
Image import and SSH security in Emulab

Srikanth Raju

July 15th 2013

Abstract

Cloud providers typically provide compute facilities for their users. It
would be very convenient if users’ could import and export their machines
with much greater ease to other cloud providers or to their desktops or
local machines. Here, we talk about how we’ve enabled users to easily do
this with Emulab. Specifically, we’ve implemented image import mecha-
nisms to import machines from cloud providers like OpenStack and EC2
and also any other general regular Linux machine.

We also discuss how we’ve implemented a SSH security system in Em-
ulab that helps alleviate some of the security that might be brought in by
such imported machines. A man in the middle attack is used in a positive
way to enforce specific policies onto SSH connections. By doing this, we
can apply additional constraints over incoming SSH connections that may
not be enforced by the SSH server.

1 Enabling external image usage for Emulab
Infrastructure-as-a-Service providers typically have specialized environments that
require specific operating system adjustments to run them. Portability between
these various cloud providers is usually lacking. Emulab is a network testbed
is designed for users to test their applications with fine grained control for net-
work parameters. With the growing prevalence of cloud platforms like Amazons’
Elastic Cloud Compute(EC2)[1], users of these services would like to bring in
their entire stacks running on EC2 and do network specific tests on Emulab.
Here, we discuss how we have integrated support for machines running on EC2
and OpenStack in Emulab and how users may import them easily into Emulab,
so that they can run finer tests.

1.1 Background
Emulab[11] allows you to load various images onto a physical or virtual machine
and include them in a network experiment. This feature is quite similar to what
various cloud providers give in relation to their compute facilities. However,
Emulab provides various additional features, such as the ability to manipulate
network topologies and have reproducible network effects.

1



It would be very convenient to allow users to bring in their own images
from other cloud providers or even their own desktop machines. The idea is to
make such a process very simple and to be portable with other cloud providers.
Emulab also allows users to run images on both physical machines and virtual
ones. However, we plan to allow these imported machines to run only in virtual
mode on Xen. This is because for running on physical machines, we require the
machine to automatically configure all its’ own network interfaces(Emulab ma-
chines have more than one), run all the network traffic daemons and install user
accounts. However, by allowing only virtual machines, most of those Emulab
specific aspects can be controlled by the Xen host.

EC2 and OpenStack typically have a clientside that configure specific things
about a machine when they boot up. These clientside programs use an in-
stance metadata mechanism that allows images to get information about their
configuration. This is similar to a Testbed Master Control Daemon/Client
mechanism[6] that is present in Emulab and is used to configure the Emulab
clientside on Emulab images. The most important things that are configured
through the EC2 metadata API are the SSH keys of the machine and network
information. We have implemented this instance metadata API as a server to
allow EC2 images to be able to configure themselves.

1.2 Image importing
Linux AMIs in Amazons’ EC2 service typically run on a Xen Hypervisor. While
Amazon can run both Linux and Windows systems, we are mainly interested
in Linux at this moment. The images for Amazon are packages into Amazon
Machine Images. These AMIs are signed by a special certificate that belongs to
the owner of the image or Amazon. Also, a user can only download their AMI
if they own the base image. However, if a user has a running machine, we can
create an image of the running volume and package it for use with Emulab. The
situation is almost the same with OpenStack.

We have implemented image importing in Emulab. The general process can
be seen in figure 1. We provide a web form for users in Emulab to provide an
publicly accessible hostname that corresponds with the machine they would like
to import. The ops machine on Emulab connects to the target machine. The
grub.cfg is parsed so that the kernel and ramdisk can be pulled out. This is
important because we want to boot these machines on a Xen hypervisor which
requires the initial ramdisk and kernel to be given to it to load the operating
system. A large enough file is then dded on the target machine and a ext3
filesystem is mkfsed onto it. The root filesystem then gets rsynced into the file.
This requires quite a bit of free space to be left on the machine. However, it
is assuaged by the fact that it is possible to mount additional temporary block
storage on most cloud providers today. We then compress the filesystem into
a tarzip and copy this back into our ops machine. Most images are between
500MB to 2 GB. It may be noted that while it can be quite cumbersome to
transfer this over the network, it is the most efficient, because it is the most
direct way to transfer this data.

2



Emulab ops Remote 
machine

Copy and execute script remotely

Parse grub.cfg
Copy kernel
Create a file based filesystem
rsync root filesystem /
Compress filesystem image

Copy compressed filesystem image

Extract image
Create xen "package"

Imagezip package
Register image in DB

Figure 1: Image import into Emulab

Emulab uses imagezip[8] for compressing and storing images. Imagezip com-
presses specifically using filesystem knowledge and thus is very efficient. The
kernel, ramdisk and filesystem are extracted and tarzipped up to create an im-
age that can be used by emulab. When a virtual machine is loaded with the
image that was created, the kernel and ramdisk are pushed onto Xen along with
the filesystem image being loaded onto a LVM partition.

1.3 Instance Metadata and Clientside self configuration
EC2 uses an instance metadata service[2] to provide running systems with data
that they can use to initialize local services. OpenStack also supports the same
service[5]. Images that are designed for EC2 or OpenStack access this service
and use them for self initialization on boot, typically only for the first boot.
Initialization scripts that use this service typically configure the network, access
to the machine or some other configuration that can’t be burnt into the image.
This is the method that images use to pull in SSH public keys for the user and
thus is very important to support.

The instance metadata service runs on a special link-local address 169.
254.169.254. This address is a link-local address, so they need to specifically
configured to the correct service within our network. The metadata service
runs on port 80 and uses the HTTP protocol. Thus, it is possible to access this
metadata with simple HTTP requests using tools like wget or curl. The data
is accessed from the base URL http://169.254.169.254/latest/meta-data.
The most important metadata that is served are the SSH public keys of the

3



user. For this specific reason, we have a specific metadata server running that
provides the running machines with this data. Other important metadata that
are useful for the image are the local hostname of the machine, IP address and
the instance ID of the machine. We have implemented this as a Python server
using data directly from Emulabs’ database. The list of metadata that we have
implemented support for are in table 1. The ones that we have not supported
are extremely EC2 specific.

Data Description
ami-id The Image ID used to launch the instance.
mac The instances’ MAC address.

instance-id The ID of this instance.
public-hostname The public hostname of the instance.

public-ipv4 The public IP address.
public-keys/0/openssh-key Public keys of users

Table 1: Supported Instance Metadata in Emulab

Since we need to make 169.254.169.254 accessible to the machines that
require this instance metadata, we use netfilter on the Xen host machines to
redirect packets bound for that address. Instead, we run a metadata server
on some port on the Emulab boss machine. This metadata server was written
in Python and pulls out the same data that is pulled out from the Emulab
database. Simple iptables rules can be used to operate on the bridge interface
on the Xen host to perform a redirect through the DNAT target[3] while routing
the packet.

2 SSH Security

2.1 Introduction
It is difficult for infrastructure-as-a-service (IaaS) providers to maintain security
in the face of users’ poorly configured virtual machines. The users of clouds
and network testbeds create virtual machines that are exposed to attacks from
the Internet, and poorly configured VMs are quickly compromised. SSH login
attacks are very common and machines with very common passwords are easily
broken. If a user has a weakly configured system, there isn’t much a provider
can do.

The problem is amplified by the fact that in Emulab, we have much stronger
trust within the network between the machines. This is because till now, most
of the machine operating systems have been created by Emulab administrators
and configured to be secure. We expect machines to be mostly well behaved.
Allowing users to import their machines means that we have very little control
over them and we have no means of checking if a users’ account is poorly con-
figured. The Utah Emulab has had atleast two attacks where users’ machines

4



have been compromised because of such security problems. This is one of the
motivating factors for us to solve the probem.

Currently, cloud vendors such as EC2 typically do very little about poorly
configured SSH servers. Amazon EC2 provides guidelines to configure SSH
servers and asks users to use public keys instead of passwords. If a VM is
compromised and are being misused for activities like port scanning, Amazon
typically locks up the server and notifies the owner. It is important to note
that Amazon probably has firewalls which are configured to completely reject
any connections from known bad hosts. However, a cursory look at the SSH
daemon logs on a EC2 machine that was up for just under 24 hours shows that
people trying to break into SSH are not for the lesser. The machine received 65
login attempts from four different IPs. This shows that attacks happen even on
enterprise secured networks.

We have implemented a friendly SSH man in the middle for Emulab, an IaaS
network testbed. The challenge in this is that SSH is designed to be unbreakable,
so it is nearly impossible to snoop on the data being transmitted on an SSH
session between two systems. It is also important to maintain transparency so
that legitimate users do not have to jump through hoops to connect to their
machines. Our goal is to design a system such that we are able to protect
Emulab’s users while not introducing newer and more subtle security issues.

2.2 Methodology
Secure Shell (SSH) is a cryptographic network protocol for secure data commu-
nication and remote login. It is the primary method of logging in to remote
machines. It is the prime method to connect to remote machines.

There are two versions of the protocol. The first version is obsolete. SSH v1
is susceptible to injection attacks due to weak data integrity protection(CRC-
32)[12]. It also allows for only one channel at a time, one authentication per
session and supports very limited encryption and integrity algorithms. The
newer SSH v2[16] protocol is the one that is widely used and is much more
secure.

While it is possible for server administrators to configure popular SSH server
applications with conditions such as “no root authentication”, it is much more
difficult to do so on virtual machines that any user can import with their custom
operating systems because administrators do not have direct access to these
machines. One of the ways of doing this is to modify the guest filesystem. So,
such a method requires us not only to be able to read a variety of filesystems,
but also to support a variety of server versions. It also enables the user to change
it back if we do not continuously monitor the filesystem. More importantly, it
modifies something that is supposed to belong to the user - their data.

The method that we chose to implement involves adding a layer in between
the client and the server. The goal of doing a man in the middle in traditionally
to attack a server and to be able to masquerade an SSH session and to ultimately
gain control of the machines. The malicious users can these use machines for
their nefarious purposes. However, it is possible to use the same technique to

5



help increase security of these systems. A variety of security policies can be
forced upon SSH servers. Some of our goals with such a system is to disallow
weak passwords, connections from specific servers or users and to lock down
SSH login attacks.

2.3 The SSH Protocol
The SSH protocol v2[16] is a layered protocol which supports multiple sessions
and channels for mechanisms such as port forwarding and file transfer. The
main protocol has three different layers - the Transport Protocol, Authentica-
tion Protocol and the Connection Protocol. The Transport layer provides server
authentication, confidentiality, data integrity and compression. The authenti-
cation layer mainly does password and publickey authentication and interfaces
with the OS authentication modules like PAM. The connection layer provides
channels for user sessions and other channels for forwarding.

TCP
End to end delivery

SSH Transport Protocol
Encryption, Integrity, Server Authentication

SSH Authentication
User Authentication

SSH Connection
Channel Multiplexing

Figure 2: TCP layer

The SSH Transport protocol[15] negotiates a shared secret using Diffie Hell-
man key exchange. It then generates encryption keys for transferring data
using this shared secret. During the initialization of the protocol, the client also
requests for the servers’ host key. This layer also generates a message authen-
tication code of the unencrypted data, so that the data can be verified. The
entire process is protected by the server signing with its’ host key, and sending
the signature to the client so the servers’ public key can be authenticated. The
Authentication protocol[13] can be used to support mainly two authentication
methods - password and public-key. The SSH protocol also supports host based
authentication, however, this is hardly ever used, so we have focussed on the first
two methods. The transport is disconnected is the authentication fails. We will
discuss how authentication takes place and how it affects our implementation in
section 2.5 and section 2.6. The Connection Protocol[14] acts as the channel for
carrying data to different processes. There are various channels that run on the
connection protocol. The session channel, the x11 forwarding channel and the

6



port forwarding channels. The connection handles demultiplexing of the stream
data to these separate channels. The session channel is what typically carries
the terminal data.

2.4 The Man in the Middle
It is possible to perform man in the middle attacks for SSH. This is however not
fully transparent to the client user because the SSH servers have to present their
host key during the key exchange during the initiation of the Transport layer.
This means, that it is impossible for a man in the middle to completely pretend
to be a different SSH server, unless, ofcourse, they have the private host key of
the SSH server in question because the server has to sign a shared hash with
their private key. The first time a SSH client connects to a server, it usually
stores the host key in a file. This way, a client can detect when a key changes
and indicate to the user that they might be getting attacked. This isn’t much
of a problem for our use case, because we are not a threat to the user. Instead,
we can publish our public key, so that users can trust the gateway SSH servers.

The general method of doing the man in middle involes performing a bridge
between the client and the actual server. For every request the middle server
receives, it performs a corresponding request at the target server. This should be
performed at the layers above the transport layer. This is because the transport
layer is protected by encrpytion using a session key. Since the session key is
generated by diffie hellman, it is impossible to force the same key over the
bridged session. Thus, it would be impossible to see inside the messages and
bridge them onto the target at the same time.

The goal is to enforce policy and we can use this man in the middle to reject
connections which we deem are unsafe or questionable. The specific policies
that we can enforce will be discussed in section 2.7.

One of the important things to discuss is how the SSH connection is actually
routed into the middle server instead of actually heading to the actual server.
Attacking agents use various methods such as ARP spoofing and DNS spoofing
to make the client connect to wrong machines. In our situation, the problem
is handled much more simply. Since our imported machines run on a virtual
machine, they all run on a single machine with a bridged network interface.
In Emulab, the Xen host machine runs a Ubuntu server distribution running
Linux 3.2.46. The network stack on the host system can easily be accessed
using Netfilter, which provides a set of callbacks to the network stack. The guest
operating systems’ network interface are typically configured to get bridged over
to the bridge on the host side. Using iptables, we can easily add a redirection
rule[4] that redirects all connections bound to the SSH port to the port on the
same machine where the man in the middle is running.

The other important consideration is that of which machine to perform the
man in the middle on. While the normal methodology described above works
well for one server, it is possible to do the man in the middle for multiple servers.
The server to connect to can be encoded via different methods. One method is
through the username. For example, the client should connect to the machine

7



with username userfoo:node0. The node0 in the username encodes the target
machine that needs to be connected to. We call this problem of determining
targets the demux and the username based demux is one of the demuxes we have
implemented. The standard simple demux is called the port demux because the
target is determined by port the man in the middle is listening on. A demux
can potentially work in many ways - using keyboard interactive authentication
to ask for the target, setting up the target based on the users’ key or connecting
users to their respective machines based on some registration. This kind of
feature is useful for special servers or in cases where there is a gateway machine
and the administrator wants to perform specialized checks on incoming users.

The implementation of this system is done in Java. We use a library called
sshtools which provides the mechanism for talking to servers. This provides the
base layer for implementing the system. typesafe-config and akuma provide
the configuration file parsing and daemonization respectively.

2.5 Password Authentication
The password based attack is fairly straightforward. This kind of attack is
well known[7, 10] and can be easily performed. The authentication token - the
password is transmitted in plain text and is thus vulnerable either to steal or
to authenticate a malicious user. We can easily mirror every message coming
to the man in the middle server (MITM server) to the equivalent client request
to the actual server(the target). The process is shown in figure 3. When the
transport connection comes in, we initiate a separate transport with the server.
When the client requests password authentication, we receive the username and
password in the SSH_MSG_USERAUTH_REQUEST message. We initiate a
similar message to the server and if the target server succeeds, then we reply
with a success message, otherwise we reply with a failure. Once the user is
authenticated, any of their connection channels can immediately be opened and
we send requests for the same channels to the server. For all the channel data
that is received, it is simply re-encrypted and sent over the target connection and
vice versa. During each phase of the process, we can apply our own filteration
process to apply any additional policies that we want to. Thus, we can simply
reject all authentication for user “root” even if such an authentication would
pass at the target server.

8



ServerMITMClient

1. Create connection

2. Key exchange

3. Create connection

4. Key exchange

5. Request Authentication for foo

6. Accept password 

7. Send foos' password

8. Request Authentication for foo

9. Accept password 

10. Send foos' password

11. Authentication successful

12. Authentication successful

13. Open session channel

14. Open session channel

15. Session channel opened

16. Session channel opened

17. Session Channel Data

18. Session channel data

19. Session channel data

20. Session channel data

Tr
an

sp
or

t P
ro

to
co

l
Au

th
en

tic
at

io
n 

Pr
ot

oc
ol

C
on

ne
ct

io
n 

Pr
ot

oc
ol

Figure 3: The man in the middle for passwords

9



2.6 Public Key
The above technique however does not work for public key authentication. Pub-
lic key authentication is resistant to man in the middle attacks because during
authentication, the client will sign a packet containing the session with their
private key. In order to authenticate with the actual server, the middle man
will have to sign a similar packet with the private key of the user. Ofcourse, this
is usually unobtainable to attackers. Even for our model where the goal is to
improve security, it would be absolutely ludicrous to request the user their pri-
vate key. One possibility is that we could create a separate key and use that to
authenticate between the middle man and the imported machine. This creates
an additional overhead for the user and it means that our server can connect to
the users’ server as well, which might not be comfortable.

The alternative is to use an inbuilt protocol mechanism - agent forwarding[9]
to achieve our goals. The process can be seen in figure 4. Once the connection
is received at the gateway server, we proceed until we receive an authentication
request. When we determine that the request is for public key authentication,
we return an authentication successful message. The client then proceeds to
make requests for whichever services it requires. However, we don’t process
any requests, but instead we queue all of them and wait for an agent-auth-req
request on the session channel. This is the request from the client machine that
sets up agent forwarding. As soon as this message arrives, we set up the agent
forwarding and try to connect to the real server. The mechanism forwards the
signing request to the actual client, which does so on behalf of the man in the
middle. Again, the same technique can be used by attackers to hijack user
sessions or to authenticate as the user to different machines during the session.
Once we ensure that the user has been authenticated, we can forward all the
queued messages. In the event that the user fails to authenticate, we disconnect
from the client.

The important thing to note in the public key method is that even though
the client has been told it is authenticated, it actually isn’t. Also, we open the
session channel even though we have no real access to a terminal session on
any machine. Instead we wait for the user to agent to signal that they have
forwarded their agent and queue all other messages for all channels. There
is also a timeout which disconnects the whole connection if the user hasn’t
enabled agent forwarding. The general architecture can be easily visualized in
figure 5. The dotted lines represent messages and the double lines indicate that
the messages between those channels are passes as-is.

10



ServerMITMClient

1. Initiate connection

2. Request Authentication for foo

3. Ready to accept publickey

4. Send signed data blob

6. Open session channel

7. Session channel opened

8. Session Channel Data

Tr
an

sp
or

t
Au

th
en

tic
at

io
n 

Pr
ot

oc
ol

C
on

ne
ct

io
n 

Pr
ot

oc
ol

5. Authentication successful

10. Session Channel Request - agent-req

11. Accept session request - agent-req

12. Request Authentication for foo

13. Accept publickey 

16. Send signed data blob

17. Authentication successful

Queue

Process Queue

9. Session Channel Request - env
Queue

14. Request data blog signature via agent

1. Initiate connection

15. Send signed data blob

Verify if needed

18. Session Channel Data

19. Session Channel Request - agent-req

……

Transport
Authentication Protocol

C
onnection Protocol

Figure 4: The man in the middle for publickey

11



Source Transport

Source Session

Target 
Authentication

Src x11 Src tcpip-fwd

agent-req?

Queue

Target Session

Proc
es

s i
f s

uc
ce

ss
ful

Target x11 Target tcpip-
fwd

Source Transport

Forwarded Agent

In
itia

te
 a

ut
he

nt
ica

tio
n

No

Figure 5: Queuing messages and bridging architecture

Again, with this authentication mode, it is possible to do all the additional
policy we would want to. We could enforce all the connection level tests like
blocking specific hosts, but also test for specific users.

The security of the entire system still hinges on the user checking the host key
correctly. If the user accepts any host key and connects to some machine other
than the target machine or the MITM server, then they are insecure no matter
what. Our implementation does not do anything to alleviate this problem with
SSH. However, the MITM servers public key is published for everyone, so the
user still has to take the usual tedious steps to verify that the key matches.

12



The man in the middle system fixes only the problems associated with poor
configuration and is succesful in that.

2.7 Policy enforcement modes
The main point of doing the man in middle was to force policy onto the servers
from outside. All of these configuration options are available from a simple text
configuration file that is provided to the MITM server and have allow or disallow
modes.

• Authentication - Allow only password, publickey or both types of authen-
tication.

• Password - Allow or reject only certain passwords, for example - empty
passwords or the password “password”.

• Publickey - Allow or reject certain public keys or have stronger and addi-
tional public key verification.

• Users - Allow or reject certain users from logging in. Useful for disallowing
root logins.

• IPs/Hosts - Allow or reject known bad hosts.

• Brute Force Detection - Block machines from trying to connect more than
a certain amount of times per minute.

• Channels - Allow or reject TCP forwarding or X11 forwarding

Each option is considered to be a regular expression, so it’s possible to write a
general expression for rejecting cases or accepting only in a few cases.

3 Conclusion
We’ve seen how we have added support to import images into Emulab from
remote machines with a simple process. This also includes the metadata server
to perform self initialization for images coming from EC2 and OpenStack. By
doing this, we’ve greatly increased the portability of images with Emulab. We
have also implemented a configurable system to improve SSH security of ma-
chines running inside Emulab by applying additional checking of constraints on
SSH connections. This system can be used to ensure that SSH servers use strong
policies that greatly reduce the possibility of attack. Overall, with these two
systems, we have improved the portability of virtual machines and the security
configuration of the same.

13



Acknowledgements
This material is based upon work supported by the National Science Foundation
under Grant No. 1059440. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
[1] Amazon elastic compute cloud (amazon ec2). URL: http://aws.amazon.

com/ec2/.

[2] Instance metadata and user data. URL: http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/AESDG-chapter-instancedata.html.

[3] iptables dnat target. URL: http://www.linuxtopia.org/Linux_
Firewall_iptables/x4013.html.

[4] iptables redirect target. URL: http://www.linuxtopia.org/Linux_
Firewall_iptables/x4508.html.

[5] Metadata service. URL: http://docs.openstack.org/trunk/
openstack-compute/admin/content/metadata-service.html.

[6] Testbed master control daemon/client. URL: http://www.emulab.net/
doc/docwrapper.php3?docname=tmcd.html.

[7] Julian Beling. Conducting ssh man in the middle attacks with ssh-
mitm. URL: http://www.giac.org/paper/gsec/2034/conducting-ssh-
man-middle-attacks-sshmitm/103515.

[8] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci, and Chad Barb.
Fast, scalable disk imaging with frisbee. pages 283–296, San Antonio, TX,
June 2003.

[9] D. Moffat. Ssh agent forwarding, December 2001.

[10] Alberto Ornaghi and Marco Valleri. Man in the middle attacks demos,
2003. URL: http://www.blackhat.com/presentations/bh-usa-03/bh-
us-03-ornaghi-valleri.pdf.

[11] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An inte-
grated experimental environment for distributed systems and networks.
pages 255–270, Boston, MA, December 2002.

[12] R. Michael Williams. Exploiting the ssh crc32 compensation attack
detector vulnerability, 2001. URL: http://pen-testing.sans.org/
resources/papers/gcih/exploiting-ssh-crc32-compensation-
attack-detector-vulnerability-103026.

14



[13] T. Ylonen and Ed C. Lonvick. The secure shell (ssh) authentication pro-
tocol, January 2006.

[14] T. Ylonen and Ed. C. Lonvick. The secure shell (ssh) connection protocol,
January 2006.

[15] T. Ylonen and Ed. C. Lonvick. The secure shell (ssh) transport layer
protocol, January 2006.

[16] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) protocol architec-
ture. 2006.

15


