
Migratory Compression: Coarse-grained Data Reordering to Improve
Compressibility

Xing Lin1, Guanlin Lu2, Fred Douglis2, Philip Shilane2, Grant Wallace2

1University of Utah, 2EMC Corporation – Data Protection and Availability Division

Abstract

We propose Migratory Compression (MC), a coarse-
grained data transformation, to improve the effectiveness
of traditional compressors in modern storage systems.
In MC, similar data chunks are re-located together, to
improve compression factors. After decompression,
migrated chunks return to their previous locations. We
evaluate the compression effectiveness and overhead
of MC, explore reorganization approaches on a variety
of datasets, and present a prototype implementation of
MC in a commercial deduplicating file system. We also
compare MC to the more established technique of delta
compression, which is significantly more complex to
implement within file systems.

We find that Migratory Compression improves com-
pression effectiveness compared to traditional compres-
sors, by 11% to 105%, with relatively low impact on run-
time performance. Frequently, adding MC to a relatively
fast compressor like gzip results in compression that is
more effective in both space and runtime than slower al-
ternatives. In archival migration, MC improves gzip com-
pression by 44–157%. Most importantly, MC can be im-
plemented in broadly used, modern file systems.

1 Introduction

Compression is a class of data transformation techniques
to represent information with fewer bits than its original
form, by exploiting statistical redundancy. It is widely
used in the storage hierarchy, such as compressed mem-
ory [24], compressed SSD caches [15], file systems [4]
and backup storage systems [28]. Generally, there is a
tradeoff between computation and compressibility: of-
ten much of the available compression in a dataset can be
achieved with a small amount of computation, but more
extensive computation (and memory) can result in better
data reduction [7].

There are various methods to improve compressibility,
which largely can be categorized as increasing the look-
back window and reordering data. Most compression
techniques find redundant strings within a window of

data; the larger the window size, the greater the opportu-
nity to find redundant strings, leading to better compres-
sion. However, to limit the overhead in finding redun-
dancy, most real-world implementations use small win-
dow sizes. For example, DEFLATE, used by gzip, has a
64 KB sliding window [6] and the maximum window for
bzip2 is 900 KB [8]. The only compression algorithm
we are aware of that uses larger window sizes is LZMA
in 7z [1], which supports history up to 1 GB.1 It usually
compresses better than gzip and bzip2 but takes sig-
nificantly longer. Some other compression tools such as
rzip [23] find identical sequences over a long distance
by computing hashes over fixed-sized blocks and then
rolling hashes over blocks of that size throughout the
file; this effectively does intra-file deduplication but can-
not take advantage of small interspersed changes. Delta
compression (DC) [9] can find small differences in sim-
ilar locations between two highly similar files. While
this enables highly efficient compression between simi-
lar files, it cannot delta-encode widely dispersed regions
in a large file or set of files without targeted pair-wise
matching of similar content [12].

Data reordering is another way to improve compres-
sion: since compression algorithms work by identifying
repeated strings, one can improve compression by group-
ing similar characters together. The Burrows-Wheeler
Transform (BWT) [5] is one such example that works
on relatively small blocks of data: it permutes the order
of the characters in a block, and if there are substrings
that appear often, the transformed string will have single
characters repeat in a row. BWT is interesting because
the operation to invert the transformed block to obtain
the original data requires only that an index be stored
with the transformed data and that the transformed data
be sorted lexicographically to use the index to identify
the original contents. bzip2 uses BWT as the second
layer in its compression stack.

1The specification of LZMA supports windows up to 4 GB, but we
have not found a practical implementation for Linux that supports more
than 1 GB and use that number henceforth. One alternative compressor,
xz [27], supports a window of 1.5 GB, but we found its decrease in
throughput highly disproportionate to its increase in compression.

What we propose is, in a sense, a coarse-grained BWT
over a large range (typically tens of GBs or more). We
call it Migratory Compression (MC) because it tries to
rearrange data to make it more compressible, while pro-
viding a mechanism to reverse the transformation after
decompression. Unlike BWT, however, the unit of move-
ment is kilobytes rather than characters and the scope of
movement is an entire file or group of files. Also, the
recipe to reconstruct the original data is a nontrivial size,
though still only ~0.2% of the original file.

With MC, data is first partitioned into chunks. Then
we ‘sort’ chunks so that similar chunks are grouped and
located together. Duplicated chunks are removed and
only the first appearance of that copy is stored. Standard
compressors are then able to find repeated strings across
adjacent chunks.2 Thus MC is a preprocessor that can
be combined with arbitrary adaptive lossless compres-
sors such as gzip, bzip2, or 7z; if someone invented
a better compressor, MC could be integrated with it via
simple scripting. We find that MC improves gzip by up
to a factor of two on datasets with high rates of similarity
(including duplicate content), usually with better perfor-
mance. Frequently gzip with MC compresses both bet-
ter and faster than other off-the-shelf compressors like
bzip2 and 7z at their default levels.

We consider two principal use cases of MC:

mzip is a term for using MC to compress a single file.
With mzip, we extract the resemblance informa-
tion, cluster similar data, reorder data in the file,
and compress the reordered file using an off-the-
shelf compressor. The compressed file contains the
recipe needed to restore the original contents after
decompression. The bulk of our evaluation is in the
context of stand-alone file compression; henceforth
mzip refers to integrating MC with traditional com-
pressors (gzip by default unless stated otherwise).

Archival involves data migration from backup storage
systems to archive tiers, or data stored directly in an
archive system such as Amazon Glacier [25]. Such
data are cold and rarely read, so the penalty result-
ing from distributing a file across a storage system
may be acceptable. We have prototyped MC in the
context of the archival tier of the Data Domain File
System (DDFS) [28].

There are two runtime overheads for MC. One is to
detect similar chunks: this requires a preprocessing stage
to compute similarity features for each chunk, followed

2It is possible for an adaptive compressor’s history to be smaller
than size of two chunks, in which case it will not be able to take advan-
tage of these adjacent chunks. For instance, if the chunks were 64 KB,
gzip would not match the start of one chunk against the start of the next
chunk. By making the chunk size small relative to the compressor’s
window size, we avoid such issues.

by clustering chunks that share these features. The other
overhead comes from the large number of I/Os neces-
sary to reorganize the original data, first when perform-
ing compression and later to transform the uncompressed
output back to its original contents. We quantify the ef-
fectiveness of using fixed-size or variable-size chunks,
three chunk sizes (2 KB, 8 KB and 32 KB), and differ-
ent numbers of features, which trade compression against
runtime overhead. For the data movement overhead, we
evaluate several approaches as well as the relative perfor-
mance of hard disks and solid state storage.

In summary, our work makes the following contri-
butions. First, we propose Migratory Compression, a
new data transformation algorithm. Second, we evaluate
its effectiveness with real-world datasets, quantify
the overheads introduced and evaluate three data re-
organization approaches with both HDDs and SSDs.
Third, we compare mzip with DC and show that these
two techniques are comparable, though with different
implementation characteristics. Last, we demonstrate its
effectiveness with an extensive evaluation of Migratory
Compression during archival within a deduplicating
storage system, DDFS.

2 Alternatives

One goal of any compressor is to distill data into a min-
imal representation. Another is to perform this trans-
formation with minimal resources (computation, mem-
ory, and I/O). These two goals are largely conflicting, in
that additional resources typically result in better com-
pression, though frequently with diminishing returns [7].
Here we consider two alternatives to spending extra re-
sources for better compression: moving similar data to-
gether and delta-compressing similar data in place.

2.1 Migratory v Traditional Compression
Figure 1 compares traditional compression and Migra-
tory Compression. The blue chunks at the end of the
file (A’ and A”) are similar to the blue chunk at the start
(A), but they have small changes that keep them from
being entirely identical. With (a) traditional compres-
sion, there is a limited window over which the compres-
sor will look for similar content, so A’ and A” later in the
file don’t get compressed relative to A. With (b) MC, we
move these chunks to be together, followed by two more
similar chunks B and B’. Note that the two green chunks
labeled D are identical rather than merely similar, so the
second is replaced by a reference to the first.

One question is whether we could simply obtain ex-
tra compression by increasing the window size of a stan-
dard compressor. We see later (Section 5.4.4) that the
“maximal” setting for 7z, which uses a 1 GB lookback

(a) Traditional compression.

(b) Migratory Compression.

Figure 1: Compression alternatives. With MC similar
data moves close enough together to be identified as re-
dundant, using the same compression window.

window (and a memory footprint over 10 GB) and sub-
stantial computation, often results in worse compression
with poorer throughput than the default 7z setting inte-
grated with MC.

2.2 Migratory v Delta Compression

Another obvious question is how MC compares to a simi-
lar technology, delta compression (DC) [9]. The premise
of DC is to encode an object A′ relative to a similar ob-
ject A, and it is effectively the same as compressing A,
discarding the output of that compression, and using the
compressor state to continue compressing A′. Anything
in A′ that repeats content in A is replaced by a reference
to its location in A, and content within A′ that repeats pre-
vious content in A′ can also be replaced with a reference.

When comparing MC and DC, there are striking sim-
ilarities because both can use features to identify similar
chunks. These features are compact (64 bytes per 8 KB
chunk by default), allowing GBs or even TBs of data
to be efficiently searched for similar chunks. Both tech-
niques improve compression by taking advantage of re-
dundancy between similar chunks: MC reads the chunks
and writes them consecutively to aid standard compres-
sors, while DC reads two similar chunks and encodes one
relative to the other. We see in Section 5.3 that MC gen-
erally improves compression and has faster performance
than intra-file DC, but these differences are rather small
and could be related to internal implementation details.

One area where MC is clearly superior to DC is in
its simplicity, which makes it compatible with numerous
compressors and eases integration with storage systems.
Within a storage system, MC is a nearly seamless addi-
tion since all of the content still exists after migration—it
is simply at a different offset than before migration. For
storage systems that support indirection, such as dedupli-
cated storage [28], MC causes few architectural changes,
though it likely increases fragmentation. On the other

hand, DC introduces dependencies between data chunks
that span the storage system: storage functionality has
to be modified to handle indirections between delta com-
pressed chunks and the base chunks against which they
have been encoded [20]. Such modifications affect such
system features as garbage collection, replication, and in-
tegrity checks.

3 Approach

Much of the focus of our work on Migratory Compres-
sion is in the context of reorganizing and compressing a
single file (mzip), described in Section 3.1. In addition,
we compare mzip to in-place delta-encoding of similar
data (Section 3.2) and reorganization during migration
to an archival tier within DDFS (Section 3.3).

3.1 Single-File Migratory Compression

The general idea of MC is to partition data into chunks
and reorder them to store similar chunks sequentially,
increasing compressors’ opportunity to detect redundant
strings and leading to better compression. For standalone
file compression, this can be added as a pre-processing
stage, which we term mzip. A reconstruction process is
needed as a post-processing stage in order to restore the
original file after decompression.

3.1.1 Similarity Detection with Super-features

The first step in MC is to partition the data into chunks.
These chunks can be fixed size or variable size “content-
defined chunks.” Prior work suggests that in general
variable-sized chunks provide a better opportunity to
identify duplicate and similar data [12]; however, virtual
machines use fixed-sized blocks, and deduplicating VM
images potentially benefits from fixed-sized blocks [21].
We default to variable-sized chunks based on the com-
parison of fixed-sized and variable-sized units below.

One big challenge to doing MC is to identify similar
chunks efficiently and scalably. A common practice is to
generate similarity features for each chunk; two chunks
are likely to be similar if they share many features. While
it is possible to enumerate the closest matches by com-
paring all features, a useful approximation is to group
sets of features into super-features (SFs): two data ob-
jects that have a single SF in common are likely to be
fairly similar [3]. This approach has been used numerous
times to successfully identify similar web pages, files,
and/or chunks within files [10, 12, 20].

Because it is now well understood, we omit a detailed
explanation of the use of SFs here. We adopt the “First-
Fit” approach of Kulkarni, et al. [12], which we will term

the greedy matching algorithm. Each time a chunk is pro-
cessed, its N SFs are looked up in N hash tables, one per
SF. If any SF matches, the chunk is associated with the
other chunks sharing that SF (i.e., it is added to a list and
the search for matches terminates). If no SF matches, the
chunk is inserted into each of the N hash tables so that
future matches can be identified.

We explored other options, such as sorting all chunks
on each of the SFs to look for chunks that match sev-
eral SFs rather than just one. Across the datasets we an-
alyzed, this sort marginally improved compression but
the computational overhead was disproportionate. Note,
however, that applying MC to a file that is so large that its
metadata (fingerprints and SFs) is too large to process in
memory would require some out-of-core method such as
sorting.

3.1.2 Data Migration and Reconstruction

Given information about which chunks in a file are
similar, our mzip preprocessor outputs two recipes:
migrate and restore. The migrate recipe contains the
chunk order of the reorganized file: chunks identified
to be similar are located together, ordered by their
offset within the original file. (That is, a later chunk is
moved to be adjacent to the first chunk it is similar to.)
The restore recipe contains the order of chunks in the
reorganized file and is used to reconstruct the original
file. Generally, the overhead of generating these recipes
is orders of magnitude less than the the overhead of
physically migrating the data stored in disk.

Figure 2: An example of the reorganization and restore
procedures.

Figure 2 presents a simplified example of these two
procedures, assuming fixed chunk sizes. We show a file
with a sequence of chunks A through D, and including
A’ and B’ to indicate chunks that are similar to A and
B respectively. The reorganized file places A’ after A

and B’ after B, so the migrate recipe specifies that the
reorganized file consists of chunk 0 (A), chunk 3 (A’),
chunk 1 (B), chunk 5 (B’), and so on. The restore recipe
shows that to obtain the original order, we output chunk
0 (A), chunk 2 (B), chunk 4 (C), chunk 1 (A’), etc. from
the reorganized file. (For variable-length chunks, the
recipes contain byte offsets and lengths rather than block
offsets.)

Once we have the migrate recipe and the restore
recipe, we can create the reorganized file. Reorganiza-
tion (migration) and reconstruction are complements of
each other, each moving data from a specific location in
an input file to a desired location in the output file. (There
is a slight asymmetry resulting from deduplication, as
completely identical chunks can be omitted completely
in the reorganized file, then copied 1-to-N when recon-
structing the original file.)

There are several methods for moving chunks.

In-Memory. When the original file can fit in memory,
we can read in the whole file into memory and out-
put chunks in the reorganized order sequentially.
We call this the ‘in-mem’ approach.

Chunk-level. When we cannot fit the original file in
memory, the simplest way to reorganize a file is to
scan the chunk order in the migrate recipe: for ev-
ery chunk needed, seek to the offset of that chunk
in the original file, read it, and output it to the reor-
ganized file. When using HDDs, this could become
very inefficient because of the number of random
I/Os involved.

Multi-pass. We also designed a ‘multi-pass’ algorithm,
which scans the original file repeatedly from start to
finish; during each pass, chunks in a particular reorg
range of the reorganized file are saved in a mem-
ory buffer while others are discarded. At the end of
each pass, chunks in the memory buffer are output
to the reorganized file and the reorg range is moved
forward. This approach replaces random I/Os with
multiple scans of the original file. (Note that if the
file fits in memory, the in-memory approach is the
multi-pass approach with a single pass.)

Our experiments in Section 5.2 show that the in-
memory approach is best, but when memory is insuf-
ficient, the multi-pass approach is more efficient than
chunk-level. We can model the relative costs of the two
approaches as follows. Let T be elapsed time, where Tmp
is the time for multipass and Tc is the time when using
individual chunks. Focusing only on I/O costs, Tmp is the
time to read the entire file sequentially N times, where N
is the number of passes over the data. If disk through-
put is D and the file size is S, Tmp = S ∗N/D. For a size
of 15GB, 3 passes, and 100MB/s throughput, this works

out to 7.7 minutes for I/O. If CS represents the chunk
size, the number of chunk-level I/O operations is S/CS
and the elapsed time is Tc = S/CS

IOPS . For a disk with 100
IOPS and an 8KB chunk size, this equals 5.4 hours. Of
course there is some locality, so what fraction of I/Os
must be sequential or cached for the chunk approach to
break even with the multi-pass one? If we assume that
the total cost for chunk-level is the cost of reading the
file once sequentially3 plus the cost of random I/Os, then
we solve for the cost of the random fraction (RF) of I/Os
equaling the cost of N−1 sequential reads of the file:

S∗ (N−1)/D =
S∗RF/CS

IOPS

giving
RF =

(N−1)∗ IOPS∗CS
D

.

In the example above, this works out to 16
1024 = 1.6%;

i.e., if more than 1.6% of the data has dispersed similarity
matches, then the multi-pass method should be preferred.

Solid-state disks, however, offer a good compromise.
Using SSDs to avoid the penalty of random I/Os on
HDDs causes the chunk approach to come closer to the
in-memory performance.

3.1.3 mzip Workflow

(a) Compression (b) Decompression

Figure 3: Migratory Compression workflow.

Figure 3 presents the compression and decompression
workflows in mzip. Compression/decompression and
segmentation are adopted from existing tools, while sim-
ilarity detection and reorganization/restoration are spe-
cially developed and highlighted in red. The original file
is read once by the segmenter, computing cryptograph-
ically secure fingerprints (for deduplication) and resem-
blance features, then it is read again by the reorganizer

3Note that if there are so many random I/Os that we do not read
large sequential blocks, Tmp is reduced by a factor of 1−RF .

to produce a file for compression. (This file may exist
only as a pipeline between the reorganizer and the com-
pressor, not separately stored, something we did for all
compressors but rzip as it requires the ability to seek.)
To restore the file, the compressed file is decompressed
and its restore recipe is extracted from the beginning of
the resulting file. Then the rest of that file is processed
by the restorer, in conjunction with the recipe, to produce
the original content.

3.2 Intra-file Delta Compression
When applied in the context of a single file, we hypothe-
sized that mzip would be slightly better than delta com-
pression (DC) because its compression state at the time
the similar chunk is compressed includes content from
many KBs-MBs of data, depending on the compressor.
To evaluate how mzip compares with DC within a file,
we implemented a version of DC that uses the same work-
flows as mzip, except the ‘reorganizer’ and the ‘restorer’
in mzip are replaced with a ‘delta-encoder’ and a ‘delta-
decoder.’ The delta-encoder encodes each similar chunk
as a delta against a base chunk while the delta-decoder
reconstructs a chunk, by patching the delta to its base
chunk. (In our implementation, the chunk earliest in
the file is selected as the base for each group of simi-
lar chunks. We use xdelta [14] for encoding, relying on
the later compression pass to compress anything that has
not been removed as redundant.)

3.3 Migratory Compression in an Archival
Storage System

In addition to reorganizing the content of individual files,
MC is well suited for reducing data requirements within
an entire file system. However, this impacts read local-
ity, which is already an issue for deduplicating storage
systems [13]. This performance penalty therefore makes
it a good fit for systems with minimal requirements for
read performance. An archival system, such as Ama-
zon Glacier [25] is a prime use case, as much of its data
will not be reread; when it is, significant delays can be
expected. When the archival system is a tier within a
backup environment, such that data moves in bulk at reg-
ular intervals, the data migration is an opportune time to
migrate similar chunks together.

To validate the MC approach in a real storage system,
we’ve implemented a prototype using the existing dedu-
plicating Data Domain Filesystem (DDFS) [28]. After
deduplication, chunks in DDFS are aggregated into com-
pression regions (CRs), which in turn are aggregated into
containers. DDFS can support two storage tiers: an ac-
tive tier for backups and a long-term retention tier for
archival; while the former stores the most recent data

within a time period (e.g., 90 days), the latter stores the
relatively ‘cold’ data that needs to be retained for an ex-
tended time period (e.g., 5 years) before being deleted.
Data migration is important for customers who weigh
the dollar-per-GB cost over the migrate/retrieval perfor-
mance for long-term data.

A daemon called data migration is used to migrate se-
lected data periodically from the active tier to the archive
tier. For performance reasons, data in the active tier is
compressed with a simple LZ algorithm while we use
gzip in the archive tier for better compression. Thus, for
each file to be migrated in the namespace, DDFS reads out
the corresponding compression regions from the active
tier, uncompresses each, and recompresses with gzip.

The MC technique would offer customers a fur-
ther tradeoff between the compression ratio and mi-
grate/retrieval throughput. It works as follows:

Similarity Range. Similarity detection is limited to files
migrated in one iteration, for instance all files writ-
ten in a span of two weeks or 90 days.

Super-features. We use 12 similarity features, com-
bined as 3 SFs. For each container to be migrated,
we read out its metadata region, extract the SFs as-
sociated with each chunk, and write these to a file
along with the chunk’s fingerprint.

Clustering. Chunks are grouped in a similar fashion to
the greedy single SF matching algorithm described
in Section 3.1.1, but via sorting rather than a hash
table.

Data reorganization. Similar chunks are written to-
gether by collecting them from the container set in
multiple passes, similar to the single-file multi-pass
approach described in Section 3.1.2 but without a
strict ordering. Instead, the passes are selected by
choosing the largest clusters of similar chunks in the
first one-third, then smaller clusters, and finally dis-
similar chunks. Since chunks are grouped by any of
3 SFs, we use 3 Bloom filters, respectively, to iden-
tify which chunks are desired in a pass. We then
copy the chunks needed for a given pass into the CR
designated for a given chunk’s SF; the CR is flushed
to disk if it reaches its maximum capacity.

Note that DDFS already has the notion of a mapping of
a file identifier to a tree of chunk identifiers, and relocat-
ing a chunk does not affect the chunk tree associated with
a file. Only the low-level index mapping a chunk finger-
print to a location in the storage system need be updated
when a chunk is moved. Thus, there is no notion of a
restore recipe in the DDFS case, only a recipe specifying
which chunks to co-locate.

In theory, MC could be used in the backup tier as well
as for archival: the same mechanism for grouping sim-
ilar data could be used as a background task. However,
the impact on data locality would not only impact read
performance [13], it could degrade ingest performance
during backups by breaking the assumptions underlying
data locality: DDFS expects an access to the fingerprint
index on disk to bring nearby entries into memory [28].

4 Methodology

We discuss evaluation metrics in Section 4.1, tunable pa-
rameters in Section 4.2, and datasets in Section 4.3.

4.1 Metrics

The high-level metrics by which to evaluate a compres-
sor are the compression factor (CF) and the resource
usage of the compressor. CF is the ratio of an original
size to its compressed size, i.e higher CFs correspond to
more data eliminated through compression; deduplica-
tion ratios are analogous.

In general, resource usage equates to processing time
per unit of data, which can be thought of as the through-
put of the compressor. There are other resources to
consider, such as the required memory: in some sys-
tems memory is plentiful and even the roughly 10 GB of
DRAM used by 7z with its maximum 1 GB dictionary is
fine; in some cases the amount of memory available or
the amount of compression being done in parallel results
in a smaller limit.

Evaluating the performance of a compressor is further
complicated by the question of parallelization. Some
compressors are inherently single-threaded while others
support parallel threads. Generally, however, the fastest
compression is also single-threaded (e.g., gzip), while
a slower but more effective compressor such as 7z is
slower despite its multiple threads. We consider end-to-
end time, not CPU time.

Most of our experiments were run inside a virtual ma-
chine, hosted by an ESX server with 2x6 Intel 2.67GHz
Xeon X5650 cores, 96 GB memory, and 1-TB 3G SATA
7.2k 2.5in drives. The VM is allocated 90 GB memory
except in cases when memory is explicitly limited, as
well as 8 cores and a virtual disk with a 100 GB ext4
partition on a two-disk RAID-1 array. For 8 KB random
accesses, we have measured 134 IOPS for reads (as well
as 385 IOPS for writes, but we are not evaluating ran-
dom writes), using a 70 GB file and an I/O queue depth
of 1. For 128 KB sequential accesses, we measured 108
MB/s for reads and 80 MB/s for writes. The SSD used
is a Samsung Pro 840, with 22K IOPS for random 8 KB
reads and 264 MB/s for 128 KB sequential reads (write

Dataset Size (GB) Dedupe (X)
Compression Factor of Standalone

Compressors (X)
Type Name gzip bzip2 7z rzip

Workstation Backup WS1 17.36 1.69 2.70 3.22 4.44 4.46
WS2 15.73 1.77 2.32 2.61 3.16 3.12

Email Server Backup EXCHANGE1 13.93 1.06 1.83 1.92 3.35 3.99
EXCHANGE2 17.32 1.02 2.78 3.13 4.75 4.79

VM Image Ubuntu-VM 6.98 1.51 3.90 4.26 6.71 6.69
Fedora-VM 27.95 1.19 3.21 3.49 4.22 3.97

Table 1: Dataset summary: size, deduplication factor of 8 KB variable chunking and compression ratios of standalone
compressors.

throughputs become very low because of no TRIM sup-
port in the hypervisor: 20 MB/s for 128 KB sequential
writes). To minimize performance variation, all other
virtual machines were shut down except those provid-
ing system services. Each experiment was repeated three
times; we report averages. We don’t plot error bars be-
cause the vast majority of experiments have a relative
standard error under 5%; in a couple of cases, decom-
pression timings vary with 10–15% relative error.

To compare the complexity of MC with other compres-
sion algorithms, we ran most experiments in-memory. In
order to evaluate the extra I/O necessary when files do
not fit in memory, some experiments limit memory size
to 8 GB and use either an SSD or hard drive for I/O.

The tool that computes chunk fingerprints and features
is written in C, while the tools that analyze that data to
cluster similar chunks and reorganize the files are written
in Perl. The various compressors are off-the-shelf Linux
tools installed from repositories.

4.2 Parameters Explored
In addition to varying the workload by evaluating differ-
ent datasets, we consider the effect of a number of pa-
rameters. Defaults are shown in bold.

Compressor. We consider gzip, bzip2, 7z, and rzip,
with or without MC.

Compression tuning. Each compressor can be run with
a parameter that trades off performance against
compressibility. We use the default parameters
unless specified otherwise.

MC chunking. Are chunks fixed or variable sized?
MC chunk size. How large are chunks? We consider 2,

8, and 32 KB; for variable-sized chunks, these rep-
resent target averages.

MC resemblance computation. How are super-features
matched? (Default: Four SFs, matched greedily,
one SF at a time.)

MC data source. When reorganizing an input file or re-
constructing the original file after decompression,

where is the input stored? We consider an in-
memory file system, SSD, and hard disk.

4.3 Datasets

Table 1 summarizes salient characteristics of the input
datasets used to test mzip, two types of backups and a
pair of virtual machine images. Each entry shows the to-
tal size of the file processed, its deduplication ratio (half
of them can significant boost their CF using MC simply
through deduplication), and the CF of the four off-the-
shelf compressors. We find that 7z and rzip both com-
press significantly better than the others and are similar
to each other.

• We use four single backup image files taken from
production deduplication backup appliances. Two
are backups of workstations while the other two are
backups of Exchange email servers.

• We use two virtual machine disk images consisting
of VMware VMDK files. One has Ubuntu 12.04.01
LTS installed while the other uses Fedora Core re-
lease 4 (a dated but stable build environment).

5 mzip Evaluation

The most important consideration in evaluating MC is
whether the added effort to find and relocate similar
content is justified by the improvement in compression.
Section 5.1 compares CF and throughput across the six
datasets. Section 5.2 looks specifically at the throughput
when memory limitations force repeated accesses to disk
and finds that SSDs would compensate for random I/O
penalties. Section 5.3 compares mzip to a similar intra-
file DC tool. Finally, Section 5.4 considers additional
sensitivity to various parameters and configurations.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

(a) EXCHANGE1

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

(b) EXCHANGE2

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(c) Fedora-VM

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

(d) Ubuntu-VM

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

(e) WS1

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

(f) WS2

Figure 4: Compression throughput vs. Compression Factor for all datasets, using unmodified compression or MC, for
four compressors. The legend for all plots appears in (c).

5.1 Compression Effectiveness and Perfor-
mance Tradeoff

Figure 4 plots compression throughput versus compres-
sion factor, using the six datasets. All I/O was done using
an in-memory file system. Each plot shows eight points,
four for the off-the-shelf compressors (gzip, bzip2, 7z,
and rzip) using default settings and four for these com-
pressors using MC.

Generally, adding MC to a compressor significantly
improves the CF (23–105% for gzip, 18–84% for
bzip2, 15–74% for 7z and 11–47% for rzip). It is un-
surprising that rzip has the least improvement, since it
already finds duplicate chunks across a range of a file, but
MC further increases that range. Depending on the com-
pressor and dataset, throughput may decrease moderately
or it may actually improve as a result of the compressor
getting (a) deduplicated and (b) more compressible in-
put. We find that 7z with MC always gets the highest
CF, but often another compressor gets nearly the same
compression with better throughput. We also note that
in general, for these datasets, off-the-shelf rzip com-
presses just about as well as off-the-shelf 7z but with
much higher throughput. Better, though, the combination
of gzip and MC has a comparable CF to any of the other
compressors without MC, and with still higher through-
put, making it a good choice for general use.

Decompression performance may be more impor-
tant than compression performance for use cases where
something is compressed once but uncompressed many

times. Figure 5 shows decompression throughput versus
CF for two representative datasets. For WS1, we see that
adding MC to existing compressors tends to improve CF
while significantly improving decompression through-
put. It is likely because deduplication leads to less data
to decompress. For EXCHANGE1, CF improves sub-
stantially as well, with throughput not greatly affected.
Only for Fedora-VM (not shown) does gzip decom-
pression throughput decrease in any significant fashion
(from about 140 MB/s to 120).

5.2 Data Reorganization Throughput

To evaluate how mzip may work when a file does not fit
in memory, we experimented with a limit of 8 GB RAM
when the input data is stored in either a solid state disk
(SSD) or hard disk drive (HDD). The output file is stored
in the HDD. When reading from HDD, we evaluated two
approaches: chunk-level and multi-pass. Since SSD has
no random-access penalty, we use only chunk-level and
compare SSD to in-mem.

Figure 6 shows the compression throughputs for SSD-
based and HDD-based mzip. (Henceforth mzip refers
to gzip+ MC.) We can see that SSD approaches in-
memory performance, but as expected there is a signifi-
cant reduction in throughput using the HDD. This reduc-
tion can be mitigated by the multipass approach. For in-
stance, using a reorg range of 60% of memory, 4.81 GB,
if the file does not fit in memory, the throughput can be
improved significantly for HDD-based mzip by compar-

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8

D
ec

om
p.

 T
pu

t.
(M

B
/s

)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(a) WS1

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 2 3 4 5 6 7 8

D
ec

om
p.

 T
pu

t.
(M

B
/s

)

Compression Factor (X)

gz
gz(mc)

bz
bz(mc)

7z
7z(mc)

rz
rz(mc)

(b) EXCHANGE1

Figure 5: Decompression throughput vs. Compression
Factor for two representative datasets (WS1 and EX-
CHANGE1), using unmodified compression or MC.

 0
 5

 10
 15
 20
 25
 30
 35

UBUN-VM EXCH1 WS1

C
om

p.
 T

pu
t.

(M
B

/s
)

MEM
SSD-CHUNK

HDD-MULTIPASS
HDD-CHUNK

Figure 6: Compression throughput comparison for
HDD-based or SSD-based gzip (MC).

ison to accessing each chunk in the order it appears in
the reorganized file (and paying the corresponding costs
of random I/Os).

Note that Ubuntu-VM can approximately fit in
available memory, so the chunk-level approach performs
better than multi-pass: multi-pass reads the file sequen-
tially twice, while chunk-level can use OS-level caching.

5.3 Delta Compression

Figure 7 compares the compression and performance
achieved by mzip to compression using in-place delta-

 0
 2
 4
 6
 8

EX1
EX2

FEDO
UBUN

W
S1

W
S2

C
F

 (
X

)

Dedup
gz

MC
Delta

(a) Compression Factor, by contributing
technique

 0

 10

 20

 30

EX1
EX2

FEDO
UBUN

W
S1

W
S2

C
om

p.
 T

pu
t.

(M
B

/s
)

MC Delta

(b) Compression Throughput

Figure 7: Comparison between mzip and gzip (delta
compression) in terms of compression factor and com-
pression throughput. CFs are broken down by dedup and
gzip (same for both), plus the additional benefit of either
MC or DC.

encoding,4 as described in Section 3.2. Both use gzip
as the final compressor. Figure 7(a) shows the CF for
each dataset, broken out by the contribution of each tech-
nique. The bottom of each stacked bar shows the impact
of deduplication (usually quite small but up to a factor of
1.8). The next part of each bar shows the additional con-
tribution of gzip after deduplication has been applied,
but with no reordering or delta-encoding. Note that these
two components will be the same for each pair of bars.
The top component is the additional benefit of either
mzip or delta-encoding. mzip is always slightly better
(from 0.81% to 4.89%) than deltas, but with either tech-
nique we can get additional compression beyond the gain
from deduplication and traditional compression: > 80%
more for EXCHANGE1, > 40% more for EXCHANGE2
and > 25% more for WS1.

Figure 7(b) plots the compression throughput for mzip
and DC, using an in-memory file system (we omit decom-
pression due to space limitations). mzip is consistently
faster than DC. For compression, mzip averages 7.21%
higher throughput for these datasets. while for decom-
pression mzip averages 29.35% higher throughput.

4Delta-encoding plus compression is delta compression. Some
tools such as vcdiff [11] do both simultaneously, while our tool delta-
encodes chunks and then compresses the entire file.

 0

 2

 4

 6

 8

UBUN EX1 WS1

C
F

 (
X

)

2K
8K

32K
STD gz

(a) Compression Factor

 0
 4
 8

 12
 16
 20

2 8 32 gz 2 8 32 gz 2 8 32 gzR
un

tim
e

(m
in

)

UBUN EX1 WS1

Segment
Cluster

Reorg+gz
STD gz

(b) Runtime, by component cost

Figure 8: Compression factor and runtime for mzip,
varying chunk size.

5.4 Sensitivity to Environment
The effectiveness and performance of MC depend on how
it is used. We looked into various chunk sizes, com-
pared fixed-size with variable-size chunking, evaluated
the number of SFs to use in clustering and studied differ-
ent compression levels and window sizes.

5.4.1 Chunk Size

Figure 8 plots gzip-MC (a) CF and (b) runtime as a func-
tion of chunk size (we show runtime to break down in-
dividual components by their contribution to the overall
delay). We shrink and increase the default 8 KB chunk
size by a factor of 4. Compression increases slightly in
shrinking from 8 KB to 2 KB but decreases dramatically
moving up to 32 KB. The improvement from the smaller
chunksize is much less than seen when only deduplica-
tion is performed [26], because MC eliminates redun-
dancy among similar chunks as well as identical ones.
The reduction when increasing to 32 KB is due to a com-
bination of fewer chunks to be detected as identical and
similar and the small gzip lookback window: similar
content in one chunk may not match content from the
preceding chunk.

Figure 8(b) shows the runtime overhead, broken down
by processing phase. The right bar for each dataset corre-

 0

 2

 4

 6

 8

 10

UBUN EX1 WS1

C
F

 (
X

)

FIXED
VARIABLE

(a) Compression Factor

 0

 5

 10

 15

 20

F V F V F V

R
un

tim
e

(m
in

)

UBUN EX1 WS1

Segment
Cluster

Reorg+gz

(b) Runtime

Figure 9: Compression factor and runtime for mzip,
when either fixed-size or variable-size chunking is used.

sponds to standalone gzip without MC, and the remain-
ing bars show the additive costs of segmentation, clus-
tering, and the pipelined reorganization and compres-
sion. Generally performance is decreased by moving to
a smaller chunk size, but interestingly in two of the three
cases it is also worse when moving to a larger chunk size.
We attribute the lower throughput to the poorer dedu-
plication and compression achieved, which pushes more
data through the system.

5.4.2 Chunking Algorithm

Data can be divided into fixed-sized or variable-sized
blocks. For MC, supporting variable-sized chunks re-
quires tracking individual byte offsets and sizes rather
than simply block offsets. This increases the recipe sizes
by about a factor of two, but because the recipes are small
relative to the original file, the effect of this increase
is limited. In addition, variable chunks result in better
deduplication and matching than fixed, so CFs from us-
ing variable chunks are 14.5% higher than those using
fixed chunks.

Figure 9 plots mzip compression for three datasets,
when fixed-size or variable-size chunking is used. From
Figure 9(a), we can see that variable-size chunking gives
consistently better compression. Figure 9(b) shows that
the overall performance of both approaches is compara-
ble and sometimes variable-size chunking has better per-
formance. Though variable-size chunking spends more
time in the segmentation stage, the time to do compres-
sion can be reduced considerably when more chunks are
duplicated or grouped together.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

C
om

p.
 T

pu
t.

(M
B

/s
)

Compression Factor (X)

gz-DEF
gz-MAX

gz-DEF(mc)
gz-MAX(mc)

bz
bz(mc)

7z-DEF
7z-MAX

7z-DEF(mc)
7z-MAX(mc)

rz-DEF
rz-MAX

rz-DEF(mc)
rz-MAX(mc)

Figure 10: Comparison between the default and the max-
imum compression level, for standard compressors with
and without MC, on the WS1 dataset.

5.4.3 Resemblance Computation

By default we use sixteen features, combined into four
SFs, and a match on any SF is sufficient to indicate
a match between two chunks. In fact most similar
chunks are detected by using a single SF; however,
considering three more SFs has little change in com-
pression throughputs and sometimes improves compres-
sion factors greatly (e.g., a 13.6% improvement for EX-
CHANGE1). We therefore default to using 4 SFs.

5.4.4 Compression Window

For most of this paper we have focused on the default
behavior of the three compressors we have been con-
sidering. For gzip, the “maximal” level makes only
a small improvement in CF but with a significant drop
in throughput, compared to the default. In the case of
bzip2, the default is equivalent to the level that does the
best compression, but overall execution time is still man-
ageable, and lower levels do not change the results signif-
icantly. In the case of 7z, there is an enormous difference
between its default level and its maximal level: the max-
imal level generally gives a much higher CF with only a
moderate drop in throughput. For rzip, we use an un-
documented parameter “-L20”to increase the window to
2 GB; increasing the window beyond that had diminish-
ing returns because of the increasingly coarse granularity
of duplicate matching.

Figure 10 shows the compression throughput and CF
for WS1 when the default or maximum level is used, for
different compressors with and without MC. (The results
are similar for other datasets.) From this figure, we can
tell that maximal gzip reduces throughput without dis-
cernible effect on CF; 7z without MC improves CF dis-
proportionately to its impact on performance; and max-
imal 7z (MC) moderately improves CF and reduces per-
formance. More importantly, with MC and standard com-

pressors, we can achieve higher CFs with much higher
compression throughout than compressors’ standard
maximal level. For example, the open diamond mark-
ing 7z-DEF(MC) is above and to the right of the close
inverted triangle marking 7z-MAX. Without MC, rzip’s
maximal level improves performance with comparable
throughput; with MC, rzip gets the same compression
as 7z-MAX with much better throughput, and rzip-MAX
decreases that throughput without improving CF. The
best compression comes from 7z-MAX with MC, which
also has better throughput than 7z-MAX without MC.

6 Archival Migration in DDFS

In addition to using MC in the context of a single
file, we can implement it in the file system layer. As
an example, we evaluated MC in DDFS, running on a
Linux-based backup appliance equipped with 8x2 Intel
2.53GHz Xeon E5540 cores and 72 GB memory. In our
experiment, either the active tier or archive tier is backed
by a disk array of 14 1-TB SATA disks. To minimize
performance variation, no other workloads ran during the
experiment.

6.1 Datasets
DDFS compresses each compression region using either
LZ or gzip. Table 2 shows the characteristics of a few
backup datasets using either form of compression. (Note
that the WORKSTATIONS dataset is the union of several
workstation backups, including WS1 and WS2, and all
datasets are many backups rather than a single file as be-
fore.) The logical size refers to pre-deduplication data,
and most datasets deduplicate substantially.

The table shows that gzip compression is 25–44%
better than LZ on these datasets, hence DDFS uses gzip
by default for archival. We therefore compare base gzip
with gzip after MC preprocessing. For these datasets, we
reorganize all backups together, which is comparable to
an archive migration policy that migrates a few months at
a time; if archival happened more frequently, the benefits
would be reduced.

6.2 Results
Figure 11(a) depicts the compressibility of each dataset,
including separate phases of data reorganization. As de-
scribed in Section 3.3, we migrate data in thirds. The top
third contains the biggest clusters and achieves the great-
est compression. The middle third contain smaller clus-
ters and may not compress quite as well, and the bottom
third contains the smallest clusters, including clusters
of a single chunk (nothing similar to combine it with).
The next bar for each dataset shows the aggregate CF

Type Name Logical Dedup. Dedup. + LZ LZ CF Dedup. + gzip
gzip CFSize (GB) Size (GB) Size (GB) (GB)

Workstation WORKSTATIONS 2471 454 230 1.97 160 2.84

Email
Server

EXCHANGE1 570 51 27 1.89 22 2.37
EXCHANGE2 718 630 305 2.07 241 2.61
EXCHANGE3 596 216 103 2.10 81 2.67

Table 2: Datasets used for archival migration evaluation.

 0

 5

 10

 15

 20

 25

WS EX1 EX2 EX3

co
m

pr
es

si
on

 fa
ct

or

first 1/3
middle 1/3

last 1/3
MC total

gzip total

(a) CFs as a function of migration phase

 0

 0.2

 0.4

 0.6

 0.8

 1

WS EX1 EX2 EX3

co
nt

rib
ut

io
n

to
 c

om
pr

es
si

on

gzip
top 1/3
top 2/3
all
remaining

(b) Fraction of data saved in each migration
phase

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

ru
nt

im
e

(m
in

s)

number of threads

gzip total
sorting

first 1/3
middle 1/3

last 1/3

(c) Durations, as a function of threads, for
EXCHANGE1

Figure 11: Breakdown of the effect of migrating data, using just gzip or using MC in 3 phases.

using MC, while the right-most bar shows the compres-
sion achieved with gzip and no reorganization. Collec-
tively, MC achieves 1.44–2.57× better compression than
the gzip baseline. Specifically, MC outperforms gzip
most (by 2.57×) on the workstations dataset, while it im-
proves the least (by 1.44×) on EXCHANGE3.

Figure 11(b) provides a different view into the same
data. Here, the cumulative fraction of data saved for
each dataset is depicted, from bottom to top, normalized
by the post-deduplicated dataset size. The greatest sav-
ings (about 60% of each dataset) come from simply do-
ing gzip, shown in green. If we reorganize the top third
of the clusters, we additionally save the fraction shown
in red. By reorganizing the top two-thirds we include the
fraction in blue; interestingly, in the case of WORKSTA-
TIONS, the reduction achieved by MC in the middle third
relative to gzip is higher than that of the top third, be-
cause gzip alone does not compress the middle third as
well as it compresses the top. If we reorganize everything
that matches other data, we may further improve com-
pression, but only two datasets have a noticeable impact
from the bottom third. Finally, the portion in gray at the
top of each bar represents the data that remains after MC.

There are some costs to the increased compression.
First, MC has a considerably higher memory footprint
than the baseline: compared to gzip, the extra memory
usage for reorganization buffers is 6 GB (128 KB com-
pression regions * 48 K regions filled simultaneously).
Second, there is run-time overhead to identify clusters of
similar chunks and to copy and group the similar data.
To understand what factors dominate the run-time over-

head of MC, Figure 11(c) reports the elapsed time to copy
the post-deduplication 51 GB EXCHANGE1 dataset to the
archive tier, with and without MC, as a function of the
number of threads (using a log scale). We see that mul-
tithreading significantly improves the processing time of
each pass. We divide the container range into multiple
subranges and copy the data chunks from each subrange
into in-memory data reorganization buffers with multi-
ple worker threads. As the threads increase from 1 to 16,
the baseline (gzip) duration drops monotonically and is
uniformly less than the MC execution time. On the other
hand, MC achieves the minimum execution time with 8
worker threads; further increasing the thread count does
not reduce execution time, an issue we attribute to intra-
bucket serialization within hash table operations and in-
creased I/O burstiness.

Reading the entire EXCHANGE1 dataset, there is a
30% performance degradation after MC compared to
simply copying in the original containers. Such a read
penalty would be unacceptable for primary storage,
problematic for backup [13], but reasonable for archival
data given lower performance expectations. But reading
back just the final backup within the dataset is 7× slower
than without reorganization, if all chunks are relocated
whenever possible. Fortunately, there are potentially sig-
nificant benefits to partial reorganization. The greatest
compression gains are obtained by grouping the biggest
clusters, so migrating only the top-third of clusters can
provide high benefits at moderate cost. Interestingly,
if just the top third of clusters are reorganized, there is
only a 24% degradation reading the final backup.

7 Related Work

Compression is a well-trodden area of research. Adap-
tive compression, in which strings are matched against
patterns found earlier in a data stream, dates back to the
variants of Lempel-Ziv encoding [29, 30]. Much of the
early work in compression was done in a resource-poor
environment, with limited memory and computation, so
the size of the adaptive dictionary was severely limited.
Since then, there have been advances in both encoding
algorithms and dictionary sizes, so for instance Pavlov’s
7z uses a “Lempel-Ziv-Markov-Chain” (LZMA) algo-
rithm with a dictionary up to 1 GB [1]. With rzip, stan-
dard compression is combined with rolling block hashes
to find large duplicate content, and larger lookahead win-
dows decrease the granularity of duplicate detection [23].

The Burrows-Wheeler Transform (BWT), incorporated
into bzip2, rearranges data—within a relatively small
window—to make it more compressible [5]. This trans-
form is reasonably efficient and easily reversed, but it is
limited in what improvements it can effect.

Delta compression, described in Section 2.2, refers to
compressing a data stream relative to some other known
data [9]. With this technique, large files must normally
be compared piecemeal, using subfiles that are identified
on the fly using a heuristic to match data from the old and
new files [11]. MC is similar to that sort of heuristic, ex-
cept it permits deltas to be computed at the granularity of
small chunks (such as 8 KB) rather than a sizable fraction
of a file. It has been used for network transfers, such as
updating changing Web pages over HTTP [16]. One can
also deduplicate identical chunks in network transfers at
various granularities [10, 17].

DC has also been used in the context of deduplicating
systems. Deltas can be done at the level of individual
chunks [20] or large units of MBs or more [2]. Fine-
grained comparisons have a greater chance to identify
similar chunks but require more state.

These techniques have limitations in the range of
data over which compression will identify repeated
sequences; even the 1 GB dictionary used by 7-zip
is small compared to many of today’s files. There
are other ways to find redundancy spread across large
corpa. As one example, REBL performed fixed-sized
or content-defined chunking and then used resemblance
detection to decide which blocks or chunks should be
delta-encoded [12]. Of the approaches described here,
MC is logically the most similar to REBL, in that it
breaks content into variable sized chunks and identifies
similar chunks to compress together. The work on REBL
only reported the savings of pair-wise DC on any chunks
found to be similar, not the end-to-end algorithm and
overhead to perform standalone compression and later
reconstruct the original data. From the standpoint of

rearranging data to make it more compressible, MC is
most similar to BWT.

8 Future Work

We briefly mention two avenues of future work, applica-
tion domains and performance tuning.

Compression is commonly used with networking
when the cost of compression is offset by the bandwidth
savings. Such compression can take the form of sim-
ple in-line coding, such as that built into modems many
years ago, or it can be more sophisticated traffic shaping
that incorporates delta-encoding against past data trans-
mitted [19, 22]. Another point along the compression
spectrum would be to use mzip to compress files prior to
network transfer, either statically (done once and saved)
or dynamically (when the cost of compression must be
included in addition to network transfer and decompres-
sion). We conducted some initial experiments using rpm
files for software distribution, finding that a small frac-
tion of these files gained a significant benefit from mzip,
but expanding the scope of this analysis to a wider range
of data would be useful. Finally, it may be useful to com-
bine mzip with other redundancy elimination protocols,
such as content-based naming [18].

With regard to performance tuning, we have been
gaining experience with MC in the context of the archival
system. The tradeoffs between compression factors and
performance, both during archival and upon later reads to
an archived file, bear further analysis. In addition, it may
be beneficial to perform small-scale MC in the context
of the backup tier (rather than the archive tier), recog-
nizing that the impact to read performance must be min-
imized. mzip also has potential performance improve-
ments, such as multi-threading and reimplementing in a
more efficient programming language.

9 Conclusions

Storage systems must optimize space consumption while
remaining simple enough to implement. Migratory Com-
pression reorders content, improving traditional com-
pression by up to 2× with little impact on throughput
and limited complexity. When compressing individual
files, MC paired with a typical compressor (e.g., gzip or
7z) provides a clear improvement. More importantly, MC
delivers slightly better compression than delta-encoding
without the added complexities of tracking dependencies
(for decoding) between non-adjacent chunks. Migratory
Compression can deliver significant additional consump-
tion for broadly used file systems.

Acknowledgments

We acknowledge Nitin Garg for his initial suggestion
of improving data compression by collocating simi-
lar content in the Data Domain File System. We
thank Remzi Arpaci-Dusseau, Scott Auchmoody, Wind-
sor Hsu, Stephen Manley, Harshad Parekh, Hugo Pat-
terson, Robert Ricci, Hyong Shim, Stephen Smaldone,
Andrew Tridgell, and Teng Xu for comments and feed-
back on earlier versions and/or the system. We especially
thank our shepherd, Zheng Zhang, and the anonymous
reviewers; their feedback and guidance have been espe-
cially helpful.

References

[1] 7-zip. http://www.7-zip.org/. Retrieved Sep.
7, 2013.

[2] ARONOVICH, L., ASHER, R., BACHMAT, E., BIT-
NER, H., HIRSCH, M., AND KLEIN, S. T. The de-
sign of a similarity based deduplication system. In
Proceedings of SYSTOR 2009: The Israeli Experi-
mental Systems Conference (2009).

[3] BRODER, A. Z. On the resemblance and contain-
ment of documents. In In Compression and Com-
plexity of Sequences (SEQUENCES97) (1997),
IEEE Computer Society.

[4] BURROWS, M., JERIAN, C., LAMPSON, B., AND
MANN, T. On-line data compression in a log-
structured file system. In Proceedings of the fifth
international conference on Architectural support
for programming languages and operating systems
(1992), ASPLOS V.

[5] BURROWS, M., AND WHEELER, D. J. A block-
sorting lossless data compression algorithm. Tech.
Rep. SRC-RR-124, Digital Equipment Corpora-
tion, 1994.

[6] DEUTSCH, P. DEFLATE Compressed Data For-
mat Specification version 1.3. RFC 1951 (Informa-
tional), May 1996.

[7] FIALA, E. R., AND GREENE, D. H. Data com-
pression with finite windows. Communications of
the ACM 32, 4 (Apr. 1989), 490–505.

[8] GILCHRIST, J. Parallel data compression with
bzip2. In Proceedings of the 16th IASTED Inter-
national Conference on Parallel and Distributed
Computing and Systems (2004), vol. 16, pp. 559–
564.

[9] HUNT, J. J., VO, K.-P., AND TICHY, W. F. Delta
algorithms: an empirical analysis. ACM Trans.
Softw. Eng. Methodol. 7 (April 1998), 192–214.

[10] JAIN, N., DAHLIN, M., AND TEWARI, R. Ta-
per: Tiered approach for eliminating redundancy in
replica synchronization. In 4th USENIX Confer-
ence on File and Storage Technologies (2005).

[11] KORN, D. G., AND VO, K.-P. Engineering a dif-
ferencing and compression data format. In USENIX
Annual Technical Conference (2002).

[12] KULKARNI, P., DOUGLIS, F., LAVOIE, J., AND
TRACEY, J. M. Redundancy elimination within
large collections of files. In USENIX 2004 Annual
Technical Conference (June 2004).

[13] LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT,
D. Improving restore speed for backup systems
that use inline chunk-based deduplication. In 11th
USENIX Conference on File and Storage Technolo-
gies (Feb 2013).

[14] MACDONALD, J. File system support for delta
compression. Masters thesis. Department of Elec-
trical Engineering and Computer Science, Univer-
sity of California at Berkeley, 2000.

[15] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M.,
FLOURIS, M. D., AND BILAS, A. Using transpar-
ent compression to improve SSD-based I/O caches.
In Proceedings of the 5th European Conference on
Computer Systems (2010), EuroSys ’10.

[16] MOGUL, J. C., DOUGLIS, F., FELDMANN, A.,
AND KRISHNAMURTHY, B. Potential benefits of
delta encoding and data compression for http. In
Proceedings of the ACM SIGCOMM ’97 confer-
ence on Applications, technologies, architectures,
and protocols for computer communication (1997),
SIGCOMM ’97.

[17] MUTHITACHAROEN, A., CHEN, B., AND
MAZIÈRES, D. A low-bandwidth network file
system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles
(2001), SOSP ’01.

[18] PARK, K., IHM, S., BOWMAN, M., AND PAI,
V. S. Supporting practical content-addressable
caching with CZIP compression. In USENIX ATC
(2007).

[19] RIVERBED TECHNOLOGY. Wan Optimization
(Steelhead). http://www.riverbed.com/products-
solutions/products/wan-optimization-steelhead/,
2014. Retrieved Jan. 13, 2014.

[20] SHILANE, P., WALLACE, G., HUANG, M., AND
HSU, W. Delta compressed and deduplicated stor-
age using stream-informed locality. In Proceed-
ings of the 4th USENIX conference on Hot Topics
in Storage and File Systems (June 2012), USENIX
Association.

[21] SMALDONE, S., WALLACE, G., AND HSU, W. Ef-
ficiently storing virtual machine backups. In Pro-
ceedings of the 5th USENIX conference on Hot
Topics in Storage and File Systems (June 2013),
USENIX Association.

[22] SPRING, N. T., AND WETHERALL, D. A protocol-
independent technique for eliminating redundant
network traffic. In ACM SIGCOMM (2000).

[23] TRIDGELL, A. Efficient algorithms for sorting and
synchronization. PhD thesis, Australian National
University Canberra, 1999.

[24] TUDUCE, I. C., AND GROSS, T. Adaptive main
memory compression. In USENIX 2005 Annual
Technical Conference (April 2005).

[25] VARIA, J., AND MATHEW, S. Overview of amazon
web services, 2012.

[26] WALLACE, G., DOUGLIS, F., QIAN, H., SHI-
LANE, P., SMALDONE, S., CHAMNESS, M., AND
HSU, W. Characteristics of backup workloads in
production systems. In FAST’12: Proceedings of
the 10th Conference on File and Storage Technolo-
gies (2012).

[27] xz. http://tukaani.org/xz/. Retrieved Sep.
25, 2013.

[28] ZHU, B., LI, K., AND PATTERSON, H. Avoiding
the disk bottleneck in the data domain deduplica-
tion file system. In 6th USENIX Conference on File
and Storage Technologies (Feb 2008).

[29] ZIV, J., AND LEMPEL, A. A universal algorithm
for sequential data compression. IEEE Transac-
tions on Information Theory 23, 3 (May 1977),
337–343.

[30] ZIV, J., AND LEMPEL, A. Compression of indi-
vidual sequences via variable-rate coding. Infor-
mation Theory, IEEE Transactions on 24, 5 (1978),
530–536.

