
SMOG: A Cloud Platform for Seamless Wide Area Migration of
Online Games

Virajith Jalaparti, Matthew Caesar
University of Illinois, Urbana-Champaign

{jalapar1, caesar}@illinois.edu

Seungjoon Lee, Jeffery Pang
AT&T Labs - Research

{slee,jeffpang}@research.att.com

Jacobus Van der Merwe
University of Utah

kobus@cs.utah.com

Abstract—Highly interactive network applications such as
online games are rapidly growing in popularity but remain
challenging for game providers to support, due to their inherent
need for low latency. While cloud computing has proven a useful
infrastructure for other applications, existing cloud computing
facilities are insufficient for games, due to the unpredictability
of their workload, their demands on latency and scale, and the
need to support game-specific requirements (e.g., players may
wish to play with certain other players already in the game). In
this work, we explore whether dynamic optimization of latency
and scaling of games can be achieved by supplementing cloud
computing infrastructure with seamless wide area virtual machine
migration using network based route control. We propose SMOG,
a framework that dynamically migrates game servers to their
optimal location, and uses orchestrated route control to optimize
the network path to the server to minimize observable effects
of live server migration. Through deployment of a prototype
implementation on a Tier-1 ISP’s backbone and a user study,
we found SMOG can decrease average end-user latency by up
to 60% while performing migration in a manner transparent
to game players. While this paper’s focus is online games,
SMOG is general enough to be used for a variety of latency-
sensitive interactive applications such as video conferencing and
interactive video streaming.

I. INTRODUCTION

“Cloud computing” has recently emerged with enormous
success as a new paradigm for distributed computing. This
computing model offers significant economic advantages of
scale for purchasing, operations, and energy usage since
management and machine costs can be reduced by sharing
hardware across multiple applications. However, there is a
particular class of applications that are more difficult to sup-
port in today’s cloud environments: highly interactive network
applications, such as online games.
Online gaming applications face several unique challenges.

They have stringent quality of service (QoS) demands, where
even small variations in network characteristics can interfere
with game play as shown in several studies [16], [23], [24],
[29]. Recent work has shown how applications can obtain pre-
dictable local performance in virtualized cloud environments
(e.g., [15]), but the QoS of the wide area path between clients
and servers remains central for a good user experience in
online games. Hence, they have strong constraints on where
servers can be placed. The unpredictability of network QoS
coupled with the difficulty in predicting where a game will
become popular make it hard to statically place these services.
Even worse, unlike web users, players of certain types of

games like Counter Strike: Source [1], Quake III [9], etc. often
have strong affinity to particular servers (see Section II). This
makes it difficult to use traditional load balancing and repli-
cation mechanisms (e.g., CDNs) to serve game clients. There
have been application-specific schemes proposed for network
games to deal with network problems (e.g., by partitioning
state [18], [19]), but they require substantial changes in the
way game developers architect their games.

These challenges are unfortunate because there are two
broad classes of games that would obtain substantial benefit
from shared cloud infrastructure that can meet their QoS
needs: (a) games that are currently hosted by individual
players, like Counter Strike: Source, and (b) the majority of
games that have not yet achieved a player population large
enough to justify deploying a dedicated server infrastructure
around the world. Shared cloud services would reduce their
operating costs and improve players’ gameplay experiences.
Similar benefits could be accrued by other highly interactive
applications such as interactive video streaming [6].

In our work, we explore whether dynamic migration of
cloud computing resources can simplify the problem of hosting
game servers. We propose a platform for Seamless Migration

of Online Games (SMOG), which dynamically optimizes
geographic server placement while minimizing the observable
effects of live server migration to players. To effectively
address this problem, we take the relatively unexplored ap-
proach of integrating cloud services with wide area network

services. Most importantly, we demonstrate the utility and
practicality of using wide area migration to optimize the
placement of live game servers. Our system builds upon recent
proposals [32], [39] for integration of VPLS/VLANs with data
center infrastructure to achieve a mechanism that seamlessly
migrates gaming applications in the wide area. SMOG is
practical to deploy because, unlike previous work [7], [20],
[36], it requires no modifications to network components and
still enables wide area migrations with sub-second down times.
Moreover, SMOG requires no application-level modifications,
is application-agnostic and uses the capabilities of the hyper-
visors in virtualized systems to achieve its goals.

In this paper, we consider the utility of SMOG for games
where players may select the server that they play on for
reasons other than latency. These reasons include skill-level,
social, or historical preferences. This server selection model,
which doesn’t rely on a matchmaking entity, is used by a
large number of games like Counter Strike, Quake etc. WhileSPACE-FOR-COPYRIGHT-INFORMATION c© 2012 IEEE

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160

%
 o

f
ca

p
a

ci
ty

 f
u

ll

Time[hr]

+0000
+0100
-0500
-0600
-0800

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

cl
ie

n
ts

Time[hr]

+0000
+0100
+0200
+0800
-0500
-0600
-0800

(b)

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7

A
ve

ra
g

e
 C

lie
n

t
L

a
te

n
cy

 [
m

se
c]

Time [hr]

Best Location Timezone
+0100 +0000 -0500 -0600

Worst Location
Best Location

Oregon
Initial Best

(c)

Fig. 1: Time zone level statistics (UTC=+0000): (a) Percentage of occupied server capacity in various time zones over a period of 1 week,
starting from 9:30PM on June 8, 2010 EDT, (b) Number of players connected to the mshmro.com server from various time zones, (c)
Variation of average player latency for different server locations.

our techniques can be used for any online game, they are
particularly useful for games in which players choose the
server and is complementary to other approaches to match
a player to a nearby server.

This paper makes three main contributions: (1) We conduct
a measurement study showing that there is substantial oppor-
tunity for both resource savings and improvement in end-user
latency, if game servers could be dynamically relocated in the
wide area. (2) We designed, implemented and deployed SMOG
on data centers connected to a tier-1 ISP, enabling seamless
game server migration in the wide area. (3) We show with
a user study that the short interruption caused by SMOG’s
migration in the wide area is not noticeable to game players.
Since previous work has shown that reducing latency improves
both subjective and objective player satisfaction measures [24],
[37], using SMOG’s migration primitive to optimize player
latency strictly improves the gameplay experience. We also
show that seamless migration is feasible with SMOG in a
range of realistic operating conditions.

II. MOTIVATION

In this paper, we argue that dynamic, seamless server

migration can significantly simplify hosting of online games in
cloud environments while improving the experience of game
players. This is motivated by the insights garnered from a
measurement study we performed of Counter Strike Source
(CSS), one of the most popular First Person Shooter (FPS)
games with 1.716 billion player minutes per month [10].
(We observed similar results for Quake III [9] and Unreal
Tournament [11]). We found several unique features of games:

Games need dynamic, not static allocation of resources:
First, we collected a list of the 1000 most popular CSS servers
from Game Tracker [4] and measured the number of players
present on each of them over a period of one week, starting
from 9:30PM on June 8, 2010 EDT. All servers are probed
at 10-minute intervals using QStat [8]. With IP geolocation
tools [5], we inferred the time zone of each server. From
this study, we make two key observations. As others have
previously observed [22], we found that server loads change

greatly over time. Figure 1(a) shows the load on servers in

various time zones over the 7-day period. We define load as the
ratio of the total number of players in a time zone to the sum
of the maximum capacities of the servers in that time zone.
We observe a strong diurnal pattern with peak loads of 4-5
times the troughs. Second, we find that peak loads shift over

time according to the timezones of the servers’ geographic

locations. For example, load peaks in the eastern hemisphere
occur when load in the western hemisphere is lowest, and
vice versa. This suggests that game providers can benefit from

dynamic hosting of resources; game providers could migrate

servers from lightly loaded regions into peak regions to cope
with load, and to react to dynamics in network path quality.

Games need migration, not replication of servers: Next, we
studied how users on a server are geographically distributed.
Here, we used a 7-hour tcpdump trace collected on April
11, 2004 starting at 9AM PDT from mshmro.com [2], a
long running popular CSS server located in Portland, Oregon,
USA. Again using an IP geolocation service [5], we mapped
the player IP addresses to time zones. From this, we make
two key observations. First, we find that users may express a

strong affinity to specific servers. Although it is well known
that players prefer servers that have lower latency [24], our
measurements show that geographic and network distance
are not the sole criteria in server selection. For example,
Figure 1(b) shows that players from all over the world (i.e.,
several time zones) choose to play on the Oregon CSS server
even though there were several other servers closer to them.

Second, we find that the optimal server position varies

dynamically and server migration can substantially improve

client performance. Figure 1(c) shows the estimated average
client latency given different server placements. For this
experiment, we use clients from the mshmro.com trace as
the clients connected to the game server. We assume the
game server can be located at multiple physical locations
corresponding to multiple data centers in a Tier-1 ISP. We
estimate the latency experienced by clients using their air-mile
distance to the server [13]. The air-mile distance is obtained
by mapping the IP addresses of the clients and servers to a
(latitude,longitude) coordinate pair using IP geolocation [5]
and then finding the great-circle distance between the pairs.

Vertical lines in Figure 1(c) indicate a change in the time
zone of the best server location. By using migration (Best
Location), the average client latency to the server can always
be kept close to 50ms, the highest latency that doesn’t degrade
FPS player performance under any type of game play [27].
In contrast, the two static server placements (Oregon and
Initial Best) have up to 60% higher latencies, compared to the
Best Location. The Worst Location line shows that a static
placement could be suboptimal by more than 100%. These
results suggest that game providers can benefit from migration

of servers. Unlike traditional services that use replication and
redirect user requests to the appropriate (e.g., closest) replica,
a user’s affinity to a particular online game server means that
existing servers need to be moved closer to clients.

Games need seamless, not paused migration: Next, to
understand how long a user is connected to a particular server,
we studied the session times of players, using the above week
long trace from the top 1000 servers (results omitted due to
lack of space). We found that session durations are very long

and have large variance. While the median session time was
around 20 minutes, some players go on to play for several
hours with the 99%ile session time being as high as 3.5hrs.
This suggests that migration must be performed while users

are playing, introducing the need for seamless migration.
The existence of multi-hour sessions means that traditional
dryout techniques used for non-gaming services (redirecting
new users to another server and waiting for the old server to
empty) may take too long to react to diurnal patterns or flash
crowds in online games.

III. SMOG: DESIGN AND IMPLEMENTATION

To address the unique requirements for hosting online game
servers in a cloud environment (Section II), we designed a
platform for Seamless Migration of Online Games (SMOG).
In this section, we present the architecture of SMOG and
the techniques it uses to solve two key problems: how to
migrate application services across the wide area without
service disruption, and when and where to migrate them.

SMOG Architecture: The architecture of SMOG is depicted
in Figure 2. The cloud service provider deploys a set of hosting
platforms, connected to a wide area network (WAN). These
hosting platforms act as facilities where game servers may
be hosted. Each hosting platform consists of (i) a number of
physical servers running virtualization software that supports
VM migration, (ii) datacenter networking equipment that pro-
vides connectivity within the platform as well as connectivity
to the WAN, and (iii) an SMOG node controller which is
responsible for local orchestration of compute and networking
resources to realize SMOG functionality. The SMOG node
controllers help in VM migration, manipulate routes, redirect
traffic, and observe traffic patterns and routing tables within the
network in order to support migration of servers. SMOG node
controllers in turn are collectively orchestrated by an SMOG

service controller which makes migration decisions in order
to realize the service objectives of the hosted application.

 Wide Area Network

DN

SNC PS

SHP

DN

SNC PS

SHP

SMOG Service
Controller

SMOG Hosting
Platform (SHP)

Datacenter
Network (DN)

SMOG Node
Controller (SNC)

Physical
Servers (PS)

Game
Server (GS)

DN

SNC

SHP

GSPS

Fig. 2: SMOG provides a distributed platform, across the wide area,
for hosting online games.

Wide area Migration: To adapt to changing application
workloads, SMOG needs to perform server migration between
different hosting platforms, i.e., across LANs, across IP sub-
nets, and potentially across Autonomous Systems (ASes) to
provide the best service to the users. To overcome the limita-
tions of traditional virtual machine migration techniques (e.g.,
Xen [26]) which target migration within a single Ethernet-
based IP subnet, SMOG integrates network route control with

VM migration.

Figure 3 depicts the mechanisms which SMOG uses in
migrating an application server (P) from location A to location
B. Each application server is allocated a small IP subnet
(e.g., a /29). Under normal operating conditions, this prefix
is advertised by the datacenter router (Ra) via BGP to the
provider edge router (PEa) to allow the application server to
be reached from the Internet. The application server uses Ra

as its default gateway in order to reach users in the Internet.
SMOG utilizes a virtual private LAN service (VPLS) (V a to
V b via PEa and PEb), between physical servers Sa and Sb

[38] to interconnect the LAN switches SWa and SWb at layer
two and create a broadcast domain between the two sites 1.
This in turn enables the use of “normal” LAN VM migration
techniques [26] to migrate the application server (P) from Sa

to Sb. After migration to location B, P issues a gratuitous
ARP response and will be still reachable from the Internet via
the path Ra, SWa, V a (now encapsulated in a VPLS frame),
V b, SWb, Sb and P . P will still be using Ra as its default
gateway and hence, packets from P will follow the same path
in reverse.

Having traffic follow this “dogleg” path is of course sub-
optimal, and the SMOG service control corrects this by (a)
changing the default gateway of P to Rb, and (b) advertising
a more specific prefix (e.g., a /31) to P via the BGP session
between Rb and PEb. This causes the path via PEb to be
preferred over the path via PEa. Once SMOG monitoring
has confirmed that traffic is no longer using the path via
PEa/Ra to reach P , Ra is instructed to withdraw the /29 it
is advertising, leaving the path via PEb as the only available
path to reach P . Finally, Rb in turn is instructed to advertise
the shorter prefix (/29) so that we are back to the original state,

1The VPLS endpoints V a and V b are in fact encapsulated within the
datacenter routers (Ra and Rb), but we show them separately to simplify
the exposition.

except that both P and its associated prefix are now associated
with location B. Note that in this mechanism there is always
at least one (and for some time two) valid paths to P which
prevents packet loss due to the route changes.

Cross-AS Migration: With the above techniques, as long
as hosting platforms A and B are in the same AS, no inter-
AS advertisements are generated during a migration. However,
if the hosting points are located in different ASes, external
routing updates may be generated. Inducing BGP routing
advertisements could trigger flap damping or routing protocol
reconvergence, which in turn could lead to large outages
intolerable by online games. Further, route updates for prefixes
more specific than /24 are often filtered by edge routers of
ASes [21] which can prevent the updates sent by SMOG from
propagating across ASes.

To address this, we propose the following mechanism: all
the hosting platforms used by the SMOG framework form an
SMOG-AS, an Autonomous System that can span multiple
networks. The SMOG-AS peers with each AS in which a
hosting platform is present. It announces the prefixes corre-
sponding to the game servers hosted on the SMOG framework.
For example, SMOG-AS may purchase transport from each
AS it peers with and form an internal VPN which is used
to migrate the VMs between hosting points. This mechanism
ensures that the VMs remain within a single AS (the SMOG-
AS), removing the need for inter-AS BGP announcements.
Further, since ASes use hot-potato routing [35], the routes to
the SMOG-AS are kept short.

Optimized server placement in SMOG: While the above
subsection shows how SMOG can carry out migration of
application servers, we still need a mechanism to decide when
to move the servers. The goal is to minimize the number of
players with latency greater than the satisfactory threshold.
Given the capacity of each hosting point, the latencies from
each client to each hosting point, and the players in each
game server, this optimization problem can then be formulated
as a variant of the generalized assignment problem [34].
Player latencies can be collected using ping or passive latency
estimation tools [13], [28]. To solve this optimization problem,
we can use existing algorithms that find approximate solutions
efficiently [14], [34] (e.g., in tens of milliseconds on com-
modity hardware for instances equivalent to having hundreds
of game servers and around ten hosting points). SMOG solves
this optimization problem at regular time intervals to determine
the optimal position of each server. If the new optimal location
is better than the current location by a pre-defined threshold,
SMOG initiates a migration. This threshold is configurable and
can be set based on the load on the network. The experiment
in Figure 1(c) shows that setting it to 10% of the current
value results in just 4 migrations within a total of 7 hours.
This shows that migrations are often infrequent and take place
once every few hours. Thus, every time SMOG decides to
migrate a VM, it has ample time for (a) migrating the entire
VM (as shown in our implementation below), and (b) BGP
convergence (which typically takes a few minutes [30]). In

Internet

Sa

P

PEa

Va

BGP

Ra

/29

Location A

Sb

P

Vb

PEb

BGP

Rb

/32

ARP

Location B

Physical Server

Game Server VM

Datacenter Router VPLS Endpoint

SWa SWbLAN Switch

Fig. 3: SMOG Migration

Migration Step FV PV Mod
1 Migration started at loc2 0.239 0.096 0.146
2 VM suspended at loc1 10.844 9.160 9.355
3 VM destroyed at loc1 11.073 9.187 9.674
4 Received all pages at loc2 11.079 9.173 9.424
5 Domain restored at loc2 11.430 9.436 9.507
6 1st packet received by VM at loc2 11.646 9.622 9.523

Downtime = (Time of #6 - Time of #2) 0.802 0.462 0.168

TABLE I: Typical timeline (in seconds) for Xen VMs migrated from
loc1 to loc2 for a fully-virtualized (FV) VM, paravirtualized (PV)
VM, and modified Xen (Mod). Migration starts at loc1 at t = 0 sec.

general, the threshold can be set by the system administrator
considering application requirements and the current load on
the data-centers.

Implementation of SMOG: To determine the feasibility of
our approach, we implemented and deployed a prototype of
SMOG on ShadowNet [25], an operational trial network and
compute platform deployed on carrier-grade equipment and
located within a tier-1 ISP. We used DRBD [3] to ensure that
the logical disk used by the VM on the physical machines are
synchronized. SMOG builds on the migration capabilities of
Xen [12]. In our prototype, we used the Xen 3.4.3 hypervisor
for the virtual machines responsible for hosting the game
servers. When using the migration capabilities of the default
hypervisor, we observed that SMOG’s migration interrupted
the user’s game experience. For example, when migrating
a Quake III game server, a game client connected to it
experiences a downtime of around 500msec during migration
and displays server disconnected message, even with paravir-
tualization enabled. A downtime of 800msec is seen when
using a fully virtualized server. To study this problem, we
instrumented the Xen migration tools to micro-benchmark the
sources of delays, as shown in Table I. In the timeline, we
note that the VM is completely unreachable to any clients
from when it is suspended at loc1 (step 2) to when it receives
the first packet at loc2 (step 6). We noticed that a large fraction
of the downtime is due to the hypervisor at loc2 waiting
for the hypervisor at loc1 to close the connection used to
transfer the VM state during migration. We modified Xen
to avoid this wait condition (Mod). With this extension, we
found that the downtime reduced to around 170 msec. Our
user study (Section IV-A) shows that this downtime is in fact
not noticeable by humans during gameplay.

-20

-15

-10

-5

 0

 5

 10

 15

 0 5 10 15 20

U
se

r
R

a
tin

g
 -

 P
e
rc

e
n
t
D

iff
e
re

n
ce

User Ids - sorted according to difference

High Latency
Low Latency

Fig. 4: Percentage difference in user ratings

IV. EVALUATION

We next study the performance of SMOG in practice. First,
to understand the effect of SMOG end-user game experience,
we conduct a user study (Section IV-A). Second, to understand
performance issues in SMOG under varying workloads, we
instrument a deployment of SMOG to directly measure the
relevant performance metrics (Section IV-B).

A. User Study

SMOG aims to minimize the effects of migration on end
users. To evaluate how well it achieves this goal, we conducted
a user study using Quake III running on SMOG.

Scenarios presented to users: In this study, we consider four
different scenarios: (a) L-NM, a low latency setting with no
migration, (b) LL-M, a low latency setting with migration to
another low latency server, (c) H-NM, a high latency setting
with no migration and (d) HL-M, a high latency setting with
migration to a low latency server. We use 50ms as the RTT
in the low latency (L) scenarios, since it is known to be the
limit above which user performance degrades [27]. The high
latency (H) value of 200ms is the 95th percentile value of
RTTs to the top 500 Quake III servers around the world [4]
from a host on the UIUC campus.

Procedure: In our user study, each participant plays a trial
consisting of a pair of game scenarios, either (L-NM, LL-M)
or (H-NM, HL-M). To remove any bias caused by the order
in which these scenarios are played, we randomize the trial
order by having each player play each trial pair twice, in both
possible orders (4 trial pairs and 8 games total). The users
are told that they would be playing the game under network
conditions that may differ across trials, but they are not given
the specific details of the differences between them.
Before the experiment, each user plays a practice match

for 5 minutes on the q3dm1 map of Quake III over a LAN
environment. Each game round in the experiment lasts one
minute. All rounds are death match games in which the user
plays against a computer bot on the game server. We use
the q3dm1 map since it is small enough for a controlled
experiment. In every round, both the human player and the bot
start from fixed spawn points. For scenarios with migration,
the migration completes around half-way into the game. This
ensures that users have (almost) equal time to play under
different latencies, before and after the server’s migration.

Results: Our user study consisted of a total of 24 participants
and 96 trials. We use two metrics to measure SMOG’s effec-

 0

 0.5

 1

 1.5

 2

 2.5

 3

L−NM LL−M H−NM HL−M

 A
ve

ra
g
e
 u

se
r

ki
lls

 Game scenario

All
Ex
In−Ex

Fig. 5: Average user Kill Count

tiveness: (a) User Ratings: In each round, users rate the quality
of their game experience on a scale of 1-10 based on the lag
experienced during the round, with 10 being no observable
lag at all and 1 being completely unplayable. This provides a
subjective evaluation of the user’s experience. (b)Kill Counts:
To get an objective measure of the user’s performance, we
measure the number of kills a user accomplishes in each of
the rounds played. We divide all the users (All) into two
groups: experienced (Ex) and inexperienced (In-Ex). Expe-
rienced players are those who reported that they played FPS
games regularly at least once a week at some point in their
life (around 50% of users in our study).
Figure 4 shows the percentage difference between the

average ratings given by the users for the scenarios with
and without migration for a particular latency case. We find
that this difference between the ratings varies only between
−15% to 10% for both high and low latency settings. The
distribution of differences is centered on 0 (no difference)
and has about equal weight on either side. This allows us
to conclude that the downtime due to migration in SMOG
cannot be perceived by users. We note that the same results
hold when experienced (Ex) and inexperienced users (In-Ex)
are considered separately.
Figure 5 shows the average kill count of all the users for the

different scenarios. The error bars indicate the 95% confidence
interval. Comparing the NM and M scenarios for a particular
latency setup, we see that presence of migration does not have
a significant negative affect on user performance in the game,
when all the users or just the experienced users are considered.
In fact, migration significantly increases the kill count for
inexperienced users in the high latency scenario (H-NM vs.
HL-M) showing that migration actually helps users.

B. Performance Analysis

To generalize our results, we studied the performance of
SMOG under a variety of network conditions. We use ap-

plication downtime as the main metric to evaluate SMOG’s
performance as it directly affects user experience in online
games. In these experiments, we varied the bandwidth avail-
able for migration from 50Mbps to 1000Mbps (in steps of
50Mbps) and the RTT of the link used for migration from
25msec to 200msec (in steps of 25msec). All experiments
were performed using our modified Xen hypervisor (Section
III) with a 1GB paravirtualized VM. We found that SMOG
works seamlessly for bandwidths more than around 125Mbps
and RTTs less than 120msec. For higher RTTs, we found

that the downtime can be noticed by the users of Quake III.
However, using other optimizations to Xen’s migration (e.g.,
[38]), we can further decrease the downtime and SMOG can
work seamlessly for bandwidths as low as 50Mbps and RTTs
as high as 180msec.

V. RELATED WORK

Related work is discussed throughout the paper, but we
revisit two key related areas here:
Live migration of virtual machines: Virtual machine mi-

gration techniques have been proposed earlier (e.g., Xen [26])
but they assume that the physical machines are on a single
LAN and cannot be directly adopted in wide area settings.
Other approaches [7], [20] require modifications to the net-
work or application components. In contrast, SMOG targets
wide area settings, provides techniques to minimize outages
to a few hundreds of milliseconds and requires no modifica-
tions to applications or the network components. Building on
[32] and [39], SMOG supports highly-interactive applications
by using VPLS/VLANs to perform seamless dynamic WAN
migration and route control to reap the benefits offered by
such migration. Our implementation of SMOG builds on
the migration primitives provided by Xen [12] and proposes
modifications to ensure seamless migration.

Dynamic resource management for games: Many solu-
tions for resource management in games [31], [33] focus on
determining how many servers are needed to handle player
load while SMOG determines when and where to move
those servers. Further, our work is complementary to other
approaches [17] which aim at migrating individual objects
rather than the entire game state.

VI. CONCLUSIONS

This paper presented SMOG, a cloud framework for highly-
interactive applications such as online games. Unlike tradi-
tional cloud computing platforms, SMOG’s infrastructure is
distributed across the wide area and integrated with network
support to provide enhanced service to online games. We
showed that games can achieve better end user experiences
using SMOG’s central primitive: dynamic, seamless, wide area
virtual machine migration. We realized a working prototype of
SMOG on a Tier-1 ISP’s backbone network, achieving only
around 200msec as application downtime during migration.
Our evaluation results show that SMOG’s dynamic hosting
is transparent to the end-users and performs well under a
variety of operating conditions. While this paper focuses on
highly interactive online games, SMOG can also be used for
improving the performance of other latency-sensitive network
applications. We believe SMOG is a first step towards the
broader challenge of integrating cloud resources with the
network, a requirement for realizing the full potential of cloud
computing for highly-interactive applications.

REFERENCES

[1] Counter-strike: Source on steam. http://store.steampowered.com/css.
[2] Counter-Strike trace. http://www.thefengs.com/wuchang/work/cstrike/.
[3] DRBD. http://www.drbd.org/.

[4] Game tracker. http://www.gametracker.com/.
[5] IpInfoDB. http://ipinfodb.com/.
[6] OnLive. http://www.onlive.com.
[7] Open Flow Demo. http://www.openflowswitch.org/wp/2008/12/video-

of-mobile-vms-demo/.
[8] QStat. http://www.qstat.org/.
[9] Quake III Arena. http://www.quake3arena.com/.
[10] Steam Game Statistics. http://steampowered.com/status/game stats.html.
[11] Unreal Tournament. http://www.unrealtournament.com/.
[12] Xen. http://www.xen.org.
[13] S. Agarwal and J. R. Lorch. Matchmaking for online games and other

latency-sensitive P2P systems. In SIGCOMM, 2009.
[14] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. V. der

Merwe. Anycast CDNS revisited. In WWW, 2008.
[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM, 2011.
[16] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-

pool. The effects of loss and latency on user performance in unreal
tournament 2003. In NetGames, 2004.

[17] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz. Latency
reduction by dynamic core selection and partial migration of game state.
In NetGames, 2008.

[18] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang. Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games. SIGCOMM CCR, 38(4), 2008.

[19] A. Bharambe, J. Pang, and S. Seshan. Colyseus: a distributed architec-
ture for online multiplayer games. In NSDI, 2006.

[20] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-
area migration of virtual machines including local persistent state. In
VEE, 2007.

[21] M. Caesar and J. Rexford. BGP routing policies in ISP networks. In
IEEE Network Magazine, 2005.

[22] C. Chambers, W. Feng, S. Sahu, and D. Saha. Measurement-based
characterization of a collection of on-line games. In IMC, 2005.

[23] K. Chen, P. Huang, and C. Lei. Effect of network quality on player
departure behavior in online games. IEEE Trans. Parallel Distrib. Syst.,
2009.

[24] K. Chen, P. Huang, G. Wang, C. Huang, and C. Lei. On the sensitivity
of online game playing time to network qos. In INFOCOM, 2006.

[25] X. Chen, Z. Morley, M. Jacobus, and V. Merwe. Shadownet: A platform
for rapid and safe network evolution. In Usenix ATC, 2009.

[26] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[27] M. Claypool and K. Claypool. Latency and player actions in online
games. Commun. ACM, 49(11), 2006.

[28] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency
between arbitrary Internet end hosts. In IMW, 2002.

[29] T. Henderson. The effects of relative delay in networked games. PhD
thesis, University of London, Apr. 2003.

[30] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet
routing convergence. In SIGCOMM, 2000.

[31] P. Quax, J. Dierckx, B. Cornelissen, G. Vansichem, and W. Lamotte.
Dynamic server allocation in a real-life deployable communications
architecture for networked games. In NetGames, 2008.

[32] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe. Live data center
migration across WANs: a robust cooperative context aware approach.
In INM, 2007.

[33] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha. Implementation
of a service platform for online games. In NetGames, 2004.

[34] D. Shmoys and E. Tardos. An approximation algorithm for the
generalized assignment problem. 1993.

[35] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of hot-
potato routing in ip networks. In SIGMETRICS, 2004.

[36] V. Valancius, N. Feamster, J. Rexford, and A. Nakao. Wide-area route
control for distributed services. In USENIX ATC, 2010.

[37] A. F. Wattimena, R. E. Kooij, J. M. van Vugt, and O. K. Ahmed.
Predicting the perceived quality of a first person shooter: The Quake
iv G-model. In NetGames, 2006.

[38] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
Cloudnet: dynamic pooling of cloud resources by live wan migration
of virtual machines. In VEE, 2011.

[39] T. Wood, P. Shenoy, A. Gerber, K. K. Ramakrishnan, and J. Van der
Merwe. The case for enterprise-ready virtual private clouds. In
HotCloud, 2009.

