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Network experiments of many types, especially em-
ulation, require the ability to map virtual resources
requested by an experimenter onto available physi-
cal resources. These resources include hosts, routers,
switches, and the links that connect them. Experi-
menter requests, such as nodes with special hardware
or software, must be satisfied, and bottleneck links and
other scarce resources in the physical topology should
be conserved when physical resources are shared. In
the face of these constraints, this mapping becomes
an NP-hard problem. Yet, in order to prevent map-
ping time from becoming a serious hindrance to exper-
imentation, this process cannot consume an excessive
amount of time.

In this paper, we explore this problem, which we call
thenetwork testbed mapping problem. We describe the
interesting challenges that characterize it, and explore
its application to emulation and other spaces, such as
distributed simulation. We present the design, imple-
mentation, and evaluation of a solver for this problem,
which is in production use on the Netbed shared net-
work testbed. Our solver builds on simulated anneal-
ing to find very good solutions in a few seconds for
our historical workload, and scales gracefully on large
well-connected synthetic topologies.

1 Introduction

To conduct a network experiment, the experimenter
typically designs the environment in which it will be
performed, then instantiates that environment by con-
figuring some set of hardware to match it. The primi-
tives that describe this environment are nodes and links.
For nodes, such as hosts and routers, the experimenter
may need specific hardware or software. On links, pa-
rameters such as bandwidth and latency are important.
For anything larger than a trivial experiment, the pro-
cess of selecting and configuring hardware to instanti-
ate the desired topology can be tedious and error-prone.

The emulation portion of Netbed [22], Emulab, au-
tomates this instantiation by taking as input an experi-
menter’s topology specification, and configuring it in
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real hardware. As part of this automation, Netbed
must select appropriate physical resources from those
available. This mapping from an experimenter’s vir-
tual topology to a physical topology, however, is diffi-
cult; it must take into account both the experimenter’s
requirements and the physical layout of the testbed.
It must give the experimenter appropriate nodes and
links, while conserving for other experimenters, scarce
physical resources such as bandwidth on network bot-
tlenecks. Poor mapping can degrade performance of
the emulator or introduce artifacts into an experiment.

We call this problem of selecting hardware on which
to instantiate network experiments thenetwork testbed
mapping problem. It shares some characteristics with
graph partitioning [10] and graph embedding [15], but
has domain-specific goals and constraints that make it
a different problem and interesting unto itself; these as-
pects are the major focus of this paper. We first encoun-
tered this mapping problem in our emulation testbed,
but it also appears in similar forms in other network
experimentation environments.

In formulating and solving this problem, we aim to:

• Make the problem specification broad enough to
be applicable to a wide range of network experi-
mentation environments;

• Develop abstractions that through their descrip-
tion of virtual and physical resources yield power
and flexibility; and

• Produce a solver that is able to find near-optimal
solutions in a modest amount of time.

In pursuit of these goals, this paper makes the fol-
lowing contributions: First, in Sections 2 and 3, it de-
fines the network testbed mapping problem, and exam-
ines the challenges that make it interesting. Second,
in Section 4, it describes our solver for this problem,
assign , which we have been evolving since January
2000, and presents an evaluation of its performance in
Section 5. Third, throughout, it presents lessons from
our solver’s implementation and its use in Emulab [22],
a production network testbed. Fourth, it identifies open
issues for future work in Section 7.



2 Environment and Motivation
In order to motivate the network testbed mapping prob-
lem, we begin by describing some of the environments
to which it is relevant, and identify the characteristics
of these environments that make good mapping neces-
sary, but difficult.

2.1 Netbed and Emulab
Netbed [22] is a shared public facility for research and
education in networking and distributed systems. Ver-
sions of it have been in production use since April
2000. One of its goals is to transparently integrate a
variety of different experimental environments. Cur-
rently, Netbed supports three such environments: em-
ulation, simulation, and live-Internet experimentation.
Netbed is descended from, and incorporates, Emulab,
a time- and space-shared “cluster testbed” whose main
goals are to provide artifact-free network emulation for
arbitrary experiments, while making that as easy and
quick as simulation. Emulab manages a cluster of com-
modity PC “nodes” with configurable network inter-
connectivity. The facility is space-shared: it can be ar-
bitrarily partitioned for use by multiple experimenters
simultaneously. Some resources in the system, such as
nodes, can only be used in one experiment at a time,
although an experiment can be “swapped out” to free
resources while it is idle. In that sense, Emulab is also
time-shared.

To run an experiment on Emulab, an experimenter
submits a network topology. This virtual topology can
include links and LANs, with associated characteristics
such as bandwidth, latency, and packet loss. Limiting
and shaping the traffic on a link, if requested, is done
by interposing “delay nodes” between the endpoints of
the link. Specifications for hardware and software re-
sources can also be included for nodes in the virtual
topology.

Once it receives this specification, Emulab must se-
lect the hardware that will be used to create the em-
ulation. Since Emulab is space-shared, hardware re-
sources are constantly changing; only those resources
that have not already been allocated are available for
use. Currently, the Emulab portion of Netbed con-
tains 168 PCs of varying hardware configurations, con-
nected, via four interfaces each, to three switches.
In general, large scale emulators require multiple
switches, because the number of ports on each switch
is limited. Emulab’s switches are connected via inter-
switch links; at the present time, these links are 2Gbps.
Since multiple experimenters, or even many links from
a single experiment, may be sharing these inter-switch
links, they become a bottleneck, and overcommitting
them could lead to artifacts in experimental results. Be-
cause Emulab aims to avoid introducing artifacts due

to its space-shared nature, conservative resource allo-
cation is a guiding principle.

In this environment, the mapping algorithm has a
number of simultaneous goals. First, it must econ-
omize inter-switch bandwidth by minimizing the to-
tal bandwidth of virtual links mapped across physical
inter-switch links. Second, since not all nodes are iden-
tical, the mapping algorithm must take into account the
experimenter’s requirements regarding the nodes they
are assigned. Furthermore, the mapping must be done
in such a way as to maximize the possibility for future
mappings; this means not using scarce resources, such
as special hardware, that have not been requested by
the experimenter. Finally, this mapping must be done
quickly. Current experiment creation times in Emulab
range from three minutes for a single-node topology, to
six and a half minutes for an 80-node topology, though
we hope to decrease this time dramatically in the fu-
ture. Our goal is to keep the time used by the mapping
process much lower than experiment creation time, so
that it does not hamper interactive use.

2.2 Simulation: Integrated and Distributed
Netbed integrates simulation with the emulation sys-
tem described above. It usesnse[6] to allow the pop-
ular ns [5] network simulator to generate and interact
with live traffic. This also allows packets generated in
the simulator to cross between machines to effect trans-
parent distributed simulation. When simulated traffic
interacts with real traffic, however, it must keep up with
real time. For large simulations, this makes it necessary
to distribute the simulation across many nodes. In or-
der to do this effectively, the mapping must avoid over-
loading any node in the system, and must minimize the
links in the simulated topology that cross real physical
links.

“Pure” distributed simulation also requires similar
mapping. In this case, rather than keeping up with
real time, the goal is to speed up long-running simu-
lations by distributing the computation across multiple
machines [4]. However, communication between the
machines can become a bottleneck, so a “good” map-
ping of simulated nodes onto physical nodes is impor-
tant to overall performance. PDNS [17], a parallelized
and distributed version ofns, is an example of such a
distributed simulator. However, except for certain re-
stricted tree topologies, PDNS requires manual parti-
tioning onto physical machines.

2.3 ModelNet
Mapping issues also arise in ModelNet [18], a large-
scale network emulator which aims at accurate emu-
lation of the Internet core through simulating a large
number of router queues on a small number of physical
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machines. Thus, virtual router queues must be mapped
onto physical emulation nodes, known as “core” nodes.
In order to minimize artifacts in the emulation, Mod-
elNet’s mapping phase, known as “assignment,” must
spread queues between the core nodes, to avoid over-
loading any one node by giving it a disproportionate
share of the traffic. At the same time, it must minimize
the bandwidth passing between the core nodes, to avoid
overloading their links.

Some aspects of ModelNet mapping are different
from those outlined above for Emulab. A major differ-
ence is that ModelNet’s is not conservative. To reach its
goal of supporting large emulated topologies, Model-
Net takes advantage of the fact that not all links will be
used to capacity, and allows them to be over-allocated.
The goal of ModelNet mapping, then, is minimization
of the potential for artifacts, rather than constraint sat-
isfaction. Artifacts introduced by over-taxed CPUs or
over-used links can be detected by ModelNet, and the
emulation topology can be modified to reduce these ar-
tifacts in exchange for less accurate emulation of the
core.

ModelNet, as currently designed, is not space-
shared, meaning that all available resources are used
for a single experiment. The goal is to load-balance
among these resources, rather than use the least num-
ber. ModelNet also has a second phase that includes
mapping challenges, called “binding,” in which virtual
edges nodes are assigned to physical ones. If the map-
ping portions of the ModelNet assignment and binding
phases are done in a single pass, as may be necessary
in an integrated ModelNet/Emulab environment, there
are additional constraints on acceptable solutions intro-
duced by IP routing semantics.

We plan to integrate ModelNet into Netbed as an-
other emulation mechanism; for this to be seamless,
mapping will have to take into account both environ-
ments’ goals and resources.

2.4 Similarities
Emulab was the first environment that presented us
with the testbed mapping problem. Over several
years we developed and improved our solver, targeted
exclusively at the Emulab domain. More recently,
as we have integrated other network experimentation
mechanisms—geographically distributed nodes, simu-
lated nodes, and soon ModelNet—to form the general
Netbed platform, we immediately faced the mapping
issue in each of them.

In the geographically distributed wide-area case, we
chose to develop a separate solver [22], based on a ge-
netic algorithm; this solver is outlined in Section 7.
This was partly due to the degree to which the wide-
area problem differed from the Emulab problem, and

partly due to the exigencies of software development.
However, the simulated and ModelNet environments

are more similar in their mapping needs to Emulab. For
example, minimizing inter-switch bandwidth in Emu-
lab is similar to minimizing communication between
simulator nodes in distributed simulation, and to min-
imizing communication between cores in ModelNet.
All three environments share a need for mapping that
completes quickly. In Emulab and ModelNet, lengthy
mapping times discourage experimenters from trying
experiments on a variety of configurations, nullifying
one of the major strengths of these platforms. In dis-
tributed simulation, little benefit is gained from distri-
bution of work if the mapping time is a significant frac-
tion of the simulation runtime.

Therefore, we have extended our solver to handle
simulation and ModelNet. The algorithms and pro-
gram proved general enough that the extension was not
difficult. As reported later in this paper, our initial ex-
perience with simulation and ModelNet is promising,
although not yet tuned to the degree we have achieved
for Emulab. It appears that more environments could
be accommodated. Indeed, as outlined in Section 7,
with modest work our general solver might handle the
wide-area case, should that be desirable.

3 Mapping Challenges
In the context of the environments outlined in the
last section, the network testbed mapping problem be-
comes the following:

• As input, take a virtual topology and a description
of physical resources.

• Map the virtual nodes to physical nodes, ensur-
ing that the hardware requirements of the virtual
nodes are met.

• Map virtual links to physical links, minimizing
the use of bottlenecks in the physical topology.

• In shared environments, maximize the chance of
future mappings by avoiding the use of scarce re-
sources when possible.

Flexibility in specifying these resources is essential,
both for describing available physical resources and re-
questing desired virtual topologies.

In this section, we describe the interesting map-
ping challenges in more detail. While doing so, we
also discuss the abstractions we have designed into our
solver, assign , to deal with them, and the ways in
which they relate to Emulab and our other target en-
vironments. These challenges can be divided into two
classes: link mapping and node mapping. We begin by
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Figure 1: A trivial six-node mapping problem

describing link mapping, which is applicable across all
three target environments. We then address interesting
aspects of node mapping, which are of greater specific
interest when mapping for Emulab.

3.1 Network Links
One of the key parts of the the network testbed mapping
problem is the task of mapping nodes in such a way that
a minimal amount of traffic passes through bottleneck
links in the physical topology.

The problem can be seen to be NP-hard by reducing
the traveling salesman problem to it. Given cities and
distances forming an undirected graphG(V,E) with
positive integral edge costs, we can create a physical
testbed topologyT that corresponds toG by replacing
each edge of costc > 1 with c edges through chains
of switches. We also create a virtual network topology
that is a loop of|V | nodes. A solution to the assignment
problem will map the virtual loop intoT , minimizing
the number of switches. This would then be a solution
to the traveling salesman problem. Andersen has also
shown the testbed mapping problem to be NP-hard [2],
by reducing the multiway separator problem.

Figure 1 shows a trivial example of the mapping
problem. The virtual topology on the left is to be
mapped onto the physical topology shown to its right.
The bandwidths of all virtual and physical links in
this example are 100Mbps. To avoid over-burdening
the link between the two switches, the sets of nodes
{A,B,C} and {D,E,F} should be assigned to physical
nodes that are connected to the same switch. This way,
the only virtual link that crosses between switches is
the one betweenCandE.

In the virtual topology,assign accepts two types
of network connections: links and LANs. A link is
simply a point-to-point connection between two virtual
nodes, and includes information such as the bandwidth
that it requires. A LAN is specified by creating a vir-
tual “LAN node” in the topology, and connecting all
members of the LAN to the LAN node using standard
links.

At present,assign recognizes four different types
of physical links onto which these virtual links can be
mapped. Direct links connect two nodes, without an

intermediary switch. Intra-switch links are those that
can be satisfied on a single switch. Inter-switch links
must cross between switches. Intra-node links connect
nodes run on the same physical node; these links do
not need to traverse any network hardware at all, and
are used to represent links in distributed simulation or
ModelNet that remain on one machine.

When mapping topologies to physical resources, the
key limitation is that switch nodes are of finite degree;
only a finite number of physical nodes can be attached
to a given switch. Neighboring virtual nodes that are
attached to the same switch can connect via intra-
switch links which traverse only that switch’s back-
plane. (This backplane, by design in Emulab, has suf-
ficient bandwidth to handle all nodes connected to it,
and can thus be considered to have infinite resources.)

To allow topologies that cannot be fulfilled using
the nodes of a single switch, Emulab employs several
switches, connected together by high-bandwidth links.
These inter-switch links, however, do not have suffi-
cient bandwidth to carry all traffic that could be put
on them by an inefficient mapping. A goal, then, is to
minimize the amount of traffic sent across inter-switch
links, and use intra-switch links instead, wherever pos-
sible. As Emulab is a space-shared facility it is impor-
tant that inter-switch traffic be minimized, rather than
simply not oversubscribed. By minimizing such traffic,
maximum capacity for future experiments is preserved.

This problem of minimizing inter-switch connec-
tions is similar to sparse cuts in multicommodity flow
graph problems—the goal is to separate the graph of
the virtual topology into disjoint sets by cutting the
minimum number of edges in the graph.

3.2 Node Types
A facility like Emulab will generally have distinct sets
of nodes with identical hardware. Emulab, for exam-
ple, has 40 600-MHz PCs, and 128 850-MHz PCs. Fa-
cilities like this will tend to grow incrementally as de-
mand increases, and, to achieve the greatest possible
number of nodes, old nodes will continue to be used
alongside newly-added hardware. As network testbeds
become larger, their hardware will therefore tend to be-
come more heterogeneous. With varying node hard-
ware, it becomes important for experimenters to be
able to request specific types, for example, if they have
run experiments on a specific type in the past, and need
consistent hardware to ensure consistent results. Of
course, experimenters who do not have such require-
ments should not be burdened with this specification.

In order to meet this challenge, we have designed a
simple type system forassign . Each node in the vir-
tual topology is given a type, and each node in the phys-
ical topology is given a list of types that it is able to sat-
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node node1 pc
node node2 pc850
node delay1 delay
node delay2 delay

Figure 2: Sample nodes in a virtual topology

node pc1 pc:1 pc850:1 delay:2
node pc2 pc:1 pc850:1 delay:2
node pc3 pc:1 pc600:1 delay:2
node pc4 pc:1 pc600:1 delay:2

Figure 3: Sample nodes in a physical topology

isfy. The fact that a physical node can satisfy more than
one type allows for differing levels of detail in specifi-
cation, as we will see below. In addition, each type on
a physical node is associated with a number indicat-
ing how many nodes of that type it can accommodate.
This enables multiple virtual nodes to share a physical
node, as required for distributed simulation and Mod-
elNet. One restriction is invariant, however: all virtual
nodes mapped to the same physical node must be of the
same type.

To illustrate the type system, consider the fragments
of a virtual topology in Figure 2 and a physical topol-
ogy in Figure 3. These samples are typical of nodes
that are found in Emulab. In this example, virtual
nodenode1 can be mapped to any physical node, as
all physical nodes are allowed to satisfy a singlepc
node.node2 , on the other hand, specifically requests a
pc850 , which can only be satisfied bypc1 or pc2 . In
Emulab, this allows an experimenter to specify a gen-
eral class of physical node, such aspc , or request a
specific type of PC, such aspc850 or pc600 .

Virtual nodesdelay1 anddelay2 can be placed
on the same physical node, since all nodes in the phys-
ical topology can accommodate two virtual nodes of
type delay . In Emulab, the traffic-shaping nodes,
called delay nodes, that are used to introduce latency,
packet loss, etc. into a link, can be multiplexed onto a
single physical node; this is possible since delaying a
link requires two network interfaces, and four are avail-
able on Emulab nodes.

Most types are opaque toassign —there are only
two types that are treated specially:switch , which
is necessary to support inter-switch links, andlan ,
which will be discussed in Section 4.2. Thus,assign
is not tied to the hardware types available on Emulab;
new types can be added simply by including them in
the physical topology.

3.3 Virtual Equivalence Classes
We have found that a common pattern is for experi-
menters to care not about which node type they are

allocated, but that all nodes be of the same type. To
address this,assign allows the creation of equiva-
lence classes in the virtual topology. Virtual equiva-
lence classes (vclasses) increase the flexibility of the
type system, by allowing the user to specify that a set
of nodes should be all of the same type, without forcing
the user to pick a specific type ahead of time.

vclasses are declarations of virtual equivalence
classes in the virtual topology. This includes a list of
types that can be used to fulfill thevclass, which could
be automatically determined by Emulab. Virtual nodes
are then declared to belong to thevclass, rather than
a specific physical type.assign will then attempt to
ensure that all nodes in thevclass are assigned to phys-
ical nodes of the same type. Multiplevclasses can be
used in a virtual topology. This is useful in circum-
stances where, for example, the experimenters wants
a set of client machines and a set of servers, each of
which can be its own class.

vclasses can be of two types, hard or soft. Hard
vclasses must be satisfied, or the mapping will fail.
Soft vclasses allow assign to break thevclass—
that is, use nodes of differing types—if necessary, but
homogeneity is still preserved if possible. For soft
vclasses, the weight used to determine how much a so-
lution is penalized for violating thevclass is included
in the virtual topology specification.

3.4 Features and Desires
On a finer granularity than types,assign also sup-
ports “features” and “desires.” Features are associated
with physical nodes, and indicate special qualities of
a node, such as special hardware. Desires are associ-
ated with virtual nodes, and are requests for features.
Unfulfilled desires—that is, desires of a virtual node
that are not satisfied by the corresponding features on
the mapped physical node—are penalized in the scor-
ing function. Likewise, wasted features—features that
exist on a physical node, but were not requested by the
virtual node mapped to it—are also penalized.

The chief use of features and desires is to put a pre-
mium on scarce hardware. If some nodes have, for ex-
ample, extra RAM, extra drive space, or higher-speed
links, the penalty against using these features if they
are not requested will tend to leave them free for use
by experimenters who require them.

Other uses are possible as well. For example, fea-
tures and desires can be used to prefer nodes that al-
ready have a certain set of software loaded. In Emulab,
for example, custom operating systems can be loaded,
but features can be used to prefer nodes that already
have the correct OS loaded, saving the substantial time
it would take to load the OS. Or, if some subset of
physical resources have been marked as only usable by
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a certain experimenter (for example, by some sort of
advance reservation system), those nodes can be pre-
ferred.

Specifying features and desires is easy. Since they
are represented as arbitrary strings in the input files,
like types, they are not restricted to the Emulab en-
vironment. Penalties for wasted features can be intu-
itively derived. In general, it is sufficient to choose
a penalty based on a feature’s relative importance to
other resources—for example, one may choose to pe-
nalize waste of a gigabit interface more than using an
extra link (thus preferring to use another link rather
than waste the feature), but less than the cost of us-
ing an extra node (thus preferring to waste a gigabit in-
terface before choosing to use another node). Weights
can be made infinite, to indicate that a solution failing
to satisfy a desire, or wasting a feature, should not be
considered a feasible mapping. This is analogous to a
hardvclass.

3.5 Partial Solutions
Also useful is the ability to take partial solutions and
complete them. These partial solutions can come from
the user or from a previous run of the mapping process.
In the virtual topology,assign can be given a fixed
mapping of a virtual node onto a physical node, which
it is not allowed to change. The two ways in which
this feature is used on Emulab are for replacement of
nodes in existing topologies and incremental topology
changes.

When using a large amount of commodity hardware,
failures are not uncommon. When such a failure occurs
during a running experiment, the instantiated topol-
ogy can be repaired by replacing the failed node or
nodes. The topology is run throughassign again,
with nodes that do not need to be replaced fixed to their
existing mapping. This will allow the mapping algo-
rithm to select good replacements for the failed nodes.

To add or remove nodes from a topology that has al-
ready been mapped, a similar strategy is employed. In
this case, parts of the topology that have not changed
are fixed onto their currently mapped nodes, and new
nodes are chosen by the algorithm that fit as well as
possible into the existing mapping. In Emulab, this al-
lows for the modification of running experiments, sim-
ply by supplying a new virtual topology.

4 Design, Implementation, and Lessons
assign , our implementation of a solver for the
testbed mapping problem, is written in 4,800 lines of
C++ code. It uses the Boost Graph Library [3] for effi-
cient graph data structures, and for generic graph algo-
rithms such as Dijkstra’s shortest path algorithm.

Use of a randomized heuristic algorithm helps fulfill
the design goals of creating a mapper that is able to find
near-optimal solutions in a modest amount of time. For
assign , we have chosen simulated annealing.

Simulated annealing [11] is a randomized heuristic
search technique originally developed for use in VLSI
design, and commonly used for combinatorial opti-
mization problems. It requires acost function, for de-
termining how “good” a particular configuration is, and
a generation function, which takes a configuration and
perturbs it to create a new configuration. If this new
configuration is better than the old one, as judged by
the cost function, it is accepted. If worse, it is accepted
with some probability, controlled by a “temperature.”
This allows the search to get out of local minima in the
search space, which would not be possible if only bet-
ter solutions were accepted. The algorithm begins by
setting the temperature to a high value, so that nearly
all configurations are accepted. Over a large number
of applications of the generation function (typically, at
least in the hundreds of thousands), the temperature is
slowly lowered, controlled by acooling schedule, until
a final configuration, the solution, is converged upon.
Clearly, this may not be the optimal solution, but the
goal of the algorithm is to arrive at a solution near the
optimal one.

In this section, we discuss how the functions key to
simulated annealing are designed and implemented in
assign . We also introduce two concepts that are key
to the design ofassign : violations, which are used
to flag whether or not a configuration is acceptable or
not, andpclasses, which are equivalence classes used
to dramatically reduce the search space.

4.1 Initial Configuration

Typically, simulated annealing is started with a
randomly-generated configuration [11]. However,as-
sign uses a different strategy.assign ’s concept of
violations, explained later, allows it to begin with an
empty configuration—one in which no virtual nodes
are assigned to physical nodes. In the generation func-
tion, mapping of unassigned nodes gets priority over
other transitions. The algorithm must, therefore, spend
some time arriving at a valid configuration, but that
configuration is likely to be much better than a purely
random one, since type information is taken into ac-
count.

4.2 Cost Function

assign ’s cost function scores a configuration and re-
turn a number that indicates how “good,” in terms of
the goals laid out in Section 2, the configuration is.
To compute this score, the mappings for all nodes and
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links must be considered. Inassign , a lower score is
preferable.

Computing the cost for an entire configuration is
quite expensive, requiringO(n + l) time, wheren is
the number of nodes that have been mapped, andl is
the number of links between them. If, instead, the cost
is computed incrementally, as mappings are added and
removed, the time to score a new solution isO(ln),
whereln is the number of links connected to the node
being re-assigned; this is because, in addition to scor-
ing the mapping of the node itself, all links that it has
to other nodes must be scored as well. Clearly, incre-
mental scoring provides better scaling to large topolo-
gies, so this approach is used inassign . This fits well
with simulated annealing, which calls for a generation
function that makes small perturbations, which leads
naturally to incremental scoring.

assign ’s scoring function is split into three parts:
init score initializes the cost for an empty configu-
ration, and computes the violations that result from
the fact thatassign begins with no nodes mapped.
add node takes a configuration, a physical nodep, and
a virtual nodev. It computes the changes in cost and vi-
olations that result from mappingv to p. remove node
performs the inverse function, calculating the cost and
violations changes that result in unmapping a virtual
node.

While incremental scoring greatly reduces the
time taken to score large topologies, it does have
a cost in the complexity of the scoring function.
In particular, care must be taken to ensure that
add node andremove node are completely symmet-
ric; remove node must correctly remove the cost
added by the correspondingadd node. This is made
more difficult by the fact that other mappings may have
been added and removed in the time between when a
virtual node was mapped and when the mapping is re-
moved. In general, though, we feel that the added com-
plexity is an acceptable tradeoff for better evaluation
times on large virtual topologies.

Link resolution, the mapping of a virtual link to a
physical link, is also done inadd node—any virtual
links associated withv for which the other end of the
link has already been mapped are resolved at this point.
This means that links are not first-class objects, subject
to annealing. This limitsassign ’s effectiveness in
physical topologies that have multiple paths between
nodes, such as nodes that have both direct links to each
other and intra-switch links. Our experience, however,
is that such topologies do not tend to occur in practice.
So, whileassign supports these topologies, it does
not include the additional code and time complexity
to treat links as first-class entities. Instead, if multiple
link paths are present between a set of nodes,assign

Physical Resource Cost

Intra-node Link 0.00
Direct Link 0.01
Intra-switch Link 0.02
Inter-switch Link 0.20
Physical Node 0.20
Switch 0.50
pclass 0.50

Table 1: Scores used inassign

greedily chooses lower-cost links before moving on to
higher-cost ones.

To resolve a link,assign finds all possible links
between the nodes (direct, intra-switch, and inter-
switch) and chooses one. Direct links are used first,
if they exist, followed by intra-switch and inter-switch
links. To find inter-switch paths, Dijkstra’s shortest
path algorithm is run for all switches whenassign
starts. The shortest paths between all switches to which
the nodes are connected are then considered possible
candidates. If no resolution for a link can be found, a
violation is flagged.

A configuration is penalized based on the number of
nodes and links it uses. The default penalties, listed in
Table 1, can be overridden by passing them toassign
on the command line. Intra-node links, entirely con-
tained within a single node and used in mapping sim-
ulations, are not penalized at all. Direct node-to-node
links, which do not go through a switch, have only a
small penalty. Slightly higher is the penalty for intra-
switch links. Inter-switch links have a cost an order
of magnitude higher, since they consume the main re-
source we wish to conserve. A configuration is also
penalized on the number of equivalence classes (ex-
plained in further detail in Section 4.5) that the chosen
physical nodes belong to. This encourages solutions
that use homogeneous hardware, which is a quality de-
sired by many experimenters. Penalties for unsatisfied
desires and unused features are given in the input, and
can be chosen based on their relative importance to the
resources listed above.

LANs are more computationally costly to score than
links, since links involve only two nodes, and their
scoring time is thus constant, but LANs can contain
many nodes, and their scoring time is linear in the num-
ber of nodes that are in the LAN. Inassign , we rep-
resent a LAN by connecting its members to a “LAN
node,” shown in Figure 4, which is used solely for the
purpose of assessing scoring penalties. LAN nodes
only exist in the virtual topology—since they do not
correspond to a real resource, they are not included in

7



LAN

A B

C

D E

Figure 4: Scoring for LANs is done with a “LAN
node,” which LAN members have links to. This LAN
uses 3 intra-switch links and 2 inter-switch links.

the input physical topology. As needed, LAN nodes are
dynamically bound to switches in the physical topol-
ogy, each is attached to the same switch as the major-
ity of its members. Thus, any LAN member that is
on another switch will be assessed an inter-switch link
penalty. Clearly, then, when LAN members are reas-
signed, this must be re-calculated, and the LAN node
may need to be “migrated” to a new switch, which in-
cludes re-scoring all links to it. Doing so is a heavy-
weight operation, and the time taken can add more than
a factor of three to the runtime for LAN-heavy topolo-
gies. Instead, we perform migration only occasionally:
when the LAN node is selected for re-mapping by the
generation function, and at the end of every tempera-
ture step. In practice, we find that this greatly reduces
runtime, and has acceptable effects on the solutions
found byassign .

4.3 Violations
One issue that must be decided when implementing
simulated annealing is whether or not to allow the algo-
rithm to consider infeasible solutions; that is, configu-
rations that violate fundamental constraints. In the con-
text of our problem, the primary constraint considered
is over-use of bottleneck bandwidth between switches.
The benefits to allowing infeasible solutions, as put for-
ward in [1], are twofold. First, this makes the genera-
tion function simpler, as it does not need to take feasi-

D

B C

ADA

C B

Figure 5: A situation in which allowing solutions with
violations helps reach the optimal solution. If the band-
width between switches is such that only one virtual
link can cross between them, the mapping shown on
the right is in violation of this constraint. However, it
is a necessary intermediate step between the mapping
on the left and the optimal mapping, which places all
nodes on the upper switch.

bility into account. Second, it allows the search to more
easily escape local minima, with the possibility that a
lower minima will be found elsewhere. It does so by
smoothing the cost function. A generation function that
excludes infeasible solutions must either simply reject
these configurations, or “warp” to a new area of the
space, conceptually on the other side of the portion of
the space that is infeasible. If infeasible solutions are
simply rejected, the connectivity of the solution is re-
duced, possibly even leading to portions of the space
that are isolated; these could leave the search trapped
in a poor local minima. Figure 5 shows an example
of this situation. If “warping” is used, the score from
a configuration to its potential successor may be very
high, resulting in a low probability of its acceptance,
even at high temperatures.

A common approach to the search of infeasible con-
figurations [1] is to give them a high cost penalty, thus
making them possible to traverse at high temperatures,
but unlikely to be reached at lower ones. This approach
has some drawbacks, however. It is difficult to choose
a penalty high enough such that an infeasible solution
will never be considered to be better than a feasible
one. If this can occur, the algorithm may abandon a fea-
sible, but poor, solution and instead return an infeasible
one. Thus, inassign , we have chosen to keep track
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of the violation of constraints separately from the cost
function; this is implemented with “violations.” Each
possible configuration has a number of violations as-
sociated with it. If a configuration has one or more
violations, then it is considered to be infeasible. If no
solutions are found with zero violations, the algorithm
has failed to find a mapping; frequently, this is because
no mapping is possible.

When considering whether or not to accept a state
transition, violations are considered before the configu-
rations’ costs. If the new configuration results in fewer
violations than the old, it is accepted. If the number of
violations in the new configuration is equal to or greater
than the old violations, then the costs are compared
normally. This allows the algorithm to leave feasible
space for a time, guiding it back to feasible space fairly
quickly so excessive time is not spent on infeasible so-
lutions.

One important side effect of violations is that they
provide the user of the program with feedback about
why a mapping has failed. Six different types of viola-
tions are tracked, ranging from overuse of inter-switch
bandwidth to user desires that could not be met. These
are summed together to produce the overall violations
score. Whenassign fails to find a feasible solution,
it prints out the individual violations for the best so-
lution found. This helps the user to find the “most
constraining constraint”; the one whose modification
is most likely to allow the mapping to succeed. This
gives the user the opportunity to modify and re-submit
their virtual topology. It also gives the administrators
of the testbed feedback about what factors are prevent-
ing experiments from mapping, so that they can work
on remedying them. It may reveal, for example, that in-
sufficient inter-switch bandwidth is a problem, or that
experimenters need nodes with more or faster links.

4.4 Generation Function
assign ’s generation function has the task of taking a
potential configuration and generating a different, but
similar, configuration for consideration.assign does
this by taking a single virtual node and mapping it to
a new physical node. First,assign maintains a list
of virtual nodes that are currently unassigned to phys-
ical nodes. If this list is not empty, it picks a member
and randomly chooses a mapping for it. If there are no
unassigned nodes, it picks a virtual node, removes its
current mapping, and attempts to re-map it onto a dif-
ferent physical node. If there are no free nodes to which
the virtual node can be mapped, it frees one up by un-
mapping another virtual node. This is done to avoid
getting stuck in certain exact-fit or resource-scarce con-
ditions.

We have found that it is very important thatas-

sign ’s generation function avoid certain classes of in-
valid solutions. Though certain violations are useful to
explore, as covered in Section 4.3, others are not. In
general, violations that cannot be removed by mapping
changes to other virtual or physical nodes should be
avoided. As an example, a virtual node with five links
assigned to a physical node with only four links will
always result in a violation, no matter what the rest of
the virtual nodes’ mappings are. This is in contrast to
an over-used inter-switch link, where changes to other
parts of the configuration may lower traffic on the link
and remove the violation.

Exploring these invalid solutions can result in poor
performance in some cases, particularly when there are
scarce resources in the physical topology and only a
few nodes in a large virtual topology that require them.
assign can spend a long time exploring fruitless por-
tions of the solution space in these circumstances. To
help avoid certain invalid solutions, when it begins,
assign pre-computes a list of physical nodes that are
acceptable assignments for each virtual node. An ac-
ceptable assignment is one that is capable of fulfilling
the type of the virtual node, has at least enough physi-
cal links to satisfy the virtual node’s links, and will not
incur violations due to features and desires.

4.5 Physical Equivalence Classes
4.5.1 Reducing the Solution Space
One of the features ofassign that has most improved
its runtime and quality of solutions is the introduc-
tion of physical equivalence classes. This improvement
comes from the observation that, in a typical network,
many hosts are indistinguishable in terms of hardware
and network links. For the purposes of the genera-
tion function, these nodes can be considered equiva-
lent; mapping a virtual node to any of them will result
in the same score. It does not matter which of these in-
distinguishable nodes is selected. The solution space to
explore can be reduced by exploiting this equivalence.

The neighborhood structure, or branching factor, of
a solution space inassign has a size on the order of
O(v· p), wherep is the number of nodes in the physical
topology, andv is the set of nodes in the virtual topol-
ogy. This number is an upper bound, because, asas-
sign progresses, some physical nodes will be already
assigned, reducing the number of choices to something
less thanp; once all virtual nodes have been assigned,
it will be O(v· (p − v)). Clearly, if we can safely re-
duce the size ofv or p, assign will be able to explore
a reasonable subset of the solution space in less time,
resulting in lower runtimes.

In practice, it is more straightforward, and provides
greater benefit, to reducep. The Emulab facility con-
sists of a large number of identical nodes connected to
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a small number of switches, and other emulation fa-
cilities are likely to have similar configurations. For
example, in Emulab, depending on available resources,
there are 168 PCs that can be in the physical topology
input to assign . These reduce to only 4pclasses,
resulting in a branching factor two orders of magnitude
smaller. Attempting to reducev, on the other hand, will
generally not lead to such drastic results, since experi-
menters’ topologies are much more heterogenous, and
attempting to find symmetries in them would require
relatively complicated and computationally expensive
graph isomorphism algorithms.

4.5.2 pclasses

In order to effect this reduction in the physical topol-
ogy, assign defines an equivalence relation. Any
equivalence relation on a set will partition that set into
disjoint subsets in which all members of a subset are
equivalent (satisfy the relation); these subsets are called
equivalence classes. Whenassign begins it calcu-
lates this partition. Each equivalence class is called a
pclass.

The equivalence relationassign uses defines two
nodes to be equivalent if: they have identical types and
features and there exists a bijection from the links of
one node to the links of the other which preserves des-
tination and bandwidth. It is easily verified that this
relation is an equivalence relation.

When the generation function in invoked, rather than
choosing a physical node directly, it instead selects a
pclass, and a node is chosen from thatpclass. This
technique reduces the size of the search space dramat-
ically, without adversely affecting quality of solutions
found byassign . It reduces the search space by “col-
lapsing” areas of the solution space that are equiva-
lent. To gain a more intuitive feel for howpclasses
reduce the search space, consider two physical nodes
with identical hardware and an identical set of links to
the same switch. When looking for a physical node
to which to map a virtual node, it makes no differ-
ence which of these nodesassign chooses, since ei-
ther choice will lead to the same score. By combin-
ing these two nodes into apclass, and selecting from
pclasses rather than nodes, we have combined the two
separate states that would result from choosing either
of the physical nodes, into a single state. Thus, the
branching factor of the search space is reduced, but the
set of unique states thatassign visits is not.

pclasses have an interesting effect on the way that
the solution space is explored; they tend to increase
the probability with which physical nodes with scarce
resources are selected by the randomized generation
function. Selecting from among allpclasses with the
same probability has a higher probability of selecting

a node in a smallpclass than selecting one in a large
pclass. If selecting from among nodes rather than from
amongpclasses, it is more likely that a node in the
largepclasses will be selected, simply because there
are more of them. Thus, we have experimented with
weighting the probability that eachpclass will be se-
lected by the number of nodes it contains, to make the
probability that each node will be selected similar to
what it would be withoutpclasses. However, we have
so far found that this is unnecessary, as it does not im-
prove the solutions found for our test cases.

There are some circumstances in whichpclasses are
not appropriate. When mapping multiple virtual nodes
onto each physical node, as is frequently the case with
distributed simulations or ModelNet, the base assump-
tion, equivalency of certain physical nodes, is violated.
As a physical node becomes partially filled, it becomes
no longer equivalent to other nodes. Mapping a new
virtual node to different physical nodes in the same
pclass can now result in different scores, as this af-
fects whether some of their virtual links can be sat-
isfied as intra-node links or not. As a result, when
mapping simulated or ModelNet topologies, we disable
pclasses. Fortunately, these mappings tend to involve
smaller numbers of physical nodes than full Emulab-
style mappings, due to diminishing returns in perfor-
mance as the number of physical nodes is increased.
Thus, they are still able to complete in reasonable time.

4.6 Cooling Schedule
By default, assign uses the polynomial-time cool-
ing schedule described in [1]. It uses a melting phase
to determine the starting temperature, so that initially,
nearly all configurations are accepted. It generates a
number of new configurations equal to the branching
factor (as defined in Section 4.5) before lowering the
temperature. The temperature is decremented using a
function that helps ensure that the stationary distribu-
tion of the cost function between successive tempera-
ture steps is similar. Finally, when the derivative of the
average-cost function reaches a suitably low value, the
algorithm is terminated. The parameters to this cooling
schedule were chosen through empirical observation.
However, we are exploring the idea of using another
randomized heuristic algorithm, such as a genetic algo-
rithm, to tune these constants for our typical workload,
maximizing solution quality while keeping the runtime
at acceptable levels.

The result of this cooling schedule is thatassign ’s
runtime should scale linearly in two dimensions: the
number of virtual nodes, and the number ofpclasses.
The temperature decrement function and termination
condition, however, will depend on how quicklyas-
sign is able to converge to a good solution, roughly
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reflecting the difficulty of mapping the supplied virtual
and physical topologies.

assign also has two time-limited cooling sched-
ules. The first simply takes a time limit, and, using the
default cooling schedule, terminates annealing when
the time limit is reached. The second mode attempts
to run in a target time, even extending the runtime if
necessary. It uses a much simpler cooling schedule in
which the initial temperature is determined by melting,
the final temperature is fixed, and the temperature is
decreased multiplicatively, with a constant chosen such
that annealing should finish at approximately the cho-
sen time. Both of these cooling schemes are useful in
limiting the runtime for large topologies, which oth-
erwise could take many minutes or even hours to run.
The latter is also useful for estimating the best solution
to a given problem, asassign can be made to run
much longer than normal, in the hope that it will have
a better chance of finding a solution near the optimal
one.

5 Evaluation
In this section, we evaluate the performance ofas-
sign . First, we consider the performance ofas-
sign on a real workload—a set of virtual and phys-
ical topology files collected on Emulab over a period
of 17 months. Then, we use a synthetic workload to
determine howassign will scale to larger virtual and
physical topologies, and to examine the impact of some
features and implementation decisions. Then, we ex-
amineassign ’s ability to map simulated and Mod-
elNet topologies. Finally, we compareassign to an-
other mapper that we have implemented using a genetic
algorithm instead of simulated annealing.

Evaluation is primarily done in two ways: through
the runtime ofassign , and through the quality of the
solutions it produces. To compare the quality of solu-
tions, we compute the average error for each test case.
Ideally, the average error is defined asmedian−opt

opt ,
whereopt is the optimal score, andmedian is the me-
dian of scores across all trials. However, since it is
intractable to compute the true value ofopt, we sub-
stitute median−min

min , wheremin is the minimum score
found byassign for the test case. This standard met-
ric gives a good feel for the differing scores found by
assign over repeated runs on the same topology.

All tests were performed on a 2.0 GHz Pentium 4
with 512 MB of RAM.

5.1 Topologies from Emulab
Our first set of tests were done using historical data
collected from Emulab. The 3,113 test cases are virtual
topologies submitted by experimenters, and the physi-
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Figure 6: Runtimes for Emulab topologies. Each test
case was run 10 times. The scatter-plot shows the me-
dian runtime for each test case. The line shows the
average across all topologies of the same size.
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Figure 7: Error for Emulab topologies.

cal topology available at the time the experiment was
submitted. Since virtual topologies vary widely, along
with available physical resources, the goal of these tests
is not to show trends such as scaling to a large num-
ber of virtual nodes. Instead, the goal is to show that
assign handles the typical workload on Emulab very
well.

Figure 6 shows runtimes for the test cases. This
graph shows three important things. First, the major-
ity of experiments run on Emulab, and thus, the typical
workload forassign , consists of experiments smaller
than 20 virtual nodes. Second, the relatively flat run-
times up to 30 nodes are caused by lower bounds in
assign —to preventassign from exiting prema-
turely for small topologies, a lower limit is placed on
the number of iterationsassign will run until it deter-
mines that it is done. Finally, we can see thatassign
always completes quickly for its historical workload,
in less than 2.5 seconds.
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Figure 8: CDF of error on Emulab topologies. The
line represents how many topologies had an error of
a given value or smaller. Note that the y-axis for this
graph begins at .90.

Figure 7 shows the amount of error for the same test
cases, which were each run 10 times. Here, we see
that, for virtual topologies of up to 12 nodes,assign
nearly always finds the same solution. Up to 20 nodes,
covering most Emulab topologies, the error for most
topologies remains below 0.05, or 5%. Even past this
range, error stays low. More telling is the Cumula-
tive Distribution Function (CDF) for these test cases,
shown in Figure 8. Here, we see that approximately
93% of the test cases in this set showed an error of 0,
96% showed an error of less than .05, and over 99%
showed an error of less than .17. From this, we can see
that assign is more than adequate for handling the
workload of the present-day Emulab. The tests in later
subsections aim to show thatassign will scale to
larger Emulab-like facilities, in addition to being gen-
eral enough for other environments.

5.1.1 Utilization
To evaluate the importance of good mapping to the uti-
lization of Emulab’s physical resources, we performed
two tests. We used Emulab’s actual physical topology,
with the same historical virtual topologies from the last
set of tests. In each test, we compared the benefit of us-
ing the normalassign with a version that randomly
(instead of near-optimally) obtains avalid mapping of
virtual to physical nodes; the random version still ob-
serves physical link limits, experimenters’ constraints
on node types, etc.

For the first test, we measured throughput. We
placed the virtual topologies into a randomly-ordered
work queue. Experiments were removed from the
queue and mapped, until the mapper failed to find a
solution due to overuse of inter-switch bandwidth or
lack of free nodes. At that point, the queue stalled un-

til one or more experiments terminated, allowing the
experiment at the head of the queue to be mapped.
Each experiment was assumed to terminate 24 hours
after beginning.Mapping usingassign processed the
queue in 194 virtual days, while random mapping took
604 days, a factor of 3.1 longer.1 Limited by trunk
link overuse, random mapping maintained an average
of only 5.1 experiments on the testbed. Limited by
available nodes,assign maintained an average of 16
experiments.

For the second test, we used consumption of inter-
switch bandwidth as our metric. First, we altered the
physical topology to show infinite bandwidth between
switches. As above, we first generated a randomly-
ordered work queue, then removed and mapped ex-
periments until one failed to map by exceeding the
number of available nodes. We recorded bandwidth
consumption on the inter-switch links. To prepare
for the next iteration, we emptied the testbed and re-
shuffled the queue. The result, after 30 iterations,
was thatassign -based mapping used an average of
0.28Gbps across both links, while random mapping
used 7.4Gpbs, a factor of 26 higher.2

To gain further insight intoassign ’s value, com-
parison against a mapper that uses a simple greedy al-
gorithm would also be valuable.

5.2 Synthetic Topologies
For the remainder of our performance results, we use
synthetically generated topologies, rather than those
gathered from Emulab. One reason for this is that the
Emulab topologies vary widely, making it difficult to
discern whether trends are due to irregularities in the
data, such as topologies with no links, or due toas-
sign itself. Second, we wish to show thatassign
scales well past the resources currently available on
Emulab.

Virtual topologies for these tests were generated us-
ing BRITE [14], a tool for generating realistic inter-
AS topologies. A simple Waxman model with random
placement was used. This results in topologies that are
relatively well-connected, of average degree 4. This
provides a good test ofassign ’s abilities, as such
topologies are more difficult to map than ones that have
tree-like structures, due to the lack of obvious “skinny”
points in the topology.

1The random mapper timed out and could not map 98 large ex-
periments due to overuse of the inter-switch links, even on an empty
testbed; we adjusted by assuming they mapped and took the entire
testbed.

2The apparent disparity between the ratios in the throughput (3)
and bandwidth consumption tests (26) is explained by observing that
for bandwidth, the difference on the bottleneck link between band-
width use (5.7Gbps) and capacity (2Gpbs) is what governs job ad-
mission in the throughput test; theuse/capacity ratio is 2.85.
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Figure 9: Runtimes for the brite100 test set
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Figure 10: Solution quality for the brite100 test set

The first test set, brite100, consists of 10 topologies
ranging from 10 to 100 nodes. The physical topology
is similar to Emulab’s, with 120 nodes divided evenly
among three switches. The majority of tests are run
using this test set, as the randomized nature ofassign
makes it necessary to run a large number of tests to
distinguish real overall trends from random effects, and
the lower runtimes of this test set make this feasible;
each topology in this test case was run 100 times.

The second test set, brite500, is similar to the
brite100 test set, but has virtual topologies ranging
from 50 to 500 nodes, which are mapped onto a phys-
ical topology containing 525 nodes divided evenly
across 7 switches.

5.2.1 Scaling
Figure 9 shows runtimes for the brite100 test set. Here,
we can see that the mean runtime goes up in an approx-
imately linear fashion, and that, for most test cases,
the worst-case performance is not much worse than the
mean performance. While there is significant variation
in the mean runtime, due, we believe, to the relative
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Figure 11: Runtimes for the brite500 test set
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Figure 12: Solution quality for the brite500 test set

difficulty of mapping each topology, the best and worst
case runtimes remain very linear.

Figure 10 shows error for the same test set. The low
error up to 40 nodes reflects the fact that these topolo-
gies can be fit into the nodes on a single switch, and
assign usually finds this optimal solution. For larger,
more difficult, topologies, assign still performs well,
with an average of only 5% error.

Figures 11 and 12 show, respectively, the runtimes
and error for the brite500 test set. Again, we see linear
scaling of runtimes. The slope of the line is somewhat
steeper than that of the brite100 set. This is due to the
larger physical topology onto which these test cases are
mapped.

5.2.2 Physical Equivalence Classes
To evaluate the effect thatpclasses have onassign ,
we ran it withpclasses disabled. Runtimes increased
by two orders of magnitude, as shown in Figure 13,
in which the runtime withpclasses enabled is barely
visible at the bottom of the graph. This is primarily due
to the fact that the physical topology used for this set of
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Figure 14: Solution quality for the brite100 test with
and without pclasses

tests has 120 physical nodes that reduce to 6pclasses,
a 95% reduction.

Error in the solution found went down significantly
due to the longer runtimes, as shown in Figure 14. The
decrease suggests that some tuning may be possible
to improve solution quality in the version ofassign
that haspclasses. However, the magnitude of the run-
time increase clearly does not justify the extra reduc-
tion of error, which was already at an acceptable level.
Though error is lower, the minimum-scored solution
found both with and withoutpclasses is the same.

5.2.3 Features and Desires
For our first test of features and desires, we examined
assign ’s performance in avoiding nodes with unde-
sired features. For this test, we gave 40, or one-third, of
the physical nodes in the brite100 physical topology a
feature, calledundesirable , which was not desired
by any nodes in the virtual topology. We gave this fea-
ture a weight that penalizes using anundesirable
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Figure 15: Runtimes for the brite100 test set when
avoiding undesirable features
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Figure 16: Solution quality for the brite100 test set
when avoiding undesirable features

node more severely than using an extra inter-switch
link. This feature was given to all nodes on one of
the three switches, so it does not introduce additional
pclasses, which would have lengthened the runtime.

We found that, in all runs,assign properly avoided
usingundesirable nodes. Up to 80, the number of
nodes without theundesirable feature,assign
avoided usingundesirable nodes entirely. At 90
nodes, all solutions found used only the minimum of 10
undesirable nodes, and at 100 nodes, all solutions
used only 20undesirable nodes.

Figure 15 shows runtimes for this test. As we can
see, features used in this manner do not adversely affect
runtime. Figure 16 compares error for this test case to
the cases without features, which is quite similar.

To examine how wellassign does at finding de-
sired features, we again modified the physical topol-
ogy from the brite100 set, giving 10% of the nodes
featureA, and another 10% featureB. These nodes
were spread evenly across all three switches in the
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Figure 18: Solution quality for the brite100 test set,
when attempting to satisfy desires

physical topology. This results in a larger number of
pclasses (specifically, three times as many) than the
base brite100 physical topology, and thus longer run-
times. Then, 10% of nodes in the virtual topology were
given the desire for featureA, and none given the de-
sire for featureB. Thus,assign will attempt to map
certain virtual nodes to the physical nodes with feature
A, and will try to avoid the nodes with featureB.

Figures 17 and 18 show the results from this test. As
expected, the slope of the runtime line is steeper with
these features than without them, due to the fact that
they introduce newpclasses. In nearly all tests runs,
assign was able to satisfy all desires for featureA. In
the 100-node test case, however, failure to satisfy the
desire led to a 4% failure rate.

For topologies of size 30 or smaller, which allow a
mapping that remains on a single switch without us-
ing nodes with featureB, avoiding these nodes is sim-
ple, andassign found such a solution in all of our
test runs. For larger topologies, the weight that we

Test Case Nodes selected with featureB
Minimum Median

10 0 0
20 0 0
30 0 0
40 4 4
50 3 4
60 3 4
70 3 4
80 4 4
90 4 4
100 4 4

Table 2:assign ’s performance in avoiding featureB

gave to featureB, .5, plays a role in the optimal solu-
tion. This weight places the feature as being more valu-
able than two inter-switch links, but less valuable than
three. Thus, depending on the virtual topology, it may
be desirable forassign to conserve inter-switch links
rather than these nodes. Table 2 shows the number of
nodes with featureB in the minimally-scored solution,
and the median number chosen. If we placed more
value on featureB, we could give it a higher weight,
so that its cost is higher than a larger number of inter-
switch links.

5.3 Distributed Simulation
To test mapping of distributed simulation withas-
sign , we first mapped the 500-node topology from
the brite500 test set as a simulated topology. To do this,
we multiplexed 50 virtual nodes on each of 10 physical
nodes. The mapping typically took 46 seconds, with an
error of .023.

Second, we appliedassign to a large topology
generated by the specialized topology generator pro-
vided with PDNS. This topology consists of 416 nodes
divided into 8 trees of equal height, with the roots of
all trees connected in a mesh. In total, this topology
contains 436 links. Since the topology generated is of
a very restricted nature, the script that generated it is
able to optimally partition it to use only 56 links be-
tween nodes. Because of its generality,assign does
not find the same solution. It does, however, typically
find a very good solution: the median number of cross-
node links found in our test runs was 60. For com-
parison, a random mapping of this topology typically
results in 385 cross-node links.

The ideal test of the mappings found byassign
for PDNS is to measure the runtime of the distributed
simulation, both when mapped byassign , and when
using the optimal mapping. However, limitations of
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PDNS at the time of writing make it unable to accept
arbitrary network partitions, such as those generated by
assign . Newer versions of PDNS, however, may re-
move these limitations and allow us to do this compar-
ison.

Running these tests, we encountered unexpected be-
havior in assign ; it performed very poorly when
mapping these topologies as exact-fits. By slightly
increasing the number of virtual nodes allowed to be
multiplexed on each physical node, we were able to
dramatically increaseassign ’s solution quality. For
example, with the PDNS topology, when each physi-
cal node was allowed to host exactly 52 virtual nodes
(416/8), the error exceeded 0.4. By allowing each
physical node to host 55 virtual nodes, we lowered this
error to .05.

It remains an interesting problem for us, then, to
analyze this phenomenon and improveassign ac-
cordingly. In the case of simulation, it appears we
can easily adapt by providing excess “virtual capac-
ity.” For physical resources, we would need to im-
prove exact-fit matches. Since simulated annealing has
fundamental problems dealing with tightly constrained
problems [19], this is likely best attacked by improving
assign ’s generation function.

5.4 ModelNet
To apply assign to mapping ModelNet, we devel-
oped tools to convert ModelNet’s topology represen-
tation into assign ’s. We then mapped the topol-
ogy used in [18] to evaluate ACDC, an application-
layer overlay. This topology is a transit-stub network
containing 576 nodes to be mapped onto the Mod-
elNet core. Transit-transit links have a bandwidth
of 155Mbps, transit-stub links have a bandwidth of
45Mbps, and stub-stub links are 100Mbps. The results
of mapping this topology to differing numbers of core
nodes is shown in Table 3. Though the error is sig-
nificantly higher than for the Emulab topologies that
assign has been tuned for, the average bandwidth
to each core node stays near 1000Mbps, which is the
speed of the core nodes’ links.

The ModelNet goal of balancing virtual nodes be-
tween core nodes can be met in two different ways
with assign . First, the type system can be used to
enforce limits on the number of virtual nodes that can
be mapped onto a single ModelNet core. Second, we
have implemented experimental load-balancing code in
assign that attempts to spread virtual nodes evenly
between physical nodes.

Because they use different scoring functions, di-
rect comparison between the solutions fromassign
and ModelNet’s mapper is problematic. The best test
would be to run both mappers and the resulting emula-

Cores Runtime (s) Bandwidth (Mbps) Error

1 0.184 0 0
2 4.81 1332 0.27
3 10.5 1183 0.36
4 16.61 947.5 0.28
5 26.0 807.6 0.24

Table 3: Performance ofassign when mapping a
ModelNet topology. The bandwidth shown is the aver-
age bandwidth used by each core node to communicate
with other cores.
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Figure 19: Runtimes for the brite500 test set foras-
sign and our genetic algorithm

tions, and compare the details of their performance and
behavior.

5.5 Comparison to Genetic Algorithm
Finally, we compared our simulated annealing ap-
proach to the testbed mapping problem to another
general-purpose and randomized heuristic approach, a
genetic algorithm (GA) [7]. For this test, we indepen-
dently implemented another mapper. This mapper uses
a standard generational GA, with tournament selection
and a specialized crossover operator. The population
size is 32, the mutation rate 25%, and the crossover
rate 50%. We took care to ensure that the cost func-
tions of the two mappers are identical, so that we can
compare scores and errors of returned solutions.

Except for small numbers of nodes, where it was
worse, the quality of solutions found by the GA map-
per, shown in Figure 20, is close toassign ’s. Perfor-
mance is a different story. For the brite100 topologies
(not shown), the GA was faster when mapping 40 or
fewer virtual nodes. However, as shown in Figure 19,
the GA exhibited much worse scalability than simu-
lated annealing; for all of the brite500 test cases, the
GA was slower, on average. At 500 virtual nodes, the
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Figure 20: Solution quality for the brite500 test set for
assign and our genetic algorithm

GA mapper took nearly five times as long asassign .
The key reason for this disparity in performance ap-

pears to be incremental scoring, which cannot be done
in GA’s with crossover. When a new configuration
is generated,assign incrementally alters the score.
However, the GA relies on a crossover operator that
blends two parents to produce two children. Here,
incremental scoring is not feasible; childrens’ scores
must be entirely re-evaluated. The linearly increasing
cost of evaluation is somewhat offset by the GA re-
quiring fewer evaluations, on average, than simulated
annealing; this accounts for its good performance on
small topologies. However, the GA exhibits super-
linear scaling as both the cost of evaluations and the
number of evaluations required increase.

6 Related Work
Simulated annealing was first proposed for use in VLSI
design [11]. Much literature is available on aspects of
it [1, 21, 20]. The key problem it was intended to solve
was the placement of circuits, which are arranged in a
connectivity graph, onto chips. The goal of the map-
ping is to minimize inter-chip dependencies, which re-
quire communication over expensive pins and busses.
In this way, this problem is similar to ours, but does
not have the unique challenges described in Section 3.
Simulated annealing is also used in combinatorial op-
timization in various Operations Research fields.

Similar partitioning problems arise on parallel multi-
processor computers [8]. Some network mapping algo-
rithms can also be found in the literature. For example,
[4] discusses partitioning of distributed simulation us-
ing simulated annealing. [12] discusses algorithms for
network resources when providing bandwidth guaran-
tees for VPNs. None of these, however, meet our goal
of being more generally applicable across a range of

experimentation environments.
We know of ongoing work on ModelNet’s mapper,

with the goal of allowing re-mapping in real-time based
on observed network load. It seems likely that this
work will be complementary to ours, and that some
of the lessons learned in each mapper will be appli-
cable to the other. Results examining the scalability of
partitioning topologies across multiple core nodes and
comparing algorithms for doing this partitioning can be
found in [24] and [23].

7 Ongoing and Future Work
7.1 Ongoing Work
This paper describes the state ofassign in Decem-
ber 2002. Since that time, new challenges have arisen
on Netbed and Emulab that make the network testbed
mapping problem more difficult, and even require us to
expand its definition. We have evolvedassign sub-
stantially in order to meet them, but there is still more
work to do.

The biggest change is the addition of support in
Emulab, at the operating system level, to transpar-
ently multiplex multiple virtual nodes from the ex-
perimenter’s topology onto physical nodes. Since, as
mentioned in Section 4.5,pclasses are not appropriate
when using high degrees of multiplexing, this leaves us
with a problem: mapping these very large topologies
onto Emulab’s full physical topology takes a very long
time withoutpclasses. After a number of optimiza-
tions and bugfixes, we have arrived at runtimes of 5–10
minutes to map a 1000-node virtual topology onto Em-
ulab. Since we hope to scale into the tens of thousands
of virtual nodes, this performance clearly needs to be
improved further. In particular, since Emulab is very
busy and the set of available resources tends to change
on the order of minutes, long-running mappings may
complete only to find that some physical nodes chosen
are no longer available. Locking experiment creation
for hours while large experiments map is not a reason-
able solution to this problem.

One of the ways we are combating the increasing
complexity is the introduction ofdynamic pclasses.
In this scheme,assign starts by buildingpclasses
normally. However, when a physical node is partially
filled, the fact that it is no longer equivalent to other
physical nodes is reflected by splitting it off into its
own pclass; conversely, if it goes empty, it is merged
back into its originalpclass. This helps accommodate
the special issues of multiplexed nodes, without the full
performance impact of disablingpclasses. While this
helps, it is not, by itself, sufficient. Very large vir-
tual topologies tend to use most or all of the available
physical topology, meaning that they tend to degener-
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ate into a state where most physical nodes are in their
ownpclasses, resulting in performance similar to sim-
ply disablingpclasses.

We think that the best way to handle these larger vir-
tual topologies will be to apply methods to reduce their
complexity. Methods for this reduction could include
performing clustering analysis on the virtual graph,
and treating small highly-connected clusters as a sin-
gle node in the mapping process. There will clearly
be a tradeoff between the size of such clusters (and
hence the runtime) and how close to optimal the fi-
nal mapping is, since the clustering pass may make
choices that are good from a local perspective, but poor
from a global one. ModelNet has shown [24] good
results from mapping with METIS [10], which does
graph-coarsening to simplify graph partitioning prob-
lems. Thus, this seems to be a promising approach.
Another possibility we are exploring is to allow ex-
ternal programs to informassign of changes in the
physical topology while it is running, to increase the
chances that it can be successful even if it takes a long
time to complete.

Another special challenge of virtual-node multiplex-
ing, not generally seen in simulations or ModelNet, is
thatassign ’s special treatment of LAN nodes, which
assumes that LAN nodes will be attached to switches,
is no longer appropriate. If however, there is a LAN
in the virtual topology whose members are all mapped
to the same physical node, there is no need for traffic
in the LAN to leave the physical node. Thus, putting
the LAN node “out” on a switch is not an accurate
representation of how traffic will flow. Therefore, we
have extendedassign ’s type system to allow physical
nodes to have a set of “global” types that they can ful-
fill, regardless of what regular type they have currently
been assigned. This allows LAN nodes to co-exist on
physical nodes with virtual hosts.

There are also limits to the hardware and software
that instantiate these multiplexed virtual nodes, which
assign has to respect. For example, there is a limit to
the speed at which traffic can be transferred over loop-
back interfaces for intra-node links. So, a maximum
amount of bandwidth available to intra-node links can
now be set for each physical node; if not given, it is
assumed to be infinite.

Another challenge arises from physical nodes that
have a hierarchical physical dependency. For example,
we have recently added Intel IXP [9] network proces-
sors into Emulab. These nodes are hosted inside a PC,
but both IXP and host can have their own distinct set of
types, network links, features, etc. Thus, they need to
appear as two separate nodes in the physical topology,
but we must take care to assure that, whenassign
picks these two separate nodes, it picks an IXP and the

PC in which it physically resides. Thus, we have intro-
duced, in both the virtual and physical topologies, the
notion of asubnode. A subnode declaration associates
a child node with a parent node; a virtual parent-child
pair must then be mapped to a pair of physical nodes
that are likewise a parent-child pair, or a violation is
flagged.

7.2 Wide-Area Assignment
As network testbeds expand into the wide-area, such
as Netbed’s wide-area nodes [22] and PlanetLab [16],
resource allocation faces a new challenge. When re-
sources are distributed across the public Internet, an
experimenter’s desired topology must be chosen from
the paths available, which are not controllable by the
testbed’s maintainers. Since the number of links be-
tweenn nodes isn(n − 1), this problem has similar
complexity characteristics to the one we describe in
this paper.

Netbed currently uses a separate program for map-
ping wide-area resources, which picks from among
them using a genetic algorithm. Thus, two passes
are used when mapping both wide-area and local re-
sources. In general, we think that this two-phase strat-
egy is appropriate, since doing both phases at once
complicates the solution space, and the choice of each
set of resources in each phase does not depend on
choices made in the other phase. However, we plan to
investigate whether it appropriate to use the same pro-
gram, or at least, the same approach, for both phases.

Another approach to wide-area mapping, which is
currently supported on Netbed usingassign , is the
simplification of the problem into mapping “last-mile”
characteristics of network links. For some types of net-
work experimentation, the primary concern is whether,
for example, a node is connected to a DSL line, a cable
modem, or Internet2. Though it fails to capture all of
the global behavior characteristics of the node, this ap-
proach makes mapping considerably easier, and eases
the specification burden on the experimenter.

7.3 Resource Descriptions
One potential avenue for further work onassign is
the introduction of arbitrary resource descriptions for
virtual and physical nodes. For example, a given virtual
node may specify that it will require approximatelyX
amount of memory andY amount of processor cycles
per second. When multiplexing onto a physical node
the resource requirements of the assigned virtual nodes
would be subtracted from the resources available on the
physical node.

assign ’s current method for representing such
things involves its type system. For example, we de-
termine empirically how many simulated nodes can be
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handled on a physical node, to get a “packing factor”
X. Then, we declare the simulated virtual nodes to
be of typesim , and allow physical nodes to satisfyX
sim nodes. This works reasonably well, but can make
sub-optimal choices, since all simulated nodes must be
assumed to consume the same resources. Alternately,
simulated nodes can be classified by their resource con-
sumption, say into “heavyweight” and “lightweight”
nodes, but these cannot be mixed on a single physical
node, since a physical node is only permitted to act as
one type at a time.

The main problem with modifyingassign to han-
dle more general resource descriptions will be in its
generation function. Currently it is able to avoid certain
types of violations, such as multiplexing too many vir-
tual nodes on to a physical node, with minimal process-
ing cost. This is simple, because the type system can
know that no virtual node consumes more than a single
“slot” on a physical node. With arbitrary resource costs
on virtual nodes, however, maintaining a structure that
allows us to efficiently find a physical node into which
a given virtual node “fits” becomes much more compli-
cated. This could make the generation function slower,
or reduce the quality of solutions as more time is spent
exploring invalid solutions. In essence this adds a bin-
packing aspect, another NP-complete problem, to an
already complicated solution space. It remains to be
seen whether the better packing allowed by these re-
source descriptions can be done with a minimum of
performance degradation.

A related, but simpler, extension would be to change
the way thatassign scores multiplexed nodes.as-
sign was designed with the assumption that it is de-
sirable to minimize the physical nodes used. How-
ever, when doing simulation, for example, it may be
the case that it isacceptableto place up to a certain
number of virtual nodes onto a single physical node,
but it is preferableto place fewer, if enough resources
are available. We expect to explore modifications to
assign ’s scoring function to allow the user to pro-
vide more information about how multiplexed nodes
are scored, such as giving an ideal number of virtual
nodes on each physical node, as well as a maximum.
This change is substantially simpler than accepting ar-
bitrary resource descriptions, because it changes the
scoring function, not the generation function; it does
not, in itself, require the generation function to do more
complicated bookkeeping in order to determine which
physical nodes have sufficient available capacity for a
given virtual node.

7.4 Dynamic Delay Nodes
Emulab’s delay nodes present an interesting mapping
challenge. In the current Emulab environment, where

all nodes are connected using 100Mbps Ethernet, it is
possible to determine the necessity of traffic-shaping
nodes before mapping is done; all links that are not
100Mbps require them. However, in an environment
with mixed link speeds, which Emulab will have with
the addition of gigabit Ethernet, this can not effec-
tively be done outside the mapper. For example, if
only gigabit links are available, but an experimenter
desires a 100Mbps link, a delay node may need to be
inserted where it would not if a 100Mbps link were
available. Since these decisions about which links to
use are known only toassign , it becomes necessary
for assign to be able to introduce delay nodes when
appropriate. This dynamic addition of nodes to the
virtual topology, however, presents challenges for the
generation and cost functions. We have an initial im-
plementation of dynamic delay nodes, but more work
is needed.

7.5 Local Search
A possible way to improveassign ’s performance
would be to combine it with local search, another strat-
egy for combinatorial optimization. One can combine
simulated annealing with local search, in such a way
that simulated annealing is performed on local min-
ima, rather than on all states [13]. The basic algorithm
is to apply a “kick” to a potential solution, which, in
contrast to the neighborhood structure typically used
with simulated annealing, is designed to move to a very
different area of the solution space. Inassign , this
would likely be best accomplished by re-assigning a
connected subset of the virtual topology, rather than a
single virtual node. A local search is then done from
the new configuration, attempting to find its local min-
ima. Then, the same acceptance criteria for standard
simulated annealing are applied, to decide whether or
not to move to the new minima.

8 Conclusion

We have presented the network testbed mapping prob-
lem, formulating it in such a way that it is applicable
to a range of experimental environments. We have pre-
sented our solver for this problem, discussing its de-
sign, implementation, and lessons learned in the pro-
cess. Through evaluation on real and synthetic work-
loads, we have shown its effectiveness on a range of
problems. Finally, we have identified interesting prob-
lems that are the subjects of ongoing and future work.

Availability
assign is planned for open source release as part of
the Netbed/Emulab software, onwww.netbed.org .
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