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Introduction 
Virtual machines are becoming an integral part of both industrial data center facilities and large academic 
experimentation environments. It is important to measure the effects of virtualization and identify 
performance bottlenecks in the virtual setups. This project aspires to provide tools to perform fine-grained 
analysis of resource utilization, virtualization overheads, and performance bottlenecks, in a virtualized 
software stack. We implement our performance analysis framework for the Xen virtual machine monitor, 
which is a full feature, open source hypervisor, and a de-facto industry standard for industrial data-
centers.  
 
Our project consists of two steps. First, we instrument the Xen hypervisor to collect a variety of fine-
grained performance events, for example, VM scheduling, exception, page faults, interrupts, and so on. 
To answer questions about performance of virtual device drivers, we extend our tracing infrastructure to 
collect events from the device driver VMs, which provide these services.  
 
Second, we implement an off-line trace analysis framework, which allows development of various 
performance analysis algorithms in a convenient, reusable and composable way. Each analysis algorithm 
consists of a collection of event handlers, which observe specific performance events. The framework 
allows the development of standalone tools as wells as compose new analyses on the fly using reusable 
components 
 
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

1. Xen Overview 

Fig 1: Xen and Xentrace Architecture 
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The Xen hypervisor allows multiple guest operating systems (Domains) to share hardware resources of a 
single physical host, as shown in Fig 1. Domain 0 is the administrative domain with elevated privileges 
and also hosts the backend device drivers in this case. 
 

2. Data Collection 
Xentrace is a lightweight tracing utility that ships with Xen which collects hypervisor level events. 
Xentrace consists of 3 parts: tracing macros, fast communication channel and a user-level daemon 
application for collecting the log events. Xentrace is typically run from Dom 0(control VM) and the 
daemon periodically dumps these buffered events to the disk (Fig 1). The amount of data collected by 
Xentrace can be enormous. Although this raw data can be quite useful during debugging, it does a poor 
job of providing a high level view of performance problems. For example, data collected during a disk 
intensive operation for 1 minute easily exceeds 700 MB or about 20 million lines in the log. To extract 
meaningful information from such a log by manually inspecting them can be both time consuming and 
prone to errors. 
 
Due to this enormous information collected by Xentrace, these trace logs are chosen to be our source of 
performance data. Trace macros are trivially easy to write, but not all events of interest to us are included 
in the default Xentrace implementation – these include block device driver queue events, hypervisor entry 
and exit events and others. As the first stage of our work, we added additional events to Xentrace to 
collect these data points.  
 

3. Analysis Framework 
The framework was designed to have 2 main components: Reader and Analyses (Fig 1). The Reader 
component parses the binary Xentrace logs and neatly constructs C style data structures that are 
eventually passed to the Analyses component. The Analyses consists of a bunch of handlers for different 
types of events.  These handlers are the only things that need to be written by the developer to build 
customized analysis tool.  Some of the analyses implemented for this project are discussed in section 4.  
 
3.1. Reader 
Given that these logs are in binary format parsing them should be trivial, but a few caveats make it 
slightly more complicated.  
 
Firstly, these logs are not completely recorded in temporal order. As shown in Fig 1 and briefly discussed 
in Section 2, the Xentrace daemon periodically dumps the recorded trace buffers to the disk. These 
buffers are CPU specific i.e. every physical CPU has one buffer allocated to it. So if there are different 
guest domains executing on the same CPU, then both these domains have their traces collected in the 
same buffer. Consequently, all these buffers dumped in a single log file are not exactly sequential. 
  
A trivial solution to this problem is to sort the data by timestamps and then parse the log, which was our 
initial approach. But over time, as we began running longer experiments, log files grew larger and 
sometimes larger than the physical memory the test machine possessed. In-memory sorting was no longer 
feasible. The next best approach was to use an external sorting technique like d-way Merge sort. But as 
mentioned in the last paragraph, the data recorded is not completely unordered. Data recorded inside each 
buffer is sorted. These buffers can then be thought of as d-sorted lists. So instead of implementing a 
generic external merge sort we used these buffers as the input, by tracking them individually in the log, 
and just implemented the final merge step. Thus we stream through these buffers returning the earliest 
occurring event.  
 
The second caveat is the lost_records event. This event is recorded in the logs whenever Xentrace fails to 
collect events for some period of time, usually due to the buffers being full. This missing data can 
interfere with our analysis, especially the ones that are time sensitive. We tried to minimize this problem 



by increasing the size of the buffers, collecting only a subset of events when possible and even fixed a 
bug in Xentrace that prevented the complete collection of the logs. In spite of this, the problem did not 
completely disappear and usually crops up during periods of intense activity. To solve this problem, we 
decided to treat lost_records as just another event in our analysis and notify its occurrence and the time 
lost to other event handlers. Based on this data, the tools can either choose to ignore it or restart the 
analysis. 
 
3.2. Analyses 
Each tool has an Analyses component that is made up of a list of handlers for events that are required to 
conduct the analysis. At the beginning of execution, these event handlers register their respective events 
with the Reader. The Reader tries to match the parsed event with the ones registered and passes it along 
to the matched event handler. Every event handler consists of 3 main methods: initializer (initializes 
data), handler (actual analysis logic) and finalize (optionally aggregate the collected data, free malloc’d 
memory etc). The handler is the most important of these methods since it does the actual processing. 
Many times the handler needs to maintain a global state across every call of itself. Ex. If you are keeping 
a count of the events recorded in the log. The initializer method is usually used to allocate and initialize 
such a global state, and the finalize method for operating on this accumulated data and finally destroying 
this state.  These are the only 3 methods that the user needs to write for a new analysis tool.  
 
This is a reasonably good and simple model to construct new tools as the user can just reuse the Reader 
component, which takes care of parsing the logs, picking the earliest event and also filters events not 
registered by the tool. Allowing the user to focus his attention solely on handling events of interest. Since 
the tool can register to handle as many events as possible, analysis can be very computationally 
expensive. Running it alongside Xentrace can interfere with the performance data being collected. 
Consequently this analysis is run offline when the logs have been finished collecting. Examples of 
analysis tools built are discussed below in Section 4. 
 

4. Analysis Algorithms 
The motivation for many of the analysis tools was to quantify phenomena usually observed only in virtual 
setups. For example, we started with the most obvious one, CPU utilization. There are two views of CPU 
utilization that one needs to consider. One from inside the guest VM for which there already exist tools 
and the other of physical CPUs from outside as Xen sees them. We began with physical CPUs only but 
soon realized that monitoring only the physical CPU usage is not very informative since domains can run 
on multiple CPUs or vice versa. Hence we also began monitoring CPU and VCPU utilization for each 
domain. Even with this granularity the picture was incomplete. Since each domain has to be scheduled by 
the hypervisor for execution, it’s possible that a delay in scheduling can starve a domain and hence would 
not be visible on CPU utilization metric. CPU utilization can also sometimes wrongly attribute resource 
usage. Since Xen uses a split device driver model, some privileged operations can execute either in the 
device driver domain or the hypervisor on behalf of a guest VM. Reasoning about performance in a 
virtual setup is not exactly straightforward. Many times the developer or user has to follow the data or his 
instinct. Our framework allows the user to create a new tool in little to no time that suits his purposes.   
 
An operator would typically follow the USE (Utilization Saturation Errors) methodology [1] to look for 
performance bottlenecks, before diving deeper. Since majority of the problems usually are found in the 
USE category, it made sense for us to build default tools that focus on these areas.  
 
Some of the analysis tools implemented for this project are, 

• CPU Utilization: Apart from the Physical CPU core usage, this analysis also shows CPU usage 
by each guest VM and their respective Virtual CPU (VCPU) utilization. Some scenarios where 
such granularity is necessary are: 



o Check if hypervisor configuration adheres to Service Level Agreements (SLA) between 
hosting providers and clients. 

o Detecting unbalanced mapping between physical CPUs and VMs.  
• CPU Scheduling Latency: Most operating systems running in non-virtualized environments have 

uninterrupted access to the physical CPUs they are running on. But when running inside Xen, 
access to CPU is multiplexed, resulting in situations where the guest domains may have to wait 
on the CPU. Such a situation can arise due to overscheduling of VCPUs or a physical CPU being 
busy, consequently delaying VM context switches. This analysis measures how much time a VM 
had to wait to get scheduled since the request to context switch was sent out.  

• Time in Hypervisor: CPU utilization is not always reliable when trying to identify performance 
problems. For example, during an I/O intensive operation, a VM may spend much of its time 
being idle while the hypervisor does the work on its behalf on a different physical CPU. Hence 
this may give a wrong picture to someone who just relies on CPU usage data of a guest domain, 
as it doesn’t accurately represent the time spent in hypervisor. It can also help identify bottlenecks 
in the execution (Ex: high latency I/O). 

• Disk I/O: Xen has a split device driver model where part of the driver resides in guest domain 
(frontend) and rest (backend) of it in the device driver domain usually the control domain, Dom 0. 
Hence a block device request from a guest VM navigates through many different queues like the 
VM frontend request queues, Xen Shared ring buffers, backend queues inside Dom 0 etc., before 
the request actually reaches the HDD. The response also traverses the same path.  
 

o We built an analysis tool to monitor the state of most of these queues and ring buffers to 
see how long they were blocked (cannot accept new requests) and unblocked (open to 
new requests). The intuition was that if any of the queues is blocked for a long time then 
it blocks the entire pipeline. 

o I/O requests are typically sent on the shared ring buffer between Dom 0 and guest VM. 
Xen provides an event channel mechanism that is used by guest domains and Dom 0 to 
notify each other when there is an I/O request or a response on this shared ring. Any 
delay in processing this notification can also add to the latency. 

 
We ran this tool over two different configurations of block devices namely disk I/O with buffer 
cache and one without buffer cache.  
 

o In case of un-buffered disk I/O, we saw that all the queues we were monitoring stayed 
blocked over 99% of the time. Since disk access is so slow, the overhead of virtualization 
is negligible. 

o In case of buffered disk I/O, the frontend request queue in guest VM is blocked for less 
than 50% of the time but the remaining queues stay blocked for ~95% of the time. Due to 
the presence of the buffer cache, most disk write requests are consumed at the frontend 
device driver but wait to be flushed in the backend.  

 
As mentioned above we also measured latency of event notifications on the shared ring and 
noticed some interesting phenomena for buffered disk I/O. We define wait time as the time 
difference between the point a notification was sent from guest to Dom 0 or vice versa and when 
that notification was actually serviced. The wait time between Backend Shared Ring Response 
Queue and Frontend Shared Ring Response Queue is about two orders of magnitude larger than 
the wait time between Frontend Shared Ring Request Queue and Backend Shared Ring Request 
Queue. 
 

These tools and results show how fine grained of an analysis we can conduct.  
   



5. Composibility 
Although our framework made it easier to create new tools, building and using many of them gave us 
insight into what it lacks and what could be improved.  

 
5.1. Motivation 

• Firstly, many handlers share a lot of similar logic with the exception being what type of events 
they each handle. E.x: Both CPU Scheduling Latency and Time in Hypervisor ultimately take the 
cumulative sum of differences of two event timestamps. If ever we need to do an analysis, which 
requires similar logic, we would either have to create a new tool or modify an existing one. 

• As indicated in Section 4, to make reasonable deductions about performance we probably have to 
consider results from multiple tools and sometimes even compare them during a specific context.  
E.x: Looking at both CPU Utilization and Time in Hypervisor is logical, but both these tools give 
a good overall picture. If we needed more context, more granularity, like say we would like to see 
how much time was spent in the hypervisor when CPU utilization was greater than say 70%, then 
there is no straightforward way achieve this with the framework we had at this point.  

 
As you can see, it would be convenient if we could combine multiple analyses algorithms in different 
contexts. What we needed was a way to compose new analysis using reusable components or existing 
tools. To meet this goal we came up with a simple language, which allowed us to create different and 
complex configurations of analysis. An operator could try to combine a variety of existing performance 
analysis to quickly identify performance bottlenecks. A deeper exploration might require development of 
additional analysis functions, as described in the previous sections. 
 
5.2. Language implementation 
In the core of our language is a runtime, which implements a simple streaming language. We base this 
runtime on the ideas of the general calculus for streaming languages [2]. We call the complete composed 
analysis as the pipeline and each discrete analysis a stage. The runtime implements the pipeline 
construction operators (pipe, split, or, join) that connect the stages, stage execution and pipeline 
execution. 
 

LOST RECORDS 
================================================================== 
Total lost_record occurences = 0 
Total lost time  =      0.000 (ms) 
 
QUEUE TIMES 
================================================================== 
Queue BLOCKED:   Unable to add new requests to queue or queue empty. 
Queue UNBLOCKED: Can enqueue new incoming requests. 
 
Front Request Queue Unblocked          :  43.209 (ms) ; Blocked : 26357.844 (ms)  
 
Back Request Queue Unblocked           : 304.728 (ms) ; Blocked : 26096.322 (ms) 
 
Front Shared Ring Resp Queue Unblocked :  59.295 (ms) ; Blocked : 26341.666 (ms) 
 
QUEUE WAIT TIMES 
================================================================== 
 
Back Request Queue Wait Time  :          38.301 (ms) 
 
Back Response Queue Wait Time :          93.136 (ms) 
 
 

Fig 2: Example output of Disk I/O tool for un-buffered disk 



To construct the pipeline, we rely on the PEG [3] parser generator Vembyr [4]. Vembyr generates an 
input language parser from the PEG grammar definition. The resulting parser is used to parse the input 
string and convert it in a general AST representation. We then use the AST to construct the pipeline by 
invoking the functions from the core runtime. The pipeline is then executed on the collected trace log.  
 
5.2.1. Runtime 
Before we proceed let’s take a brief look at the function of the pipeline operators and then illustrate their 
use with an example. Basically, the function of each operator is to pass the events returned from 
preceding stages to the successive stages. If the previous stage returns an INVALID type event, then we 
halt execution of the pipeline and recursively return to the previous stage. 
 

• Pipe (|) : Connects two single stages. Passes the returned event from the previous stage  
to the next stage. 

• Or  (or) : Connects a single stage to multiple stages. Runs all the stages it connects to in round 
robin fashion until one of the stage is successful (valid event returned). 

• Split (+) : Connects a single stage to multiple stages. Runs all the stages it connects to in round 
robin fashion.   

• Join : Connects multiple stages to a single stage. Depending on the type of join, we either wait for 
a single connected stage to pass a valid event (JOIN_OR) or wait for all the connected stages to 
pass a successful event (JOIN_SPLIT). 
 

Let’s take an example of a composable analysis. Suppose we want to know the average wait times 
between two events on a particular guest VM, the pipeline would look like something shown below. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the above example we have a total of 5 stages: vm, event_id (twice), wait_time and average. Each stage 
is connected using one of the four operators mentioned earlier. Each stage accepts an event, which is 
either passed to it from the parser or from a previous stage. Thus every event in the log file flows into the 

vm(dom_id)	
  |	
  event_id(ev_block)	
  +	
  event_id(ev_unblock)	
  |	
  wait_time()	
  |	
  average()	
  

Fig 3: Executable Pipe constructed using our syntax 

s1 = create_stage(vm, dom_id); 
s2 = create_stage(event_id, ev_block); 
s3 = create_stage(event_id, ev_unblock); 
s4 = create_stage(wait_time, NULL); 
s5 = create_stage(average, NULL); 
 
split(s1, s2); 
split(s1, s3); 
join(s2, s4, JOIN_SPLIT); 
join(s3, s4, JOIN_SPLIT); 
pipe(s4, s5); 
 
while(!feof(fp)) 
{ 
 parse_next_event(&ev); 
 execute_pipe(s1, ev); 
} 
 

Fig 4: Executable Pipe constructed programmatically 



pipe and upon processing by a stage, it is either passed to the next stage unmodified or a new event can be 
passed depending on the functionality of the stage it was passed into. 
 

 
 
 
 
 
 
 
 
 
 
 

 
In this example, the first stage, s1, acts as a filter and checks if the event passed to it belongs the 
domain/VM id setup for that stage. If there’s a match, then that event is passed unmodified to branched 
stage s2 and s3 both. Join is slightly more complicated as depending on which branches we are joining we 
may either decide to wait until all the branches produce a valid event (SPLIT) or until any branch 
produces a valid event (OR). In our case, stage s4 (wait_time) requires two events to calculate the 
difference. So we proceed with the execution of the pipeline at the moment when we have valid input 
from both stages s2 and s3 at some point. Stage s5 is piped to s4, so execution is quite straightforward. 
But s4 sends a new event to s5, which contains the wait time data. 
 

6. Conclusion 
This project set out to make it easier for developers or Xen users to investigate varied performance 
problems in a virtual environment. This investigative process is far from straightforward and thus we 
strove to build a framework that enables the user to build tools that analyze the performance data with as 
much ease and as fine grained as possible. As the project progressed, we realized we could make 
constructing the tools even more flexible by giving the user the ability to compose new analysis tools 
using reusable components.  
 
This material is based upon work supported by the National Science Foundation under Grant No. 
1059440. Any opinions, findings, and conclusions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 
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Fig 5: Executable Pipe shown as a tree. 

vm()	
  

event_id()	
  

event_id()	
  

wait_time()	
   average()	
  

+	
  

+	
  

join	
  

join	
  

pipe	
  
s1	
   s2	
  

s3	
  

s4	
   s5	
  


