
Performance Analysis of
Virtual Environments

Nikhil V Mishrikoti
(nikmys@cs.utah.edu)

1

Advisor: Dr. Rob Ricci
Co-Advisor: Anton Burtsev

Wednesday, July 31, 13

mailto:nikmys@cs.utah.edu
mailto:nikmys@cs.utah.edu

Introduction
Motivation

Virtual Machines (VMs) becoming pervasive
in data centers and academic institutions.

• Honouring SLAs. Promised vs Actual.

• Quantify impact of Virtualization.

• Making sense of performance data.

2

Wednesday, July 31, 13

• Empower user to investigate performance
problems with as little inertia as possible.

Introduction
Project Goals

3

Wednesday, July 31, 13

• Framework to build tools for performing
fine grained analysis of,

• resource utilization

• overheads and

• performance bottlenecks, in virtual
setups.

Introduction
Project

4

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Analysis Algorithms

• Composibility

Agenda

5

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Analysis Algorithms

• Composibility

Agenda

6

Wednesday, July 31, 13

Xen Overview

Hardware

Xen

Dom 0 Dom 1 Dom U...........
Admin VM

7

• Open source.
• Widely used. Ex Amazon EC2

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Analysis Algorithms

• Composibility

Agenda

8

Wednesday, July 31, 13

Data Collection
Xentrace - Overview

Xentrace is a lightweight tracing utility that collects
hypervisor and domain level events. Ships with Xen.

9

Hardware

Xen

Dom 0 Dom 1 Dom n........
Xentrace

Domain
Events

Hypervisor
Events

Xentrace
logs

HDD

Domain
Events

Wednesday, July 31, 13

• Widely available since it ships with Xen.

• Easily extensible.

10

Data Collection
Xentrace - Advantages

Wednesday, July 31, 13

• Not originally intended for performance.

• Xentrace collects enormous amounts of
raw information.

• E.x: data collected during a disk intensive load
for 1 minute exceeds 700 MB

• Hence, chose as the source of performance
data.

Data Collection
Xentrace - Data

11

Wednesday, July 31, 13

Data Collection
Xentrace - Details

12

• Event masks to selectively capture event
data.

• Log data is in binary format.

• Additional events not provided by Xentrace,
can be manually added and collected by
inserting trace macros in Xen or domain
source.

Wednesday, July 31, 13

Data Collection
Xentrace - Event Format

Trace Event type

CPU tsc ns event_id d0 d1 d2 d3 d4 d5

Physical
CPU id

Timestamps -
CPU clock cycles
& nanoseconds

uint64uint32 uint32 uint32

Optional trace data

13

Wednesday, July 31, 13

• xentrace_format : binary to text.

• E.x: 700 MB log has 20+ million lines of text

• Very difficult to manually peruse and,

• identify performance problems.

• gain high level overview of performance.

Data Collection
Xentrace - Limitations

14

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Analysis Algorithms

• Composibility

Agenda

15

Wednesday, July 31, 13

Analysis Framework
Architecture

Hardware

Xen

Dom 0 Dom 1 Dom n...........
Xentrace

Domain
 Events

Domain
 Events

Hypervisor Events

Xentrace
logs

HDD

Reader Analyses

16

Wednesday, July 31, 13

• Implementation split in two components.

• Reader: Parses binary log data offline and
passes C - style structs to Analyses
component.

• Analyses: Algorithms consisting a group of
handlers for different event types. Generate
high level performance metrics like CPU
utilization, disk i/o performance etc.

Analysis Framework
Overview

17

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda

18

Wednesday, July 31, 13

• Two caveats make parsing non-trivial.

• Events collected in logs not completely
ordered.

Analysis Framework
Reader - Caveats

19

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

20

CPU 0

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

21

CPU 0 ev1 ev2 ev3 ev4 ev5 ev6

Time

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

22

CPU 0

CPU 1

CPU 2

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

Time

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

23

CPU 0

CPU 1

CPU 2

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

ev1

ev1
ev2

ev1
ev2

ev2

ev3

ev4

ev3

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Ordered

Time

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

24

CPU 0

CPU 1

CPU 2

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

ev1 ev2 ev3 ev4 ev5 ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev1
ev2

ev1
ev2

ev2

ev3

ev4

ev3

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Time

Ordered

Log

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

25

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

Sort ?Unordered
logs

Ordered
logs

ev1

ev1
ev2

ev1
ev2

ev2

ev3

ev4

ev3

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

26

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6 External Sort ?
d-way Merge Sort

Unordered
large
logs

Ordered
large
logs

ev1

ev1
ev2

ev1
ev2

ev2

ev3

ev4

ev3

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Wednesday, July 31, 13

Analysis Framework
Reader - Unordered logs

27

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

ev1

ev2

ev3

ev4

ev5

ev6

d-way Merge
Unordered

large
logs

Ordered
large
logs

ev1

ev1
ev2

ev1
ev2

ev2

ev3

ev4

ev3

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Min-Heap

Wednesday, July 31, 13

• Two caveats make parsing non-trivial.

• Events collected in logs not completely
ordered.

• Loss of events during log collection.

Analysis Framework
Reader - Caveats

28

Wednesday, July 31, 13

• Events come in faster than they can
be flushed to disk.

• Xentrace inserts a lost_record
event in the logs.

• Interferes with analysis esp. time
sensitive.

Analysis Framework
Reader - Lost Records

29

ev1

ev1
ev2

ev1
ev2

ev3

ev4

ev5

ev5
ev6

ev4
ev5

Wednesday, July 31, 13

• Tried different approaches.

• Increase buffer size.

• Use Event masks when possible.

• Fix Xentrace bug.

• Treat lost_records as just another event.

• It’s handler notifies other event handlers in
execution of its occurrence.

• They deal with it appropriately (discarding analysis,
ignoring it completely etc.)

30

Analysis Framework
Reader - Lost Records

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda

31

Wednesday, July 31, 13

Analyses

• Each tool’s analysis logic is made up of Event
Handlers.

• Event Handlers registered with Reader.

• Handler needs 3 methods written by the user.

• Initialize

• Handle

• Finalize

• Ex: Count of Events. Initialize count to 0, increment
count, print count at the end.

32

Wednesday, July 31, 13

Analyses
Architecture

Xentrace logs

Parse Xentrace records

Call Event Handlers

ev_handler_1(..)

ev_handler_2(..)

ev_handler_3(..)

Finalizers
ev

_i
d_

1

ev_id_2

ev_id_3

Free Handlers

Reader Handlers

33

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda

34

Wednesday, July 31, 13

Analysis Algorithms

• Reasoning about performance in virtual
environments is not always straightforward.

• The user has to follow his instinct or data
from another analysis.

35

Wednesday, July 31, 13

Analysis Algorithms
Motivation

• Quantify phenomena observed on virtual
setups.

• Utilization Saturation Errors (USE)
methodology [1]

36

Wednesday, July 31, 13

Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

37

Wednesday, July 31, 13

• Fine grained CPU utilization information
can,

• Check if hypervisor adheres to Service Level
Agreements (SLA) between hosting providers
and clients.

• Detecting unbalanced mapping between
physical CPUs and VMs.

Analysis Algorithms
CPU Utilization - Why ?

38

Wednesday, July 31, 13

Analysis Algorithms
CPU Utilization

dom 0 dom1 dom U

vcpu0 vcpu1 v0 v1 v2 vcpu0

CPU 0 CPU 1 CPU n

39

Wednesday, July 31, 13

Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

40

Wednesday, July 31, 13

Analysis Algorithms
CPU Scheduling Latency
domain_wake(dom1, vcpu 0)

enter_sched(v0)

domain_wake(dom1, vcpu 1)

enter_sched(v1)
41

Wednesday, July 31, 13

• Measures time a VM had to wait to get
scheduled since the context switch request
was sent out.

• Delay in context switch not only affects
CPU bound tasks but also I/O jobs.

• Since domain needs CPU to process I/O
requests/responses.

Analysis Algorithms
CPU Scheduling Latency

42

Wednesday, July 31, 13

• Wait times can increase for a number of
reasons,

• VCPUs are over-scheduled.

• Physical CPU is always busy.

• Imbalance in VCPU => CPU affinity.

Analysis Algorithms
CPU Scheduling Latency

43

Wednesday, July 31, 13

Analysis Algorithms
CPU Scheduling Latency

44

domId: 0 : CPU Wait Time: 32.677604 (ms)
domId: 1 : CPU Wait Time: 12.826167 (ms)

Total CPU Wait time for all domains: 45.503771 (ms)

0 - 700 (ns) : 0
700 - 1400 (ns) : 16178
1400 - 2100 (ns) : 12835
2100 - 2800 (ns) : 1384
2800 - 3500 (ns) : 28
3500 - 4200 (ns) : 1
4200 - 4900 (ns) : 0
4900 - 5600 (ns) : 0
5600 - 6300 (ns) : 0
6300 - 7000 (ns) : 0
> 7000 (ns) : 0

Wednesday, July 31, 13

Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

45

Wednesday, July 31, 13

• CPU utilization data can sometimes be unreliable
to infer performance problems from.

• Possible case is when most execution takes place
in hypervisor.

• E.x: When significant amount of time is spent in the
hypervisor, executing instructions or performing I/O
on behalf of a domain, CPU util data will not show
this behavior.

• E.x: Honoring SLAs. Does SLA include Xen runtime ?

Analysis Algorithms
Time in Hypervisor - Why ?

46

Wednesday, July 31, 13

Analysis Algorithms
Time in Hypervisor

47

Total of 0 lost_record events encountered

Total time spent in Domain 0 : CPU 1 = 307.576 (ms)
Total time spent in Domain IDLE : CPU 1 = 35333.512 (ms)
Total time spent in Domain 0 : CPU 0 = 731.296 (ms)
Total time spent in Domain IDLE : CPU 0 = 34436.609 (ms)
Total time spent in Domain 1 : CPU 2 = 19116.232 (ms)
Total time spent in Domain IDLE : CPU 2 = 16480.766 (ms)

Total time spent in Xen: 715.835 (ms)

Wednesday, July 31, 13

Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

48

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Split Device Driver Model

Backend Frontend

Xen
49

Wednesday, July 31, 13

• Performance impact of split device drivers
on Disk I/O.

50

Analysis Algorithms
Disk I/O - Why ?

Wednesday, July 31, 13

51

Analysis Algorithms
Disk I/O - Shared Ring Buffer

DomU writes Req 1 DomU writes Req 2 Dom0 writes Resp 1

DomU reads Resp 1 Dom0 writes Resp 2 DomU reads Resp 2

321

4 5 6

[2]

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Simplified
Shared Ring buffer

Hardware

Xen

Dom
0

Dom
1

Dom
U

...........

HDD

Disk RequestDisk Response

Event Mechanism

52

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Device Driver Queues

Hardware

Xen

Dom 0 Dom 1

HDD

Front Shared-Ring Request Queue

Back Shared-Ring
Response Queue

FDD

Back Shared-Ring
Request Queue

Front Shared-Ring
Response Queue

Front
Request Queue

BDD

53

Wednesday, July 31, 13

• Blocked : Cannot process requests to/from
queue.

• Unable to add new requests to queue or

• Queue is empty.

• Unblocked : Can enqueue new incoming
requests.

Analysis Algorithms
Disk I/O - Device Driver Queue States

54

Wednesday, July 31, 13

• Intuition was that a queue blocked for a
long time would block the entire pipeline.

Analysis Algorithms
Disk I/O - Device Driver Queue States

55

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Device Driver Queue States

Blocked

Unblocked

Q_blocked

Q
_b

lo
ck

ed
Q

_u
nb

lo
ck

ed

Q_unblocked

56

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Device Driver Queue States

Blocked

Unblocked Unknown

Q_blocked

Q
_b

lo
ck

ed
Q

_u
nb

lo
ck

ed

Q_unblocked

lost_records

lost_records lost_records

Q
_blocked

Q_unblocked

57

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Observations

58

• Blocked

• Unbuffered : 99 % - All queues

• Buffered : 50 % - Frontend request queue, 99 % rest.

• Buffer cache enables faster request processing at frontend.

• Disk I/O so slow, virtualization overheads
negligible.

Wednesday, July 31, 13

Analysis Algorithms

• CPU Utilization

• CPU Scheduling Latency

• Time in Hypervisor

• Disk I/O

• Device Driver Queue Status

• Device Driver Queue Request and Response Latency

59

Wednesday, July 31, 13

60

Analysis Algorithms
Queue Latency - Simplified

DomU writes Req & notifies Dom0 Dom0 reads Req

Dom0 writes Resp & notifies DomU DomU reads Resp

1 2 1

3 4

Wednesday, July 31, 13

61

Analysis Algorithms
Queue Latency - Simplified

DomU writes Req & notifies Dom0 Dom0 reads Req

Dom0 writes Resp & notifies DomU DomU reads Resp

1 2 1

3 4

t2 - t1

SR Request Latency

t4 - t3

SR Response Latency

Wednesday, July 31, 13

Analysis Algorithms
Disk I/O - Queue Latency

Hardware

Xen

Dom 0 Dom 1

HDD

FDDBDD

t0t1

SR Request Latency

t3 t4

SR Response Latency

t0t3

Disk Request

Disk Response

62

Wednesday, July 31, 13

63

Analysis Algorithms
Queue Latency - Results

1

SR Response Latency SR Request Latency>>

approx. 2 order of magnitudes greater for buffered i/o

Wednesday, July 31, 13

64

Analysis Algorithms
Queue Latency - Results

1
QUEUE TIMES
==
Queue BLOCKED: Unable to add new requests to queue or queue empty.
Queue UNBLOCKED: Can enqueue new incoming requests.

Front Request Queue Unblocked : 1492.834 (ms) ; Blocked : 1070.552 (ms)

Back Request Queue Unblocked : 150.473 (ms) ; Blocked : 3795.210 (ms)

Front Shared Ring Resp Queue Unblocked : 108.448 (ms) ; Blocked : 3837.193 (ms)

QUEUE WAIT TIMES
==

Back Request Queue Wait Time : 1.380 (ms)

Back Response Queue Wait Time : 86.446 (ms)

Wednesday, July 31, 13

• Introduction

• Xen Overview

• Data Collection

• Analysis Framework

• Reader

• Analyses

• Analysis Algorithms

• Composibility

Agenda

65

Wednesday, July 31, 13

Composibility
Problem

Analysis : Average queue blocked times on
domain 0

66

Wednesday, July 31, 13

Analysis : Average queue blocked times on
domain 0

• Disk I/O analysis

• Averaging function

• Logic from CPU utilization

67

Composibility
Problem

Wednesday, July 31, 13

Analysis : Average queue blocked times on
domain 0

• Disk I/O analysis

• Averaging function

• Logic from CPU utilization

68

Composibility
Problem

New Tool

Lots of duplication of
effort

Wednesday, July 31, 13

• Framework, so far, gives us stand alone
tools for focussed analysis.

• Composibility gives agility to this
framework.

69

Composibility
Overview

Wednesday, July 31, 13

70

Composibility
Overview

• Ability to reuse analysis algorithms logic for
different event types.

• Easy to combine analysis tool outputs
without having to rewrite large part of logic.

Compose new analysis
using reusable parts.

Wednesday, July 31, 13

71

Composibility
Overview

• Ability to reuse analysis algorithms logic for
different event types.

• Stages

• Easy to combine analysis tool outputs
without having to rewrite large parts of logic.

• Operators

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on
domain 0

72

dom 0 ? Disk I/O tool Average
event output

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on
domain 0

73

dom 0 ? Disk I/O tool Average
event output

PipelineStages Operators

Wednesday, July 31, 13

• Pipe (|) : Connects a single stage to another.

• Split (+) : Connects a single stage to multiple
stages. Executes all stages.

• Or (or) : Connects a single stage to multiple
stages. Executes stages until valid return.

• Join : Connects multiple stages to a single stage.
Either wait for a single connected stage to pass a
valid event (JOIN_OR) or wait for all the connected
stages to pass a successful event (JOIN_SPLIT).

74

Composibility
Pipeline - Operators

Syntax ideas inspired from “A Universal Calculus for Streaming Processing Languages” [3]

Wednesday, July 31, 13

75

Composibility
Pipeline - Operators Simplified

ANDsplit join_split

ORor join_or

Wednesday, July 31, 13

• Reusable and independent analysis
components.

• Input: One or more events.

• Output : Same event, new event with
results from execution or invalid event.

• If invalid event returned, break from
Pipeline.

76

Composibility
Pipeline - Stages

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on
domain 0

77

dom 0 ? Disk I/O tool Average
event output

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on
domain 0

78

vm(dom0) Disk I/O tool Average
event output

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on
domain 0

79

vm(dom0)
wait_time

(Q_B, Q_U)
Average

event output

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on domain 0

80

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+

join_split

join_split

Average

Wednesday, July 31, 13

Composibility
Pipeline

Analysis : Average queue blocked times on domain 0

81

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+

join_split

join_split

average()
|

Wednesday, July 31, 13

vm(dom0) | event_id(Q_b) + event_id(Q_u) | wait_time() | average()

82

Composibility
Pipeline - Syntax

event_id(Q_b)

wait_time()
event output

vm(dom0)

event_id(Q_u)

+

+
join_split

average()

|join_split

Wednesday, July 31, 13

Composibility
Pipeline - Runtime

vm(dom0) | event_id(Q_b) + event_id(Q_u) | wait_time() | average()

Parser [4]

s1 = create_stage(vm, dom0);
s2 = create_stage(event_id, Q_b);
s3 = create_stage(event_id, Q_u);
s4 = create_stage(wait_time, NULL);
s5 = create_stage(average, NULL);

split(s1, s2);
split(s1, s3);
join(s2, s4, JOIN_SPLIT);
join(s3, s4, JOIN_SPLIT);
pipe(s4, s5);

while(!feof(fp))
{

parse_next_event(&ev);
execute_pipe(s1, ev);

}

Wednesday, July 31, 13

Composibility
Summary

• Reusable and independent analysis
components - Stages

• Connect stages using Operators.

• Compose Pipeline using Stages and
Operators

Wednesday, July 31, 13

Demo

• If time permits ??

85

Wednesday, July 31, 13

Conclusion

• Goals met.

• Easier to build tools for fine grained
performance analysis of Xen - Reader &
Analyses

• Build complex analysis tools in a short
time - Composibility

86

Wednesday, July 31, 13

Thank You
Q & A

87

Wednesday, July 31, 13

References

• [1] USE method (http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/)

• [2] Xen reference guide

• [3] R. Soule, M. Hirzel, R. Grimm. A Universal Calculus of Streaming
Languages. ESOP 10.

• [4] Vembyr. (http://code.google.com/p/vembyr/)

88

Wednesday, July 31, 13

http://code.google.com/p/vembyr/
http://code.google.com/p/vembyr/

