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Abstract
Virtual machine introspection (VMI) allows users to debug
software that executes within a virtual machine. To support
rich, whole-system analyses, a VMI tool must inspect and
control systems at multiple levels of the software stack.
Traditional debuggers enable inspection and control, but they
limit users to treating a whole system as just one kind of
target: e.g., just a kernel, or just a process, but not both.

We created Stackdb, a debugging library with VMI support
that allows one to monitor and control a whole system
through multiple, coordinated targets. A target corresponds
to a particular level of the system’s software stack; multiple
targets allow a user to observe a VM guest at several levels
of abstraction simultaneously. For example, with Stackdb,
one can observe a PHP script running in a Linux process
in a Xen VM via three coordinated targets at the language,
process, and kernel levels. Within Stackdb, higher-level
targets are components that utilize lower-level targets; a
key contribution of Stackdb is its API that supports multi-
level and flexible “stacks” of targets. This paper describes
the challenges we faced in creating Stackdb, presents the
solutions we devised, and evaluates Stackdb through its
application to a security-focused, whole-system case study.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—debugging aids; D.3.4
[Programming Languages]: Processors—debuggers

Keywords virtualization; virtual machine introspection

1. Introduction
Many virtual machine introspection (VMI) techniques have
been developed over the past ten years to analyze, inspect,
and reason about the execution of software inside a virtual
machine from the outside [3, 5, 6, 11, 17, 22]. VMI-based
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tools often act like debuggers, using metadata such as debug
symbols to interpret data structures and set execution break-
points. VMI can be a powerful technique to analyze a VM’s
execution while minimally impacting its internal state. VMI
requires no debugging-oriented source-level patches to the
software within the VM, and it potentially lowers the odds of
detection by the system under inspection.

VMI is often used for whole-system analyses because it
can expose the full state of a VM. However, whole-system
analyses can be difficult to implement because they involve
software components that operate at multiple levels of abstrac-
tion over the full software stack: kernel, processes, libraries,
and language runtimes. For tasks that involve detailed knowl-
edge of a system’s state and structure, such as the analysis
of security exploits, a VMI-based tool must overcome the
well-known “semantic gap” [2] between the state of a VM
and its meaning. For a multi-level analysis, this gap must be
crossed at many levels of the software stack.

Crossing the gap is the task of a debugger. Traditional
debuggers allow a user to inspect and control one kind of
target at a time—for instance, GDB [7] supports debugging
processes, and KGDB supports debugging kernels [19]. It is
uncommon to find a debugger that allows a user to “attach to”
a single software system and then debug it at multiple levels
of the software stack. For example, if a programmer is using
a whole-VM debugger, he or she cannot direct that debugger
to also attach to a particular process that is running within the
VM under inspection.1 Moreover, because software stacks are
varied, there is a need for a general approach to implementing
debuggers that can manage multiple, nested abstractions
of a single system. Existing multi-layer debuggers such
as Blink [12] and DroidScope [21] do not define general
mechanisms for building “stacked” views of a single system.

We developed Stackdb, a debugging library with VMI
support that allows users to inspect and analyze software
systems at multiple levels of a software stack. In Stackdb,
the system being debugged is accessed through one or more

1 A programmer might use debugger facilities, such as GDB command files,
to script deep-inspection tasks such as interpreting and walking a kernel’s
process list, and thereby construct a view of a particular process. However,
this approach is limited: the process is still not a target with its own address
space, symbols, threads, breakpoints, and other context resources.
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Figure 1. Stackdb applied to a Xen VM running Apache
and PHP. In this configuration, three targets provide access
to different parts of the system, as shown by wide, dashed
arrows. Thin arrows show the actual communication paths.

target objects, as illustrated in Figure 1. A target corresponds
to a particular level of abstraction or a portion of the whole
system being debugged. Each provides the features of a com-
plete debugger. By invoking target API functions, which are
common to all targets, a user can install breakpoints, exam-
ine software state and symbols, single-step, and potentially
modify execution at the level of a particular target.

Figure 1 also shows that each target is paired with a driver,
whose purpose is to implement debugger-like inspection and
control features for a particular software abstraction: e.g.,
kernel, process, or language runtime. Although all drivers
implement a common driver API, we distinguish two primary
classes of implementation. A base driver interacts directly
with the system being debugged, e.g., via a hypervisor-
provided interface or ptrace(2). An overlay driver interacts
with the system through another target, i.e., by “stacking”
on top of an appropriate underlying target. The overlay
driver communicates with the underlying target through the
target API.

Because the target API is implemented by every target,
a user can easily instantiate multi-level stacks of targets.
In addition, the ability to implement drivers in terms of
underlying targets greatly eases the process of developing new
drivers, e.g., for new language runtimes. Finally, the target
API makes it possible to implement generic analyses and
utilities that can be applied to multiple levels of a software
stack. We believe the “stackability” offered by Stackdb
advances the state of the art for debuggers and that it can
enable more powerful and detailed VMI-based analyses.

We have implemented four Stackdb drivers: a Xen driver
(base) for debugging Linux-based guest OSes; a process
driver (overlay) for debugging user-space processes within
Linux-based guests; a Ptrace driver (base) for debugging
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Figure 2. Stackdb applied to a local Apache process and
PHP. In this configuration, the PHP driver runs atop a Ptrace
target.

local processes; and a PHP driver (overlay) for debugging
scripts at the PHP level.2 We chose this set for its practical
utility and to exercise Stackdb’s APIs. Notably, the PHP
driver can sit atop a process target (i.e., a target that uses the
process driver) or a Ptrace target. The former configuration
is for debugging scripts running in a VM; the process driver
is an overlay that runs atop a Xen target, so debugging a PHP
script within a VM involves two overlays in total (Figure 1).
The Ptrace configuration is for debugging PHP scripts in a
local web server, as illustrated in Figure 2.

This paper presents Stackdb and describes its application
to tracing an example security exploit across software layers
within a VM. Our first contribution is Stackdb, a debugger
library that supports the development of powerful, program-
matic, and whole-system VMI analyses. Our second contribu-
tion is Stackdb’s design: the architecture that allows overlay
drivers to be implemented atop other targets, and Stackdb’s
solutions to the challenges of implementing stackable targets.

2. Challenges
We encountered several challenges not faced by standard
debuggers while building Stackdb because it provides access
to a whole system through multiple, coordinated targets.

2.1 Attaching to and Controlling the System
When a Stackdb base driver attaches to a system (e.g., a VM
or local process), it does so through an existing API such as
ptrace(2). The UNIX ptrace system call allows a debugger to
control another process at a fine-grained level, e.g., pausing
and resuming threads at will. Kernel-level debuggers such as
KGDB [19] rely on internal kernel support or patches that
provide a remote debugging protocol.

The existing implementations of these APIs, however,
are not available to Stackdb overlay drivers. For instance,
consider Stackdb’s process driver, which provides access

2 We often refer to targets according to the properties of their drivers. For
example, a PHP target is one that uses the PHP driver. A base target uses
a base driver, and an overlay target uses an overlay driver. Figures 1 and 2
show examples of this convention.
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to Linux processes running in Xen VMs (Figure 1). The
process driver does not use the ptrace facility provided by the
VM’s guest OS, for several reasons. First, we do not want
to prevent the guest OS from using its implementation of
ptrace to provide services within the VM; second, we do not
want Stackdb to be observed by the guest OS; and third, in
newer Linux kernels, using ptrace would require Stackdb to
use kmalloc to obtain memory for required data structures,
which would alter the state of the guest OS. These arguments
apply to the implementation of Stackdb’s drivers in general.

To avoid perturbing the system under inspection, an over-
lay driver cannot depend on debugging APIs that are imple-
mented within that system.3 Moreover, a developer may want
to implement an overlay driver for a part of the software stack
that does not implement any internal debugging API. Thus, a
key challenge for Stackdb is to support attachment to and
control of parts of a system without use of that system’s
internal debugging features. This challenge is addressed by
Stackdb’s target API and its ability to implement drivers atop
the target API (i.e., stacking). A base driver attaches to a sys-
tem not through that system’s internal APIs, but through an
API beneath that system: e.g., through a hypervisor-provided
interface for VMs. Likewise, an overlay driver does not attach
to a system directly via one of that system’s internal APIs.
Instead, it invokes the target API of an underlying Stackdb tar-
get. The underlying target provides a rich debugging interface
to the system being controlled.

2.2 Staying in Control
Once attached, a debugger must stay in control. This requires
observing and managing the execution of the threads within
the system being debugged. In Stackdb, this can be tricky, be-
cause an overlay driver may not have control over the schedul-
ing of the threads that it manages. This is a consequence of
Stackdb’s goal of making it possible to implement overlay
drivers without perturbing the system being inspected.

To make this clearer, consider the situations faced by a
traditional ptrace-based debugger (e.g., GDB) and Stackdb’s
process overlay driver when debugging a multithreaded
process. When a process thread hits a breakpoint under GDB,
the kernel pauses all the other threads in the process. The
kernel changes the states of those threads, allowing GDB
to handle the breakpoint exception atomically with respect
to the process’ execution. In contrast, when a thread hits
a breakpoint under Stackdb’s process driver, Stackdb does
not require that the underlying OS suspend the other threads
within the process being observed. The process driver must
handle the exception without thread-scheduling assistance
from the OS within the VM being inspected.

The challenge faced by an overlay driver is retaining exe-
cution control without thread-scheduling assistance. For

3 One can imagine special overlay drivers that do use a system’s internal
debugging APIs, when circumstances allow. Our goal, however, was to
design Stackdb so as not to depend on a system’s internal debugging features.

example, consider what happens when a process thread hits a
breakpoint: typically, the breakpoint is removed, the thread
is single-stepped, and the breakpoint is restored. Without
scheduling assistance, it is possible that some other process
thread will traverse the breakpoint location while it is tem-
porarily removed—a loss of debugger control. Other prob-
lems arise due to thread context switches, thread privilege-
level changes, and exceptions that occur while another excep-
tion is being handled. These issues are addressed by Stackdb’s
target implementation and its drivers. In contrast to drivers,
which have multiple implementations for different software
layers, there is a single implementation of the target API
in Stackdb. In OOP terms, all targets are instances of a sin-
gle class. The target API implementation provides general
functions that allow targets’ “client” overlay drivers to retain
execution control, e.g., by signaling underlying scheduling
events “up the stack.”

2.3 Minimizing Overhead
All debuggers add overhead, and because Stackdb provides
stacked debugger targets, it is important that Stackdb mini-
mize the performance overhead at each level of the stack.
Every driver must implement Stackdb’s driver API for the
level of the software stack it addresses. To do this, a driver
must find its subject within the system being debugged—
e.g., locate a particular process inside a whole VM—and
provide debugger-like inspection and control operations for
that subject. These parsing and control tasks are potentially
expensive. In addition, overlay drivers should be informed
of thread and address-space state changes so that they can
maintain accurate models of their subjects.

Suppose a developer wants to examine a PHP process
spawned by a web server running atop Linux within a Xen
VM. To do this, the developer uses Stackdb to create a
stack of three targets (Figure 1). If the developer places a
breakpoint on a PHP function, the resulting debug exception
will cause the entire VM to pause. When the exception occurs,
each driver in the stack may need to examine its subject to
detect state changes (e.g., new threads, exited threads, and
address-space changes) so that it can appropriately handle
the exception. A base driver queries the system directly; an
overlay driver queries its underlying target.

To minimize overhead, Stackdb provides features to track
state changes quickly. These include (1) thread and address-
space change notifications and (2) caching of parts of a
system’s state. These reduce the cost of providing debugging
interfaces at every level of the target stack.

2.4 Easing Implementation
To be flexible for whole-system debugging, Stackdb must
simplify the task of adding new overlay drivers. Beyond
the benefits of target stacking, Stackdb eases driver imple-
mentation by providing access to an underlying target’s debug
symbols: variables, functions, types, and data locations. By
referring to symbols within an underlying target, an overlay
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driver can potentially work across many different versions
and compilations of the underlying target’s software.

Stackdb’s process driver, for example, must parse a Linux
process control block (PCB) and memory mappings in order
to establish control over a process. By accessing the Linux
kernel through symbols, rather than hard-coded addresses and
offsets, the process driver works atop Linux kernel versions
from 2.6.18 to 3.8.0.

To support targets for programs written in different lan-
guages, Stackdb’s symbol-loading and querying API supports
different kinds of symbols: bare ELF symbols; C/C++ sym-
bol, type, and location data encoded in DWARF; and dynamic,
variably typed symbols for languages like PHP. Stackdb han-
dles dynamically loaded code, as well as changes to the pro-
tections and sizes of memory regions, so that it can manage
changes to symbol availability and variable accessibility.

2.5 Handling Heterogeneity
Whole software systems are made from layers that imple-
ment different abstractions. The challenge for Stackdb is to
support a variety of different execution models—from a
kernel executing in a VM to an interpreted language running
in a user-space process—while retaining a single target API
that enables composition through stacking. We addressed
this challenge by designing the target API according to a
general model of machine-based execution and debugging:
a model that includes threads, memory, address spaces, reg-
isters, symbols, and breakpoints. The implementation of tar-
gets is generic, with layer-specific details modularized within
drivers. Not all of Stackdb’s target API will apply to all layers,
but its uniformity is important for stacking and implementing
analyses that can be applied to multiple levels of a system.

3. Stackdb Architecture
Stackdb helps users to write programs that analyze live,
whole-system executions. Users write programs that attach
to targets, where each target provides access to and control
over some part of the whole system being debugged. Users’
programs then use the target API to pause, single-step, and
resume targets’ execution; query symbol data; modify tar-
gets’ memory and CPU state; and insert probes (breakpoints
and watchpoints) that notify user-specified handlers when tra-
versed by a thread of execution. User programs can also load
and modify symbol values based on source-language datatype
information; unwind thread stacks; disassemble code; and
extend the base probe libraries with new kinds of probes.

Figure 1 provides an overview of Stackdb’s core abstrac-
tions and how they can be combined to debug whole systems.
The target API provides a uniform interface to all targets.
Internally, each target utilizes a driver, which implements
control and inspection functions for a particular part of the
software stack. A driver attaches to its part of the system
being debugged, constructs a model of that part (with ad-
dress spaces, memory regions, threads, and debug symbols),

Group Target API Driver API
User-invoked

build create same
open init, attach
close detach, kill

model open load{Spaces,
Regions,Debugfiles}

control pause, resume same; opt. for overlays
monitor, poll monitor, poll, handleExc,

handleInterruptedStep;
all opt. for overlays

stepStart, stepEnd same; opt. for overlays
overlay lookupOverlayThread same

createOverlay same
User- and Driver-invoked

sym lookup{Sym,Addr,Line}, readSym; optional
loadVal

value store, refresh, convert writeSym; optional
cpu readReg, writeReg same; optional
mem read, write same; optional

v2p,{read,write}Phys same; optional
thread {load,pause,flush}Thread same
probe probe{SymName,Addr, {add,del}SWBreak,

Line} {add,del}HWBreak
probeSym same; optional

unwind unwindStack, prevFrame same; optional
maint setActiveProbing same; optional

Driver-invoked
overlay notifyOverlay handleOverlayExc

Table 1. Summary of Stackdb’s target and driver APIs

receives and handles debug exceptions, and performs the de-
tails of reading and manipulating state and execution. A target
communicates with its driver through the driver API, which
is implemented by all drivers. (However, not all drivers im-
plement every part of the API.) A base driver communicates
directly with the system being debugged (e.g., via VMI), and
an overlay driver communicates via an underlying target.

Table 1 summarizes the two APIs and illustrates how target
API functions map to driver API functions where applicable.
(Many utility and helper target API functions are omitted
for brevity; Table 1 lists only the functions that are most
important to Stackdb’s design.) The table is organized into
three parts, corresponding to parts of the target API that are
invoked by different clients. The first contains functions that
are invoked by user-written analyses and debugging programs.
The second lists functions that are called by user analyses and
by drivers, and the third lists functions called only by drivers.
Although the mapping seems one-to-one for many operations,
in fact, the implementations of the target API functions do
much driver-independent processing (Section 2.2). Where the
mapping is not one-to-one, the table shows the driver API
functions called by each target API operation. Optional driver
functions are also noted.
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3.1 Targets
A target is the primary object with which a user interacts. It
corresponds to an executing program: a kernel, a process, or a
higher-level execution context such as a script. A target may
be created by spawning a new program or by attaching to an
existing program, depending on the driver.

Stackdb’s target model supports multiple threads that share
a single address space. An address space is divided into
regions, which are further subdivided into ranges. Typically,
a range models a contiguous chunk of memory with uniform
protection bits. A region models a related group of ranges
(e.g., from a single shared library or executable). For instance,
ELF binaries are typically loaded into several ranges: one
for program text, another for read-only data, and another for
writable data. It is convenient to group these related ranges
into a region, since debugfiles usually cover an entire region.
(A Stackdb driver will attempt to load a debugfile for each
region that contains symbols loaded from a binary program or
library.) Helper functions translate between object-file virtual
addresses and program-image (linked) virtual addresses.

Stackdb’s targets keep state that is sometimes needed for
controlling the execution of multithreaded software. Remem-
ber that a debugger that supports software breakpoints in
multithreaded programs must handle debug exceptions when-
ever any thread traverses a breakpoint (Section 2.2). When
a debugging API (e.g., Ptrace) allows for thread-control op-
erations, the debugger can atomically single-step one thread
while all others remain paused. However, Stackdb is designed
to allow debugging even when underlying thread-scheduling
assistance is not available. For systems that do not support
individual thread control, a Stackdb target must keep state as-
sociated with the breakpoint being handled. Moreover, since
Stackdb supports unlimited single-stepping at a breakpoint, a
target must store a stack of states so that it can encounter a
new breakpoint while stepping on behalf of a previously hit
breakpoint.

CPU state is accessed on a per-thread basis. Memory
values are loaded relative to a thread, because some debug-
symbol formats encode locations relative to the values of
CPU registers.

3.2 Drivers
To attach to a portion of the whole system being debugged,
a target uses a driver and invokes its functions through the
driver API. A driver corresponds to a particular software
layer or abstraction, and some driver API functions might not
apply to all drivers: for example, it does not make sense for
a PHP script-level driver to provide access to CPU registers.
A useful driver, however, should implement as many of the
optional API functions as it can.

To attach the driver to its “subject”—i.e., its portion of
the whole system being debugged—a Stackdb target invokes
functions in the build group; it later uses these to detach
from and/or terminate the subject. Once attached, a target

calls the model functions to create a representation of the
subject: cataloging its address spaces, regions, ranges, and
loading debugfiles for those regions. At this point, a driver
can start optimizing its internal maintenance of the model.
For example, it can cache symbol values for later use, and it
can install probes (Section 3.6) in order to track state changes.

The driver control functions allow targets to control the
execution of the system being debugged. The system can be
interrupted and resumed, and the driver API provides various
event-loop mechanisms (blocking, polling, or a combination)
that allow one to wait for events. The functions in the
cpu, mem, and thread groups allow targets to read and
write memory and CPU state. The readSym function can be
provided by drivers that do not provide raw memory or CPU
access, but do provide symbols and values, like Stackdb’s
PHP driver.

Although Stackdb manages high-level probe creation and
state (Section 3.6), drivers provide the low-level implementa-
tions of software breakpoints, hardware debug-register-based
breakpoints, and watchpoints. Furthermore, for software ab-
stractions that do not expose numeric memory addresses, a
driver may implement the probeSym function to place a probe
on a symbol instead of an address.

Drivers can provide their own exception handlers for
breakpoint and single-step events, although the default han-
dlers are very powerful. (The default handlers support probe
actions, discussed in Section 3.7.) The handleInterruptedStep
function allows a driver to handle cases where the driver’s
subject steps from one thread into another, or into another
thread context (i.e., from user to kernel space). This can arise
when the driver does not provide individual thread control. In
this case, the single-step is effectively paused until the system
returns to the thread or context the step was triggered in; then
the probe library can continue to handle the stepping thread.

Stackdb also allows drivers to provide their own low-
level unwind functions to implement the target API’s generic
unwinder. Stackdb provides a default x86-based unwinder.

The setActiveProbing function allows users to control
whether or not drivers can actively maintain their internal
state. It can be important for a driver to monitor thread
events and memory-region changes in its subject; the latter is
especially important for handling dynamically loaded code.
Rather than rescanning its subject’s data structures at each
debug exception, or selectively by heuristic, it may be more
efficient for a driver to use probes to detect these changes.
Stackdb refers to this as “active probing,” and a user can
enable it when the overhead of active probing is less than the
overhead of periodic data-structure scans.

The overlay function group is described in Section 4.2.

3.3 Target Personalities
Each target can provide a personality, which is implemented
by its driver. A personality defines an abstract interface for
accessing features common to different types of software that
one might want to debug with Stackdb. We envision three
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common personalities: an OS personality that wraps common
OS objects, e.g., processes, threads, address spaces, files,
sockets, system calls, loadable modules, and users; a pro-
cess personality that abstracts common process-level objects,
e.g., command lines, threads, and memory mappings; and
an application personality that exposes idioms for program
runtimes. Stackdb currently defines an OS personality API
that provides kernel-version information and a system-call
abstraction; the latter is useful to placing probes on the imple-
mentations of system calls. Although we are still developing
the personality interfaces, we envision that they will simplify
driver development and make it easier to stack targets.

3.4 Debugfiles and Symbols
When a driver attaches to its subject, it analyzes the subject
and loads as many sources of debug symbols as possible.
Drivers can load symbols from the binary files that compose
the subject’s software, and they can search for more detailed
sources of debug symbols (e.g., DWARF debuginfo files) that
correspond to those binaries. A target receives the symbol
data collected by its driver and makes that data available
through the target API. Both user-written programs and
overlay drivers use the target API, so both can easily look up
symbols, addresses, and source code lines.

Stackdb’s dwdebug library loads ELF symbols and
DWARF debuginfo from binary files and constructs fast
search indices. Its core data structures flexibly describe
scoped hierarchies of functions, variables, data types, names-
paces, and aggregate types like C structs and C++ classes.
The dwdebug library also manages location information
(telling the target API how to load and locate functions and
variables), call-frame information (allowing targets to unwind
stacks), source-line information (linking symbols to source
code), and address information (linking symbols to the binary
compilation). Its core abstractions are general enough to
support symbols from radically different languages. We have
used it to implement excellent C support, good C++ coverage,
and partial PHP support.

3.5 Values
Through the target API, it is possible to read and write
the memory of the system being debugged. When possible,
however, it is better to load data into values rather than
employing raw memory access. The functions in the value
group of Table 1 allow a user to read or write typed values
from symbolic locations or raw addresses in the system being
debugged. Users can load and display decoded basic types,
and they can load members from data structures such as
C structs and C++ classes. The target API provides numeric
type wrappers, freeing users from size and encoding concerns.

3.6 Probes
Stackdb provides powerful, abstract, per-thread breakpoint
and watchpoint support via probes. Normally, users register a
probe atop a symbol; the details of the probe’s manifestation

are hidden. Probes support a normal breakpoint interaction
pattern. The user supplies a pre-handler that is executed
before the breaking instruction is executed, and also a post-
handler that is executed after the breaking instruction has
successfully executed. Users may also schedule actions
(Section 3.7), such as single-steps, that occur between the
handlers.

Basic probes may be placed on addresses, source lines,
or symbols (that are resolvable to addresses). A probepoint
represents the implementation of a breakpoint or watchpoint
in the system being debugged: e.g., modifications to a CPU’s
hardware debug registers or the installation of a soft break-
point instruction inside the program text. Multiple probes
can be registered atop probepoints, supporting cases in which
different probes care about the same event. When a probe-
point’s implementation is triggered, the probe’s pre-handler
is fired. After the instruction at the probepoint is executed,
the post-handler is executed. Watchpoints are similar.

Probes are hierarchical: high-level metaprobes can register
atop basic probes, or other metaprobes, to receive the events
that trigger their pre- and post-handlers. This hierarchy can be
used to build complex, stateful metaprobes that are composed
of many basic probes. This flexible probing infrastructure is
key to implementing overlay drivers.

Stackdb’s probe library provides several important meta-
probes. A function entry/exit metaprobe fires its pre-handler
when the entry point of a function is reached; it fires its
post-handler when any of the exit points of a function are
reached. An inlined-symbol metaprobe registers atop basic
probes placed on all inlined instances of a particular symbol.
A function-instruction metaprobe allows a user to place basic
probes on all instances of chosen x86 instructions within a
function; the metaprobe’s handlers fire when any of the se-
lected instructions are hit. A function-invocation metaprobe
allow users to catch invocations of a user-specified function
that occur within another function.

A symbol-value metaprobe allows a user to register a
probe on a function or variable symbol, and additionally
place regular-expression filters over named values associated
with that probe. When the filters match the values, the meta-
probe’s pre- or post-handlers are fired. If the probed symbol
names a function, the associated values are the function’s
arguments (and, when the post-handler is fired, its return
value). The values are automatically obtained and string-
ified for easy comparison. If the probed symbol names a
variable, the pre-handler is fired if the (string-ified) previous
value of the variable matches; the post-handler is fired if the
new value of variable matches. Symbol-value metaprobes are
particularly powerful because they maintain state. A symbol-
value metaprobe on a variable requires the metaprobe to recall
the variable’s previous value. A symbol-value metaprobe on a
function must keep a per-thread stack of invocations of itself,
since the post-handler can only be evaluated for firing when
the function returns.
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3.7 Probe Actions
Probe actions help users script actions to be taken when
probes are hit. Actions are executed between the firing of the
probe’s pre- and post-handlers. Users may schedule one-shot
or recurring actions for probes in advance or from within
a handler. Actions allow users to single-step a target at a
probepoint and/or modify CPU registers and memory.

Stackdb provides a particularly powerful action called
“abort.” This action does not execute the original instruction
at the probepoint, but instead temporarily replaces it with
an x86 return instruction, effectively aborting the current
function. This is handy for exploring alternate executions or
avoiding side effects. For example, it can be used to study
malware while suppressing the malware’s harmful activity.
The abort action attempts to use debug symbol information
to determine how much to adjust the stack pointer to clean up
the returning stack frame; it can also try to infer this amount
via disassembly of the function’s prologue.

4. Overlays: Building Stacks of Targets
Stackdb allows a user to debug a whole system at multiple
levels of the software stack. It does this by making each level
of the stack that the user wishes to debug accessible as an
individual target. Stackdb attaches to the lowest-level part of
the whole system via a base target. It then allows a user to
create overlay targets for each interesting higher level of the
system’s software stack. A user can interact with an overlay
target via the target API, just as he or she would interact with
a base target. Each overlay target utilizes an overlay driver,
which is “stacked” on top of an underlying target.

Well-designed overlay drivers should be able to sit atop
any target that provides the personality they require. For
instance, a driver for a higher-level language would sit
atop any driver that provides the process personality, for
any process that is executing that language’s interpreter or
runtime. This section discusses the details of implementing
overlay drivers for Stackdb.

4.1 Overlay Driver Implementation Strategies
Stackdb supports several strategies for building overlay
drivers. A sophisticated overlay driver might receive and
process exceptions from its underlying target; act like a base
target by subscribing to its own debug-exception stream
(Section 5.1); and also forward events to higher-level overlay
drivers. A simpler overlay driver might receive and process
exceptions only from its underlying target and consume them
all, if it is not meaningful to forward them as debug excep-
tions to a higher-level overlay. The process driver described
in Section 5.2 is an example of this simpler strategy. In this
case, the higher-level overlay driver stacked atop the lower-
level target can insert probes in the lower-level overlay, and
fire its own higher-level events when those probes are hit and
some set of conditions match.

Overlay drivers can be quite simple: a new one can be
built by implementing a small subset of the driver API. For
instance, consider developing a new overlay driver supporting
a high-level language. This overlay’s implementation of the
driver API would perform the following steps:

1. Create a single address space containing a single region
and range (the init, attach, loadSpaces, and loadRegions
driver API functions).

2. Create one or more threads corresponding to the threads
in the underlying target. Use direct correspondence if
the language’s threads are 1-to-1 mapped to underlying-
target threads, or an M×N mapping if the language uses
virtual threads (the {load, pause, flush}Thread driver API
functions).

3. Associate a higher-level language debugfile with the
region, populate it with symbols, and support loading and
interpreting the values of symbols (the loadDebugfiles and
readSym driver API functions).

4. If the language does not provide raw memory or CPU
state access, disable those parts of the driver API.

5. Place probes on key functions in the language interpreter,
which is accessed through the underlying target. Use these
probes to implement the probeSym driver API function,
and disable support for other kinds of breakpoints and
watchpoints.

6. When probeSym is invoked (because a client wants to
place a probe in the program that the interpreter is execut-
ing), implement the requested probe as a metaprobe. The
metaprobe sits atop the probes that this driver placed in
the language interpreter in step 5.

7. Implement single-stepping and stack unwinding if mean-
ingful. Single-stepping might be implemented by stepping
statement executions instead of individual instructions.

8. Reuse the underlying target’s functionality for other driver
API functions, or do not provide implementations of them
because they do not apply.

Section 5.3 describes the implementation of the PHP
driver, which generally follows the recipe above.

4.2 API Functions for Overlays
Section 3.2 describes most of core functions that drivers
should implement. In this section, we focus on the portions
of the APIs that are specific to implementing stacks of targets,
shown in the overlay group in Table 1.

Recall that the target used by an overlay driver is referred
to as that driver’s “underlying target.” If a target T is to be
used as an underlying target, then T ’s driver must implement
the lookupOverlayThread function. This function locates
threads that can be mapped to threads in an overlay target.
For instance, consider a driver that examines an OS kernel. A
kernel-only thread in an OS would not support the notion of a
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thread in an overlay target, but a user thread would, because
user threads run programs at higher levels of the system
software stack. Thus, the lookupOverlayThread function for
an OS-level driver would return references to user threads,
and not to kernel-only threads.

The driver of an underlying target T must also implement
the createOverlay function. This is called to help instantiate
any overlay driver that will sit on top of T . We involve the
underlying target so that it can influence the overlay-creation
process. For example, an OS target might help a user create a
process overlay target by ensuring the user creates the overlay
using the process’s thread group leader—a detail that the user
might not be aware of, but that matters greatly on Linux.

An overlay driver may need to implement the handleOver-
layExc function to receive events forwarded from its underly-
ing target. This is necessary when the underlying and overlay
targets share an execution model. For example, an x86-based
OS and its user processes both execute code on the system
CPU, in different privilege levels. In this case, the OS target’s
driver will be subscribed to the debug exceptions coming
from the CPU, and it will receive exceptions that apply to
both itself and its process overlay targets. The OS target’s
driver can forward those exceptions that apply to its process
overlay targets via the notifyOverlay function.

An overlay driver that does not share an execution model
with its underlying target does not need to implement han-
dleOverlayExc. For instance, the driver for a high-level lan-
guage can implement its probes by instrumenting key loca-
tions within a language interpreter (Section 4.1, steps 5–6). In
this case, the triggers for probes at different levels of the soft-
ware stack are distinct, and do not need to be disambiguated.

4.3 Controlling Threads in Overlay Targets
The semantics of thread control in overlay targets can be con-
fusing. Pausing a single thread in an overlay target generally
causes all of its threads to pause. Because the overlay cannot
use thread-scheduling features that are internal to the system
being debugged (Section 2.2), it must instead pause threads
through its underlying target. Going down the stack, the base
target ultimately pauses the entire system being debugged. Re-
suming threads in overlay targets is similarly all-or-nothing.
For these reasons, we expect that overlay drivers will only
rarely implement the control driver API functions listed in
Table 1. Users can simply monitor, poll, pause, and resume
the base target instead. This is not a problem in our experi-
ence, since a user can easily pause the base target and then
inspect the states of overlay targets.

5. Implementation
Stackdb is written in C and supports the x86 and x86_64
platforms. Its core libraries use the elfutils library for
reading ELF and DWARF information from binary files,
and it uses the distorm [4] library for x86 and x86_64
disassembly. Stackdb also provides an SOAP service that

Component LOC
Target library 21,625

impl. of the target API
dwdebug library 23,784

handles debuginfo
Ptrace base driver 5,167
Xen base driver 10,497
Process overlay driver 1,886
PHP overlay driver 2,949

Table 2. Lines of code in Stackdb components

exports both a low-level interface for debugging (e.g., RPCs
to install breakpoints) and a high-level interface for running
analysis programs written using Stackdb.

Stackdb contains more than 100 KLOC and required ap-
proximately two person-years of development effort. Table 2
summarizes the lines of code within several of Stackdb’s
components. The target and dwdebug libraries provide a sig-
nificant amount of generic target, thread, probe, and symbol-
handling functions to both users and drivers. The Ptrace
base driver is a relatively straightforward implementation of
Stackdb’s driver API on top of the standard ptrace(2) facility.
The Xen driver is more sophisticated; much of its complexity
stems from the careful exception handling necessary to sup-
port both paravirtualized and HVM Xen guests running atop
Xen 3.3 to 4.3 hypervisors. Because the Xen base driver han-
dles Linux’s inherent complexity, the process overlay driver
is relatively simple. Its implementation is focused on inter-
preting the kernel data structures that define a process; in
comparison to the Xen driver, the process driver needs much
less code to handle debug exceptions. Similarly, the PHP
overlay driver focuses on tasks that are particular to PHP,
because process-level details are handled by its underlying
target. The data in Table 2 suggests that, in comparison to
base drivers, overlay drivers can indeed be simple.

Below, we further describe the implementations of three of
Stackdb’s drivers. We do not describe the Ptrace driver; its use
of the ptrace(2) debugging API to attach to a multithreaded
UNIX process is very standard.

5.1 Xen Driver
Stackdb’s Xen driver supports Xen hypervisor versions from
3.3 to 4.3, running paravirtualized or HVM Linux guest
kernels ranging from 2.6.18 to at least 3.8.0. (We have not
tested all kernel versions in that range.)

The Xen driver is a base driver that supports the overlay
functions shown in Table 1; thus, it supports overlay targets.
It uses Xen’s standard xenctrl library to attach to and
control VMs, and to read and write CPU registers and state.
It receives debug exception notifications for VMs on Xen’s
virtual debugger IRQ port. It employs libvmi [15] (or its
predecessor, XenAccess) to handle virtual-to-physical-to-
machine memory translation and mapping.

The Xen driver constructs a model of the VM it attaches
to by implementing the model driver API functions. In this
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driver, those functions look up and load key kernel variables
and pointers by type. To obtain the list of threads running
in the OS, the driver walks the kernel’s task list. The driver
creates a single address space (since the kernel can address all
memory in the VM) and regions corresponding to the kernel
program text and to dynamically loaded modules. To obtain
loaded-module information, the driver walks the kernel’s
module list. The driver looks for debugging symbol files
corresponding to the kernel and its modules in the dom0
filesystem (where Stackdb runs).

Although the Xen driver is a base driver and ultimately
interacts with its VM through xenctrl, it also invokes
the API functions on its own target in order to reuse the
generic features provided by Stackdb’s target library. It
makes these “self-target invocations” to place probes on key
symbols within the VM/kernel being debugged, to look up
kernel symbols, and to read kernel data structures in a type-
aware manner. Only some driver API functions can use this
implementation strategy; in particular, the build and open
function groups should avoid this style of implementation.

The Xen driver uses “self-target invocations” to implement
its setActiveProbing driver API function. To implement this
function, which sets up event notifications for an overlay
driver, the Xen driver places probes atop key functions on
the kernel’s thread-creation and destruction paths, as well as
on the module-load and unload paths. This allows a user to
configure the Xen driver to actively track new threads and
kernel modules instead of repeatedly scanning memory to
find new ones (Section 2.4). Without Stackdb’s support for
debug symbols, the Xen driver could not feasibly support
active probing across a wide range of kernels, because the
necessary monitoring points change across kernel versions.

A complicating factor for the Xen driver is that it must
implement single-stepped execution in two ways: by setting
the x86 TF bit in the EFLAGS register for paravirtualized
guests, and by setting the Monitor Trap Flag in HVM guests.
Xen requires that HVM guests be stepped using the MTF.
The MTF is a per-HVM flag that is global to the VM, and
unlike like the TF bit in the EFLAGS register, the MTF is not
changed at thread context switches. Thus, in an HVM guest,
a single-step begun in one thread or context might continue
into another thread or context. Single-stepping must therefore
be handled carefully to ensure that the Xen driver does not
attempt to handle single-steps in user space.

Finally, the Xen driver must support a limited notion of
per-thread virtual-to-physical memory translation, since user-
space threads have their own virtual address spaces. This is
necessary so that the process overlay target can place software
breakpoints inside shared libraries. If the breakpoint were
placed at a virtual address, and if it were then hit by some
process that was not monitored by a process overlay target,
the Xen driver would not recognize it as a hit of a valid
breakpoint; the Xen driver would assume instead that it was
caused by the process itself. The only way for the Xen driver

to recognize these events as valid debug exceptions is to
place them on physical Xen target addresses. Depending on
the user-space thread in which they occur, the Xen driver will
invoke the target API’s notifyOverlay function to allow the
overlay target’s driver to handle the exception. If, however,
the thread that hits the breakpoint has no associated overlay,
the Xen driver must emulate the breakpoint in that thread.
Otherwise, the thread will suffer a fatal exception.

5.2 Process Driver
The process overlay driver allows a user to debug a Linux
user-space process running in a Xen VM. A process has the
same execution model as its underlying OS, so the process
driver does not need to re-implement much of the driver API,
especially the cpu, mem, probe, and thread group functions. It
can implement those by invoking the target API functions of
its underlying target. To model a process’s address space, the
driver reads the process’s memory-mapping data structures
from kernel memory, finds the names of files that were
mapped or loaded into memory, and searches for matching
debuginfo. The process driver implements handleOverlayExc,
allowing it to receive debug exceptions from its underlying
target, and also lookupOverlayThread and createOverlay,
which support overlays atop the process driver.

Two aspects of this driver’s implementation are notable.
First, its implementation of handleOverlayExc must handle
cases in which a user-space thread is single-stepped into the
kernel. It uses the target library’s default implementation
of the handleInterruptedStep function in this case, to pause
handling of the single-step (as well as the breakpoint being
handled, if any) until the thread returns to user context.
Second, the driver must handle software breakpoints specially
by implementing a version of addSWBreak. Most modern
operating systems allow read-only program text pages to be
shared among processes. This means that the process driver
must place breakpoints at physical memory addresses in its
underlying target, not just at virtual addresses in a process.
By setting a breakpoint at a physical address, the underlying
(Xen) target can recognize debug exceptions that occur in
processes that are not attached to a process overlay.

The process driver’s implementation currently has two
artifacts that violate the clean stacking semantics that Stackdb
seeks to provide. First, it must be placed atop a Xen target.
We want the process driver to handle processes in Xen HVM
guests, and this requires use of the MTF for single-stepping—
but Stackdb does not yet abstract the state of the MTF.
Second, the process driver handles only Linux processes.
We expect that once Stackdb more fully implements OS
personalities—to include abstractions of processes and their
metadata—the process driver will be able to sit atop any
target that provides the OS personality.

5.3 PHP Driver
The PHP overlay driver allows a user to debug a PHP
process at the PHP-script source level. Thus, it contrasts
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with the process driver, which allows the same PHP process
to be debugged, but at the C or C++ source level. PHP is
an interpreted language with dynamically typed variables,
dynamic compilation, and multithread support. Stackdb’s
PHP driver is a prototype, but still powerful. It supports built-
in functions, user-defined functions, and function arguments.
It can load values that belong to several PHP datatypes (null,
long, double, string), but it does not yet support more complex
PHP types (associative arrays and classes). It can install
breakpoints on functions, but it does not yet support single-
stepped execution. The PHP driver can be stacked atop either
the Ptrace driver or the process driver.

Stackdb’s other drivers assume a direct and x86-based
execution environment, but PHP’s engine executes a custom
opcode-based intermediate representation. At the source level,
it provides no access to raw memory or CPU state. Thus, the
PHP driver need not provide the cpu and mem driver API
functions, nor functions to install breakpoints. Instead, it
implements the readSym and probeSym driver API functions
so that users can read and install probes on symbols.

The PHP driver uses its underlying target to install probes
on important C functions in PHP’s execution engine. In
particular, these probes monitor functions that handle PHP’s
opcodes. When the PHP driver is invoked to place a PHP-level
probe, that probe is implemented as a metaprobe (Section 3.6)
that sits atop the C-level probes. This implementation strategy
was previously described in Section 4.1.

When the PHP driver attaches to a process, it unwinds the
stack of the underlying target to determine if PHP’s execution
engine has started executing scripts. If it has, the driver
dynamically generates a debugfile containing PHP base types,
class types, and both user-defined and internal functions. It
does this by applying the target API to its underlying target:
loading the C-level data structures that describe PHP types,
functions, and values, and converting them into Stackdb
datatypes, function types, and values. After this step, a user
can then install PHP-level probes onto PHP functions.

The implementation of the PHP driver required about three
person-weeks of effort by a skilled developer (the primary
author of Stackdb, who has moderate PHP experience). One
person-week was spent understanding the PHP engine and
developing a driver implementation strategy. These tasks
required reading online documentation about how to write
PHP extension libraries in C, and also reading the source
code for PHP’s Zend [16] compilation and execution engine.
Implementing the driver to its current level took two person-
weeks; a key complication was finding a way to gain access
to PHP’s thread-local storage to obtain symbol information.
Stackdb architecture allowed us to focus our development
effort on PHP-specific issues alone. General target issues, and
details below PHP’s implementation, were handled by other
components of Stackdb.

6. Backtracking an Exploit Attempt
We illustrate the usefulness of Stackdb through a case study.
Our goal is to showcase the investigatory power of a Stackdb-
based analysis that (1) applies to multiple targets, correspond-
ing to different levels of a software stack, and (2) makes use
of those targets to analyze cross-layer behavior.

In this case study, we use Stackdb to detect and trace
back a privilege-escalation exploit enabled by a buggy PHP
script. To set up the scenario, we run a Xen VM containing
an Apache web server and a simple PHP script that has a
remote command-execution vulnerability. We then use this
script to download and execute a published exploit of CVE–
2013–1763 [14], an array-index error in the Linux kernel.
The steps we follow to detect and backtrack this exploit are
illustrated in Figure 3.

Because this is a privilege-escalation vulnerability, a rea-
sonable first step is to watch for threads’ attempts to raise
their privilege. We therefore start by using the Xen target
to place a probe on commit_creds, the Linux kernel func-
tion responsible for setting thread privileges, and watch for
threads that raise their privilege (i.e., become root). In gen-
eral, we would not know when the exploit will occur and
thus would have to insert the probe at system boot time. That
would be undesirable, since commit_creds is a high-traffic
function that would trigger often. Moreover, as becoming root
is a common activity, we would be flooded with false posi-
tives. Stackdb provides solutions to these problems. It allows
a probe to be installed in a disabled state; later, the probe can
be enabled as a side-effect of triggering another probe. So we
might instead place a probe on the __sock_diag_rcv_msg
function, mentioned in the CVE as the source of the bad array
reference. This function is not frequently used; by placing a
probe there, we could dynamically enable the commit_creds
probe. Stackdb also allows context-sensitive triggering of
probes. We can further restrict our commit_creds probe to
trigger only when it is invoked by the same thread that called
__sock_diag_rcv_msg.

Once the commit_creds probe is triggered (Figure 3,
step 1), we are provided with the thread id along with the new
credentials as shown. When we detect an escalation to root
privileges, the Xen domain is suspended. With the domain
suspended, we can run multiple analyses against it.

The second step is to run a Stackdb-based backtracer over
the Xen target to obtain a backtrace of all kernel threads and
additional information about each thread. The stack trace
and information for the offending thread (1081) are shown
in the upper-left part of Figure 3, and they reveal crucial
information. We see that commit_creds was called from a
user-mode address with no backtrace information, not from a
kernel address. This is a clue that kernel control flow passed
through an invalid pointer that wound up in user space. The
thread information shows the lineage of the offending thread.
Importantly, it is the descendant of an apache process.
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Linux

libc

Apache
     +
    libc

PHP

System

Use Xen target to place probe on Linux
commit_creds, stop on transition to root.

Output:

Take away:
Thread 1081 has become root.

Action:

commit_creds(0x8108664b) (thread 1074)
  new = { ... .uid = 33, .suid = 33, .euid = 33, ... }
commit_creds(0x8108664b) (thread 1081)
  new = { ... .uid = 0, .suid = 0, .euid = 0, ... }

Use Xen target to backtrace process hierarchy
and control flow in Linux for thread 1081.

Output:

Take away:
Thread's process is a descendent of apache.
Entered commit_creds directly from user mode.

Action:

tid(1081): tid=1081,name=sploit,ptid=1078,tgid=1081,
  task_flags=406000,thread_info_flags=0,
  preempt_count=0,task=3d7add00,stack_base=0,
  pgd=3c5b5000,mm=3c966700,flags=1246,
  ip=81086654,bp=3d57db28,sp=3d57db20,
tid(1078): tid=1078,name=sh,ptid=1000,...
tid(1000): tid=1000,name=apache2,ptid=995,...

thread 1081:
 #0 0x81086654 in commit_creds(new=0x3c502600) 
   at linux-lts-raring-3.8.0/kernel/cred.c:415
 #1 0x004006c7 in  ()

1
Step

2
Step

Stack process target on Xen target to backtrace thread 
1000 in context of Apache process.

Take away:
Apache thread runs PHP interpreter to execute a script.
PHP script performs an exec().

Action:

Output:
thread 1000:
 #0 0xaa3b1d10 in ../sysdeps/unix/syscall-template.S()  at ...
 #1 0xa6f96646 in php_stdiop_read(stream=?,buf=?,count=?) at ...
 #2 0xa6f8fec8 in php_stream_fill_read_buffer(...) at ...
 #3 0xa6f90b99 in _php_stream_get_line(...) at php5/main/streams/streams.c:880
 #4 0xa6f0cd35 in php_exec(...) at php5/ext/standard/exec.c:125
 #5 0xa6f0d176 in php_exec_ex(ht=?,return_value=0xac318e10,mode=0) at ...
 #6 0xa7043ced in zend_do_fcall_common_helper_SPEC(execute_data=...) at ...
 #7 0xa6ff485b in execute(op_array=0xac3bf3e0) at php5/Zend/zend_execute.c:177
 #8 0xa6fcfdc0 in zend_execute_scripts(type=8,retval=0,file_count=3) at ...
 #9 0xa6f7c433 in php_execute_script(primary_file=0xba4fb5b0) at php5/main/...
#10 0xa705f2cd in php_handler(r=0xaac950a0) at php5/sapi/apache2handler/...
#11 0xaaebf508 in ap_run_handler() at apache2/mpm-prefork/apache2:-1

3
Step

Output:

Take away:
Faulty script is "download.php".
User name ("uname") argument is clearly being exploited.

Stack PHP target on process target and re-examine
thread 1000 in context of PHP.

Action:

thread 1000:
 #0 0x00000000 in exec(command="md5sum /var/www/bob/info" 
      "&& chmod 700 sploit && ./sploit && sha512sum ./bob/info"
      "| awk '{print $1}'")
   at __BUILTIN__:-1
 #1 0x00000000 in printhash(uname=
     "bob/info && chmod 700 sploit && ./sploit && sha512sum ./bob",
     fname="info") at /var/www/download.php:-1

4
Step

Xen

CPU/Mem

Figure 3. Multi-level analysis of a security exploit using three Stackdb targets

Now we use the multi-target capability of Stackdb. Our
Apache server is configured with a fixed set of single-threaded
server processes that run PHP. In step 3 (lower right), we run
the Stackdb backtracing tool again, this time using a process
target to focus on the user process in question (1000). The
result is a C-level backtrace, which confirms that the Apache
process is running the PHP interpreter and that the PHP script
being run made an exec call.

In step 4 (upper right), we stack the PHP target, allowing
us to trace back into the PHP code. Again, vital information is
revealed. First, we discover the name of the executing script
(“download.php”), which we can now examine in light of
the stack trace. We also see a PHP exec call that executes
multiple commands and clearly does more than just compute
the hash of a file. From the arguments to the printhash
function, we see that it is the user name (uname) parameter
that introduces the multiple commands. By examining the
PHP source in a text editor, we find the root cause of
the command-injection exploit: the user-name variable is
initialized from an unchecked HTML form variable.

7. Performance
We ran a set of experiments to characterize the performance
of Stackdb’s probes and the overhead introduced by target
stacking. We ran our experiments on a Dell R710 with a
single quad-core 2.4 GHz 64-bit Xeon E5530 “Nehalem”
processor and 12 GB of RAM. The machine ran Xen 4.3
with a paravirtualized Linux 3.8 kernel on an Ubuntu 12.04

LTS base in both dom0 and the domU. The domU ran with a
single virtual CPU and 1 GB of RAM.

We wrote two versions of a microbenchmark that calls an
open-file function and the corresponding close function in
a tight loop for a fixed number of iterations. One version is
written in C and uses the Linux open system call; the other is
written in PHP and uses PHP’s fopen function. We ran our
programs in domU and measured the time that each takes to
make one loop iteration.

We then ran our programs again, under five configurations
of Stackdb. We set up three configurations using the Xen
base driver. (In all of these, our programs run in domU, and
Stackdb runs in dom0.) The first uses only the Xen target,
the second adds the process overlay target, and the third
adds the PHP overlay target. We also set up two Stackdb
configurations using the Ptrace base driver. (Our program
and Stackdb all run in dom0.) The first uses only the Ptrace
target, and the second adds the PHP overlay target. For
each configuration of Stackdb, we placed a probe on the
appropriate open-file function using the target at the top of
the target stack. When the Xen target was the topmost (and
only) target, we probed the sys_open function in the Linux
kernel; when the process or Ptrace target was topmost, we
probed the open function in libc; and when the PHP target
was topmost, we probed PHP’s fopen function. Finally, we
ran our microbenchmarks in every Stackdb configuration and
measured the time needed to make one loop iteration. The
time includes the cost of handling one probe-hit event for the
target at the top of the target stack.
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Prog. Base- Xen Base Ptrace Base
Vers. line Xen Process PHP Ptrace PHP
C 3.95 1,449 1,308 N/A 391 N/A
PHP 8.15 1,477 1,314 8,897 1,412 3,194

Table 3. Time (µsec.) to execute one open/close iteration of
our microbenchmarks with a probe placed at various targets.

Table 3 shows our results. The second column shows
the iteration times of the microbenchmark programs when
no probes are installed, i.e., without debugger overhead.
The next three columns show the timing results under the
configurations of Stackdb that use the Xen base driver. The
final two columns show the timing results under the Stackdb
configurations that use the Ptrace base driver.

The Xen-based configurations rely on VMI-based probes,
and our results show that there is significant overhead associ-
ated with this mechanism. This is due in part to the cost of
virtualization: switching between between domU and dom0
on every probe, and translating addresses and reading mem-
ory across the domains. Even with this cost, the absolute
performance overhead is not large (1–9 ms), and thus should
be acceptable for interactive and scripted debugging.

An apparent anomaly is that probing a Linux-kernel sym-
bol in the Xen target is slower than probing a user-process
symbol in the process target, which is stacked on the Xen tar-
get (column 3 vs. column 4). This is an artifact of the open-file
functions that we chose to probe at each level. In column 3,
we used Stackdb to probe the Linux kernel’s sys_open sym-
bol, for which Stackdb found information about the function’s
arguments. In column 4, we used Stackdb to probe glibc’s
open symbol, and Stackdb did not find type information for
this symbol. Every time the sys_open probe was triggered,
Stackdb read the values of the function arguments, requiring
multiple memory accesses. These additional accesses were
not performed for open.

Columns 5 and 7 show that the PHP driver adds significant
overhead. This is not surprising, given the amount of work
that it must do to construct a PHP-level view of execution.
The cost of reconstructing this view increases with the cost
of accessing memory pages in its underlying target.

8. Related Work
Stackdb allows one to examine and control a single software
system at multiple levels of abstraction. Overlay drivers and
targets allow for multiple views of a system, and effectively,
this means that one can combine multiple debuggers in order
to better understand a whole system. The Blink debugger by
Lee et al. [12] is also based on composition. Blink combines
separate single-environment debuggers to create a unified
debugger for systems that utilize multiple environments. For
example, by sitting atop GDB and JDB, Blink implements a
debugger for programs that utilize both C and Java. One can
think of this as “horizontal” composition because the com-
posed debuggers operate as peers—independent viewers—

with Blink monitoring and managing the transitions between
the two. In contrast, Stackdb can be thought of as “vertical”
composition. A Stackdb overlay is not an independent debug-
ger, but is stacked on top an underlying debugger (a Stackdb
target). This is different from the composition implemented
by Blink and leads to different capabilities. For instance,
Blink would not be able to compose a process debugger with
a VM debugger in a way that yields a debugger for processes
within a VM. This is exactly the style of composition, how-
ever, that Stackdb supports.

One of the authors’ primary uses for Stackdb is the
analysis of VM guests, including both kernel-mode and user-
mode processing. The Volatility Framework [18] is a related
platform for examining VM guests. Volatility is extended by
Python scripts that perform memory forensics, and there are
libraries for tasks such as creating objects that represent user-
mode processes. In contrast to Volatility, which focuses on
the analysis of (static) memory snapshots, Stackdb supports
analyses that are driven by the execution of the VM guest.
Stackdb’s target API allows a programmer to write analyses
that install probes into a guest, extract data values, and
potentially alter the guest’s state. The primary challenges in
building Stackdb arise from the implementation of debugger
services, not just memory-analysis services.

Ho et al. describe PDB, a “pervasive debugger” for debug-
ging Xen-based systems [9, 10]. PDB was integrated with
the Xen VMM: a PDB server ran within the hypervisor and
received commands from a PDB client, which could run on a
separate host. The PDB server could access the VMM, guest
kernels, and processes within guests. Like Stackdb, PDB re-
quired information about guest operating systems in order to
locate process-level data. Unlike Stackdb, PDB lacked an in-
ternal abstraction for “stacking” targets in a general way. PDB
was removed from the Xen source tree in September 2006
because it was not a core Xen feature [8].

Unlike Stackdb and PDB, which use breakpoints to im-
plement debugger functionality, PinOS uses dynamic bi-
nary translation to perform whole-system analyses of Xen
guests [1]. PinOS can run unmodified operating systems as
Xen guests: it uses Pin [13] to rewrite the code of the guest
just before it is executed, and as part of this rewriting, Pin can
insert instrumentation as needed for analyses such as whole-
system profilers. PinOS and Stackdb are therefore similar in
that both are designed to implement analyses of unmodified
guests. PinOS is well-suited to fine-grained analyses, such as
instruction-level profiling, whereas Stackdb is well-suited to
understanding behaviors at the level of source code, e.g., by
setting breakpoints and watchpoints on source functions and
variables. PinOS and Stackdb differ in the abstractions they
provide to analyses. PinOS effectively interposes between the
guest and the hardware, where as Stackdb provides whole-
system, debugger-like access at multiple levels of abstraction:
kernel, process, and application/language.
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DroidScope is a platform for analyzing Android malware
at multiple levels of abstraction [21]. Using dynamic binary
translation, DroidScope tracks the execution of an Android
hardware-platform emulator; using its knowledge of the
Android software stack, it instruments the emulator’s guest in
order to find important OS-level and Dalvik VM-level events
and data. DroidScope provides three APIs so that analyses can
track the guest at the hardware, OS, and Dalvik VM levels.
DroidScope is thus like Stackdb in that it provides multi-
level debugging APIs, but unlike Stackdb, DroidScope’s
APIs are different at every level. Stackdb defines a single
target API, implemented all targets, used both by analyses
and for building target stacks. In contrast, DroidScope does
not define an internal abstraction for composing targets.

9. Conclusion
Stackdb is a debugging library that allows a client to observe
and control a whole system, such as a VM guest, at multiple
levels of the system’s software stack. A Stackdb target cor-
responds to a particular abstraction layer or a portion of the
system being debugged. The key insight of Stackdb is that a
debugger can be organized as a stack of targets, in which the
targets for the higher levels of a system are implemented atop
those for the lower levels. Our implementation of Stackdb
supports various combinations of targets into stacks, includ-
ing three-level stacks that provide access to the OS, process,
and language-runtime layers of a VM guest. As detailed in
our security-focused case study, Stackdb can help to close
the semantic gap that is often encountered in VMI-based and
whole-system analyses.

Software Stackdb is open source and available for down-
load at http://www.flux.utah.edu/project/a3.
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