

Copyright c© Raghuveer Pullakandam 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of

has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of

the Department of

and by�'DYLG�%��.HLGD, Dean of The Graduate School.

Raghuveer Pullakandam

Robert Ricci 07/26/2012

Ganesh Gopalakrishnan 08/31/2011

Matthew Flatt 08/31/2011

Al Davis

Computer Science

ABSTRACT

The Emulab network testbed deploys and installs disk images on client nodes upon

request. A disk image is a custom representation of filesystem which typically corresponds

to an operating system configuration. Making a large variety of disk images available to

Emulab users greatly encourages heterogeneous experimentation. This requires a significant

amount of disk storage space. Data deduplication has the potential to dramatically reduce

the amount of disk storage space required to store disk images. Since most disk images in

Emulab are derived by customizing a few golden disk images, there is a substantial amount

of data redundancy within and among these disk images.

This work proposes a method of storing disk images in Emulab with maximizing storage

utilization, minimal impact on performance, and nonintrusiveness as primary goals. We

propose to design, implement, and evaluate EmuStore — a system built on top of a

data deduplication infrastructure for efficiently storing disk images in the Emulab network

testbed. The goal of this system is to take advantage of duplicate data in storing the disk

images while remaining unobtrusive to other Emulab components.

CHAPTER 1

INTRODUCTION

Emulab [40] provides users with a network emulation environment. Emulab temporar-

ily allocates appropriately configured physical machines to individual users for network

experimentation. Disk loading is an important step in the process of node configuration

in Emulab. Disk loading involves deploying operating system images, also known as disk

images, to the target nodes. Emulab uses the Frisbee [23] disk image loading system for

deploying disk images. Frisbee is a high performance disk imaging system optimized for

LAN environments.

Emulab provides users with a standard set of disk images which the users customize.

There are thousands of such customized disk images in Emulab and the number is growing.

Storing these wide variety of standard and customized disk images requires significant

storage resources. Considering that the size of a standard FreeBSD disk image in Emulab

is 300MB, a collection of 3000 disk images may consume 1 TB of storage space.

Most of the disk images in Emulab are derived from a few disk images known as golden

images. Hence, it is logical to assume that there exists a fair amount of duplicate data

within and among disk images. Emulab currently stores a copy of every disk image on a

network file system for easy access. Quite often, two disk images differ only in their kernel

version or packages installed. For example, the only difference between a Ubuntu 10.10 disk

image and a Ubuntu 10.10 disk image with zfs application installed is the presence of the

ZFS filesystem on the latter disk image, which implies only a few data regions corresponding

to the installed package are affected.

Hence storing a copy of every disk image leads to storing many redundant data regions

even though they are identical to the data regions on the golden image from which the

disk image is derived. The problem hence boils down to the efficient utilization of storage

resources by avoiding storage of redundant data.

Our goal is to build a system that exploits the data redundancy prevailing within and

among disk images in Emulab to maximize storage utilization while remaining unobtrusive

2

to the other Emulab components and generating minimal impact on the overall disk loading

performance.

1.1 Thesis Statement

Significant storage savings in the Emulab network testbed are achievable by exploiting

data redundancy among disk images while remaining unobtrusive and imposing minimal

impact on the overall performance of disk loading.

1.2 Focus

In summary, the focus of this thesis is twofold. First, to determine and quantify the

amount of data deduplication [31, 12] existing within and among Emulab disk images and

identify the optimum method to achieve significant storage savings and, second, to pipeline

the overhead induced by this new approach of storing disk images with the other steps

involved in disk loading thus creating only a minimal impact on the overall disk loading

performance.

1.3 Approach

Our basic approach is to exploit the data deduplication existing within and among

Emulab disk images. To realize the full benefits of data deduplication, we store Emulab

disk images the way they are laid out on a filesystem as opposed to the existing approach

of storing the disk images in a custom format convenient for fast deployment. To achieve

the goal of significant storage savings and generating only a minimal impact on the overall

performance, we explore the following techniques:

• Segmenting and storing regions of a disk image in a representation, consistent with

the actual file system data layout.

• Experimenting to identify the optimum storage parameters which help us to achieve

maximum storage space savings.

• Managing metadata that helps us reconstruct disk sector data in the client environ-

ment.

• Pipelining the process of regenerating parts of a disk image with other processes

involved in the deployment phase thus achieving modest deployment latencies.

3

1.4 Trade-offs

Data deduplication is a technique used to achieve storage savings by discarding redun-

dant data. Typically, data are stored as a collection of small data units known as data blocks.

A data block is a sequence of bytes of a known length. The process of identifying and storing

unique data blocks while discarding redundant data blocks is called data deduplication.

Though we strive to achieve maximum storage savings by exploiting duplicate data, it

is, however, not always true that segmenting the file system into smaller regions provides

maximum storage savings. Though there is a good chance that smaller storage segments

duplicate well, there is a cost of storing associated metadata and the time taken to recon-

struct portions of the disk image during deployment. Since, we use a data deduplication

system which yields a 20 byte SHA-1 hash value for every data unit stored, it might not be

a good idea to segment the disk image into very small regions for storing which might lead

us to store more metadata than desired.

There is also a tradeoff between speed of reconstruction and the size of storage segments

used for storing a disk image. Though the process of reconstruction can be pipelined with

other processes involved in disk deployment, having very small storage segments increases

the time to reconstruct desired parts of the disk image thus slowing down the entire process

of disk loading. Contrarily, if the majority of the clients have very slow disks, having a very

small storage segment might not affect the overall performance while providing significant

storage savings on one hand.

1.5 Design Principles

We adhered to the following design principles through out our work. Leveraging a

proven data deduplication system for storing content rather than building one from scratch.

Therefore, our system had to operate within the constraints imposed by the framework we

use. An important design choice we made was to adopt a request response model to interact

with the data deduplication system. Since the data deduplication system we used forces

our system to comply with its own threading model, ultimately leading to problems with

portability, we had to use isolate it from other modules of the system. Secondly, we designed

our system with a constraint of remaining unobtrusive to the client. In other words, we

did not modify the client side of the existing system since modifying the client side of

the protocol breaks the backward compatibility with already deployed client environments

thus requiring the clients to redeploy the new system. As a result, we were under a strict

mandate to ensure that a reconstructed chunk of a disk image can never exceed the size

4

of 1 MB. In order to comply with the 1 MB size constraint, we had to come up with an

algorithm to regenerate the exact chunk as the original during deployment phase. Finally,

we designed our system in order to be capable of recreating a random out-of-order chunk

which is crucial from the client perspective since at any point of time, multiple clients may

request random chunks of a disk image. Therefore, reconstructing a disk image sequentially

for every incoming request for a chunk is not practical and could prove to be a performance

bottleneck thus requiring us to recreate a random chunk when requested.

1.6 Implementation Overview

As part of this work we implemented software components that come into picture during

the process of Emulab disk loading. The following are the software artifacts implemented:

• A layer on top of the data deduplication system which enables other components to

store and retrieve data blocks of variable size to and from the data deduplication

system.

• A random chunk regeneration framework which uses the metadata information about

the regions corresponding to the chunk and the layout information of the compressed

part of the chunk to regenerate the precise chunk during deployment phase.

• Adding support to the Emulab’s existing disk image deployment engine to interact

with the chunk generator component and serve client requests for chunks by recreating

the requested chunk using the data retrieved from the backend data deduplication

system.

Another major contribution of this work is the quantification of the extent of possible

storage savings by conducting large scale experiments with varying parameters and identi-

fying the optimum parameters to achieve maximum storage savings.

1.7 Document Roadmap

Chapter 2 provides some background on the systems used in this work, namely, Emulab,

Frisbee disk image loading system and Venti [34, 9, 8] archival [41, 16] storage system.

Chapter 3 discusses various aspects of our design and concludes with a summary of how our

large scale disk image deployment system works. Implementation of the system is discussed

in Chapter 4. A comprehensive evaluation with statistics related to storage savings and

justification for performance of our system is presented in Chapter 5. We discuss related

work in Chapter 6 and conclude in Chapter 7.

CHAPTER 2

BACKGROUND

This chapter presents background on Emulab, Frisbee disk image loading system and

the Venti archival storage system. This thesis work modifies the Frisbee disk image loading

system to take advantage of our new storage infrastructure based on Venti archival storage

system.

2.1 Emulab

Emulab is a network testbed, an experimentation environment which integrates simula-

tion [30, 22], emulation [38] and live network experimentation [15] into a common framework

with a goal of providing users with more realism [36] and control [35] in their experiment.

To understand what this means, simulation, emulation and live networks are traditional

environments used for network and distributed systems research. Each of these approaches

have their pros and cons. Simulation loses accuracy due to abstraction. Live network

environments such are MIT RON and PlanetLab achieve realism but are expensive to build

and maintain. Emulators such as nse [28], DummyNet [38] provide greater control but

require tedious manual configuration. Emulab brings the control and ease of use associated

with simulation to emulation and live network experimentation without sacrificing realism.

Emulab provides a time- and space-shared environment for network researchers. Emulab

behaves like a distributed operating system for network experimentation since it performs

familiar operating system tasks such as resource allocation, management, synchronization

and termination. An Emulab experiment is analogous to an operating system process. The

life time of an Emulab experiment can vary from a few minutes to many weeks.

2.1.1 Experiment Creation

Emulab creates an experiment based on user parameters. Users specify various param-

eters such as number of nodes, desired topology, operating system and applications desired

via a ns script. The fundamental units involved in a Emulab experiment are nodes and

links. While specifying parameters, users can request specific hardware, operating systems,

6

delay, bandwidth and packet loss. Emulab also supports events to change characteristics of

a node or a link. The event system in Emulab is based on the Elvin [39] publish-subscribe

system.

2.1.2 Experiment Swap-in

Experiment instantiation is the crucial step in Emulab. Experiment instantiation is

known by the term “Swap-in.” The first step involved in swap-in is resource assignment.

This NP-hard problem of finding and mapping the hardware that suits experimenter’s

desired topology is solved by the assign [37] algorithm. After the resource allocation, exper-

iment nodes contact Emulab’s master node to download and install the desired preconfigured

operating system with applications known as disk images. The process of delivering and

deploying the desired operating system environment on the target nodes is called “Disk

Loading.”

2.1.3 Disk Loading

The main focus of this thesis work is on disk loading. Disk loading is a very important

step in instantiating an Emulab experiment and thus needs to be very fast. Any delay in

disk loading directly impacts the user as the user will have to wait to use his experiment

until the disk loading is done. Hence, an indefinite delay in disk loading could be very

annoying to the end user. In short, it is indispensible for disk loading in Emulab to be

very fast. Therefore, disk loading in Emulab is performed using Frisbee [23]. Emulab’s disk

image loading system is capable of deploying 50 gigabytes of data to 80 disks in 34 seconds.

2.2 Frisbee

Frisbee is a fast and scalable multicast based disk image loading system. It is one of the

primary components of Emulab. Before introducing Frisbee, we need to understand disk

imaging [13].

2.2.1 Disk Imaging

While transferring single files is the focus of most applications, many scenarios exist

where transferring the entire disk contents efficiently is important. Operating system

installation, disaster recovery [4, 14] and forensics are a few such scenarios. There are

two different strategies for disk level distribution.

• Differential update used by directory syncing tools.

7

• Disk imaging used by Frisbee.

The following are the advantages of using disk imaging for distributing disk contents:

• Filesystem agnostic.

• Robust: Capable of transferring contents even if the filesystem is corrupt while file-

based tools cannot.

• Versatility: Can easily replace a filesystem type by reloading a new disk while a

file-based synchronizer cannot do this.

• Speed: Writing an entire disk image can be faster in a scalable environment.

2.2.2 Frisbee Design Principles

Frisbee disk loading system is based on some design principles which help make it fast

and scalable in a LAN environment.

• Domain-specific data compression.

• Two-level data segmentation.

• Custom multicast protocol.

• High levels of concurrency in the client.

Although, Frisbee treats disk contents as opaque during disk image creation, it relaxes

these requirements for a few common filesystem types. The information retrieved from the

filesystem metadata is used to identify free blocks within the filesystem. During disk image

creation, Frisbee skips free blocks and only compresses valid data regions thus drastically

reducing the size of the resultant disk image. The action of skipping free blocks follows

from the notion that free blocks do not add any content when deployed on the client and

thus are not required to be transmitted over the network or written to disk.

Two-level segmentation of data, into randomly accessed chunks and sequentially accessed

blocks within chunks, provides the flexibility of out of order request processing of chunks

and parallelizing disk Input/Output (I/O) on the client side.

A custom multicast protocol helps Frisbee scale massively in a LAN environment. As

we described earlier, multicasting reduces network congestion by avoiding transmitting the

same packets again and again thus freeing up the network. Also, delivering same packets to

multiple clients at once precludes the need for the clients to re-request missing segments.

8

Client side three-way multithreading to overlap disk I/O, zlib decompression and receiv-

ing chunk segments creates a high level of concurrency on the clients thus enhancing the

speed of the protocol.

2.2.3 Frisbee Disk Image

The client’s operating environment consists of an operating system, several applications

and user data. Disk imaging distributes the entire contents of a disk to the target nodes.

Since, disk imaging is filesystem agnostic, the contents transferred to the clients consists of

the entire operating environment, including the operating system, applications and other

data of the source disk.

A disk image is an encapsulation of the operating environment which includes the

operating system, applications and other data. To put it simply, it is a block-by-block

copy of the disk. When deployed on the client, a disk image metamorphosises into an exact

clone of the source disk from which the disk image is created. In other words, disk image

is the object of transfer in the process of disk imaging.

The process of creating disk image involves segmenting the disk data into smaller

pieces known as “chunks.” Assuming we have a disk with an operating system and a

few applications installed on top of it, a disk image is created by storing the disk contents

block-by-block. Such an approach as storing disk block-by-block would make a disk image

filesystem agnostic. However, the filesystem metadata is used to identify free space that is

discarded or ignored during the time of disk image creation. In short, only the valid data

regions or sectors of a disk are part of a disk image.

As mentioned earlier, a disk image is composed of chunks. Each chunk packs the data

corresponding to a few valid disk sectors. The information pertaining to the disk sectors

comprised in the chunk, such as start offsets and sizes is stored in the header portion of

the chunk. Hence, a chunk consists of a header and data. The data portion of the chunk

is compressed using the zlib [21, 18] compression library. The compression of the chunk

data region helps us reduce the overall size of the disk image, that is beneficial to reduce

network congestion while transmitting over the network. The techniques of discarding free

space and compressing chunk data part, during disk image creation typically limits the size

of a disk image to one-third of the actual disk.

Since a chunk contains the data and metadata describing the disk sector offsets where

the data belongs, chunks are considered independent entities. What this means is that a

chunk can be processed independently on the client-side irrespective of other chunks. As a

9

result, Frisbee clients are free to make out of order requests for desired or missing chunks

and start processing the chunks as soon as they arrive. This flexibility of out of order

processing guarantees concurrency on the client side thus speeding up deployment on the

client. Figure 2.1 presents the composition of a Frisbee disk image. A chunk consists of

Stored Image

Source Disk

Header

Header

Compressed
Data

Allocated

Blocks

Chunk

Blocks

Free

Figure 2.1: Frisbee Disk Image Composition. Based on [23]

regions that are described in the chunk header. A region is a collection of contiguous disk

sectors on the disk. A region is represented using the start offset and the size of the region.

When the Frisbee client receives a complete chunk from the server, it starts uncompressing

the compressed data part of the chunk and writes the contents to the disk offsets denoted

by the region start offsets in the chunk header. Hence, every chunk can be processed

independent of other chunks.

2.2.4 Protocol

Frisbee is intended to be a fast and scalable disk image deployment system. The

property of out of order processing on the client side makes Frisbee fast. However, it is the

10

protocol that Frisbee uses that makes in scale massively in a LAN environment. Frisbee is

built on a client-driven protocol.

To understand the Frisbee protocol, a brief description of the way a chunk is transmitted

over the network is essential. Frisbee clients request for a chunk from the server. Since a

Frisbee chunk is an independent entity, clients overlap the operation of unravelling a chunk

onto the disk with the process of requesting new chunks, thus, parallelizing the deployment

process. However, a Frisbee client does not request the entire chunk in the event of a

misdelivery. A Frisbee client only requests the missing parts of a chunk.

Before transmitting a chunk, Frisbee server divides a chunk into segments of 1 KB and

transmits individual segments to the client. The Frisbee client tracks receives of these

individual segments and reassembles them to obtain a valid chunk. In the event of lost

segments, clients request only the missing segments of the chunk. The Frisbee server, having

received requests for segments spanning across multiple chunks, treats requests to the same

segment from multiple clients as one and multicasts the segments to all the respective

clients. Quite often, multiple clients requesting the same chunk or parts of the same chunk

prompts the server to multicast only one copy of the chunk or segment thus saving network

bandwidth and scaling the system over a LAN very well.

Frisbee takes a constant 80 seconds to serve 25 nodes while Symantec Ghost [13] disk

imaging system, which is a popular commercial disk imaging software, takes about 300

seconds to serve 25 clients.

2.3 Venti

Storing disk images in a data deduplicated storage system to achieve significant storage

savings is the central requirement of this work. Instead of building our own efficient data

deduplication system, we decided to rely on a proven data deduplication software and use it

for our experimentation. The primary motivation to use a data deduplication system is to

achieve storage savings over time. Quite a few commercial data deduplication softwares

are available in the market. Popular ones include NetApp and Datadomain offerings

which promise high storage savings. Another data deduplication system is Low Bandwidth

Filesystem (LBFS) [32], that is a network filesystem that only transmits nonredundant data

over the network.

We did not choose to use proprietary deduplication solutions due to various reasons.

LBFS is a good option to serve content over the network but it operates at the file system

level, whereas the contents that we transfer, i.e., disk images, operate at the block level.

11

Finally, Venti archival storage system was chosen for the following reasons:

• It is a block based storage system.

• It is used to store archival data such as e-mails accumulating over a period of time.

It is designed to never delete the data it stores. Emulab disk images are cloned and

modified by users as per their requirements. These modified disk images are stored

in Emulab. However, we do not want to delete the old disk images since they can

be reused later. We know the contents of the old disk images and they are verified

secure. Hence, Venti fulfills our requirement as a disk image storage system.

Venti is an archival storage system built as a part of Bell Labs Plan9 [33] operating

system. Venti is a highly efficient data deduplication system. We used the x86-64 Linux

port [10] of the Venti software for our experimentation.

2.3.1 Key Properties

• Venti is a block level storage system. The interface for Venti enables clients to read

and write variable sized blocks.

• Venti identifies data blocks by a hash of their contents. A hash of a data block is

known as “fingerprint” since it is unique.

• Venti has a write-once behavior. Since, a block is identified using a fingerprint, a data

block cannot be modified without changing its fingerprint.

• The most important property of Venti that provides the capability of data deduplica-

tion is the property of idempotent writes. Multiple writes of the same block can be

coalesced and do not require additional space. This property of data deduplication

is what eventually helps us achieve significant storage savings by storing disk images

if disk images contain a lot of redundant data. In the event of high incidence of

duplicate data within and among Emulab disk images, Venti stores only one copy of

the redundant data blocks thus providing storage savings.

• Another benefit provided by Venti is the inherent data integrity. Both server and

client can compute the hash of a data block served and compare them to determine

the integrity of the data block served thus preventing data corruption.

• Venti uses SHA-1 cryptographic hash function as fingerprint.

12

• Venti provides the backend framework for complex applications to be built on top of it.

Venti also provides data structures to realize complex systems. Several applications

such as vac [6] — an archival utility; vacfs [7] — a filesystem; fossil [5] — another

plan9 filesystem.

2.3.2 Configuration

Figure 2.2: Venti Configuration. Based on [34]

Figure 2.2 presents the Venti configuration used in our system. The configuration

consists multiple LVM [3] volumes configured on top of a RAID5 [11] disk.

2.3.3 Blob

Venti stores data in variable sized data units. We call them “blobs.” The maximum size

of a blob is 56 kilobytes. In addition to storing blobs, Venti stores a hash value of every

blob. We call them “fingerprints.” Venti identifies and retrieves a blob using its fingerprint.

Venti achieves data deduplication by storing only one copy of identical blobs. In other

words, only one copy of multiple blobs with the same fingerprint is stored. Obviously,

smaller blobs increase the chance of data deduplication but smaller blobs means more

fingerprints to keep track off, and more small reads and writes to the disk which affect disk

13

I/O performance adversely. On the contrary, storing bigger blobs is faster but it leads to

lesser data deduplication.

Hopefully this chapter has provided the right background information about our work

as we move now into the next chapter which discusses the design of our solution.

CHAPTER 3

DESIGN

In this chapter, we discuss the design choices we made in building Emustore. Our system

involves storing Emulab disk images in a deduplicated storage system and reconstructing

random pieces of the disk image on-the-fly during deployment. The design decisions we

discuss pertain to both data storage and retrieval aspects of our system.

3.1 Data Storage

Storing disk images in a deduplicated storage system is the central idea of our approach

and it provides significant storage savings. However, it is important to carefully consider

how we format and align disk image data in the data store, since the way we store data

could have significant impact on the storage savings achieved. Before delving into the

storage schema, we need to understand the concept behind the “Data Shift Problem.”

3.1.1 Data Shift Problem

A disk image is comprised of files, folders and free data regions. When users create a new

disk image from a base image, they add content in the form of application data and user

specific data to the vacant data regions. As a result, some free data regions in the original

disk image are now occupied. Hence, it is reasonable to assume that while storing a derived

disk image in the deduplicated storage system, only those regions that are different from

the base image are stored. This is not always true as it depends on the way we segment

and store disk image data.

Figure 3.1 compares the disk data layout of two disk images. Base image is a standard

Emulab disk image while ”Derived Image” is a disk image derived from the ”Base image” by

an Emulab user. The dark regions indicate free space in a disk image. As we might notice,

the derived image has one less free space region than the base image since it now consists

of user data. If we chose to segment and store only the valid data regions of a disk image,

we might face a few issues with alignment. Let B1, B2, ... , Bn be the segmented data

units known as blobs which are the fundamental units stored in the deduplication storage

16

• Storing raw data of a disk image chunk by chunk.

• Storing disk image raw data as a whole.

• Storing only the valid portions of a disk image raw data.

Storing a disk image in the deduplicated storage system without any modification is

very convenient since it facilitates faster and predictable access to parts of the disk image

during deployment.

Disk image is comprised of chunks which are independent data units consisting of

compressed data and metadata. At finer granularity, however, a chunk consists of regions.

Each region corresponds to a contiguous valid disk sector on the disk. The data within the

disk sectors get altered as users make changes to the filesystem. This process of altering

disk sector data has a twofold impact on the composition of a chunk. Firstly, even a slight

modification to the data region alters the compressed version of the chunk in unpredictable

ways. Secondly, the chunk header might get affected due to alteration in the data part. In

other words, a minute alteration to the underlying data of a chunk changes the composition

of the chunk in an unpredictable fashion and also affects all the subsequent chunks thus

causing a ripple effect.

Another option for storing disk images is storing them in raw format. In other words,

storing them uncompressed. A few benefits of this approach include:

1. No requirement for storing additional metadata.

2. Possibility of achieving higher rates of deduplication.

Before going further, it is important to understand what chunk reconstruction means.

A disk image is composed of chunks that are transmitted over the network to the client in

denominations of blocks. The process of aggregating blocks transmitted over the network

into chunks on the client side is known as “chunk reconstruction.”

An obvious cost involved with storing disk images in raw format is high storage con-

sumption. The uncompressed data are many times larger than the compressed data.

Yet another cost involved with storing disk images in raw format is overhead on “chunk

reconstruction.” Chunk reconstruction process now involves identifying and compressing

the raw data regions corresponding to the chunk on-the-fly, which is an expensive task.

But this approach is worth pondering over, considering the possibility of hiding the latency

induced by chunk reconstruction with other processes involved in disk deployment.

17

Storing disk images in a compressed format does not conform to the philosophy of

data deduplication. Disk images derived from a common base disk image do not yield

storage savings if stored in a compressed format as opposed to raw format. Early chunk

changes (due to data compression) in a disk image can affect all subsequent chunks in an

unpredictable way thus adversely affecting the rate of data deduplication. On the contrary,

storing disk images in raw format exhibited good rate of data deduplication and significant

storage savings. Hence, we decided that it would be better to store disk images in raw

format. Having decided that storing raw data in the deduplicated storage system is a

better approach rather than storing compressed data, there is still another design decision

to make, that is, whether to process and store a disk image chunk by chunk or all at once.

Both the approaches have their pros and cons.

The advantage of storing a disk image chunk by chunk is the ease of locating raw data

corresponding to a chunk during chunk reconstruction; whereas, storing an image all at

once requires us to keep track of the raw data belonging to every chunk since it will need

that information during chunk reconstruction.

Firstly, the compressed part of a chunk is uncompressed to obtain the raw data. Further,

the raw data generated are considered as a contiguous piece of memory, thus segmenting it

into fixed data units and storing them in the deduplicated storage system. Segments which

are smaller than the fixed data unit size are considered partial segments and padded out to

the fixed size.

This approach, however, suffers from the ”data shift problem” explained in section 3.1.1.

The data shift problem here occurs due to the padding of partial segments. As illustrated

in Figure 3.1, padding of partial segments gives rise to two segments in place of one and also

shifts the data contained in the following segments thus affecting all the following segments.

One way to eliminate the data shift problem occuring here is by tracking partial segments

and filling them up with data from the first segment of the next chunk, instead of padding

the partial segment which is a very complicated and intricate approach.

Storing a disk image all at once suffers from the disadvantage of tracking the raw data

corresponding to each chunk. However, it is not a big demerit when seen from a performance

standpoint as all the book keeping is done offline and does not interfere with the chunk

reconstruction process, which is critical to the overall performance of the system. It has a

less complicated design and does not suffer from the data shift problem.

It is less complicated because it does not involve tracking partial segments and filling

them up with data from the next chunk. Since the size of the disk partition and the size of

18

the data segment are fixed, the segment boundaries never change. Only the data lying in

the segments varies with the addition of application or user data. Even with the addition

of new data, the data already present on the disk partition does not move.

We adopted a two step method to store a disk image in Venti. The first step involves

installing the disk image on a physical disk. The second step involves reading this physical

disk a chunk at a time and storing the corresponding raw data in Venti. This process is

both time and space consuming in that uncompressing the disk image to a physical disk and

reading every segment from the disk is time consuming while storing the entire raw disk

data in Venti consumes more storage space. The issue of storage space consumption can be

addressed by zeroing all the free blocks during installing the disk image to a physical disk.

As a result, only one zero block is stored in Venti in place of all free blocks thus solving

the problem of excessive storage space consumption. Also, since the process of storing

disk images is done offline, the time intensive processes involved do not interfere with the

performance of chunk reconstruction.

Another cost involved with storing a disk image raw data all at once is the need to track

the raw data corresponding to a chunk. However, since the process of book keeping is a

one time activity and is done offline, it does not affect the performance of the critical path.

Also, since we store chunk headers persistently, the raw data pertaining to a chunk could

be easily retrieved from the chunk header.

Having experimented with several approaches of storing disk images in the deduplicated

storage system, we believe the method of storing disk image raw data all at once is the

optimal design choice for the following reasons:

1. Its simplistic design.

2. All time intensive processing is done offline.

3. The raw data information corresponding to a chunk could be easily obtained.

4. The problem of more than desired storage consumption can be solved by zeroing free

blocks.

3.2 Chunk Reconstruction

Chunk reconstruction is a crucial step in the process of disk image deployment. The

disk image deployment process involves the Frisbee client requesting an arbitrary chunk

(because the chunk order is randomized to avoid starvation of certain clients) from the

19

Frisbee server. In the traditional model, the Frisbee server directly accesses the chunk from

the disk. However, in our system, serving a chunk is a much more intricate sequence of

steps. The design decision to store disk images in a deduplicated storage system to achieve

significant storage savings comes with the cost of chunk reconstruction during deployment

phase.

3.2.1 Issues

Chunk reconstruction might seem intuitive and straightforward. In practice, however,

chunk reconstruction comes with its own set of problems which are described below:

• Ensuring that the chunk size is less than 1 MB (as required by the Frisbee protocol).

• Reconstructing chunk headers for arbitrary chunks.

• Identifying and retrieving the raw data that goes into the chunk.

3.2.2 Design Decisions

Addressing problems with chunk reconstruction leads us to make the following design

decisions.

The Frisbee protocol restricts the size of a disk image chunk to 1 MB to prevent the

necessity of dealing with variable sized chunks on the Frisbee client. A 1 MB chunk is

divided into 1 KB units each of which is multicasted over the network. The Frisbee client

receives the 1 KB packets, requests missing 1 KB data units and uses these 1 KB packets

to reassemble the chunk. This is what makes Frisbee protocol client-driven.

Our system has to comply with the chunk size constraint in order to remain unobtrusive

to the clients, which is one of our design principles. The reason for remaining unobtrusive

stems from the fact that any modification to the client side of the Frisbee protocol would

require us to update a significant number of already deployed clients with the new protocol

changes which is not a desirable proposition.

Since the size of the compressed data obtained by compressing a given data unit is

unpredictable, it is difficult to ascertain if a reconstructed chunk exceeds 1 MB unless we

compress the exact raw image data that a given chunk is derived from. Hence, the problem

boils down to identifying the raw data needed from which a given chunk is synthesized.

However, assuming we obtain the raw data corresponding to the chunk, it is not guaranteed

that the reconstructed chunk size is always less than 1 MB. It is not just the data but also

the method of compression that affects the size of a reconstructed chunk.

20

Assuming we obtain the raw data that goes into the chunk, one way of reconstructing the

chunk is to perform a deflate [19] operation on the entire raw data. Our results showed that

the chunk size exceeds 1 MB once in a while using this approach. We need to understand

the structure of a chunk to understand the anomaly in the size of the reconstructed chunk.

The compressed part of a chunk is obtained by performing a zlib deflate operation

on the associated raw data. The compressed part of the chunk is comprised of small,

independent zlib deflate blocks. Each zlib deflate block is capable of being uncompressed

separately. These independent zlib deflate blocks correspond to valid regions of the chunk.

To further explain, a chunk is comprised of regions which correspond to a valid contiguous

disk sector. When constructing a chunk, data contained in each of the valid regions is

separately compressed using zlib deflate to produce a deflate block. The deflate blocks

generated by compressing each individual data region are concatenated to produce a chunk.

The chunk header describes the information about which regions are constituted in the

chunk, their starting offsets and sizes. In fact, this is the same algorithm used by Frisbee

to synthesize chunks.

Having understood the composition of a chunk, it makes more sense to comprehend why

compressing the raw data associated with a chunk as a single zlib block produces a chunk

which is sometimes greater than 1 MB. Clearly, compressing entire raw data in one go does

not take into consideration the zlib block boundaries which denote the end of the current

region and the start of the next valid region within a chunk.

Hence, to ensure the chunk size always complies with 1 MB size, we designed our chunk

reconstruction solution to pay attention to the zlib block boundaries within the compressed

part of the chunk. We record these boundaries and store them persistently in the metadata

we maintain for the disk image. During the process of chunk reconstruction, we use this zlib

block boundary information along with the raw data associated with the chunk to recreate

the requested chunk.

An important design decision we made is retaining the mapping raw data to the chunk.

In other words, we designed our solution such that raw data associated with a particular

chunk does not change. Altering the raw data associated with a chunk would require us to

recompute the region start and size information stored in the chunk header and would also

make changes to the block header of the chunk. This process is tedious and error prone as

there is a chance that the chunk size sometimes exceeds 1 MB. Hence, we made a choice to

never modify raw data associated with a chunk, to achieve predictability.

Our decision to store chunk headers persistently has a two fold motivation. Firstly, the

21

need to map fixed raw data to a chunk. Secondly, the ability to regenerate an arbitrary

chunk at any given time without depending on other disk image chunks. Without readily

available chunk headers, regenerating an arbitrary chunk would require us to regenerate

all the preceding disk image chunks which could potentially slow down the entire process

of disk image deployment. Since, the raw data associated with a chunk never changes,

the region metadata stored in the chunk header does not need to change. The only chunk

header attribute altered by the chunk reconstruction process is the size field in the block

header. This happens since the reconstructed chunk, though less than 1 MB, is often not

the same size as the original chunk thus requiring us to update the size field in the block

header.

In this chapter we discussed the design decisions and the motivational factors in our

decision-making process. The next chapter deals with the implementation details of our

system.

CHAPTER 4

IMPLEMENTATION

In this chapter, we discuss the implementation details of our system.

4.1 System Overview

The system’s implementation involves a revamp of the existing Frisbee server to enable

it to serve disk images from the Venti archival storage system. This process needs to be

transparent to maintain compatibility with Frisbee client code. The implementation of the

system is a two-step process. The first step deals with storing the disk images in Venti so as

to provide maximum data deduplication. The second step deals with reconstructing chunks

from Venti, which are in turn served to the clients.

4.2 Components

Our system adopts a modular architecture clearly defining the responsibility of each

component. The reason for embracing a modular architecture is to offer flexibility. For

example, isolating the storage component from the rest would help us experiment with

new storage technologies such as flash or solid state based storage systems in future while

providing an unchanged interface to other components. Our system is comprised of the

following main components.

• Frisbee server

• Venti server

• Chunkmaker

4.2.1 Frisbee server

Frisbee server serves an Emulab disk image to clients using a custom multicast protocol.

Typically, Frisbee reads disk images from the file system. We modified Frisbee enabling

it to serve disk images from the Venti storage system. This process involves retrieving

the appropriate data from Venti and reconstructing the requested chunk on-the-fly. The

changes to Frisbee protocol only modify the server. We do not change the Frisbee client.

23

4.2.2 Ventiserver

Ventiserver component is an interface to Venti put and get functionality. We store data

blocks of a fixed size, known as blobs, in Venti. Storing a blob in Venti returns a SHA-1

hash that is used to uniquely identify the data blob. All requests for storing and retrieving

blobs in our system go through Venti server. Since, the version of Venti storage system we

use is a linux port of the original Plan9 operating system version, we had to deal with some

plan9 conVentions. Ventiserver abstracts out these details and provides consistent interface

to other components of our system.

4.2.3 Chunkmaker

Chunkmaker component is responsible for chunk reconstruction on-the-fly. It receives

requests from Frisbee server to deliver a chunk. Chunkmaker interacts with Ventiserver

to identify and retrieve appropriate data and recreates the chunk. Chunkmaker is also

responsible for gathering metadata which shall be utilized during chunk reconstruction.

However, the metadata computation and storage are done offline and thus do not impact

the performance of chunk reconstruction.

4.3 Storage Management

In this section, we discuss the process of storing disk images in Venti. We also describe

what metadata we store, how we store it and how is it used for reconstructing the chunk

on-the-fly during deployment. Figure 4.1 describes the workflow of storing disk images in

Venti.

4.3.1 Storing Disk Images

Our system stores Emulab disk images in raw or uncompressed format. This decision

to store disk images in raw format is motivated by the “data shift problem” explained in

section 3.1.1. A disk image is first laid out on a disk partition. We decide on the blob size

used for storing the disk image in Venti since we chose to store data as fixed size blobs.

The disk partition is read in segments of blob size and each segment is individually written

to the Venti storage system. Upon writing a blob, Venti returns a SHA-1 hash that is used

to uniquely identify the data blob. The SHA-1 hashes corresponding to a disk image are

stored persistently to be used later during disk image deployment.

24

Figure 4.1: Store Disk Image In Venti Storage System

4.3.2 Storing Metadata

Storing metadata is important for enabling on-the-fly chunk reconstruction during de-

ployment time. Hence, it does not have an impact on the chunk reconstruction performance.

We store the following metadata.

• Chunk headers.

• Zlib block map.

Chunk headers are stored in their original format persistently. Since the reconstructed

chunk consists of the same data as the original chunk, we do not need to change the chunk

header information.

As discussed in section 3.2.1, there exists a potential issue of reconstructed chunk

overflowing 1 MB thus leading to data corruption. Before we described how we addressed

25

this issue, we need to explain zlib block boundaries. The data corresponding to a chunk is

compressed using zlib compression library. Zlib takes a byte buffer as input and returns a

compressed data buffer. We capture the block boundaries of a zlib stream and store them

persistently as zlib block map. This zlib block map along with the chunk header is used to

reconstruct the chunk on-the-fly during deployment.

4.4 Deployment

In this section, we discuss disk image deployment and how on-the-fly chunk reconstruc-

tion is done during a disk image deployment. Figure 4.2 explains the workflow of serving

disk image chunks during disk image deployment.

4.4.1 Serving chunks from Venti

Frisbee serves chunks to clients upon request. The way we propose to store disk images in

Venti complicates the process of serving chunks. The process of serving a chunk now involves

identifying the blobs corresponding to the chunk, retrieving them from Venti, composing the

chunk, and delivering it to the client. The blobs corresponding to the chunk are identified

using the chunk header and zlib block map retrieved from the persistent metadata storage.

The blobs identified are retrieved from the Venti storage system using corresponding SHA-1

hashes. The blobs retrieved from Venti are deflated using zlib to create the compressed part

of the chunk and this in turn, along with the chunk header, is used to reconstruct the chunk,

which is multicast to the clients.

In short, the process of serving chunks from Venti involves the following steps.

• Identifying the raw data corresponding to the chunk.

• Retrieving the raw data from the Venti storage system.

• Compressing the raw data using zlib.

• Coalescing chunk header with the compressed data.

• Deploying the chunk.

Identifying raw data belonging to a chunk could be done by examining the chunk header.

Since we already stored the chunk header persistently, retrieving the start offsets and sizes

of regions corresponding to a chunk from the chunk header helps us easily identify the raw

data belonging to the chunk.

26

Figure 4.2: Serve Disk Image Chunks From Venti Storage System

Once we identify the raw data belonging to a chunk, we retrieve the SHA-1 hashes using

the raw data that could be retrieve from Venti. The SHA-1 map stored persistently while

storing disk images in Venti helps us identify this information. We load the SHA-1 map

and other concerned metadata corresponding to the disk image being served into memory

in order to avoid creating overhead on the process of chunk reconstruction.

We use the SHA-1 hashes to retrieve the raw data from the Venti storage system. This

process involves requesting a Ventiserver component for data corresponding to a SHA-1

hash. Once we retrieve data blobs corresponding to all the SHA-1 hashes, we have the

entire raw data corresponding to the chunk requested.

Compressing the raw data is a very important step and the most time consuming step

27

of the entire chunk reconstruction process. The primary reason for compressing the raw

data is ensuring compatibility with Frisbee clients. The Frisbee client expects to receive a

chunk in a custom compressed format. Moreover, as explained in section 3.2.1, there exists

a potential data corruption issue due to the chunk exceeding the expected size. To address

this issue, we use the knowledge of zlib compression stream structure.

As described in section 4.3.2, knowledge of zlib stream structure is utilized to create

zlib block map while constructing metadata. Each entry of a zlib block map indicates

the amount of raw data belonging to a particular zlib stream. Utilizing knowledge of zlib

compression stream helps us regenerate a chunk with a bounded size thus complying with

Frisbee protocol.

The compressed data part generated using the chunk reconstruction process is coalesced

with the original chunk header retrieved from the persistent metadata to recreate an

identical chunk ready for deployment. This chunk is deployed to clients the way regular

chunks are deployed thus remaining transparent to the client side of Frisbee protocol.

31

Figure 5.3: Storage Consumption: Compressed Disk Images vs. Venti for Several
Blobsizes. a) Storage consumption for 4 KB Venti blobsize. b) Storage consumption
for 8 KB Venti blobsize. c) Storage consumption for 16 KB Venti blobsize. d) Storage
consumption for 32 KB Venti blobsize.

As one might observe, even storing raw data provides significant storage savings when the

blob sizes are smaller. However, the experiments conducted reveal that decompressing data

before serving it is not a bottleneck in the turn around time.

5.3.1 Metadata Storage

Though the storage consumption reduces with decrease in Venti blob size, there is a

cost involved with storing the metadata. Storing images in Venti with a blob size of 8 KB

involves storing up to four times the amount of metadata as opposed to using a Venti blob

size of 32 KB. Hence, it is essential to identify the ideal blob size.

Figure 5.5 shows the disk space consumed by storing metadata and the aggregate storage

utilization for each blob size.

32

Figure 5.4: Storage consumption: Compressed Disk Images vs. Venti (raw data +
metadata) for several blobsizes. a) Storage consumption for 4 KB Venti blobsize. b) Storage
consumption for 8 KB Venti blobsize. c) Storage consumption for 16 KB Venti blobsize. d)
Storage consumption for 32 KB Venti blobsize.

5.3.2 Aggregate Storage Savings

Figure 5.6 presents the aggregate storage consumption statistics while storing disk

images using varying blob size parameters. As one might observe, the storage space

consumed for storing data reduces while the storage space consumed for storing metadata

increases as we reduce the blob size. However, it is imperative to identify the optimum blob

size in order to achieve maximum storage space savings. From the statistics, it appears that

a blob size of 4 KB and 8 KB provide optimum storage savings.

The results obtained indicate about 70 - 80 % storage savings achieved by storing

Emulab disk images in Venti deduplicated storage system which is consistent with our

thesis hypothesis.

33

Figure 5.5: Metadata storage consumption for various Venti blob sizes.

5.4 Performance Impact

As discussed in section 2.1.3, the performance of disk loading is critical to the overall

response time of an Emulab experiment instantiation. Due to the modifications we made to

the disk loading, chunk reconstruction is now a critical step in the process of disk loading.

In other words, the Frisbee server has to reconstruct the requested chunk before sending

it to the clients. The performance impact induced can be quantified by conducting image

reconstruction and end-to-end Frisbee deployment experiments.

5.4.1 Image Reconstruction

Figure 5.7 presents the time duration for reconstructing a full disk image from a backend

deduplicated storage system. Blob size denotes the data block sizes used for storing disk

images in the deduplicated storage system. As one might observe, the time to reconstruct

an image varies with the blob size used for storing the disk image. This is reasonable since

reconstructing a disk image that is stored in blocks of 4 KB would mean retrieving eight

times the number of data blocks to be retrieved for a blob size of 32 KB. However, no sharp

decline in the performance is observed due to the following reason:

1. Though using a blob size of 4 KB instead of 16 KB would mean retrieving four times

the number of blobs, it is not required to retrieve as many blobs due to the presence

34

Figure 5.6: Aggregate Storage Statistics

of duplicate blobs. Every blob retrieved from Venti is cached in a block cache and all

the subsequent accesses to the blob are served from the block cache. This alleviates

the performance penalty.

5.4.2 End-to-end Frisbee Performance

End-to-end Frisbee performance testing helps us determine how the system works in

a production environment. The tests are carried out for various blob sizes and a varying

number of clients. Figure 5.8 and Figure 5.9 present the disk image deployment time

statistics for serving a disk image from a back end deduplication storage system with blob

size 32 KB and 16 KB, respectively. These results are compared to the performance of

baseline Frisbee with regard to deploying the same disk image. Figure 5.10 presents the

disk deployment comparison statistics for baseline Frisbee and Frisbee serving images from

Venti storage system with blobsizes 16 KB and 32 KB. The performance overhead generated

when disk images are served from Venti varies about 25% when compared to the baseline

Frisbee, which induces a latency of a few seconds while deploying disk image to the clients.

Also noticeable is the way the performance overhead remains constant with increase in the

number of clients. This phenomena is observed due to the following reasons:

35

Figure 5.7: Image Reconstruction Time

• Pipelining the process of chunk reconstruction with the highly parallel nature of

Frisbee clients.

• There are other portions of the disk loading process that are much slower than the

process of chunk reconstruction. Network transmission delay and client side disk I/O

are slower operations since the network bandwidth is shared and the clients typically

have slow disks. Hence, the slower operations involved in the disk loading process hide

the latency induced by the chunk reconstruction process thus exhibiting only minimal

performance impact on the overall performance of disk loading.

The end-to-end Frisbee disk image deployment statistics indicate that our system induces

25% performance degradation, which amounts to a few seconds compared to the baseline

system in an experiment consisting of up to 20 clients. We believe achieving 70 - 80 %

storage savings while inducing the latency of a few seconds for deploying Emulab disk

images is a very reasonable cost to pay.

5.4.3 Performance Pipeline

To understand the reason behind low performance impact of Venti on the overall process

of a disk image deployment, we need to analyze the individual steps involved in a disk image

36

Figure 5.8: End-to-End Frisbee Test — 32 KB Blob size

deployment.

Figure 5.11 presents the timeline of deploying arbitrary chunks during disk image deploy-

ment. The figure compares the timeline for baseline Frisbee and Frisbee with the capability

to serve disk images from Venti. The metrics used in Figure 5.11 and their meanings are as

follows.

• IDLE TIME - Indicates the timestamp with reference to unix real time clock when a

chunk deployment starts.

• RECONS TIME - Time taken to reconstruct a chunk from Venti. This time is zero

in case of normal Frisbee deployment.

• PROP DELAY - Propogation delay induced by the network.

• CLIENT DELAY - Latency induced by the client before starting disk I/O.

• CLIENT IO - Time taken to uncompress the chunk and write it to the client disk.

Observation of Figure 5.11 leads to the following conclusions.

• The only noticeable difference between the normal Frisbee and Frisbee with Venti

integration is the latency induced by chunk reconstruction i.e. RECONS TIME.

CHAPTER 7

CONCLUSION AND FUTURE WORK

We presented the design and implementation of a large scale disk image storage and

deployment system for the Emulab network testbed. We explored techniques to achieve

optimal utilization of available storage resources while addressing the issues involved in

making the system have minimal impact on the overall performance of an Emulab experi-

ment swap-in.

Our work leveraged the Venti archival storage system for applying data deduplication

techniques and achieving significant storage savings. Towards achieving storage savings

with a minimal impact on the disk loading performace, we explored several techniques:

• Optimum techniques for achieving maximum storage savings while storing Emulab

disk images.

• Application of file system knowledge to further trim storage utilization.

• Reconstructing portions of a disk image, known as chunks, on-the-fly during disk

image deployment.

• Utilizing zlib knowledge to reconstruct the compressed part of a chunk with minimal

information about the disk data layout.

• Pipelining the process of chunk reconstruction with deployment to achieve bounded

disk image deployment latencies.

Finally, we implemented our system to remain unobtrusive to other components of

Emulab especially the Frisbee protocol. In other words, our system does not require

changing the Frisbee protocol and is thus able to work out-of-the-box with already existing

Frisbee clients. However, the Frisbee clients now have an opportunity to request a disk image

from a massive collection of eclectic disk images thus encouraging large scale heterogeneous

experimentation within Emulab.

Several new ideas could be explored to further extend this system and make it more

scalable and robust. A few of them are described.

REFERENCES

[1] Amazon Ec2. http://aws.amazon.com/ec2/.

[2] Amazon Machine Image. http://aws.amazon.com/amis.

[3] Linux Volume Manager Manual. http://tldp.org/HOWTO/LVM-HOWTO/.

[4] Meeting The Challenges Of Disaster Recovery. http://m.softchoice.com/files/pdf/
brands/acronis/Acronis Meeting Challenge of Disaster Recovery White Paper.pdf.

[5] Plan 9 From Bell Labs. Fossil Manual Page. Fossil(4). http://man.cat-v.org/plan 9/
4/fossil.

[6] Plan 9 From Bell Labs. Vac Manual Page. Vac(1). http://swtch.com/plan9port/man/
man1/vac.html.

[7] Plan 9 From Bell Labs. Vacfs Manual Page. Vacfs(4). http://swtch.com/plan9port/
man/man4/vacfs.html.

[8] Plan 9 From User Space. Venti Administration Guide. Venti(8). http://swtch.com/
plan9port/man/man8/venti.html.

[9] Plan 9 From User Space. Venti Overview Manual Page. Venti(7). http://swtch.com/
plan9port/man/man7/venti.html.

[10] Plan9 Gnu/Linux Port. http://www.swtch.com/plan9port/.

[11] Raid5. http://tldp.org/HOWTO/Software-RAID-HOWTO.html.

[12] Storage Savings With Acronis Deduplication. http://m.softchoice.com/files/pdf/
brands/acronis/Storage Savings with Acronis Deduplication white paper.pdf.

[13] Symantec Ghost Disk Imaging Software. http://www.symantec.com/sabu/ghost/.

[14] Veritas Volume Replicator. http://eval.symantec.com/mktginfo/products/White
Papers/Storage Server Management/sf vvr wp.pdf.

[15] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak,
M., and Bowman, M. Planetlab: An Overlay Testbed For Broad-coverage Services.
ACM SIGCOMM Computer Communication Review 33, 3 (2003), 3–12.

[16] Crespo, A., and Garcia-Molina, H. Archival Storage For Digital Libraries. In
Proceedings of the Third ACM Conference on Digital Libraries (1998), ACM, pp. 69–78.

[17] Debnath, B., Sengupta, S., and Li, J. Chunkstash: Speeding Up Inline Storage
Deduplication Using Flash Memory. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference (2010), USENIX Association, pp. 16–16.

