researchers have
proposed various ways to offer security-as-a-service in the
cloud. Srivastava et al. [18] have proposed the notion of cloud
app market that describes the delivery of security solutions
via apps similar to smartphone apps. To expose hypervisor-
level functionality to cloud users, they suggested modifications
to virtual machine monitors and/or nested virtualization. Butt
et al. [19] created a self-service cloud platform that allows
cloud customers to flexibly deploy their own security solutions.
Srivastava et al. [20] created a trusted VM snapshot generation
service in the cloud that operates even if cloud administators
are malicious. Brown et al. [21] offered trusted platform-as-a-
service for cloud customers to deploy applications in the cloud
in a trustworthy manner. Similar to these efforts, we envision
VMI-as-a-Service in the cloud to allow cloud users to develop
security monitoring applications customized for their VMs.

VI. CONCLUSION AND FUTURE WORK

We presented our work on CloudVMI which allows virtual
machine introspection to be offered as-a-service by cloud
providers. CloudVMI virtualizes the low level VMI interface
and polices access to ensure VMI actions are constrained
to resources owned by the respective cloud users. Further,
CloudVMI allows VMI actions to be performed across differ-
ent physical machines, thus allowing for cloud-centric intro-
spection. We presented an evaluation of our proof-of-concept
implementation of CloudVMI. Our results prove the feasibility
of offering VMI as a cloud service and specifically making
VMI cloud-centric compared to the current device-centric
approaches. Our results also suggest that compatibility with
the existing LibVMI will simplify porting of VMI-based tools
to the CloudVMI environment. At the same time our results
indicate that cloud-aware extensions of the VMI interface, for
example allowing for batching of requests that might simply
be serialized in a traditional non-cloud approach, might be
beneficial. We plan to explore such extensions as part of
our future work. Finally, we plan to focus future work on
the second component of our split VMI-tool development
approach by developing more sophisticated VMI applications,
including cloud-centric VMI applications which can utilize
CloudVMI’s unique cross-physical-machine capabilities.

REFERENCES

[1] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in NDSS, San Diego, CA, February
2003.

[2] A. Srivastava and J. Giffin, “Tamper-resistant, application-aware block-
ing of malicious network connections,” in RAID, Boston, MA, Septem-
ber 2008.

[3] B. D. Payne, M. Carbone, and W. Lee, “Secure and flexible monitoring
of virtual machines,” in ACSAC, Miami, FL, December 2007.

[4] “vmitools Virtual machine introspection tools,” http://code.google.com/
p/vmitools/.

[5] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in
Security and Privacy (SP), 2011 IEEE Symposium on, 2011, pp. 297–
312.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in OSDI, 2002.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay,” in OSDI, Boston, MA, December 2002.

[8] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An ar-
chitecture for secure active monitoring using virtualization,” in IEEE
Symposium on Security and Privacy, Oakland, CA, May 2008.

[9] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor support for iden-
tifying covertly executing binaries,” in USENIX Security Symposium,
San Jose, CA, August 2008.

[10] A. Srivastava and J. Giffin, “Automatic discovery of parasitic malware,”
in RAID, Ottawa, Canada, September 2010.

[11] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in ACM CCS, Alexandria, VA,
October 2008.

[12] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in ACM CCS, Arlington, VA, October 2007.

[13] X. Jiang and X. Wang, “Out-of-the-box monitoring of VM-based high-
interaction honeypots,” in RAID, Surfers Paradise, Australia, September
2007.

[14] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in USENIX Annual
Technical Conference, Anaheim, CA, April 2005.

[15] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.
Chang, “vpath: Precise discovery of request processing paths from
black-box observations of thread and network activities,” in USENIX
Annual Technical Conference, San Diego, CA, June 2009.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SOSP, Bolton Landing, NY, October 2003.

[17] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
VMM-based ‘out-of-the-box’ semantic view,” in ACM CCS, Alexandria,
VA, November 2007.

[18] A. Srivastava and V. Ganapathy, “Towards a richer model for cloud app
markets,” in ACM Cloud Computing Security Workshop, 2012.

[19] S. Butt, A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy, “Self-service
cloud computing,” in ACM CCS, 2012.

[20] A. Srivastava, H. Raj, J. Giffin, and P. England, “Trusted VM Snapshots
in Untrusted Cloud Infrastructures,” in Proceedings of the 15th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2012.

[21] A. Brown and J. Chase, “Trusted platform-as-a-service: A foundation
for trustworthy cloud-hosted applications,” in ACM Cloud Computing
Security Workshop, 2011.


