
ABI Compatibility Through a Customizable Language

Kevin Atkinson Matthew Flatt Gary Lindstrom
University of Utah, School of Computing

{kevina,mflatt,gary}@cs.utah.edu

Abstract
ZL is a C++-compatible language in which high-level constructs,
such as classes, are defined using macros over a C-like core lan-
guage. This approach makes many parts of the language easily
customizable. For example, since the class construct can be de-
fined using macros, a programmer can have complete control over
the memory layout of objects. Using this capability, a programmer
can mitigate certain problems in software evolution such as fragile
ABIs (Application Binary Interfaces) due to software changes and
incompatible ABIs due to compiler changes. In this paper, we out-
line the problem of fragile and incompatible ABIs and show how
ZL can be used to solve them.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Languages, Design

Keywords Macros, C, C++, ABI, Binary Compatibility

1. Introduction
There are two types of programming interfaces to a library: theAp-
plication Programming Interface(API) and theApplication Binary
Interface(ABI). The API defines the ways a programmer may re-
quest services from the library. Some of the constituents of an API
in an object-oriented language are the names of classes, the meth-
ods they support, and the types of the arguments that methods take.
What goes into the API is under the control of the library designer.
An ABI is the object-code equivalent of an API. It is the low-level
interface between the application and the library. A compiler im-
plements a mapping from a library’s API to its ABI. Some of the
constituents of the mapping include calling conventions and class
layout. Unlike the API, the programmer has little to no control of
the ABI in most languages.

When a library designer changes an API in a way that preserves
backwards compatibility with previous releases,source code com-
patibility is maintained. That is, existing applications that use a li-
brary do not need to change at the source level. However, even if
source code compatibility is preserved,binary compatibilityneed
not be preserved; existing applications may need to be recompiled
because the compiler typically does not guarantee ABI compatibil-
ity with API compatibility.

In situations when a library is used by a small number of pro-
grams that can easily be recompiled, breaking binary compatibility

c© ACM, 2010. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.

The definitive version was published inProceedings of the Ninth International Con-
ference on Generative Programming and Component Engineering (GPCE’10), Oc-
tober 10–13, 2010, Eindhoven, The Netherlands.http://dx.doi.org/10.1145/
1868294.1868316

between releases may be acceptable. However, if a large number of
programs depend on the library, then recompiling is not an accept-
able option as it can take anywhere from hours to days to recompile
everything. In addition, in many situations the source code for ap-
plications using the library is not available, thus making upgrading
impossible unless binary compatibility is preserved.

Preserving binary compatibility for C++ programs is difficult
because the typical C++ ABI is extremely fragile. Seemingly sim-
ple changes, such as adding methods, may break binary compati-
bility. In fact, almost any change to a class declaration will likely
break binary compatibility and require applications that use the li-
brary to be recompiled. This is a major problem in C++ software
evolution, especially because the source code of an application is
not always available when libraries need to be upgraded.

In addition, the C++ ABI is not well defined as every compiler
implements the C++ standard in a slightly different way. Libraries
compiled with one compiler, such as Visual C++, generally will not
be usable by applications compiled with a different compiler, such
as GCC. Furthermore, the ABI may change between releases of
the same compiler. Thus, upgrading to a newer compiler may also
break binary compatibility.

In contrast to C++, the C ABI is simple and well defined for
a given architecture and operating system. Since the C ABI is far
simpler than the C++ ABI, preserving binary compatibility is much
easier. Furthermore, since the C ABI is well defined for a given
architecture, compatibility between compilers is a non-issue. In
fact, some C++ applications export only a C ABI for these very
reasons.

The C ABI is successful because of its simplicity and consis-
tency. That simplicity, in turn, is based in part on the simplicity of
the C language. As languages become more complicated, so do the
number of choices to be made in an ABI. Thus, ABIs for compli-
cated languages, such as C++, tend to vary among compilers and
even among versions of a compiler. Standardizing on one C++ ABI
would solve the incompatibility problem. Although some effort has
been made in that area with Itanium C++ ABI [1], there are still sev-
eral C++ ABIs in common use, most notably the GCC and Visual
C++ ABIs.

Even if all C++ compilers standardized on a single ABI, the
problem of preserving binary compatibility between releases of
a library would still be a major problem. This is because most
C++ ABIs, including the Itanium C++ ABI, are optimized for
performance, not preserving binary compatibility. Previous designs
for a less fragile ABI for C++ [2, 3] make significant sacrifices in
performance. Thus, library designers must make a choice between
breaking binary compatibility between releases or contorting their
programs to preserve it by using a variety of programming idioms.

We could try to add a few extensions to C++, such as a choice
of different ABIs or support for common programming idioms,
but a fixed number of extensions will never be enough as the
problem of preserving binary compatibility is far too complex. A
monolithic language cannot and should not support every possible

1

rarely needed case. A more general and integrated approach is an
extensible compiler. Traditional extensible compiler designs treat
a compiler extension as an entity separate from the code to be
compiled. On the other hand, amacro systemacts as an extensible
compiler and also allows the programmer to implement code and
compiler extensions together, thus elevating compiler extensions to
the level of a library. This, in turn, allows different ABI choices to
be incorporated with different parts of an application. For example,
one class can use an ABI optimized for performance while another
uses an ABI aimed at preserving binary compatibility.

A simple macro system, such as the C preprocessor, is not ad-
equate for defining compiler extensions. Rather, the macro system
must be an integral part of the language that can do more than re-
arrange syntax. In addition to providing macro primitives, a lan-
guage for giving the programmer control over an ABI must include
a carefully designed core that allows higher-level constructs, such
as classes, to be implemented via macros. This capacity enables the
programmer to redefine key aspects that affect ABI attributes, such
as class layout.

ZL, our new C++ compatible systems programming language in
development, does exactly this. Our contribution in this paper is to
demonstrate how ZL can be used to mitigate the problem of binary
incompatibility through the use of macros. For example, we show
how to avoid breaking binary compatibility when adding new data
members or methods to a class. We also demonstrate how to match
other compilers’ ABIs with alternative class implementations, and
how classes with different ABIs can be used in the same program.

The rest of this paper is organized as follows. Section 2 explores
in detail the the fragility of C++ ABIs and how a macro language
can help. Section 3 describes ZL. Section 4 illustrates how ZL can
be used mitigate some of the example problems from Section 2.
Section 5 summarizes the current state of the ZL compiler.

2. The C++ ABI and Binary Compatibility
There are many components to a C++ ABI. The primary compo-
nents are: the parts in common with C, such as function calling
conventions; class layout; name mangling, which includes naming
of template instances; linkage specification; and exceptions. This
paper focuses primarily on class layout since it causes the most
problems with binary comparability, but our solution is designed to
apply to the other problems as well.

2.1 Binary Compatibility

One way to break binary compatibility in C++ is to add new
data members to a class. This change breaks binary compatibility
because it changes the size of the class, which is used at compile
time when allocating objects on a stack or inlining one object in
another. A solution to this problem is to fix the size of a class by
adding dummy members to allow room for future expansion. That
way, the class size can remain constant. Another solution is to store
all private data members in a separate object, commonly known
as the pimpl (short for Private Implementation) idiom. A hybrid
approach, which can be used when the class size is already fixed
but there is not enough room for all the new data members, is to
store only the new data members in a separate object.

All of these idioms are possible to implement without any addi-
tional support in C++. However, the first solution, adding dummy
data members, is non-portable because it depends on knowing the
size of the object on a particular architecture. With some clever pro-
gramming it possible to avoid having to know those sizes, but none
of the solutions is particularly elegant or transparent. The pimpl id-
iom is tedious for the programmer to use as all accesses to private
data members require an extra level of indirection. The hybrid ap-
proach is even worse as some of the data members are accessed di-
rectly and others require indirection. Furthermore, switching tech-

niques requires changing all methods that use the private data mem-
ber.

Just as adding data members can break binary compatibility, so
can adding new virtual methods. Adding virtual methods changes
the size of the vtable, and thus, with most ABIs, changes the offsets
of all the methods’ function pointers for any subclasses. However,
unlike adding new data members to a class, the C++ programmer’s
options are limited. It is possible to fix the size of the vtable by
adding dummy methods, but techniques such as the pimpl idiom
do not apply since the programmer has no control over how the
vtable is laid out.

Reordering methods in a class declaration can break binary
compatibility, because it changes the offsets of the methods’ func-
tion pointers in the vtable. There is no real solution to this in C++,
other than to just be aware of this fact and not do it.

Removing data members and methods will break ABI compat-
ibility in C++, because it changes the offset of any members after
the removed one. The only way to solve this problem in C++ is
to avoid removing the member, or by instead replacing it with a
dummy member. This way the layout is preserved. The unused slot
can later be replaced with a new member in order to save space, or
it can simply be left unused.

Adding parameters to a function or method in C++ also breaks
binary compatibility,1 because it changes the mangled name of the
symbol used to represent the function. This occurs because the
types of the parameters are encoded as part of the symbol to support
overloading. Since C++ allows for overloading, a programmer can
avoid this problem by defining a new function with the added
parameter. The old function can then call the new one.

Changing compilers can also break binary compatibility, since
ABIs differ between compilers and sometimes between different
versions of the same compiler. Thus, when using C++ libraries, not
only is the specific version of the library important, but so is the
compiler used to compile it. Unfortunately, there is no good solu-
tion to this problem in C++, other than always using a compatible
compiler when compiling the library. The only way to support a
different, incompatible, compiler is to avoid directly using the C++
ABI altogether. A typical work-around is to create a C API on top
of the internal C++ API, and then only export the C API. This tech-
nique effectively defines a program-specific ABI that the library
developer has complete control over. It may seem silly for a C++
program to have to use a C API to use another C++ library, but
currently there is no other way around the problem.

2.2 Macros to the Rescue!

A good macro system can automate all the programming idioms
of the previous section. In addition, when programming idioms
are not sufficient, a macro system that defines classes via macros
gives the library implementer the ability to devise novel ways to
control the class layout. The implementers can either replace the
existing macro implementation, or, if class macro is designed to
be customizable, tweak the existing ABI by reusing the existing
implementation.

Here are some of the many ways a macro system can help:

• Adding new data members.When fixing the size of a class, a
macro can manage the size of the object and not the program-
mer. When implementing the pimpl idiom through a macro, the
extra indirection is invisible to the programmer. Furthermore,
the programmer can switch from one technique to another with-
out large-scale source code changes.

1 Since C++ supports default values for parameters, adding arguments does
not necessarily break source-code compatibility.

2

• Adding new virtual methods.With a macro system that imple-
ments vtables as classes, all of the techniques that apply to
classes also apply to the vtable. All that is needed is a way to
specify how the vtable class is implemented, something that is
trivial if classes are implemented via macros.

• Reordering methods.With a macro system it is possible to avoid
the problem by storing the offsets in a separate interface file that
will be updated when new methods are added. When combined
with fixing the size of the vtable, this technique will also allow
methods to be added anywhere in the class declaration, rather
than having to add them at the end.

• Removing data members.A macro system can help by freezing
the layout as just discussed. When this is done, the macro
system can automatically insert a dummy member in place of
the removed member. Later on, the unused slot can be replaced
with a new member.

• Matching existing ABIs.If classes are implemented via macros,
then the programmer has control of how classes are imple-
mented, and thus has control over which ABI is used. In fact,
a programmer can use classes with different ABIs within the
same program. For example, the ABI used can be specified as
part of the class declaration. For using existing code, the ABI
can be specified on a per header-file basis.

The above are some of the more common solutions to ABI
problems. None of the solutions is perfect. For example, of the
techniques used to preserve binary compatibility when adding new
data members, reserving space ahead of time is a good solution
when performance really matters but requires planning ahead; the
pimpl idiom has a small performance overhead which some may
find unacceptable; and the hybrid approach could be seen as overly
complex. In addition there are many more, less common techniques
for preserving binary compatibility not listed here. Thus, due to the
sheer number of solutions and the various trade-offs involved, none
of them are good candidates for language extensions. However,
with a good macro system, the solutions can be implemented as
libraries.

2.3 User Roles

A good macro system can benefit all users, but not everyone needs
to know the full details of how macros work. There are three pri-
mary classes of users: 1)End Users or Library Consumers, who
just use the library, but can benefit from increased binary compati-
bility; 2) Library Implementers, who can use the macro libraries to
provide increased binary comparability, but do not need to know the
details of the macro libraries themselves; and 3)Tool Implementers,
who provide the macro libraries for the library implementers.

With traditional compiler designs, tool implementers are in rel-
atively short supply, and they face a daunting task on two fronts:
they must modify the compiler, and they must convince users of
the library to use the modified compiler. Our approach to improv-
ing ABI compatibility is to simplify the tool implementer’s job,
so that library implementers will have better tools and end users
will have more compatible libraries. Specifically, with a macro-
extensible compiler that can express ABI details through the macro
layer, tool implementers gain a simpler framework for implement-
ing more interoperable designs, and they get a more composable
framework so that multiple tools can be combined. In this way, a
tool becomes more like a library.

Indeed, just as library consumers can become library imple-
menters when they want to generalize their application code so
that others can use it, library implementers can become tool im-
plementers when they need to do something unusual for which a
macro library does not yet exist. The key benefit of a macro system

in this case is that it allows a library implementer to easily become
a tool implementer.

3. ZL
ZL is a C++-compatible language that solves ABI compatibility
problems by giving the programmer as much control as possible.
ZL provides a C-like core and enough of C++ to let the type-
checker and compiler do its job without committing to key parts
of the ABI such as class layout. The rest is defined using a sophis-
ticated macro system.

The ZL library provides a default implementation of language
constructs such as classes. The implementation can be overridden
or extended by defining new macros in a source file or by importing
a macro library. Macros, including those that define the behavior
of a language construct, are scoped and can be shadowed. This
means it is possible to use two different class ABIs by loading
one class library and defining some classes, then loading another
library and define some more classes. A more convenient solution
is to add some syntax for selecting the ABI for a class, which ZL
also supports.

ZL provides two kind of macros:pattern-based macrosthat
simply rearrange syntax, andprocedural macrosthat are functions
that perform more complex manipulation of syntax or take action
based on the input, as is necessary to implement classes. In addition
ZL provides user types which are the building blocks for classes.

3.1 Macros

The simplest form of a macro is apattern-based macro, which
is simply a transformation of one piece of syntax to another. For
example, consider anor macro that behaves like C’s|| operator,
but instead of returning true or false, returns the first non-zero
value. Thus,or(0.0, 6.8) returns6.8. To define it, one uses
ZL’s macro form, which declares a pattern-based macro:

macro or(x, y) { ({typeof(x) t = x; t ? t : y;}); }

In ZL, as in GCC, the({...}) is a statement expression whose
value is the result of the last expression, andtypeof(x) gets
the type of a variable. Like Scheme macros [4], ZL macros are
hygienic, which means that they respect lexical scope. For example,
thet used inor(0.0, t) and thet introduced by theor macro
remain separate, even though they have the same symbol name.

Theor macro above has twopositionalparameters. Macros can
also havekeywordparameters anddefault values. For example:

macro sort(list, :compar = strcmp) {...}

defines the macrosort, which takes the keyword argument
compar, with a default value ofstrcmp. A call to sort will look
something likesort(list, :compar = mycmp).

3.2 Classes and User Types

Most of the class implementation in ZL is left to macros, but since
classes are an integral part of the C++ type system, ZL still needs
to have some notion of what a class is.User typesare ZL’s minimal
notion of classes. A user type has two parts: a type, generally a
struct, to hold the data for the class instance, and a collection of
symbols for manipulating the data.

The collection of symbols is amodule. For example

module M { int x;
int foo(); }

defines a module with two symbols. Module symbols are used by
either importing them into the current namespace, or by using the
special syntaxM::x, which accesses thex variable in the above
module.

3

A user type is created by using theuser_type primitive, which
serves as the module associated with the user type. A type for the
instance data is specified usingassociate_type.

As an example, the class2

class C { int i;
int f(int j) {return i + j;} };

expands to something like:

user_type C {
struct Data {int i;};
associate_type struct Data;
macro i (:this ths = this) {(*(C *)ths)..i;}
macro f(j, :this ths = this) {f‘internal(ths, j);}
int f‘internal(C * fluid this, int j) {return i + j;}

}

which creates a user typeC to represent a classC; the structural type
Data is used for the underlying storage.

To allow user types to behave like classes, member-access syn-
tax gets special treatment. For example, ifx is an instance of the
user type above,x.i calls theimacro in theCmodule, and it passes
a pointer tox as thethis keyword argument. This protocol allows
x.i to expand to something that accesses thex field of the underly-
ing struct, which can be done using the special syntaxx..i. Thus,
i effectively becomes a data member ofx. Methods can similarly
be defined. For example,x.f(12) will call the f macro with one
positional parameter and thethis keyword argument.

The default value for thethis keyword argument is neces-
sary to support the implicitthis variable when data members
and methods are accessed inside method definitions. The function
f‘internal, which implements thef method, demonstrates this.
(The‘internal simply specifies an alternative namespace for the
f symbol so that it does not conflict with thef macro.) The first
parameter of the function isthis, which puts the symbol into the
local environment. Wheni is called inside the function body the
this keyword argument is not supplied, since we are not using the
member access form. Therefore, thethis keyword argument de-
faults to thethis specified as the default value, which binds to the
this in the local environment. Thefluid keyword is necessary to
makes thethis variable visible to thei macro; with normal hy-
giene rules, binding forms at the call site of a macro are invisible,
as symbols normally bind to whatever is visible where the macro
was defined.

User types can also be declared to have a subtype relationship.
The declaration specifies a macro for performing both casts to and
from the subtype. Subtypes are used to implement inheritance. For
example the class:

class D : public C { int j; };

expands to something like:

user_type D {
import C;
struct Data {struct C::Data parent; int j;};
associate_type struct Data;
macro _up_cast (ths) {&(*ths)..parent;}
macro _down_cast (other) {(D*)other;}
make_subtype C _up_cast _down_cast;
macro j (:this ths = this) {(*(D*)ths)..j;}

}

New symbols defined in a module are allowed to shadow im-
ported symbols, so the fact that there is also aData in C does not
create a problem. Also, note that there is no need to redefine the
data member and method macros imported fromC, since the exist-
ing ones will work just fine. They work because the class macro

2 For simplicity, we leave off access control declarations and assume all
members are public in this paper.

makes sure that theths macro parameter is cast to the right type
before anything is done with it. For example, ify is an instance
of the typeD, theny.i expands to(*(C*)&y)..i. When ZL tries
to cast&y to C*, the D::_up_cast macro is called and the ex-
pression expands to((*&(*&y)..parent))..i, which simplifies
to y..parent..i. Method calls expand similarly, except that the
cast is implicit when theths macro parameter is passed into the
function.

If a class contains any virtual methods, then a vtable is also
created. The macro that implements the method then looks up the
function in the vtable instead of calling it directly. For example, if
f was a virtual function in the classC, then the macro forf would
look something like:

macro f(j, :this ths = this) {_vptr->f(ths, j);}

where_vptr is a hidden member of the class that contains a pointer
to the virtual table. The vtable is also a class, so to implement
inheritance with virtual methods a child’s vtable simply inherits
the vtable of the parent. To override a method, the constructor for
the child’s vtable simply assigns a new value to the entry for the
method’s function pointer.

3.3 Parsing and Expanding

The macros shown so far are pattern-based macros. Writing more
sophisticated procedural macros, such as those required to imple-
ment classes, requires some knowledge of parsing and macro ex-
pansion in ZL. This section gives the necessary background mate-
rial, while the next section details how to write such macros.

To deal with C’s idiosyncratic syntax while also allowing the
syntax to be extensible, ZL does not parse a program in a single
pass. Instead, it uses an iterative-deepening approach to parsing.
The program is first separated into a list of partly parsed declara-
tions. Each declaration is then parsed. As it is being parsed and
macros are expanded, sub-parts, such as code between grouping
characters, are further separated.

ZL’s iterative-deepening strategy is needed because ZL does not
initially know how to parse any part of the syntax involved with a
macro. When ZL encounters something that looks like a function
call, such asf(x + 2, y), it does not know if it is a true function
call or a macro use. If it is a macro use, the arguments could be
expressions, statements, or arbitrary syntax fragments, depending
on the context in which they appear in the expansion. Similarly, ZL
cannot directly parse the body of a macro declaration, as it does not
know the context in which the macro ultimately will be used.

More precisely, the ZL parsing process involves three inter-
twined phases. In the first phaseraw text, such as(x+2), is parsed.
Raw text is converted into an intermediate form known as asyntax
object, but which can still have raw-text components. (Through-
out this paper we show syntax objects as S-expressions, such as
("()" "x+2").) In the second phase, the syntax object is ex-
panded as necessary and transformed into other syntax objects by
expanding macros until a fixed point is reached. In the third phase,
the fully expanded syntax object is compiled into anAST, which is
shown as a rounded block in Figure 1.

Figure 1 demonstrates ZL’s parsing and expansion process. The
top box contains a simple program as raw text, which is first parsed.
The result is asyntax list(internally represent as a@) of stmt’s
where eachstmt is essentially a list of tokens, as shown in the
second box. Each statement is then expanded and compiled in turn,
and is added to the top-level environment (which can be thought
of as an AST node). The third box in the figure shows how this
is done, which requires recursive parsing and expansion. The first
stmt is compiled into thefun f, while the body of the function is
left unparsed. Next, thefun is compiled into an AST. During the
compilation, the body is expanded. Since it is raw text, this process

4

inline int f() {int x = 10; return x;}
int main() {return f();}

↓PARSE↓
(@ (stmt inline int f ("()" "") ("{}" "int x = 10; return x;")

(stmt int main ("()" "") ("{}" "return f();")))

↓EXPAND & COMPILE↓�

�

	

TOP-LEVEL ENVIRONMENT

(stmt inline int f ...)

↓EXPAND↓
(fun f "()" int :inline ("{}" "int x = 10; return x;"})

↓COMPILE↓�

�

	

FUN
inline true
id f
type int

body

("{}" "int x = 10; return x;")

↓EXPAND & REPARSE↓
(block (stmt int x = 10)

(return (exp x)))

↓COMPILE↓�

�

	

BLOCK

(stmt int x = 10))

↓EXPAND↓
(var x (int) (exp 10))

↓COMPILE↓�

�
	VAR

...

(return (exp x))

↓...↓

(stmt int main ...)

↓...↓

Figure 1. How ZL compiles a simple program. The body off is reparsed and expanded as it is being compiled.

involves parsing it further, which results in ablock. Parsing the
block involves expanding and compiling the sub-parts. Eventually,
all of the sub-parts are expanded and compiled, and the fully parsed
AST is added to the top-level environment. This process is repeated
for the functionmain, after which the program is fully compiled.

3.4 Procedural Macros

Some macros must take action based on the input. One example
is the built-in class macro. Another example is a macro that fixes
the size of the class, since the amount of padding it needs to add
depends on the numeric value of the size passed in. For these
situations, ZL providesprocedural macros, which are functions
that transform syntax objects.

Figure 2 demonstrates the essential parts of any procedural
macro. The macro is defined as a function that takes a syntax object
and environment, and returns a transformed syntax object. Syntax
is created using thesyntax form. Thematch function is used to
decompose the input while thereplace function is used to rebuild
the output. Finally,make_macro is used to create a macro from a
function. More interesting macros use additional API functions to
take action based on the input. Figure 3 defines the key parts of the
macro API, which we describe in the rest of this section.

Syntax * or(Syntax * p, Environ *) {
Match * m = match(NULL, syntax (_, x, y), p);
return replace(syntax

{({typeof(x) t = x; t ? t : y;});},
m, new_mark());

}
make_macro or;

Figure 2. Procedural macro version ofor macro from Section 3.1

Syntax is created using thesyntax and raw_syntax forms.
The different forms create different types of code fragments. In
most cases, thesyntax {...} form can be used, such as when a
code fragment is part of the resulting expansion; the braces will not
be in the resulting syntax. If an explicit list is needed, for example,
when passed tomatch as in Figure 2, then thesyntax (...)
form should be used. Neither of these forms create syntax directly,
however. For examplesyntax {x + y;} is first parsed as("{}"
"x + y;"), before eventually becoming(plus x y). When it is
necessary to create syntax directly, thesyntax ID form can be
used for simple identifiers; for more complicated fragments the
raw_syntax form can be used in which the syntax is given in S-
expression form.

5

Syntax forms:
new_mark() — returnsMark *
syntax (...)|{...}|ID — returnsUnmarkedSyntax *
raw_syntax (...) — returnsUnmarkedSyntax *
make_macro ID [ID];

Call back functions:
Match * match(Match * prev, UnmarkedSyntax * pattern,

Syntax * with)

Match * match_args(Match *, UnmarkedSyntax * pattern,

Syntax * with)

Syntax * match_var(Match *, UnmarkedSyntax * var);

Syntax * replace(UnmarkedSyntax *, Match *, Mark *)

size_t ct_value(Syntax *, Environ *)

Syntax * error(Syntax *, const char *, ...)

Figure 3. Macro API

The match function decomposes the input. It matches pattern
variables (the second parameter) with the arguments of the macro
(the third parameter). If it is successful, it prepends the results
to prev (the first parameter) and returns the new list. Ifprev is
NULL, then it is treated as an empty list. In the match pattern a
_ can be used to mean “don’t care.” The match is done from the
first part of the syntax object. That is, given(plus x y), the first
match isplus. Since the first part is generally not relevant, ZL
providesmatch_args, which is like match except that the first
part is ignored. For example,match_args could have been used
instead ofmatch in Figure 2.

The replace function is used to rebuild the output. It takes
a syntax object (the first parameter, and generally created with
syntax), replaces the pattern variables inside it with the values
stored in theMatch object (the second parameter), and returns a
newSyntax object.

The final argument toreplace is themark, which is used to
implement hygiene. A mark captures the lexical context in which
the macro is defined. Syntax objects created withsyntax do not
have any lexical information associated with them, and are thusun-
marked(represented with the typeUnmarkedSyntax). Therefore,
it is necessary to attach lexical information to them by passing in a
mark created withnew_mark (the third parameter toreplace).

Match variables exist only inside theMatch object. When it is
necessary to access them directly, for example, to get a compile-
time value,match_var can be used; it returns the variable as a
Syntax object, orNULL if the match variable does not exist. If
the compile-time value of a syntax object is needed,ct_value
can be used, which will expand and parse the syntax object and
return the value as an integer. When it is necessary to report an
error message, theerror function can be used; it creates a syntax
object that results in an error when parsed.

Once the function for a procedural macro is defined, it must be
declared as a macro usingmake_macro.

This section only gives a small part of the macro API. Some of
the more important functions not shown here include functions for
controlling the visibility of macros and partly expanding syntax.

3.5 The Class Macro

We have now presented most of the necessary parts that make up
the class macro. Sections 3.1 and 3.2 give a good idea of the code
generated, while Sections 3.3 and 3.4 give a good idea of what
is necessary to generate that code. However, the class macro uses
more of ZL than we have presented here, which includes more of
ZL’s macro API. It also uses ZL’s support forsyntax macros, which
work with arbitrary syntax, as opposed tofunction-call macros,

which only work with syntax that takes the shape of a function call
or identifier.

The core class macro is currently around 900 lines of code.
The implementation is highly reusable, because it is a class itself
that is organized around methods that can be overridden to extend
its functionality. The bootstrapping problem of writing methods to
implement classes is solved by having a simpler, more compact
class system just to implement the class macro.

In addition to overriding individual methods, theclass syntax
object can be declared to expand to a completely different macro.
The class macro is defined using the functionparse_class, which
can be called directly so that the new macro can reuse the original
implementation.

4. Mitigating ABI Problems with ZL
ZL can be used to mitigate many of the ABI problems discussed in
Section 2. This section will give the details.

4.1 Adding Data Members without Changing Class Size

Adding data members to a class changes the size of the class, which
will break binary compatibility. To avoid this we must somehow fix
the size of the class.

Fixing the Size of a Class. As described in Section 2, one com-
mon technique to fix the size of the class is to add dummy data
members as placeholders to allow for future expansion. Using the
ZL macro system, it is possible to automate this solution, as shown
in Figure 4. To support this extension the ZL grammar has been en-
hanced to support specifying the size. The syntax for the new class
form is:

class C : fix_size(20) {...};

which will allow a macro to fix the size of the classC to 20 bytes.
The macro in Figure 4 redefines the built inclass macro. It

works by parsing the class declaration and taking its size. If the size
is smaller than the required size, an array of characters is added to
the end of the class to make it the required size.

The details are as follows. Lines 2–7 decompose the class syn-
tax object in order to extract the relevant parts of the class we
need. The@ by itself means that anything after it is optional. The
pattern form matches the sub-parts of a syntax object. The@ be-
fore a identifier means to match any remaining parameters and store
them in a syntax list; thus,body contains a list of the declarations
for the class. Here,:(fix_size fix_size) means to match a
keyword argument of a syntax object; the first part is the syntax to
match against, and the second is the pattern variable to store the
results in.

If the class does not have a body (i.e. a forward declaration) or a
declaredfix_size, then the class is passed on to the original class
macro in line 9. Line 11 compiles thefix_size syntax object to
get an integer value.

Lines 13–21 involve finding the original size of the class. Due to
alignment issues thesizeof operator cannot be used, since a class
such as “class D {int x; char c;}” has a packed size of 5
on most 32 bit architectures, butsizeof(D) will return 8. Thus,
to get the packed size a dummy member is added to the class. For
example, the classD will become “class D {int x; char c;
char dummy;}” and then the offset of the dummy member with
respect to the classD is taken. This new class is created in lines
13–17. Here, the@ before the identifier in the replacement template
splices in the values of the syntax list.

To take the offset of the dummy member of the temporary class,
it is necessary to parse the class and get it into an environment.
However, we do not want to affect the outside environment with
the temporary class. Thus, a new temporary environment is created

6

1 Syntax * parse_myclass(Syntax * p, Environ * env) {
2 Mark * mark = new_mark();
3 Match * m = match_args(0, raw_syntax
4 (name @ (pattern ({...} @body))
5 :(fix_size fix_size) @rest), p);
6 Syntax * body = match_var(m, syntax body);
7 Syntax * fix_size_s = match_var(m, syntax fix_size);
8

9 if (!body || !fix_size_s) return parse_class(p, env);
10

11 size_t fix_size = ct_value(fix_size_s, env);
12

13 m = match(m, syntax dummy_decl,
14 replace(syntax {char dummy;}, NULL, mark));
15 Syntax * tmp_class = replace(raw_syntax
16 (class name ({...} @body dummy_decl) @rest),
17 m, mark);
18 Environ * lenv = temp_environ(env);
19 pre_parse(tmp_class, lenv);
20 size_t size = ct_value(replace(syntax
21 (offsetof(name, dummy)), m, mark), lenv);
22

23 if (size == fix_size)
24 return replace(raw_syntax
25 (class name ({...} @body) @rest), m, mark);
26 else if (size < fix_size) {
27 char buf[32];
28 snprintf(buf, 32, "{char d[%u];}", fix_size-size);
29 m = match(m, syntax buf,
30 replace(string_to_syntax(buf), NULL, mark));
31 return replace(raw_syntax
32 (class name ({...} @body buf) @rest), m, mark);}
33 else
34 return error(p,"Size of class larger than fix_size");
35 }
36 make_syntax_macro class parse_myclass;

Figure 4. Expanding classes to support fixing the size of the class

in line 18. Thetemp_environ macro API function does this by
creating a new scope. Line 19 then parses the new class and adds it
to the temporary environment. Thepre_parse API function partly
expands the passed-in syntax object and then parses just enough of
the result to get basic information about symbols.

With the temporary class now parsed, lines 20–21 get the size
of the class using theoffsetof primitive.

Lines 23–34 then act based on the size of the class. If the size
is the same as the desired size, there is nothing to do and the
class is reconstructed without thefix_size property (lines 23–
25). If the class size is smaller than the desired size, then the class
is reconstructed with an array of characters at the end to get the
desired size (lines 26–32). (Thestring_to_syntax API function
simply converts a string to a syntax object.) Finally, an error is
returned if the class size is larger than the desired size (lines 33–
34).

The last line declares the functionparse_myclass as a syntax
macro for theclass syntax form.

Allowing Expansion. The example in Figure 4 demonstrates one
technique for preserving binary compatibility when adding new
data members. However, this technique requires planning ahead
and reserving enough space for all future extensions. If there is
not enough space reserved but enough space for a pointer, then the
remaining space can be used to point to the rest of the data. For
example:

class C : fix_size(12) { int x; int y; int i; int j; };

could become:

class C { int x; int y;
struct {int i; int j;} * data; }

To do this, we modify the macro definition in Figure 4 to use
the last bit of available space for the overflow pointer instead of
returning an error. To the user of the class, the fact that some data
members are stored in a separate object is completely transparent.
In the above example, ifx is an instance of classC, then data
memberi can be accessed usingx.i. The full expansion of class
C is something like:

class C { int x; int y;
class Overflow {

struct Data { int i; int j; };
struct Data * ptr;
Overflow() {ptr = malloc(sizeof(Data));}
Overflow(const Overflow & o)

{ptr = malloc(sizeof(Data));}
~Overflow() {free(ptr);} };

Overflow overflow;
pseudo_member i int overflow.ptr->i;
pseudo_member j int overflow.ptr->j; };

The key to making this work is the use ofpseudo_member
(which is built into the default class macro) to create pseudo mem-
bers that behave like normal members for most purposes. This in-
cludes properly calling the constructor and destructor for the mem-
ber if it has one. Thus, the members inC::Overflow::Data will
get properly initialized even thoughmalloc/free is used instead
of new anddelete.

In principle, the fix_size macro can work without the
pseudo_member extension, but doing so will greatly increase the
complexity of fix_size and implementingpseudo_member in
the class macro was accomplished in around 6 lines of code. In
addition, a closely related feature,alias, is useful for implement-
ing other features such as anonymous unions. Analias is like a
pseudo_member except that the constructor and destructor for the
member are not called.

The enhancedfix_size macro can also be used to store all the
private data, i.e. the “pimpl idiom,” in a separate object by specify-
ing a size of zero, which thefix_size macro would recognize as
a special case.

Validation. Both previously mentioned techniques have been im-
plemented in ZL as a macro library. All the end user needs to do
is include the library, which will replace the class implementation
with one that supports fixing the size. We have verified that the size
does not change under various scenarios and hence binary compa-
rability will be maintained.

4.2 Fixing the Size of the Virtual Table

Adding new virtual methods can break binary compatibility in
essentially the same way as adding data members. Since the macro
that implements classes uses another class to implement the vtable,
all of the techniques previously discussed can easily be used to fix
the size of the virtual table. To make this work, the ZL class macro
provides a way to specify the implementation of the class used to
implement the virtual table.

We have written a macro which uses the technique just de-
scribed to allowing fixing the vtable size using the special syntax:

class X : fix_vtable_size(8) {...}

which will fix the vtable size to 8 bytes. We have also verified that
the macro does indeed fix the size of the virtual table and hence
maintains that aspect of binary compatibility.

4.3 A Better ABI

Adding new data members or methods breaks binary compatibility
because the sizes of the class and vtable are needed at compile time.

7

The size of the class is needed when directly allocating an object on
the stack, or when inlining one object into another. The first can be
avoided by dynamically allocating the class on the heap. However,
the second is a problem with most C++ ABIs as a typical C++ ABI
defines class layout to be something like:

class Parent {...};
class Child { Parent parent; ...};

which inlines the parent in the child class. This means adding new
data members to the parent class will break binary compatibility
for any code that depends on the child class. We defined a new
ABI to avoid this problem. Our new ABI defines class layout to be
something like:

class Parent {void * child_ptr; ...};
class Child {

Parent * parent_ptr; void * child_ptr; ...};

where the parent class is dynamically allocated when the child
class is created, andchild_ptr is used to downcast. This strategy
preserves binary compatibility when new data members are added
to the parent. A similar strategy is used for the vtable.

The code to implement the new ABI is under 60 lines of code.
It overrides three methods from the core class macro; the method
that adds the parent info to the user type was rewritten, and some
additional information was added to every user type to include the
child pointer.

We verified that the new ABI maintains binary comparability
when adding new data members by creating a situation in which
adding data members would cause problems with the more tradi-
tional ABIs. For example, in the following code:

class X {int x;}
class Z : public X {int z;}

adding a new data member, sayy, to X will break binary compat-
ibility with programs that useZ since the addition will change the
offset of z. Therefore, accesses to the data memberz will report
an incorrect value. We verified that this was indeed a problem with
ZL’s default ABI, by setting the value ofz with object code com-
piled against the new API (the one with the newy data member)
but reading the value with object code compiled against the origi-
nal API (withouty) and verified that a different value was returned.
We then did the same thing with the new ABI and verified that the
same value was returned. We did a similar test to verify that adding
new virtual methods will not break binary comparability.

For many purposes, this ABI can impose too much overhead.
For example, each class must have a pointer to the child to support
down casting, and virtual-method dispatch is slower. When binary
compatibility is a primary concern, however, this ABI can be a good
choice. Furthermore, since ZL can use more than one ABI at a time,
a programmer can choose this ABI for just the parts of a program
where the benefits in binary compatibility outweigh the costs in
performance.

4.4 Matching an Existing ABI

Because classes are just user types to the compiler, it is possi-
ble to construct classes to match an existing ABI. This includes
specialized ABIs which are really a C implementation of classes
(such as done in GNOME [5]) or C wrappers around a C++ API
(such as done in Aspell [6]). Doing so provides a more class-like
interface to the C API. For example, ZL’s macro API is a pure
C API for simplicity; however, a more class-like interface is also
provided. ZL provides a class-like interface to many of the API
types includingMatch, Syntax, andUnmarkedSyntax. For ex-
ample, instead of usingmatch_var(m, syntax x), one can use
m->var(syntax x). This is done by creating a user typeMatch
that looks something like:

user_type Match { associate_type struct Match;
macro var(str, :this ths)

{ match_var(ths, str);} };

4.5 Matching Other Compilers’ ABIs

Just as it is possible to match a C ABI, it is possible to match other
compilers’ ABIs. It is even possible to use classes with different
ABIs in the same program with some restrictions, which depend on
fundamental incompatibilities between different ABIs. For exam-
ple, while it is possible to mix classes with different ABIs through
composition, doing so via inheritance is unlikely to work. This is
due to fundamental differences in how inheritance is implemented,
and in particular, how the vtable is laid out.

Fully matching a compiler’s ABI requires careful reading of the
specification, occasional reverse engineering, and careful testing to
ensure compliance. As a proof-of-concept, we defined a new ABI
by building on the existing class macro to pass thethis parameter
as a global variable. This implementation simulates passing the
this parameter in a register, as the Microsoft C++ ABI does, as
opposed to passing it as the first parameter, as GCC does. We then
used both ABIs in the same program, and even embedded classes
with one ABI in another via composition. The code to implement
the new ABI was under 45 lines. The only methods from the core
class macro that needed to be overridden were the ones involved
with constructing and calling member functions—three in all.

5. Implementation Status and Performance
The current ZL prototype supports most of C and an important sub-
set of C++. For C, the only major feature not supported is bitfields,
mainly because the need has not arisen. C++ is a rather complicated
language, and fully implementing it correctly is beyond the scope
of our research. We aim to implement enough of C++ to demon-
strate our approach; in particular, we support single inheritance,
but currently do not support multiple inheritance, exceptions, or
templates.

As ZL is at present only a prototype compiler, the overall com-
pile time when compared to compiling with GCC 4.4 is 2 to 3 times
slower. However, ZL is designed to have little to no impact on the
resulting code. ZL’s macro system imposes no run-time overhead.

The ZL compiler transforms higher level ZL into a low-level
S-expression like language that can best be described as C with
Scheme syntax. Syntactically, the output is very similar to fully
expanded ZL as shown in Figure 1. The transformed code is than
passed to a modified version of GCC 4.4. When pure C is passed
in we are very careful to avoid any transformations which might
affect performance. The class macro currently implements a C++
ABI that is comparable to a traditional ABI, and hence should have
no impact on performance.

5.1 C Support

To demonstrate that ZL can support C programs, two well-known
programs were compiled with ZL: bzip2 and gzip. Bzip2 was
compiled without modifications, but gzip required some minor
modification because it was an older C program and used some C
syntax that is not a subset of C++: K&R-style function declarations
were transformed into the newer ANSI C style, and one instance of
new as a variable was renamed tonew_.

Overall, compile times were 2 to 3 times slower with ZL in
comparison to compiling with GCC 4.4. However, both programs
compiled correctly, produced correct results, and had similar run
times to the GCC-compiled versions.

5.2 C++ Support

To evaluate ZL’s suitability to compile C++ programs, we chose
to compile randprog [7], which is a small C++ program that gen-

8

erates random C programs. Randprog uses inheritance and other
important C++ features, such as overloading and non-default con-
structors. In addition, it uses a few C++ features that ZL does not
yet support, so we changed randprog in small ways to compen-
sate. These changes include: reworking the command-line argu-
ment parsing, which used of a library that requires many modern
C++ features; explicit instantiation ofvector instances; changing
uses of thefor_each template function into normalfor loops; and
reworking some functions to avoid returning complex objects.

Randprog was verified to produce correct results by fixing the
seed and comparing the generated program with a version of rand-
prog compiled with GCC for several different seeds. It was also
instrumented with Valgrind and found free of memory errors.

Overall compile time was around 2.5 times slower with ZL
when compared to GCC 4.4. A direct run-time performance com-
parison is of limited usefulness, since ZL does not use the same
C++ library as GCC, but the runtime performance of the ZL-
compiled version of randprog was up to twice as fast as the GCC-
compiled version.

6. Related Work
The problem of fragile and incompatible ABIs due to software
and compiler changes is well known, and there have been several
attempts to address the problem. To the authors’ knowledge, ZL’s
approach of providing a small core language and letting everything
else be defined as macros has not been tried before.

Binary Compatibility. The first serious attempt to solve the prob-
lem of fragile ABIs in C++ was in∆C++ by Palay [2], but that ABI
imposes a substantial performance penalty. Williams and Kindel
developed a more sophisticated system with less overhead, known
as the Object Binary Interface [3]. The Object Binary Interface is
used only on request, and it allows for evolutionary steps, such as
adding new public and protected methods and adding or removing
private data members. However, it does not allow for changing the
order or type of public data members; thus, it greatly reduces the
problem of fragile ABIs, but does not entirely eliminate it. This
ABI also imposes a higher cost when compared to the more tradi-
tional C++ ABI, and as such, is likely to affect performance, es-
pecially since all inheritance is implemented in a manner similar
to how virtual inheritance is implemented in traditional C++ ABIs.
Work on ∆C++ and the Object Binary Interface was done in the
early 90s. Research on how to solve the problem in C++ since then
is virtually nonexistent, most likely because of the inherent tradeoff
between fragility and speed.

Some attempts have been made to standardize the C++ ABI be-
tween compilers for a given architecture. For example, the Itanium
C++ ABI [1] aims to standardize the C++ ABI for the Itanium plat-
form. This ABI is now used by GCC for all platforms towards the
goal of providing a standard C++ ABI for GNU/Linux systems [8].
This effort has had some success, as the Intel C++ compiler also
uses this ABI [9].

Since the problem of a fragile and incompatible ABIs was rec-
ognized as a serious issue that needed to be addressed, some newer
languages, such as Java, specifically address the issue in the lan-
guage specification. The Java concept of binary compatibility was
first developed in SOM [10] and then later defined in theJava Lan-
guage Specification(JLS) [11, 12]. In Java the ABI is completely
specified inThe Java Virtual Machine Specification[13], thus ad-
dressing the issue of incompatible ABIs.

Unfortunately supporting binary compatibility as specified in
the JLS imposes a performance cost. Many Java compilers that
support static compilation at first ignored binary compatibility in
the interest of performance; one such compiler was the GNU Java
Compiler, GCJ [14]. Later research by Yu, Shao, and Trifonov

showed how to support static compilation and binary compatibility
[12]. These techniques’ were later integrated into GCJ [15].

Other Macro Systems. ZL’s design philosophy is closely related
to Scheme’s [16] design philosophy of providing a small core lan-
guage and letting everything else be defined as macros. The hygiene
and module system are similar to Chez Scheme’ssyntax-case [4]
and modules [17], respectively. There are numerous other macro
systems for various languages, but apart from Scheme, few have
the goal of allowing a large part of the language to be defined via
macros. As such, they are either a macro system built on top of
an existing language, or they lack procedural macros for general
compile-time programming.

Maya [18] is a powerful macro system for Java. Maya macros
(known as Mayans) can extend Java’s LALR(1) grammar, in
addition to being procedural and hygienic. OpenJava [19] and
ELIDE [20] are similar to Maya but less advanced; neither of these
systems support hygiene, and they do not support general syn-
tax extensions. A procedural and hygienic macro system based on
the Earley [21] parser is described in Kolbly’s dissertation [22].
His system is similar to Maya in that macro expansion is part of
the parsing process, yet more powerful as the Earley parser can
handle arbitrary grammars rather than just the LALR(1) subset.
Fortress [23] is a new language with hygienic macro support and
the ability to extend the syntax of the language; however, Fortress’s
macros are not procedural. The Dylan [24] language has support
for hygienic macros. In Dylan, macros are required to take one of
three fixed forms:def, stmt, andfun call macros. The JSE sys-
tem [25] is a version of Dylan macros adapted to Java. MS2 [26] is
an older, more powerful macro system for C. It is essentially a Lisp
defmacro system for C. It offers powerful macros since they are
procedural, but like Lisp’sdefmacro lacks hygiene.

Other macro systems include: ASTEC [27], which aims to
be a safer C preprocessor;<bigwig> [28], which guarantees
type safety and termination of the macro-expansion process; and
MacroML [29], which has similar aims of<bigwig>.

Extensible Compilers. While macros are one approach to provid-
ing an extensible compiler, a more traditional approach is to pro-
vide an API that directly manipulates the compiler’s internals, such
as the AST. On the surface this approach may seem more powerful
than a macro system, but a macro system can be equally powerful
with the right hooks into the compiler.

Xoc [30] is an extensible compiler that supports grammar exten-
sions by using GLR (Generalized Left-to-right Rightmost deriva-
tion) parsing techniques. Xoc’s primary focus is on implementing
new features via many little extensions, otherwise known as plu-
gins. This approach has an advantage over most other extensible
compilers in that the extensions to be loaded can be tailored for
each source file. As such, Xoc provides functionality similar to that
of traditional macro systems.

METABORG [31] is a method for embedding domain-specific
languages in a host language. It does this by transforming the em-
bedded language to the host language using the Stratego/XT [32]
toolset. Stratego/XT supports grammar modifications using GLR
parsing techniques. Polyglot [33] is a compiler front end framework
for building Java language extensions. However, it uses a LALR
parser, which means that perfectly valid grammar extensions can
be rejected. JTS [34] is a framework for writing Java preprocessor
with the focus on creating domain-specific languages. CIL [35] fo-
cuses on C program analysis and transformation, and as such, does
not support grammar modifications. Again, as external tools, these
systems all represent an approach different from ZL’s support for
extension within the language.

9

7. Conclusion and Future Work
Binary compatibility is a serious problem for software evolution
in C++. C++ ABIs tend to be fragile because they are optimized
for speed rather than robustness. Thus, library implementers have
developed a number of programming idioms to help mitigate the
problem. Due to the sheer number of idioms and the trade-offs in-
volved, adding them as language extensions is infeasible. In ad-
dition, C++ ABIs differ between compilers, and hence, switching
compilers often breaks binary compatibility.

We have solved this problem using ZL. ZL is a C++-compatible
language in which high-level constructs, such as classes, are de-
fined using macros over a C-like core language. ZL solves the prob-
lem of binary compatibility by using macros to automate the use of
programming idioms that programmers would use to mitigate the
problem. When programming idioms are not sufficient, ZL gives
the programmer complete control over the ABI by providing a cus-
tomizable class macro. The ZL macro system benefits library im-
plementers and consumers who do not need to know the full de-
tails of how macros work, as library implementers can just use the
macro libraries written by the tool implementers. At the same time,
ZL makes the job of tool implementers easier when compared to a
traditional compiler system.

ZL is currently a prototype compiler that can handle most of C
and an important subset of C++. We have presented several working
examples of how ZL can be used to mitigate the problem of binary
compatibility and compiled a few real-world programs.

ZL is also a work in progress. Next steps include enhancing ZL
to support more C++ features and matching the Itanium C++ ABI
so that the ZL ABI will be compatible with modern versions of
GCC. After that we hope to match other ABIs, such as the Visual
C++ ABI, so that we can use a mixture of libraries, some compiled
for GCC and some compiled for Visual C++, in the same program.

For the current implementation of ZL, see the ZL web page
available athttp://www.cs.utah.edu/~kevina/zl/.

Acknowledgments
We thank Eric Eide, Ryan Culpepper, and Jon Rafkind for their
feedback on drafts of this paper.

References
[1] Itanium C++ ABI (revision: 1.86). http://www.codesourcery.

com/cxx-abi/abi.html.

[2] Andrew Palay. C++ in a changing environment. InProc. USENIX
C++ Technical Conf., 1992.

[3] Theodore C. Goldstein and Alan D. Sloane. The object binary in-
terface: C++ objects for evolvable shared class libraries. InProc.
USENIX C++ Technical Conf., 1994.

[4] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic ab-
straction in Scheme.Lisp and Symbolic Computation, 5(4):295–326,
1992.

[5] GNOME. http://www.gnome.org.

[6] Aspell C API reference. http://aspell.net/man-html/
Through-the-C-API.html.

[7] Eric Eide and John Regehr. Volatiles are miscompiled, and what to
do about it. InProc. Intl. Conf. on Embedded Software (EMSOFT),
2008.

[8] A common C++ ABI for GNU/Linux. http://gcc.gnu.org/
gcc-3.2/c++-abi.html.

[9] Intel C++ compiler man page. Available athttp://software.
intel.com/en-us/intel-compilers/.

[10] Ira R. Forman, Michael H. Conner, Scott H. Danforth, and Larry K.
Raper. Release-to-release binary compatibility in SOM. InProc.
OOPSLA, 1995.

[11] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java
Language Specification, Third Edition. Addison Wesley, 2005.

[12] D. Yu, Z. Shao, and V. Trifonov. Supporting binary compatibility
with static compilation. InProc. Java Virtual Machine Research and
Technology Symposium (JVM), 2002.

[13] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specifica-
tion, Second Edition. Addison Wesley, 1999.

[14] GCJ web site.http://gcc.gnu.org/java/.

[15] Tom Tromey and Andrew Haley. GCJ: The new ABI and its implica-
tions. InProc. GCC Developers’ Summit, 2004.

[16] Michael Sperber (Ed.). The revised6 report on the algorithmic lan-
guage Scheme, 2007.

[17] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic
abstraction. InProc. POPL, 1999.

[18] Jason Baker and Wilson C. Hsieh. Maya: multiple-dispatch syntax
extension in Java. InProc. PLDI, 2002.

[19] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier
Killijian. OpenJava: A class-based macro system for Java. InProc. 1st
OOPSLA Workshop on Reflection and Software Engineering, 2000.

[20] Avi Bryant, Andrew Catton, Kris De Volder, and Gail C. Murphy.
Explicit programming. InProc. Conf. Aspect-Oriented Software De-
velopment (AOSD), 2002.

[21] Jay Earley. An efficient context-free parsing algorithm.Commun.
ACM, 13(2):94–102, 1970.

[22] Donovan Kolbly. Extensible Language Implementation. PhD thesis,
Univ. of Texas, Austin, 2002.

[23] Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and
Sukyoung Ryu. Growing a syntax. InProc. Workshop on Foundations
of Object-Oriented Languages (FOOL), 2009.

[24] Andrew Shalit, David Moon, and Orca Starbuck.Dylan Reference
Manual. Addison-Wesley, 1996.

[25] Jonathan Bachrach and Keith Playford. The Java syntactic extender
(JSE). InProc. OOPSLA, 2001.

[26] Daniel Weise and Roger Crew. Programmable syntax macros. In
Proc. PLDI, 1993.

[27] Bill McCloskey and Eric Brewer. ASTEC: a new approach to refac-
toring C. InProc. ESEC/FSE-13, 2005.

[28] Claus Brabrand and Michael I. Schwartzbach. Growing languages
with metamorphic syntax macros. InProc. Symposium on Par-
tial Evaluation and Semantics-based Program Manipulation (PEPM),
2002.

[29] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: type-safe, generative, binding macros in macroml. In
Proc. Intl. Conf. Functional Programming (ICFP), 2001.

[30] Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and Ed-
die Kohler. Xoc, an extension-oriented compiler for systems program-
ming. In Proc. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2008.

[31] Martin Bravenboer and Eelco Visser. Concrete syntax for objects:
domain-specific language embedding and assimilation without re-
strictions. InProc. OOPSLA, 2004.

[32] Eelco Visser. Program transformation with Stratego/XT. Rules, strate-
gies, tools, and systems in Stratego/XT 0.9. In Lengauer et al., editor,
Domain-Specific Program Generation, Lecture Notes in Computer
Science, June 2004.

[33] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for java. InProc. Conf.
Compiler Construction, 2003.

[34] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools for implement-
ing domain-specific languages. InProc. Intl. Conf. Software Reuse
(ICSR), 1998.

[35] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation
of C programs. InProc. Conf. Compiler Construction, 2002.

10

