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ABSTRACT

We present our Software-defined network Mobile Offloading aR-
chitecturE (SMORE). SMORE realizes traffic offloading in mobile
networks without requiring any changes to the functionality of ex-
isting mobile network nodes. At the same time, it is fully aware of
mobile network functionality, including mobility.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]:
Wireless communication
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1. INTRODUCTION

Unprecedented growth in data traffic on mobile networks [[15]]
is driven by the popularity of smartphones and tablets, advances
in bandwidth available on mobile networks and the availability
of a myriad of mobile applications and services. Despite these
undeniable successes, the delay experienced across core mobile
networks is still problematic for many applications that need near-
realtime communication. Online gaming applications, for example,
have stringent quality of service (QoS) demands and latency can
negatively interfere with game play [7, [L1]. A key architectural
reason for delay remaining relatively high in the mobile core is
the fact that the gateway nodes (Packet Data Network Gateway
(PGW) nodes in LTE/EPC nomenclature), are deployed in a highly
centralized fashion [3]. This results in inefficient hierarchical routing
and high delay—packets travel for a significant distance in the
mobile core network before even reaching the Internet [9].

Approaches to reduce end-to-end delay involve various offloading
strategies [[17}/10], including offloading to data centers inside the
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mobile provider core network footprint [5]]. Despite the potential
benefits of these approaches, they are inherently difficult to deploy
in real networks—because of the fundamental complexity of mobile
architectures, approaches that require significant changes to those
architectures are very hard to realize in practice.

In this paper we propose an alternative approach to realizing of-
floading in a mobile network: our Software defined network Mobile
Offloading aRchitecturE (SMORE). Like previous offloading ap-
proaches [5]], we propose to deploy offloading data centers within
the core of the mobile network and to selectively redirect traffic
to these data centers. The defining characteristic of SMORE is
that this offloading is accomplished without requiring modifications
to the functionality of the core network proper. That is, without
modifications to the functionality of network elements in the core
mobile network. SMORE is realized by deploying an SDN infras-
tructure at aggregation points in the mobile core network. This SDN
infrastructure allows two functions critical to the functioning of
SMORE. First, it enables monitoring of the mobile network control
plane through a lightweight monitoring component. The SMORE
monitor continuously extracts information from the mobile network
control plane and makes this information available to the SMORE
controller. Second, based on this information and the service logic
executed by the SMORE controller, the SDN infrastructure is used
to transparently realize the offloading of selected traffic to offloading
data centers. We argue that the ability to deploy these changes with-
out modifying functional components of the mobile core is critical
to making the deployment of new functionality such as offloading
practical.

This paper makes the following contributions:

e We develop the SMORE architecture to realize offloading in
an LTE/EPC mobile network. Specifically, we show how of-
floading for selected traffic of subscribed users can be realized
without modifying the standard LTE/EPC interactions, even
when devices are mobile.

e We present a prototype realization of our architecture using
an LTE/EPC testbed and an Open vSwitch (OVS) based SDN.
Specifically, our OVS enhancements allow transparent encap-
sulation and decapsulation of offloaded traffic.

2. BACKGROUND

In this section, we briefly describe the LTE/EPC mobile network
architecture, typical deployment and user plane (data plane) protocol
stack.
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Figure 1: LTE/EPC architecture

Network architecture. As shown in Figure [T} the LTE/EPC
architecture consists of two main components, the radio access
network (RAN) and the evolved packet core (EPC) network. The
RAN consists of eNodeBs (access points) which connect to User
Equipment (UE), like cellphones, through a radio link and sends
packets received from the UE to Serving Gateway (SGW) in the
core network. In addition, it manages radio resources and supports
intra-LTE mobility. The EPC consists of the Mobility Management
Entity (MME), Serving Gateway (SGW), and Packet Data Network
Gateway (PGW). The MME performs UE registration, authenti-
cation, and mobility management. It is also responsible for the
tracking and paging of UEs in idle-mode. It does not participate
in packet forwarding. The SGW and the PGW are responsible for
routing/forwarding the data packets from all UEs to and from the
external network. Besides packet forwarding, the SGW works as
an anchor point in case of handover between eNodeBs and reserves
buffers for paging functionality. The PGW performs IP address allo-
cation for UEs, packet filtering and supporting Quality of Service
(QoS) according to the users’ data plan. When a UE attaches to
the mobile network, control messages are exchanged between the
eNodeB, MME and SGW. A successful attach procedure will result
in tunnels being established between the eNodeB and the SGW and
between the SGW and the PGW, 71 and #2 in Figure[l] These tunnels
realize the user plane (data plane) which the UE uses to send and
receive packets.

Typical deployment. Figure|[T]also depicts typical deployment
information that is relevant to our approach. EPC components
(MME, SGW and PGW) are typically deployed in a small number
of centralized locations (or central offices), e.g., on the order of
ten in the US [21] [3]. This means that each such centralized lo-
cation serves a large geographic area, with thousands of eNodeBs.
LTE/EPC is a packet-based architecture, which means that there
exists a packet “transport network®, i.e., a regular IP network, in
between the eNodeBs and the centralized EPC locations. For ef-
ficiency, connectivity from a set of eNodeBs gets aggregated at a
regional aggregation point. As shown in Figure[I] these aggregation
points are called (or co-located with) Mobile Telephone Switching
Offices (MTSOs) and there are typically an order of magnitude more
MTSOs than centralized EPC locations in a typical deployment. As
such, MTSOs are an attractive deployment location for offloading
data centers [5]).

User plane protocol stack. The tunnels depicted in Figure
are realized with the GPRS Tunneling Protocol (GTP). The mobile
network uses GTP for data transfer as well as for supporting per user
mobility and quality of service. Each tunnel can be distinguished
by a unique Tunnel EndPoint Identifier (TEID). When a packet is

encapsulated, the TEID field in the GTP-U packet header is set to
the value expected by the tunnel destination. As we explain later,
obtaining the TEID and other information from the control plane and
being able to use that to transparently encapsulate and decapsulate
GTP data packets is crucial to the functioning of SMORE.

3. SMORE ARCHITECTURE
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Figure 2: SMORE architecture

The SMORE architecture is depicted in Figure 2]in the context
of an LTE/EPC mobile network. The service goal of SMORE is to
reduce end-to-end delay for selected traffic by offloading such traffic
to offloading cloud infrastructures close to mobile devices. Regional
aggregation points in the form of MTSOs represent an ideal target
for deploying these offloading infrastructures for two reasons. First,
based on current centralized mobile network deployments, all traffic
passes through MTSOs en-route to the Internet. Further, the MTSO
locations in a typical deployment are at a sweet spot, both in terms of
geographical coverage (to reduce delay) and the number of locations
(filling the space between approximately ten central office locations
and thousands of eNodeB locations). As shown in Figure[2] SMORE
assumes that the offloading cloud platform and the SMORE SDN
substrate are deployed at MTSO locations. The SDN substrate
enables offloading to the offload cloud and also allows the SMORE
monitor to snoop on the LTE/EPC control plane. The SMORE
monitor continuously monitors the control plane, extracting relevant
information. The monitor enters information into a database and
also provides triggers to the SMORE controller about UE attach and
mobility events. The SMORE controller interacts with the SMORE
SDN substrate to effect offloading when needed and provides a front-
end that Internet based service providers can interact with to register
for offloading services. Note that in all cases service providers using
the SMORE service will only be able to offload traffic associated
with their own services.

On-demand use case. The interactions between these compo-
nents are best explained with a typical use case, using the numbered
steps from Figure[2] The SMORE SDN and monitor allow the con-
trol plane to be continuously monitored (#1 in figure). To simplify
exposition, we assume an Internet-based service provider, e.g., a
gaming provider, who wants to make use of the SMORE service.
Note that this generalizes to any Internet service provider that wants
to make use of the SMORE offloading service. End-users of the
game service access the Internet-based gaming frontend server via
the normal data path after attaching to the mobile network (#2).
Realizing that it wants to offload the user in question to an offload
instance, logic in the gaming frontend server requests offloading via
the interface provided by the SMORE controller (#3). The SMORE
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controller consults the SMORE database to determine the current
location of the UE in question, and proceeds to configure the SDN
substrate in the appropriate MTSO location to set up offloading of
the desired subset of traffic (#4). When the UE connects to the game
server, this traffic will be transparently redirected to the offload
server in the MTSO cloud (#5).

Subscription use case. Service providers (or end users) can
also opt to make use of a subscription model for offloading. Once
subscribed, information about the subscriber UE is maintained in
the SMORE database. In this case, every time a subscriber UE
connects to the network, the offloading path is constructed without
the need for step #3 in the previous scenario. When the UE attaches,
the SMORE monitor detects this event and signals the SMORE
controller, which immediately installs the appropriate rules in the
SMORE SDN.

3.1 Interaction with standard LTE/EPC

We now consider in more detail how SMORE can realize its
functionality without requiring any modifications to LTE/EPC net-
work elements. We specifically consider how the SMORE monitor
extracts information from the LTE/EPC control plane during UE
attach and handoff procedures. The information obtained from these
procedures triggers the installation of rules in the SMORE SDN to
realize offloading in a transparent manner.

Attach. Figure [3] shows how the SMORE monitor snoops on
the control plane interactions between the eNodeB and the MME
during UE attach and subsequently helps trigger the pushing of
required offloading policies in the SMORE SDN via the SMORE
controller. Specifically, during the UE attach procedure, the SMORE
monitor extracts the UE’s IMSI (International Mobile Subscriber
Identity) and TAI (Tracking Area Identifier) from the ‘attach request
message’ sent to the MME via the eNodeB (#2). When the MME
responds with the ‘attach accept’ message (#5), the monitor extracts
the UE’s IP address, SGW’s IP address, SGW’s TEID, and UE’s
GUTI (Globally Unique Temporary ID). Finally, the monitor obtains

the eNodeB’s IP address and eNodeB’s TEID when the eNodeB
responds with the ‘context setup response’ message (#8). At this
point, the SMORE monitor has all the information required to trigger
offloading and sends it to the SMORE controller (#9) which, in
turn, updates its database. In case of a subscription-based use case,
at this point the SMORE controller pushes the required flows to
the SMORE SDN (#10), which enables offloading of game server
specific traffic to the game server hosted in the in-network cloud
platform. For the on-demand use case, when the SMORE controller
receives the offloading trigger from the gaming frontend server
(#13), it retrieves the UEs bearer information from the database
and pushes the required flows to the SMORE SDN (#14) to enable
offloading.

Handover. Figure@shows the steps required to enable offloading
in presence of user mobility. Specifically we consider X2-based
handover between eNodeBs without MME and SGW relocation.
(This is the common handover case in LTE/EPC.) As seen in the
figure, when the source eNodeB decides to handover the UE (based
on measurement reports) to the target eNodeB, it sends a handover
request (#2) to the target which, in turn, does the necessary resource
allocation and sends back a handover acknowledgement message
(#3) to the source. The target also sends a path switch request mes-
sage (#4) to the MME that contains the target eNodeB information
(IP address and TEID), which will subsequently be used by the
SGW to forward downlink packets. The SMORE monitor extracts
this bearer information, and sends it to the SMORE controller (#5),
which proactively constructs a new rule to be pushed to the SMORE
SDN to enable processing of downlink packets corresponding to
the target eNodeB. Note that all the other UE bearer information
remains unchanged (including the SGW identifiers) and the SMORE
controller obtains the other required information from its database.
When the SGW updates the user bearer to forward downlink pack-
ets to the target eNodeB instead of the source eNodeB, the MME
sends back a path switch acknowledgement message (#10) to the
target indicating the success of the path switch request. When the
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SMORE monitor sees this message, it sends a path switch trigger
request (#11) to the SMORE controller, which in turn, pushes the
previously constructed rule to the SMORE SDN and deletes the
previous rule (#12). Subsequently, the SDN substrate routes (after
proper encapsulation) all downlink packets from the cloud based
game server to the target eNodeB.

4. IMPLEMENTATION

We developed a prototype implementation of the SMORE archi-
tecture and deployed it in a local LTE/EPC testbed based on the
OpenEPC LTE/EPC architecture implementation [8]. As shown in
Figure 5] the RAN part of our current setup is based on an emulated
implementation from OpenEPC. Each component shown in the fig-
ure is realized as a physical machine instance in the Emulab [20]]
facility. Our current implementation does not support the handover
mechanism described in the design because our LTE/EPC testbed
does not currently have handover support.

Below we consider the prototype implementations of each SMORE
component in more detail.

SDN. To implement SMORE SDN, we used Open vSwitch (OVS)
2.0 which supports the OpenFlow 1.3 standard. Tunneling in OVS
is implemented using a virtual port (vport) abstraction which sim-
plifies header manipulation [T4]. As shown in Figure[6] we added
three vports to realize offloading, GTP decapsulation, and GTP en-
capsulation. By default the SMORE SDN component works as a
standard layer 2 switch. It forwards packets from the eNodeB to
the SGW/MME and vice versa. However, when it receives a traffic
offload request from the SMORE controller, flow rules are setup to
divert UE connections to alternate destinations.

Packet processing in the uplink direction is shown in Figure [6(a)]
The SMORE SDN first checks whether the incoming packet is GTP
data traffic (whether it has 2152 as UDP port number). If so, the
offloading vport extracts the SGW TEID in the GTP header and the
source and destination IP addresses from the inner IP layer (i.e., the
UE source and destination IP). If this information matches a SMORE
OVS table entry, then the packet is destined for an offloading server
and is sent to the GTP decapsulation vport. Otherwise, the packet is
sent along the default path to the SGW. When the GTP decapsulation
vport receives a packet, it removes the GTP header, replaces the
destination MAC address, and forwards the packet. The replacement
MAC address is that of the next hop along the route to the offload
destination.

Downlink packet processing is shown in Figure [6(b)] Packets
arriving from the SGW/MME are forwarded toward the eNodeB
as per normal. However, if the packet is from an offloading server,
the SMORE SDN uses the IP addresses (src: offloaded server IP,
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Figure 6: Handling uplink and downlink packet in OVS

dst : UE IP) to find the correct encapsulation information for this
exchange. The packet is forwarded to the GTP encapsulation vport
along with the associated tunnel information (outer IP addresses (src:
SGW IP, dst: eNodeB IP) and GTP (eNodeB TEID) identifiers). It is
also necessary to replace the destination MAC address with the next
hop’s MAC address (in the direction of the UE). With encapsulation
complete, the GTP packet is forwarded on toward the eNodeB.

Monitor. We implemented the SMORE monitor using tshark, a
terminal-based version of wireshark. The monitor listens to the inter-
face between the eNodeB and the MME and processes all messages
that are exchanged to detect bearer set-up and tear-down events.
Specifically the monitor implements the information extraction and
triggers as described in the artach description in Section[3.1]

Controller. We implemented a prototype of SMORE controller
using the Ryu OpenFlow controller. The SMORE controller has a
simple database storing registered offloading server IP addresses
and IMSIs of UEs that subscribed to offload services. We extended
the Ryu API to support GTP flow modification control messages.
The SMORE controller modifies the flow table of the OVS using the
extended API of Ryu controller. The SMORE controller compares
the bearer setup information provided by the SMORE monitor with
its database of registered UEs and offloading service addresses to
decide whether to push offloading flows for a specific UE to the
OVS flow table.

S. EVALUATION

We measured the SMORE SDN processing time, the respon-
siveness and latency of the SMORE monitor and controller, and
illustrated the potential for latency reductions with our approach.
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Our evaluation was performed using machines with a single 3 GHz
CPU and 2 GB RAM.

5.1 SMORE SDN

OVS has two tables, namely, the OpenFlow flow table in userspace
and a simple flow table called datapath in the kernel. The data path
table is essentially a cache for active flows. The userspace table is
consulted when no match is found in the datapath, typically for the
first packet of a flow. We evaluated both the datapath and Open-
flow table processing of our SDN implementation. We measured
the processing time for each port and vport in Figure [6] using the
getnstimeofday() kernel function.

Datapath processing. A breakdown of the processing time when
a flow entry exists in the data path table is shown in Figure [7(a)]
SMORE (Cloud) means the path between the RAN and Offload
cloud. SMORE is the path between the RAN and the EPC when
SMORE rules are installed. OVS is the same path when no SMORE
rules are installed. Compared to (native) OVS, SMORE (Cloud) and
SMORE increased uplink processing by 5.366us and 1.911us and
downlink processing by 2.105us and 0.058us respectively. SMORE
shows slightly longer processing time in ETH input than OVS be-
cause more complex matching rules are used and there are more
flow entries in the datapath.

Openflow table processing. Figure[7(b)| shows a similar break-
down for the case where a flow entry does not exist in datapath but
in only in the OpenFlow flow table. As expected, the processing
times are much longer because of the userspace processing involved,
however, this is only incurred on the first packet of a flow.

In both cases the overhead is modest compared to the end-to-end
delay in LTE.

5.2 SMORE monitor and controller

SMORE controller micro-benchmark. We measured the time
the SMORE controller takes to install offloading flows into the OVS
when it receives a trigger. (L.e., a trigger for either on-demand or
subscription use cases.) The average processing time is 4.677ms.

SMORE monitor micro-benchmark. We generated a series of
synthetic UE attaching events to measure the time taken to detect
an UE attach event. The average detection time is 2.973ms (not in-
cluding packet reading time incurred by tshark). Our current packet
capture realization based on tshark is quite inefficient, contributing
an additional 850ms.

Subscription use case evaluation. We evaluated the responsive-
ness of SMORE for the subscription use case described in Section 3]
Since an attached UE might immediately start to interact with the

offloading server, this case demands fast response from the SMORE
monitor and controller.

We measured the elapsed time (#,.5) between the moment when
the ‘attach complete’ message (#8 in Figure[3) arrives at the OVS
and when the offloading flows are successfully installed (in the OVS)
by the SMORE monitor and SMORE controller. We measured ¢,
for 10 different UE attach events and found the mean value for ¢, to
be 1.056s with a standard deviation of 18ms. This is an acceptable
delay as it is of the same order of magnitude as application startup
delay on a mobile device.

5.3 RTT improvement

We measured the RTT between a UE and the top websites in
the U.S [2]. We derived a synthetic delay from previous measure-
ment works as the delay of the cellular core network [6} |12} |18]].
Specifically, the core network delay is calculated as: core network’s
delay = UE-server’s delay - PGW-server’s delay - radio’s delay.
The one-way delay from UE to server was set to 35ms as reported
in [12]. The PGW-server delay was set to 8ms as a typical “regional”
Internet delay reported in [18]]. The delay on the radio link was 4ms
one-way [0]. In total, the synthetic delay of the core network (from
OVS node to PGW) was set as 23ms. The delay between the OVS
node and the offloading server was set to a typical “local” link and
it was almost negligible, i.e, less than 1ms.

We ping each server 50 times and reported the average RTT in
figure[7(c)} As expected and shown in the figure, the delay when
using the offloading server is significantly smaller than using the
servers in the Internet.

6. RELATED WORK

The issues associated with current hierarchical routing approach
in the cellular networks have been identified in works like [9} [22]].
To alleviate the burden of the core network and enable efficient
routing, the 3GPP standards body has proposed Local IP Access
(LIPA) and Selected IP Traffic Offload (SIPTO) - for offloading
mobile traffic to a local network using femtocells and, to the Internet
via regional gateways closer to the user locations, respectively [1]].
However, these methods require significant changes in the current
standard and expensive additional infrastructure for their realization.
Our aim, in this work, is to enable efficient offloading without
requiring any changes to the existing standard. Other works have
proposed opportunistic offloading of delay tolerant cellular traffic
using alternative access technologies like WiFi [4} |10]. Our work
is focused on efficient offloading strategies in cellular networks
specially for traffic with strict delay requirements (e.g., real time
gaming).



We draw inspiration from research works exploring the possibil-
ity of leveraging SDN to enable more flexibility in the core mobile
network [[13,|16l|14] and using cloud resources in user proximity
to enable low latency applications [19]. Our work is grounded
in the reality that it is not economically feasible for the mobile
network operators to partake in a major overhaul of the existing
infrastructure built on standards compliant closed-source vendor
specific equipment. Our proposed architecture can be deployed in
strategic locations to co-exist with the current infrastructure and, en-
ables much needed flexibility in the mobile network using emerging
technologies like SDN and cloud, without requiring any changes in
the existing architecture.

Our work is strongly inspired by MOCA [5]]. MOCA proposed
an SDN-based architecture for cellular networks to offload selected
traffic to a cloud-based local SGW, PGW and an offloading server
inside the core network. In MOCA architecture, although modifi-
cations in the current network were intentionally minimized, the
MME still played a central role and needed to be modified. With
SMORE we designed and prototyped similar functionality without
requiring modification to any LTE/EPC network element.

7. CONCLUSION

We leveraged SDN to introduce an offloading architecture for
cellular networks. The architecture allows traffic to be intercepted
and rerouted to offloading servers located inside the cellular core.
The SMORE approach allows us to realize offloading with no modi-
fications to the current network architecture.

Acknowledgements: This research was supported in part by
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