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Introduction
Motivation

Virtual Machines (VMs) becoming pervasive 
in data centers and academic institutions.

• Honouring SLAs. Promised vs Actual.

• Quantify impact of  Virtualization.

• Making sense of performance data.
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• Empower user to investigate performance 
problems with as little inertia as possible.

Introduction
Project Goals
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• Framework to build tools for performing 
fine grained analysis of, 

• resource utilization

• overheads and 

• performance bottlenecks, in virtual 
setups.

Introduction
Project
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• Analysis Framework

• Analysis Algorithms

• Composibility
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Xen Overview

Hardware

Xen

Dom 0 Dom 1 Dom U...........
Admin VM
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• Open source. 
•  Widely used. Ex Amazon EC2
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Data Collection
Xentrace - Overview

Xentrace is a lightweight tracing utility that collects 
hypervisor and domain level events. Ships with Xen.
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Hardware

Xen

Dom 0 Dom 1 Dom n........
Xentrace

Domain 
Events

Hypervisor 
Events

Xentrace
logs

HDD

Domain 
Events
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• Widely available since it ships with Xen.

• Easily extensible.
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Data Collection
Xentrace - Advantages
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• Not originally intended for performance.

• Xentrace collects enormous amounts of 
raw information. 

• E.x: data collected during a disk intensive load 
for 1 minute exceeds 700 MB

• Hence, chose as the source of performance 
data.

Data Collection
Xentrace - Data
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Data Collection
Xentrace - Details
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• Event masks to selectively capture event 
data.

• Log data is in binary format.

• Additional events not provided by Xentrace, 
can be manually added and collected by 
inserting trace macros in Xen or domain 
source.
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Data Collection
Xentrace - Event Format

Trace Event type

CPU   tsc  ns   event_id   d0  d1  d2  d3  d4  d5

Physical 
CPU id

Timestamps - 
CPU clock cycles
& nanoseconds 

uint64uint32 uint32 uint32

Optional trace data
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• xentrace_format : binary to text.

• E.x: 700 MB log has 20+ million lines of text

• Very difficult to manually peruse and,

• identify performance problems.

• gain high level overview of performance.

Data Collection
Xentrace - Limitations
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Analysis Framework
Architecture

Hardware

Xen

Dom 0 Dom 1 Dom n...........
Xentrace

Domain
 Events

Domain
 Events

Hypervisor Events

Xentrace
logs

HDD

Reader Analyses
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• Implementation split in two components.

• Reader: Parses binary log data offline and 
passes C - style structs to Analyses 
component.

• Analyses:  Algorithms consisting a group of 
handlers for different event types. Generate 
high level performance metrics like CPU 
utilization, disk i/o performance etc.

Analysis Framework
Overview

17

Wednesday, July 31, 13



• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda

18

Wednesday, July 31, 13



• Two caveats make parsing non-trivial.

• Events collected in logs not completely 
ordered.

Analysis Framework
Reader - Caveats
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Analysis Framework
Reader - Unordered logs

20

CPU 0
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Analysis Framework
Reader - Unordered logs
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CPU 0 ev1 ev2 ev3 ev4 ev5 ev6

Time
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Analysis Framework
Reader - Unordered logs

22

CPU 0
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CPU 2

ev1 ev2 ev3 ev4 ev5 ev6
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Time
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Analysis Framework
Reader - Unordered logs
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Analysis Framework
Reader - Unordered logs
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Analysis Framework
Reader - Unordered logs
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Analysis Framework
Reader - Unordered logs
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Analysis Framework
Reader - Unordered logs
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• Two caveats make parsing non-trivial.

• Events collected in logs not completely 
ordered.

• Loss of events during log collection.

Analysis Framework
Reader - Caveats
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• Events come in faster than they can 
be flushed to disk.

• Xentrace inserts a lost_record 
event in the logs.

• Interferes with analysis esp. time 
sensitive.

Analysis Framework
Reader - Lost Records
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• Tried different approaches.

• Increase buffer size.

• Use Event masks when possible.

• Fix Xentrace bug.

• Treat lost_records as just another event.

• It’s handler notifies other event handlers in 
execution of its occurrence.

• They deal with it appropriately (discarding analysis, 
ignoring it completely etc.)

30

Analysis Framework
Reader - Lost Records
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• Xen Overview
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• Analysis Framework
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• Analyses

• Analysis Algorithms

• Composibility

Agenda
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Analyses

• Each tool’s analysis logic is made up of Event 
Handlers.

• Event Handlers registered with Reader.

• Handler needs 3 methods written by the user.

• Initialize

• Handle

• Finalize

• Ex: Count of Events. Initialize count to 0, increment 
count, print count at the end.

32

Wednesday, July 31, 13



Analyses
Architecture

Xentrace logs

Parse Xentrace records

Call Event Handlers

ev_handler_1(..)

ev_handler_2(..)

ev_handler_3(..)

Finalizers
ev

_i
d_

1

ev_id_2

ev_id_3

Free Handlers

Reader Handlers
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Analysis Algorithms

• Reasoning about performance in virtual 
environments is not always straightforward.

• The user has to follow his instinct or data 
from another analysis.
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Analysis Algorithms
Motivation

• Quantify phenomena observed on virtual 
setups.

• Utilization Saturation Errors (USE) 
methodology [1]
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Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency
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• Fine grained CPU utilization information 
can,

• Check if hypervisor adheres to Service Level 
Agreements (SLA) between hosting providers 
and clients.

• Detecting unbalanced mapping between 
physical CPUs and VMs.

Analysis Algorithms
CPU Utilization - Why ?
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Analysis Algorithms
CPU Utilization

dom 0 dom1 dom U

vcpu0 vcpu1 v0 v1 v2 vcpu0

CPU 0 CPU 1 CPU n

39

Wednesday, July 31, 13



Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency
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Analysis Algorithms
CPU Scheduling Latency
domain_wake(dom1, vcpu 0)

enter_sched(v0)

domain_wake(dom1, vcpu 1)

enter_sched(v1)
41
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• Measures time a VM had to wait to get 
scheduled since the context switch request 
was sent out. 

• Delay in context switch not only affects 
CPU bound tasks but also I/O jobs.

• Since domain needs CPU to process I/O 
requests/responses.

Analysis Algorithms
CPU Scheduling Latency

42
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• Wait times can increase for a number of 
reasons,

• VCPUs are over-scheduled.

• Physical CPU is always busy.

• Imbalance in VCPU => CPU affinity.

Analysis Algorithms
CPU Scheduling Latency

43
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Analysis Algorithms
CPU Scheduling Latency

44

domId: 0 : CPU Wait Time: 32.677604 (ms)
domId: 1 : CPU Wait Time: 12.826167 (ms)

Total CPU Wait time for all domains: 45.503771 (ms)

0 - 700 (ns) : 0
700 - 1400 (ns) : 16178
1400 - 2100 (ns) : 12835
2100 - 2800 (ns) : 1384
2800 - 3500 (ns) : 28
3500 - 4200 (ns) : 1
4200 - 4900 (ns) : 0
4900 - 5600 (ns) : 0
5600 - 6300 (ns) : 0
6300 - 7000 (ns) : 0
> 7000 (ns) : 0
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Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency
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• CPU utilization data can sometimes be unreliable 
to infer performance problems from. 

• Possible case is when most execution takes place 
in hypervisor.

• E.x:  When significant amount of time is spent in the 
hypervisor, executing instructions or performing I/O 
on behalf of a domain, CPU util data will not show 
this behavior.

• E.x: Honoring SLAs. Does SLA include Xen runtime ?

Analysis Algorithms
Time in Hypervisor - Why ?
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Analysis Algorithms
Time in Hypervisor

47

Total of 0 lost_record events encountered

Total time spent in Domain        0 : CPU 1 =           307.576 (ms)
Total time spent in Domain IDLE   : CPU 1 =       35333.512 (ms)
Total time spent in Domain        0 : CPU 0 =           731.296 (ms)
Total time spent in Domain IDLE   : CPU 0 =       34436.609 (ms)
Total time spent in Domain        1 : CPU 2 =       19116.232 (ms)
Total time spent in Domain IDLE   : CPU 2 =       16480.766 (ms)

Total time spent in Xen:         715.835 (ms)
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Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

48

Wednesday, July 31, 13



Analysis Algorithms
Disk I/O - Split Device Driver Model

Backend Frontend

Xen
49
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• Performance impact of split device drivers 
on Disk I/O.
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Analysis Algorithms
Disk I/O - Why ?
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Analysis Algorithms
Disk I/O - Shared Ring Buffer

DomU writes Req 1 DomU writes Req 2 Dom0 writes Resp 1

DomU reads Resp 1 Dom0 writes Resp 2 DomU reads Resp 2

321

4 5 6

[2]
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Analysis Algorithms
Disk I/O - Simplified
Shared Ring buffer

Hardware

Xen

Dom 
0

Dom 
1

Dom 
U

...........

HDD

Disk RequestDisk Response

Event Mechanism
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Analysis Algorithms
Disk I/O - Device Driver Queues

Hardware

Xen

Dom 0 Dom 1

HDD

Front Shared-Ring Request Queue

Back Shared-Ring 
Response Queue

FDD

Back Shared-Ring 
Request Queue

Front Shared-Ring 
Response Queue

Front
Request Queue

BDD
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• Blocked : Cannot process requests to/from 
queue.

• Unable to add new requests to queue or 

• Queue is empty.

• Unblocked : Can enqueue new incoming 
requests.

Analysis Algorithms
Disk I/O - Device Driver Queue States
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• Intuition was that a queue blocked for a 
long time would block the entire pipeline.

Analysis Algorithms
Disk I/O - Device Driver Queue States
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Analysis Algorithms
Disk I/O - Device Driver Queue States

Blocked

Unblocked

Q_blocked

Q
_b

lo
ck

ed
Q

_u
nb

lo
ck

ed

Q_unblocked
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Analysis Algorithms
Disk I/O - Device Driver Queue States

Blocked

Unblocked Unknown

Q_blocked

Q
_b

lo
ck

ed
Q

_u
nb

lo
ck

ed

Q_unblocked

lost_records

lost_records lost_records

Q
_blocked

Q_unblocked
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Analysis Algorithms
Disk I/O - Observations

58

• Blocked

• Unbuffered : 99 % - All queues

• Buffered :     50 % - Frontend request queue, 99 % rest.

• Buffer cache enables faster request processing at frontend.

• Disk I/O so slow, virtualization overheads 
negligible.
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Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency
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60

Analysis Algorithms
Queue Latency - Simplified

DomU writes Req  & notifies Dom0 Dom0 reads Req

Dom0 writes Resp & notifies DomU DomU reads Resp

1 2 1

3 4
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Analysis Algorithms
Queue Latency - Simplified

DomU writes Req  & notifies Dom0 Dom0 reads Req

Dom0 writes Resp & notifies DomU DomU reads Resp

1 2 1

3 4

t2 - t1

SR Request Latency

t4 - t3

SR Response Latency
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Analysis Algorithms
Disk I/O - Queue Latency

Hardware

Xen

Dom 0 Dom 1

HDD

FDDBDD

t0t1

SR Request Latency

t3 t4

SR Response Latency

t0t3

Disk Request

Disk Response
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Analysis Algorithms
Queue Latency - Results

1

SR Response Latency SR Request Latency>>

approx. 2 order of magnitudes greater for buffered i/o
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Analysis Algorithms
Queue Latency - Results

1
QUEUE TIMES
==================================================================
Queue BLOCKED:   Unable to add new requests to queue or queue empty.
Queue UNBLOCKED: Can enqueue new incoming requests.

Front Request Queue Unblocked          :           1492.834 (ms) ; Blocked :        1070.552 (ms) 

Back Request Queue Unblocked           :             150.473 (ms) ; Blocked :        3795.210 (ms)

Front Shared Ring Resp Queue Unblocked :         108.448 (ms) ; Blocked :        3837.193 (ms)

QUEUE WAIT TIMES
==================================================================

Back Request Queue Wait Time  :              1.380 (ms)

Back Response Queue Wait Time :          86.446 (ms)
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• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda
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Composibility
Problem

Analysis : Average queue blocked times on 
domain 0

66
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Analysis : Average queue blocked times on 
domain 0

• Disk I/O analysis

• Averaging function

• Logic from CPU utilization

67

Composibility
Problem
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Analysis : Average queue blocked times on 
domain 0

• Disk I/O analysis

• Averaging function

• Logic from CPU utilization

68

Composibility
Problem

New Tool

Lots of duplication of 
effort
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• Framework, so far, gives us stand alone 
tools for focussed analysis.

• Composibility gives agility to this 
framework.

69

Composibility
Overview
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Composibility
Overview

• Ability to reuse analysis algorithms logic for 
different event types.

• Easy to combine analysis tool outputs 
without having to rewrite large part of logic.

Compose new analysis 
using reusable parts.
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Composibility
Overview

• Ability to reuse analysis algorithms logic for 
different event types.

• Stages

• Easy to combine analysis tool outputs 
without having to rewrite large parts of logic.

• Operators
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Composibility
Pipeline

Analysis : Average queue blocked times on 
domain 0
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dom 0 ? Disk I/O tool Average
event output
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Composibility
Pipeline

Analysis : Average queue blocked times on 
domain 0

73

dom 0 ? Disk I/O tool Average
event output

PipelineStages Operators
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• Pipe ( | ) : Connects a single stage to another.

• Split ( + ) : Connects a single stage to multiple 
stages. Executes all stages.

• Or ( or ) : Connects a single stage to multiple 
stages. Executes stages until valid return.

• Join : Connects multiple stages to a single stage. 
Either wait for a single connected stage to pass a 
valid event (JOIN_OR) or wait for all the connected 
stages to pass a successful event (JOIN_SPLIT).

74

Composibility
Pipeline - Operators

Syntax ideas inspired from “A Universal Calculus for Streaming Processing Languages” [3]
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Composibility
Pipeline - Operators Simplified

ANDsplit join_split

ORor join_or
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• Reusable and independent analysis 
components.

• Input: One or more events.

• Output : Same event, new event with 
results from execution or invalid event.

• If invalid event returned, break from 
Pipeline.

76

Composibility
Pipeline - Stages
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Composibility
Pipeline

Analysis : Average queue blocked times on 
domain 0

77

dom 0 ? Disk I/O tool Average
event output
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Composibility
Pipeline

Analysis : Average queue blocked times on 
domain 0
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vm(dom0) Disk I/O tool Average
event output
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Composibility
Pipeline

Analysis : Average queue blocked times on 
domain 0

79

vm(dom0)
wait_time

(Q_B, Q_U)
Average

event output
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Composibility
Pipeline

Analysis : Average queue blocked times on domain 0

80

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+

join_split

join_split

Average
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Composibility
Pipeline

Analysis : Average queue blocked times on domain 0

81

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+

join_split

join_split

average()
|
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vm(dom0) | event_id(Q_b) + event_id(Q_u) | wait_time() | average()

82

Composibility
Pipeline - Syntax

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+
join_split

average()

|join_split
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Composibility
Pipeline - Runtime

vm(dom0) | event_id(Q_b) + event_id(Q_u) | wait_time() | average()

Parser [4]

s1 = create_stage(vm, dom0);
s2 = create_stage(event_id, Q_b);
s3 = create_stage(event_id, Q_u);
s4 = create_stage(wait_time, NULL);
s5 = create_stage(average, NULL);

split(s1, s2);
split(s1, s3);
join(s2, s4, JOIN_SPLIT);
join(s3, s4, JOIN_SPLIT);
pipe(s4, s5);

while(!feof(fp))
{

parse_next_event(&ev);
execute_pipe(s1, ev);

}
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Composibility
Summary

• Reusable and independent analysis 
components - Stages

• Connect stages using Operators.

• Compose Pipeline using Stages and 
Operators
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Demo

• If time permits ??
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Conclusion

• Goals met.

• Easier to build tools for fine grained 
performance analysis of Xen - Reader & 
Analyses

• Build complex analysis tools in a short 
time - Composibility
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Thank You
Q & A
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