A Solver for the Network Testbed Mapping Problem

Robert Ricci Chris Alfeld Jay Lepreau

School of Computing, University of Utah
Salt Lake City, UT 84112, USA

{ricci,calfeld,lepreau }@cs.utah.edu
www.flux.utah.edu www.netbed.org

Network experiments of many types, especially emreal hardware. As part of this automation, Netbed
ulation, require the ability to map virtual resourcesmust select appropriate physical resources from those
requested by an experimenter onto available physavailable. This mapping from an experimenter’s vir-
cal resources. These resources include hosts, routesal topology to a physical topology, however, is diffi-
switches, and the links that connect them. Experieult; it must take into account both the experimenter’s
menter requests, such as nodes with special hardwaexjuirements and the physical layout of the testbed.
or software, must be satisfied, and bottleneck links and must give the experimenter appropriate nodes and
other scarce resources in the physical topology shoulohks, while conserving for other experimenters, scarce
be conserved when physical resources are shared. physical resources such as bandwidth on network bot-
the face of these constraints, this mapping becoméenecks. Poor mapping can degrade performance of
an NP-hard problem. Yet, in order to prevent mapthe emulator or introduce artifacts into an experiment.
ping time from becoming a serious hindrance to exper- We call this problem of selecting hardware on which
imentation, this process cannot consume an excessiiginstantiate network experiments thetwork testbed
amount of time. mapping problem It shares some characteristics with

In this paper, we explore this problem, which we callgraph partitioning [10] and graph embedding [15], but
thenetwork testbed mapping problelVe describe the has domain-specific goals and constraints that make it
interesting challenges that characterize it, and exploredifferent problem and interesting unto itself; these as-
its application to emulation and other spaces, such gcts are the major focus of this paper. We first encoun-
distributed simulation. We present the design, impletered this mapping problem in our emulation testbed,
mentation, and evaluation of a solver for this problembut it also appears in similar forms in other network
which is in production use on the Netbed shared netexperimentation environments.
work testbed. Our solver builds on simulated anneal- In formulating and solving this problem, we aim to:
ing to find very good solutions in a few seconds for
our historical workload, and scales gracefully on large e Make the problem specification broad enough to
well-connected synthetic topologies. be applicable to a wide range of network experi-

mentation environments;

1 Introduction e Develop abstractions that through their descrip-
tion of virtual and physical resources yield power

To conduct a network experiment, the experimenter _—
b b and flexibility; and

typically designs the environment in which it will be
performed, then instantiates that environment by con-
figuring some set of hardware to match it. The primi-
tives that describe this environment are nodes and links.
For nodes, such as hosts and routers, the experimenter pursuit of these goals, this paper makes the fol-

may need specific hardware or software. On |inks, pa}bwing contributions: First, in Sections 2 and 3, it de-

rameters such as bandwidth and latency are importa@ll'heS the network testbed mapping problem, and exam-
For anything larger than a trivial experiment, the pro- '

. L . Ines the challenges that make it interesting. Second,
cess of selecting and configuring hardware to instant

) . In Section 4, it describes our solver for this problem,
ate the desired topology can be tedious and error—prongSsign . which we have been evolving since January

The emulation portion of Netbed [22], Emulab, au-50qg, and presents an evaluation of its performance in
tomates this lnstantlatlo_n_ by_taklng as |np|_,|t an exXpéligection 5. Third, throughout, it presents lessons from
menter's topology specification, and configuring it ing, solver's implementation and its use in Emulab [22],

*Now at the University of Wisconsin-Madison, Mathematics De-& production network t_eStbed: Fourth, it identifies open
partment issues for future work in Section 7.

e Produce a solver that is able to find near-optimal
solutions in a modest amount of time.

2 Environment and Motivation to its space-shared nature, conservative resource allo-

In order to motivate the network testbed mapping prob=ation is a guiding principle. _ _

lem, we begin by describing some of the environments !N this environment, the mapping algorithm has a
to which it is relevant, and identify the characteristicd"/Mber of simultaneous goals. First, it must econ-
of these environments that make good mapping nece@Mize inter-switch bandwidth by minimizing the to-

sary, but difficult. tal bandwidth of virtual links mapped across physical
inter-switch links. Second, since not all nodes are iden-
2.1 Netbed and Emulab tical, the mapping algorithm must take into account the

Netbed [22] is a shared public facility for research an@*Perimenter's requirements regarding the nodes they

education in networking and distributed systems. Ver2® @ssigned. Furthermore, the mapping must be done
sions of it have been in production use since Aprif” such a way as to maximize the possibility for future

2000. One of its goals is to transparently integrate '3PP!NGS; this means not using scarce resources, such

variety of different experimental environments. curds special hardware, that have not been requested by

rently, Netbed supports three such environments: en{?€ experimenter. Finally, this mapping must be done
ulation, simulation, and live-Internet experimentationduickly. Current experiment creation times in Emulab
Netbed is descended from, and incorporates, Emulaf29€ from three minutes for a single-node topology, to
a time- and space-shared “cluster testbed” whose manr 2nd @ half minutes for an 80-node topology, though
goals are to provide artifact-free network emulation folVe hope to de_crease this tlme dramatically in the 1_‘u-
arbitrary experiments, while making that as easy anre- Our goalis to keep the time used by the mapping
quick as simulation. Emulab manages a cluster of conff0Cess much lower than experiment creation time, so
modity PC “nodes” with configurable network inter- that it does not hamper interactive use.

connectivity. The facility is space-shared: it can be ar- . . L

bitrarily partitioned for use by multiple experimentersz'2 Simulation: Integrated and Distributed
simultaneously. Some resources in the system, such M§tbed integrates simulation with the emulation sys-
nodes, can only be used in one experiment at a timéem described above. It usese[6] to allow the pop-
although an experiment can be “swapped out” to fredlar ns[5] network simulator to generate and interact

resources while it is idle. In that sense, Emulab is alsWith live traffic. This also allows packets generated in
time-shared. the simulator to cross between machines to effect trans-

To run an experiment on Emulab, an experimentdparent distributed simulation. When simulated traffic
submits a network topology. This virtual topology Caninteracts with real traffic, however, it must keep up with
include links and LANSs, with associated characteristicseal time. For large simulations, this makes it necessary
such as bandwidth, latency, and packet loss. Limitinép distribute the simulation across many nodes. In or-
and shaping the traffic on a link, if requested, is donéer to do this effectively, the mapping must avoid over-
by interposing “delay nodes” between the endpoints dpading any node in the system, and must minimize the
the link. Specifications for hardware and software relinks in the simulated topology that cross real physical
sources can also be included for nodes in the virtudinks.
topology. “Pure” distributed simulation also requires similar

Once it receives this specification, Emulab must semapping. In this case, rather than keeping up with
lect the hardware that will be used to create the enfeal time, the goal is to speed up long-running simu-
ulation. Since Emulab is space-shared, hardware rétions by distributing the computation across multiple
sources are constantly changing; only those resourcB®chines [4]. However, communication between the
that have not already been allocated are available féRachines can become a bottleneck, so a “good” map-
use. Currently, the Emulab portion of Netbed conping of simulated nodes onto physical nodes is impor-
tains 168 PCs of varying hardware configurations, coriant to overall performance. PDNS [17], a parallelized
nected, via four interfaces each, to three switche@nd distributed version afs is an example of such a
In general, large scale emulators require multipiglistributed simulator. However, except for certain re-
switches, because the number of ports on each swit&fficted tree topologies, PDNS requires manual parti-
is limited. Emulab’s switches are connected via intertioning onto physical machines.
switch links; at the present time, these links are 2Gbps.

Since multiple experimenters, or even many links fron2.3 ModelNet

a single experiment, may be sharing these inter-switdilapping issues also arise in ModelNet [18], a large-
links, they become a bottleneck, and overcommittingcale network emulator which aims at accurate emu-
them could lead to artifacts in experimental results. Bdation of the Internet core through simulating a large
cause Emulab aims to avoid introducing artifacts duaumber of router queues on a small number of physical

machines. Thus, virtual router queues must be mapp@artly due to the exigencies of software development.
onto physical emulation nodes, known as “core” nodes. However, the simulated and ModelNet environments
In order to minimize artifacts in the emulation, Mod-are more similar in their mapping needs to Emulab. For
elNet's mapping phase, known as “assignment,” mustxample, minimizing inter-switch bandwidth in Emu-
spread queues between the core nodes, to avoid oviab is similar to minimizing communication between
loading any one node by giving it a disproportionatesimulator nodes in distributed simulation, and to min-
share of the traffic. Atthe same time, it must minimizeimizing communication between cores in ModelNet.
the bandwidth passing between the core nodes, to avoldl three environments share a need for mapping that
overloading their links. completes quickly. In Emulab and ModelNet, lengthy

Some aspects of ModelNet mapping are differentapping times discourage experimenters from trying
from those outlined above for Emulab. A major differ-experiments on a variety of configurations, nullifying
ence is that ModelNet's is not conservative. To reach itene of the major strengths of these platforms. In dis-
goal of supporting large emulated topologies, Modeltributed simulation, little benefit is gained from distri-
Net takes advantage of the fact that not all links will beébution of work if the mapping time is a significant frac-
used to capacity, and allows them to be over-allocatetion of the simulation runtime.

The goal of ModelNet mapping, then, is minimization Therefore, we have extended our solver to handle
of the potential for artifacts, rather than constraint satsimulation and ModelNet. The algorithms and pro-
isfaction. Artifacts introduced by over-taxed CPUs orgram proved general enough that the extension was not
over-used links can be detected by ModelNet, and thdifficult. As reported later in this paper, our initial ex-
emulation topology can be modified to reduce these aperience with simulation and ModelNet is promising,
tifacts in exchange for less accurate emulation of thalthough not yet tuned to the degree we have achieved
core. for Emulab. It appears that more environments could

ModelNet, as currently designed, is not spacebe accommodated. Indeed, as outlined in Section 7,
shared, meaning that all available resources are usedth modest work our general solver might handle the
for a single experiment. The goal is to load-balancavide-area case, should that be desirable.
among these resources, rather than use the least num-
ber. ModelNet also has a second phase that includ%s M ina Chall
mapping challenges, called “binding,” in which virtual apping allenges
edges nodes are assigned to physical ones. If the mdp-the context of the environments outlined in the
ping portions of the ModelNet assignment and bindindast section, the network testbed mapping problem be-
phases are done in a single pass, as may be necessannes the following:
in an integrated ModelNet/Emulab environment, there
are additional constraints on acceptable solutions intro-
duced by IP routing semantics.

We plan to integrate ModelNet into Netbed as an- 4 \Map the virtual nodes to physical nodes, ensur-
other emulation mechanism; for this to be seamless, ing that the hardware requirements of the virtual
mapping will have to take into account both environ- nodes are met.
ments’ goals and resources.

e Asinput, take a virtual topology and a description
of physical resources.

e Map virtual links to physical links, minimizing
2.4 Similarities the use of bottlenecks in the physical topology.

Emulab was the first environment that presented us
with the testbed mapping problem. Over several
years we developed and improved our solver, targeted
exclusively at the Emulab domain. More recently,
as we have integrated other network experimentatioRlexibility in specifying these resources is essential,
mechanisms—geographically distributed nodes, simuoth for describing available physical resources and re-
lated nodes, and soon ModelNet—to form the generajuesting desired virtual topologies.
Netbed platform, we immediately faced the mapping In this section, we describe the interesting map-
issue in each of them. ping challenges in more detail. While doing so, we
In the geographically distributed wide-area case, walso discuss the abstractions we have designed into our
chose to develop a separate solver [22], based on a gmlver, assign , to deal with them, and the ways in
netic algorithm; this solver is outlined in Section 7.which they relate to Emulab and our other target en-
This was partly due to the degree to which the widevironments. These challenges can be divided into two
area problem differed from the Emulab problem, andlasses: link mapping and node mapping. We begin by

e In shared environments, maximize the chance of
future mappings by avoiding the use of scarce re-
sources when possible.

intermediary switch. Intra-switch links are those that
can be satisfied on a single switch. Inter-switch links
must cross between switches. Intra-node links connect
nodes run on the same physical node; these links do
not need to traverse any network hardware at all, and
are used to represent links in distributed simulation or
ModelNet that remain on one machine.

When mapping topologies to physical resources, the
key limitation is that switch nodes are of finite degree;
only a finite number of physical nodes can be attached

describing link mapping, which is applicable across all© & given switch. Neighboring virtual nodes that are
three target environments. We then address interestig§ached to the same switch can connect via intra-

Virtual topology Physical Topology

Figure 1: A trivial six-node mapping problem

interest when mapping for Emulab. plane. (This backplane, by design in Emulab, has suf-
ficient bandwidth to handle all nodes connected to it,
3.1 Network Links and can thus be considered to have infinite resources.)

One of the key parts of the the network testbed mapping 10 llow topologies that cannot be fulfilled using
problem is the task of mapping nodes in such a way thé?t‘e, nodes of a single switch, Emulab employs several
a minimal amount of traffic passes through bottlenecRWitches, connected together by high-bandwidth links.
links in the physical topology. T_hese mter-_SWltch links, howeve_r, do not have suffi-
The problem can be seen to be NP-hard by reducin‘aent bandW|dtf_1 to carry all tl’a_ffIC that could be _put
the traveling salesman problem to it. Given cities an@" them by an inefficient mapping. A goal, then, is to
distances forming an undirected gragifV, £) with ~ Minimize the a_mount qf traf_flc sgnt across inter-switch
positive integral edge costs, we can create a physiciks; and use intra-switch links instead, wherever pos-
testbed topolog” that corresponds t& by replacing sible. As _Emulab_ isa spa_ce-share_d f_acmty it is impor-
each edge of cost > 1 with ¢ edges through chains tant that inter-switch traffic be minimized, rather than

of switches. We also create a virtual network topology!MPly not oversubscribed. By minimizing such traffic,
thatis a loop of V| nodes. A solution to the assignment™aximum capacity for future experiments is preserved.
problem will map the virtual loop intd’, minimizing This problem of minimizing inter-switch connec-
the number of switches. This would then be a solutiofONS i similar to sparse cuts in multicommodity flow
to the traveling salesman problem. Andersen has al&@pPh problems—the goal is to separate the graph of
shown the testbed mapping problem to be NP-hard [Z]h? 'V|rtual topology into d|§10|nt sets by cutting the
by reducing the multiway separator problem. minimum number of edges in the graph.

Figure 1 shows a trivial example of the mapping
problem. The virtual topology on the left is to be3-2 Node Types
mapped onto the physical topology shown to its rightA facility like Emulab will generally have distinct sets
The bandwidths of all virtual and physical links in of nodes with identical hardware. Emulab, for exam-
this example are 100Mbps. To avoid over-burdeningle, has 40 600-MHz PCs, and 128 850-MHz PCs. Fa-
the link between the two switches, the sets of nodesilities like this will tend to grow incrementally as de-
{AB,C} and {D,E,F} should be assigned to physicalmand increases, and, to achieve the greatest possible
nodes that are connected to the same switch. This waymber of nodes, old nodes will continue to be used
the only virtual link that crosses between switches iglongside newly-added hardware. As network testbeds
the one betwee@ andE. become larger, their hardware will therefore tend to be-

In the virtual topologyassign accepts two types come more heterogeneous. With varying node hard-
of network connections: links and LANs. A link is ware, it becomes important for experimenters to be
simply a point-to-point connection between two virtualable to request specific types, for example, if they have
nodes, and includes information such as the bandwidtiuin experiments on a specific type in the past, and need
that it requires. A LAN is specified by creating a vir- consistent hardware to ensure consistent results. Of
tual “LAN node” in the topology, and connecting all course, experimenters who do not have such require-
members of the LAN to the LAN node using standardnents should not be burdened with this specification.
links. In order to meet this challenge, we have designed a

At presentassign recognizes four different types simple type system faassign . Each node in the vir-
of physical links onto which these virtual links can betual topology is given a type, and each node in the phys-
mapped. Direct links connect two nodes, without atical topology is given a list of types that it is able to sat-

Mode nodez besso allocated, but that all nodes be of the same type. To

noge ge:ay; ge:ay address thisassign allows the creation of equiva-
node delays - dey lence classes in the virtual topology. Virtual equiva-
lence classesutlasses) increase the flexibility of the

Figure 2: Sample nodes in a virtual topology ~ type system, by allowing the user to specify that a set
of nodes should be all of the same type, without forcing

2232 gg; Sgi gggggi gg:gﬁ the user to pick a specific type ahead of time.
node pc3 pcil pce00:l delay:2 vclasses are declarations of virtual equivalence
node pc4 pc:l pe600:1 delay:2 classes in the virtual topology. This includes a list of

types that can be used to fulfill thelass, which could
be automatically determined by Emulab. Virtual nodes
are then declared to belong to théass, rather than
a specific physical typeassign will then attempt to
isfy. The fact that a physical node can satisfy more tha@nsure that all nodes in thelass are assigned to phys-
one type allows for differing levels of detail in specifi- ical nodes of the same type. Multiplelasses can be
cation, as we will see below. In addition, each type otised in a virtual topology. This is useful in circum-
a physical node is associated with a number indicastances where, for example, the experimenters wants
ing how many nodes of that type it can accommodaté set of client machines and a set of servers, each of
This enables multiple virtual nodes to share a physicavhich can be its own class.
node, as required for distributed simulation and Mod- vclasses can be of two types, hard or soft. Hard
elNet. One restriction is invariant, however: all virtualvclasses must be satisfied, or the mapping will fail.
nodes mapped to the same physical node must be of theft vclasses allow assign to break thevclass—
same type. that is, use nodes of differing types—if necessary, but
To illustrate the type system, consider the fragmentgomogeneity is still preserved if possible. For soft
of a virtual topology in Figure 2 and a physical topol-vclasses, the weight used to determine how much a so-
ogy in Figure 3. These samples are typical of nodekition is penalized for violating theclass is included
that are found in Emulab. In this example, virtualin the virtual topology specification.
nodenodel can be mapped to any physical node, as
all physical nodes are allowed to satisfy a singte 3.4 Features and Desires
node.node2 , on the other hand, specifically requests @©n a finer granularity than typeassign also sup-
pc850 , which can only be satisfied Ipcl orpc2. In - ports “features” and “desires.” Features are associated
Emulab, this allows an experimenter to specify a genwith physical nodes, and indicate special qualities of
eral class of physical node, such @s, or request a a node, such as special hardware. Desires are associ-
specific type of PC, such @&850 or pc600 . ated with virtual nodes, and are requests for features.
Virtual nodesdelayl anddelay2 can be placed Unfulfilled desires—that is, desires of a virtual node
on the same physical node, since all nodes in the phyghat are not satisfied by the corresponding features on
ical topology can accommodate two virtual nodes othe mapped physical node—are penalized in the scor-
type delay . In Emulab, the traffic-shaping nodes,ing function. Likewise, wasted features—features that
called delay nodes, that are used to introduce latenc¥xist on a physical node, but were not requested by the
packet loss, etc. into a link, can be multiplexed onto &irtual node mapped to it—are also penalized.
single physical node; this is possible since delaying a The chief use of features and desires is to put a pre-
link requires two network interfaces, and four are availmijum on scarce hardware. If some nodes have, for ex-
able on Emulab nodes. ample, extra RAM, extra drive space, or higher-speed
Most types are opaque &ssign —there are only |inks, the penalty against using these features if they
two types that are treated speciallywitch , which are not requested will tend to leave them free for use
is necessary to support inter-switch links, dad , by experimenters who require them.
which will be discussed in Section 4.2. Thassign Other uses are possible as well. For example, fea-
is not tied to the hardware types available on Emulaliyres and desires can be used to prefer nodes that al-
new types can be added simply by including them ifeady have a certain set of software loaded. In Emulab,

Figure 3: Sample nodes in a physical topology

the physical topology. for example, custom operating systems can be loaded,
_ _ but features can be used to prefer nodes that already
3.3 Virtual Equivalence Classes have the correct OS loaded, saving the substantial time

We have found that a common pattern is for experiit would take to load the OS. Or, if some subset of
menters to care not about which node type they anghysical resources have been marked as only usable by

a certain experimenter (for example, by some sort of Use of a randomized heuristic algorithm helps fulfill
advance reservation system), those nodes can be ptiee design goals of creating a mapper that is able to find
ferred. near-optimal solutions in a modest amount of time. For
Specifying features and desires is easy. Since th@ssign , we have chosen simulated annealing.
are represented as arbitrary strings in the input files, Simulated annealing [11] is a randomized heuristic
like types, they are not restricted to the Emulab ensearch technique originally developed for use in VLSI
vironment. Penalties for wasted features can be intwlesign, and commonly used for combinatorial opti-
itively derived. In general, it is sufficient to choosemization problems. It requires@ost function for de-
a penalty based on a feature’s relative importance t@rmining how “good” a particular configuration is, and
other resources—for example, one may choose to pageneration functionwhich takes a configuration and
nalize waste of a gigabit interface more than using aperturbs it to create a new configuration. If this new
extra link (thus preferring to use another link ratherconfiguration is better than the old one, as judged by
than waste the feature), but less than the cost of uge cost function, it is accepted. If worse, it is accepted
ing an extra node (thus preferring to waste a gigabit inwith some probability, controlled by a “temperature.”
terface before choosing to use another node). Weighthis allows the search to get out of local minima in the
can be made infinite, to indicate that a solution failingsearch space, which would not be possible if only bet-
to satisfy a desire, or wasting a feature, should not ber solutions were accepted. The algorithm begins by
considered a feasible mapping. This is analogous tosetting the temperature to a high value, so that nearly

hardwvclass. all configurations are accepted. Over a large number
of applications of the generation function (typically, at
3.5 Partial Solutions least in the hundreds of thousands), the temperature is

Also useful is the ability to take partial solutions andslowly lowered, controlled by eooling scheduleuntil
complete them. These partial solutions can come fror final configuration, the solution, is converged upon.
the user or from a previous run of the mapping proces&learly, this may not be the optimal solution, but the
In the virtual topologyassign can be given a fixed goal of the algorithm is to arrive at a solution near the
mapping of a virtual node onto a physical node, whictpptimal one.
it is not allowed to change. The two ways in which In this section, we discuss how the functions key to
this feature is used on Emulab are for replacement simulated annealing are designed and implemented in
nodes in existing topologies and incremental topologgssign . We also introduce two concepts that are key
changes. to the design ofssign : violations which are used
When using a large amount of commodity hardwareto flag whether or not a configuration is acceptable or
failures are not uncommon. When such a failure occumgot, andpclasses, which are equivalence classes used
during a running experiment, the instantiated topolto dramatically reduce the search space.
ogy can be repaired by replacing the failed node or

nodes. The topology is run througtssign again, 4.1 |Initial Configuration
with nodes that do not need to be replaced fixed to thejlr
ypically, simulated annealing is started with a

existing mapping. This will allow the mapping algo-) ;
rithm to select good replacements for the failed nodesr?ndomly-generated configuration [11]. Howe\as;

To add or remove nodes from a topology that has apdn usesa dlfferent strategﬁssgn S CO’?CGF’.‘ of

- : violations, explained later, allows it to begin with an

ready been mapped, a similar strategy is employed. Ierz] ty configuration—one in which no virtual nodes
this case, parts of the topology that have not changednp Y g

are fixed onto their currently mapped nodes, and neare assigned to physical nodes. In the generation func-

nodes are chosen by the algorithm that fit as well a‘fion, mapping of unas&gnc_ed nodes gets priority over
oo 2 . . other transitions. The algorithm must, therefore, spend
possible into the existing mapping. In Emulab, this al-

o . : . 'some time arriving at a valid configuration, but that
lows for the modification of running experiments, sim- . S
: : configuration is likely to be much better than a purely
ply by supplying a new virtual topology.

random one, since type information is taken into ac-
count.

4 Design, Implementation, and Lessons

assign , our implementation of a solver for the 4.2 Cost Function

testbed mapping problem, is written in 4,800 lines ofssign ’s cost function scores a configuration and re-

C++ code. It uses the Boost Graph Library [3] for effi-turn a number that indicates how “good,” in terms of

cient graph data structures, and for generic graph algthe goals laid out in Section 2, the configuration is.

rithms such as Dijkstra’s shortest path algorithm. To compute this score, the mappings for all nodes and

links must be considered. lssign , a lower score is Physical Resource Cost |

preferable. Intra-node Link 0.00
Computing the cost for an entire configuration is Direct Link 0.01
quite expensive, requirin@(n + [) time, wheren is Intra-switch Link | 0.02
the number of nodes that have been mapped,/asd Inter-switch Link | 0.20
the number of links between them. If, instead, the cost Physical Node 0.20
is computed incrementally, as mappings are added and Switch 0.50
removed, the time to score a new solution(¢l,,), pelass 0.50
wherel,, is the number of links connected to the node
being re-assigned; this is because, in addition to scor- Table 1: Scores used assign

ing the mapping of the node itself, all links that it has
to other nodes must be scored as well. Clearly, incre-
mental scoring provides better scaling to large topolo-
gies, so this approach is usedaissign . This fits well ~ greedily chooses lower-cost links before moving on to
with simulated annealing, which calls for a generatiodligher-cost ones.
function that makes small perturbations, which leads To resolve a link,assign finds all possible links
naturally to incremental scoring. between the nodes (direct, intra-switch, and inter-
assign s scoring function is split into three parts: switch) and chooses one. Direct links are used first,
init_score initializes the cost for an empty configu- if they exist, followed by intra-switch and inter-switch
ration, and computes the violations that result fronlinks. To find inter-switch paths, Dijkstra’s shortest
the fact thatassign begins with no nodes mapped. path algorithm is run for all switches whexssign
add_node takes a configuration, a physical nggeand ~ starts. The shortest paths between all switches to which
avirtual nodev. It computes the changes in cost and vithe nodes are connected are then considered possible
olations that result from mappingto p. remove_node ~ candidates. If no resolution for a link can be found, a
performs the inverse function, calculating the cost andiolation is flagged.
violations changes that result in unmapping a virtual A configuration is penalized based on the number of
node. nodes and links it uses. The default penalties, listed in
While incremental scoring greatly reduces thelable 1, can be overridden by passing theradsign
time taken to score large topologies, it does haven the command line. Intra-node links, entirely con-
a cost in the complexity of the scoring function.tained within a single node and used in mapping sim-
In particular, care must be taken to ensure thatlations, are not penalized at all. Direct node-to-node
add_node andremove_node are completely symmet- links, which do not go through a switch, have only a
ric; remove_node must correctly remove the cost small penalty. Slightly higher is the penalty for intra-
added by the correspondingld_node. This is made switch links. Inter-switch links have a cost an order
more difficult by the fact that other mappings may havef magnitude higher, since they consume the main re-
been added and removed in the time between whensaurce we wish to conserve. A configuration is also
virtual node was mapped and when the mapping is rggenalized on the number of equivalence classes (ex-
moved. In general, though, we feel that the added conplained in further detail in Section 4.5) that the chosen
plexity is an acceptable tradeoff for better evaluatiopphysical nodes belong to. This encourages solutions
times on large virtual topologies. that use homogeneous hardware, which is a quality de-
Link resolution, the mapping of a virtual link to a sired by many experimenters. Penalties for unsatisfied
physical link, is also done imdd_node—any virtual —desires and unused features are given in the input, and
links associated withy for which the other end of the can be chosen based on their relative importance to the
link has already been mapped are resolved at this poirigsources listed above.
This means that links are not first-class objects, subject LANs are more computationally costly to score than
to annealing. This limitsassign ’s effectiveness in links, since links involve only two nodes, and their
physical topologies that have multiple paths betweescoring time is thus constant, but LANs can contain
nodes, such as nodes that have both direct links to eanfany nodes, and their scoring time is linear in the num-
other and intra-switch links. Our experience, howevemher of nodes that are in the LAN. bssign , we rep-
is that such topologies do not tend to occur in practiceesent a LAN by connecting its members to a “LAN
So, whileassign supports these topologies, it doesnode,” shown in Figure 4, which is used solely for the
not include the additional code and time complexitypurpose of assessing scoring penalties. LAN nodes
to treat links as first-class entities. Instead, if multipleonly exist in the virtual topology—since they do not
link paths are present between a set of nodssign correspond to a real resource, they are not included in

o

OC
®

e e
o

Figure 5: A situation in which allowing solutions with
violations helps reach the optimal solution. If the band-
width between switches is such that only one virtual
Figure 4: Scoring for LANs is done with a “LAN Jink can cross between them, the mapping shown on
node,” which LAN members have links to. This LAN the right is in violation of this constraint. However, it
uses 3 intra-switch links and 2 inter-switch links. is a necessary intermediate step between the mapping
on the left and the optimal mapping, which places all
nodes on the upper switch.

the input physical topology. As needed, LAN nodes are
dynamically bound to switches in the physical topol-

ogy, each is attached to the same switch as the majqjijiy into account. Second, it allows the search to more
ity of its members. Thus, any LAN member that isgasily escape local minima, with the possibility that a
on another switch will be assessed an inter-switch link\var minima will be found elsewhere. It does so by
penalty. Clearly, then, when LAN members are reassmoothing the cost function. A generation function that
signed, this must be re-calculated, and the LAN nodgy|ydes infeasible solutions must either simply reject
may need to be “migrated” to a new switch, which in-hese configurations, or “warp” to a new area of the
cludes re-scoring all links to it. Doing so is & heavy-gpace, conceptually on the other side of the portion of
weight operation, and the time taken can add more thafje gpace that is infeasible. If infeasible solutions are
a factor of three to the runtime for LAN-heavy topolo-gjmply rejected, the connectivity of the solution is re-
gies. Instead, we perform migration only occ_asionallyduced, possibly even leading to portions of the space
when the LAN node is selected for re-mapping by thenat are isolated; these could leave the search trapped
generation function, and at the end of every tempergs 5 poor local minima. Figure 5 shows an example
ture_step. In practice, we find that this greatly redu_ceéf this situation. If “warping” is used, the score from
runtime, and has acceptable effects on the solutionsconfiguration to its potential successor may be very

found byassign high, resulting in a low probability of its acceptance,
S even at high temperatures.
4.3 Violations A common approach to the search of infeasible con-
One issue that must be decided when implementinfigurations [1] is to give them a high cost penalty, thus
simulated annealing is whether or not to allow the algomaking them possible to traverse at high temperatures,
rithm to consider infeasible solutions; that is, configubut unlikely to be reached at lower ones. This approach
rations that violate fundamental constraints. In the corhas some drawbacks, however. It is difficult to choose
text of our problem, the primary constraint considereé penalty high enough such that an infeasible solution
is over-use of bottleneck bandwidth between switchesvill never be considered to be better than a feasible
The benefits to allowing infeasible solutions, as put forene. If this can occur, the algorithm may abandon a fea-
ward in [1], are twofold. First, this makes the generasible, but poor, solution and instead return an infeasible
tion function simpler, as it does not need to take feasibne. Thus, inassign , we have chosen to keep track

of the violation of constraints separately from the cossign ’s generation function avoid certain classes of in-
function; this is implemented with “violations.” Each valid solutions. Though certain violations are useful to
possible configuration has a number of violations asexplore, as covered in Section 4.3, others are not. In
sociated with it. If a configuration has one or moregeneral, violations that cannot be removed by mapping
violations, then it is considered to be infeasible. If nachanges to other virtual or physical nodes should be
solutions are found with zero violations, the algorithmavoided. As an example, a virtual node with five links
has failed to find a mapping; frequently, this is becausassigned to a physical node with only four links will
no mapping is possible. always result in a violation, no matter what the rest of
When considering whether or not to accept a statthe virtual nodes’ mappings are. This is in contrast to
transition, violations are considered before the configuan over-used inter-switch link, where changes to other
rations’ costs. If the new configuration results in feweiparts of the configuration may lower traffic on the link
violations than the old, it is accepted. If the number ofind remove the violation.
violations in the new configuration is equal to or greater Exploring these invalid solutions can result in poor
than the old violations, then the costs are comparggerformance in some cases, particularly when there are
normally. This allows the algorithm to leave feasiblescarce resources in the physical topology and only a
space for a time, guiding it back to feasible space fairlyew nodes in a large virtual topology that require them.
quickly so excessive time is not spent on infeasible sassign can spend a long time exploring fruitless por-
lutions. tions of the solution space in these circumstances. To
One important side effect of violations is that theyhelp avoid certain invalid solutions, when it begins,
provide the user of the program with feedback abouassign pre-computes a list of physical nodes that are
why a mapping has failed. Six different types of viola-acceptable assignments for each virtual node. An ac-
tions are tracked, ranging from overuse of inter-switcleeptable assignment is one that is capable of fulfilling
bandwidth to user desires that could not be met. Thegbe type of the virtual node, has at least enough physi-
are summed together to produce the overall violationgal links to satisfy the virtual node’s links, and will not
score. Wherassign fails to find a feasible solution, incur violations due to features and desires.
it prints out the individual violations for the best so-
lution found. This helps the user to find the “most4.5 Physical Equivalence Classes
constraining constraint”; the one whose modificatiom 5.1 Reducing the Solution Space

is most likely to allow the mapping to succeed. Thispne of the features @fssign that has most improved
gives the user the opportunity to modify and re-submigs ryntime and quality of solutions is the introduc-
their virtual topology. It also gives the administratorsiign of physical equivalence classes. This improvement
of the testbed feedback about what factors are preveripmes from the observation that, in a typical network,
ing experiments from mapping, so that they can worknany hosts are indistinguishable in terms of hardware
on remedying them. It may reveal, for example, thatinynq network links. For the purposes of the genera-
sufficient inter-switch bandwidth is a problem, or thatjon function, these nodes can be considered equiva-
experimenters need nodes with more or faster links. |apt: mapping a virtual node to any of them will result
in the same score. It does not matter which of these in-
4.4 Generation Function distinguishable nodes is selected. The solution space to
assign ’s generation function has the task of taking aexplore can be reduced by exploiting this equivalence.
potential configuration and generating a different, but The neighborhood structure, or branching factor, of
similar, configuration for consideratioassign does a solution space iassign has a size on the order of
this by taking a single virtual node and mapping it toO(v- p), wherep is the number of nodes in the physical
a new physical node. Firsassign maintains a list topology, andv is the set of nodes in the virtual topol-
of virtual nodes that are currently unassigned to physagy. This number is an upper bound, becaus@sas
ical nodes. If this list is not empty, it picks a membersign progresses, some physical nodes will be already
and randomly chooses a mapping for it. If there are nassigned, reducing the number of choices to something
unassigned nodes, it picks a virtual node, removes itess tharp; once all virtual nodes have been assigned,
current mapping, and attempts to re-map it onto a difit will be O(v- (p — v)). Clearly, if we can safely re-
ferent physical node. If there are no free nodes to whictluce the size of or p, assign will be able to explore
the virtual node can be mapped, it frees one up by ura reasonable subset of the solution space in less time,
mapping another virtual node. This is done to avoidesulting in lower runtimes.
getting stuck in certain exact-fit or resource-scarce con- In practice, it is more straightforward, and provides
ditions. greater benefit, to reduge The Emulab facility con-
We have found that it is very important thas- sists of a large number of identical nodes connected to

a small number of switches, and other emulation faa node in a smalbclass than selecting one in a large
cilities are likely to have similar configurations. Forpclass. If selecting from among nodes rather than from
example, in Emulab, depending on available resourceamongpclasses, it is more likely that a node in the
there are 168 PCs that can be in the physical topolodgrge pclasses will be selected, simply because there
input to assign . These reduce to only Aclasses, are more of them. Thus, we have experimented with
resulting in a branching factor two orders of magnitudeveighting the probability that eaghtlass will be se-
smaller. Attempting to reduag on the other hand, will lected by the number of nodes it contains, to make the
generally not lead to such drastic results, since expenprobability that each node will be selected similar to
menters’ topologies are much more heterogenous, améhat it would be withoupclasses. However, we have
attempting to find symmetries in them would requireso far found that this is unnecessary, as it does not im-
relatively complicated and computationally expensivgrove the solutions found for our test cases.

graph isomorphism algorithms. There are some circumstances in whiclisses are
not appropriate. When mapping multiple virtual nodes
4.5.2 pclasses onto each physical node, as is frequently the case with

In order to effect this reduction in the physical topol-distributed simulations or ModeINet, the base assump-
ogy, assign defines an equivalence relation. Anytion, equivalency of certain physical nodes, is violated.
equivalence relation on a set will partition that set intd®s & physical node becomes partially filled, it becomes
disjoint subsets in which all members of a subset ar@0 longer equivalent to other nodes. Mapping a new
equivalent (satisfy the relation); these subsets are callédtual node to different physical nodes in the same
equiva]ence classes. Whass|gn begins it calcu- pclass can now result in different scores, as this af-
lates this partition. Each equivalence class is called fgcts whether some of their virtual links can be sat-
pclass. isfied as intra-node links or not. As a result, when
The equivalence relatioassign uses defines two mapping simulated or ModelNet topologies, we disable
nodes to be equivalent if: they have identical types angclasses. Fortunately, these mappings tend to involve
features and there exists a bijection from the links ofmaller numbers of physical nodes than full Emulab-
one node to the links of the other which preserves de§tyle mappings, due to diminishing returns in perfor-

tination and bandwidth. It is easily verified that thismance as the number of physical nodes is increased.
relation is an equivalence relation. Thus, they are still able to complete in reasonable time.

When the generation function in invoked, rather than
choosing a physical node directly, it instead selects 4.6 Cooling Schedule
pclass, and a node is chosen from thatlass. This By default, assign uses the polynomial-time cool-
technique reduces the size of the search space dramiaty schedule described in [1]. It uses a melting phase
ically, without adversely affecting quality of solutionsto determine the starting temperature, so that initially,
found byassign . Itreduces the search space by “col-nearly all configurations are accepted. It generates a
lapsing” areas of the solution space that are equivarumber of new configurations equal to the branching
lent. To gain a more intuitive feel for howclasses factor (as defined in Section 4.5) before lowering the
reduce the search space, consider two physical nodesnperature. The temperature is decremented using a
with identical hardware and an identical set of links tcfunction that helps ensure that the stationary distribu-
the same switch. When looking for a physical nodeion of the cost function between successive tempera-
to which to map a virtual node, it makes no differ-ture steps is similar. Finally, when the derivative of the
ence which of these nodessign chooses, since ei- average-cost function reaches a suitably low value, the
ther choice will lead to the same score. By combinalgorithm is terminated. The parameters to this cooling
ing these two nodes intojalass, and selecting from schedule were chosen through empirical observation.
pclasses rather than nodes, we have combined the twblowever, we are exploring the idea of using another
separate states that would result from choosing eitheandomized heuristic algorithm, such as a genetic algo-
of the physical nodes, into a single state. Thus, thathm, to tune these constants for our typical workload,
branching factor of the search space is reduced, but tihheaximizing solution quality while keeping the runtime
set of unique states thassign visits is not. at acceptable levels.

pclasses have an interesting effect on the way that The result of this cooling schedule is tlzetsign s
the solution space is explored; they tend to increaseintime should scale linearly in two dimensions: the
the probability with which physical nodes with scarcenumber of virtual nodes, and the numbermpefasses.
resources are selected by the randomized generatidhe temperature decrement function and termination
function. Selecting from among adklasses with the condition, however, will depend on how quickis-
same probability has a higher probability of selectingign is able to converge to a good solution, roughly

10

reflecting the difficulty of mapping the supplied virtual ‘ ‘ " Medan Time Per Test Case
and physlcal topologles' Average of All Test Cases Per Topology'Size ---x---

assign also has two time-limited cooling sched-
ules. The first simply takes a time limit, and, using the
default cooling schedule, terminates annealing when
the time limit is reached. The second mode attemptg
to run in a target time, even extending the runtime if*
necessary. It uses a much simpler cooling schedule in .|
which the initial temperature is determined by melting,
the final temperature is fixed, and the temperature is os |’
decreased multiplicatively, with a constant chosen such ||
that annealing should finish at approximately the cho- o= I Fa—— = e
sen time. Both of these cooling schemes are useful in Number of Virtual Nodes

limiting the runtime for large topologies, which oth- _ _) ,
erwise could take many minutes or even hours to rurf,/9uUre 6: Runtimes for Emulab topologies. Each test

The latter is also useful for estimating the best solutioff3S€ Was run 10 times. The scatter-plot _ShOWS the me-
to a given problem, aassign can be made to run dian runtime for each test case. The line shows the

much longer than normal, in the hope that it will have?V€rage across all topologies of the same size.
a better chance of finding a solution near the optimal

25

X

B
. .

15

X

0.25 T T
0 ne Error Per Test Case +
) Average Error Per Topology Size ---x---

5 Evaluation . .

In this section, we evaluate the performanceaef 015 |-
sign . First, we consider the performance a$-
sign on a real workload—a set of virtual and phys- .|
ical topology files collected on Emulab over a period
of 17 months. Then, we use a synthetic workload to
determine hovassign will scale to larger virtual and
physical topologies, and to examine the impact of some
features and implementation decisions. Then, we ex- o
amineassign ’s ability to map simulated and Mod-

elNet topologies. Finally, we compaassign to an- Figure 7: Error for Emulab topologies.

other mapper that we have implemented using a genetic

algorithm instead of simulated annealing.

Evaluation is primarily done in two ways: through cal topology available at the time the experiment was
the runtime ofassign , and through the quality of the submitted. Since virtual topologies vary widely, along
solutions it produces. To compare the quality of soluwith available physical resources, the goal of these tests
tions, we compute the average error for each test case.not to show trends such as scaling to a large num-
Ideally, the average error is defined 8§44%=2' phor of virtual nodes. Instead, the goal is to show that
whereopt is the optimal score, angedian is the me- assign handles the typical workload on Emulab very
dian of scores across all trials. However, since it igyell.
intractable to compute the true value @ft, we sub- Figure 6 shows runtimes for the test cases. This
stitute ™edien=min wheremin is the minimum score graph shows three important things. First, the major-
found byassign for the test case. This standard metity of experiments run on Emulab, and thus, the typical
ric gives a good feel for the differing scores found byyorkload forassign , consists of experiments smaller
assign over repeated runs on the same topology. than 20 virtual nodes. Second, the relatively flat run-

All tests were performed on a 2.0 GHz Pentium 4jmes up to 30 nodes are caused by lower bounds in

Error

60 80 100
Number of Virtual Nodes

with 512 MB of RAM. assign —to preventassign from exiting prema-
' turely for small topologies, a lower limit is placed on
5.1 Topologies from Emulab the number of iterationassign will run until it deter-

Our first set of tests were done using historical datenines that it is done. Finally, we can see thasign
collected from Emulab. The 3,113 test cases are virtualways completes quickly for its historical workload,
topologies submitted by experimenters, and the physin less than 2.5 seconds.

11

Cumulative Distribution of Error

til one or more experiments terminated, allowing the
experiment at the head of the queue to be mapped.
Each experiment was assumed to terminate 24 hours
after beginning.Mapping usingssign processed the
queue in 194 virtual days, while random mapping took
604 days, a factor of 3.1 longet. Limited by trunk

link overuse, random mapping maintained an average
of only 5.1 experiments on the testbed. Limited by
available nodesassign maintained an average of 16

Fraction of Test Cases at or Below Error

o r 1 experiments.
For the second test, we used consumption of inter-
09, e I " v e 5 as switch bandwidth as our metric. First, we altered the
Enor physical topology to show infinite bandwidth between

. . switches. As above, we first generated a randomly-
l_:lgure 8: CDF of error on Em“'at.’ topologies. Theordered work queue, then removed and mapped ex-
Ilne_ represents how many topologies had an error Qeariments until one failed to map by exceeding the
agen va'lue or smaller. Note that the y-axis for thi umber of available nodes. We recorded bandwidth
graph begins at .90. consumption on the inter-switch links. To prepare

for the next iteration, we emptied the testbed and re-

Figure 7 shows the amount of error for the same tesuffled the queue. The result, after 30 iterations,
cases, which were each run 10 times. Here, we sé¢@S thatassign -based mapping used an average of
that, for virtual topologies of up to 12 nodesssign 0.28Gbps across both links, _vvhile random mapping
nearly always finds the same solution. Up to 20 node&'S€d 7-4Gpbs, a factor of 26 higHer.
covering most Emulab topologies, the error for most T gain further insight intassign 's value, com-
topologies remains below 0.05, or 5%. Even past thiBarison against a mapper that uses a simple greedy al-
range, error stays low. More telling is the Cumula-g0rithm would also be valuable.
tive Distribution Function (CDF) for these test cases,
shown in Figure 8. Here, we see that approximatelp.2 Synthetic Topologies
93% of the test cases in this set showed an error of @or the remainder of our performance results, we use
96% showed an error of less than .05, and over 99%ynthetically generated topologies, rather than those
showed an error of less than .17. From this, we can segithered from Emulab. One reason for this is that the
thatassign is more than adequate for handling theEmulab topologies vary widely, making it difficult to
workload of the present-day Emulab. The tests in latediscern whether trends are due to irregularities in the
subsections aim to show thassign will scale to data, such as topologies with no links, or dueats
larger Emulab-like facilities, in addition to being gen-sign itself. Second, we wish to show thassign

eral enough for other environments. scales well past the resources currently available on
o Emulab.
5.1.1 Utilization Virtual topologies for these tests were generated us-

To evaluate the importance of good mapping to the uting BRITE [14], a tool for generating realistic inter-
lization of Emulab’s physical resources, we performed\s topologies. A simple Waxman model with random
two tests. We used Emulab’s actual physical topologyslacement was used. This results in topologies that are
with the same historical virtual topologies from the |aSﬁ’e|ative|y well-connected, of average degree 4. This
set of tests. In each test, we compared the benefit of usrovides a good test adssign ’s abilities, as such
ing the normakassign with a version that randomly topologies are more difficult to map than ones that have
(instead of near-optimally) obtainsvalid mapping of tree-like structures, due to the lack of obvious “skinny”
virtual to physical nodes; the random version still obpoints in the topology.
serves physical link limits, experimenters’ constraints
on node types, etc 1The random mapper timed out and could not map 98 large ex-
!) eriments due to overuse of the inter-switch links, even on an empty
For the ﬂr.St test, we mea}surEd throthDUt- Wi stbed; we adjusted by assuming they mapped and took the entire
placed the virtual topologies into a randomly-orderedestbed.
work queue. Experiments were removed from the ;Ehedap%ar:ent disparity betwetzgst)h_e ratiflJS'in (tjhs th[Jough_put %3)
H H .] andwidt consumptlon tests IS explaine Yy O servmgt at
queu.e and mapped, untl the mapper failed tq find or bandwidth, the difference on the bottleneck link between band-
solution due to overuse of m_ter-swnch bandwidth Okigth use (5.7Gbps) and capacity (2Gpbs) is what governs job ad-
lack of free nodes. At that point, the queue stalled unmission in the throughput test; these/capacity ratio is 2.85.

12

160

T T T T
Maximum Runtime Maximum Runtime —+—

Median Runtimg ~=-x--- Median Runtime -->%=-
Minimum Runtipfe ---%--- Minimum Runtime—==----

140
120

100

Runtime (s)
Runtime (s)
©
3

H
5
3

L L L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 50 100 150 200 250 300 350 400 450 500
Number of Virtual Nodes Number of Virtual Nodes

Figure 9: Runtimes for the brite100 test set Figure 11: Runtimes for the brite500 test set

T T
Error —— Error —+—

Error
)
o
@

Error
o
o
@

0.02

} } 1 1 1 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 50 100 150 200 250 300 350 400 450 500
Number of Virtual Nodes Number of Virtual Nodes

Figure 10: Solution quality for the brite100 test set Figure 12: Solution quality for the brite500 test set

The first test set, brite100, consists of 10 topologiedifficulty of mapping each topology, the best and worst
ranging from 10 to 100 nodes. The physical topologygase runtimes remain very linear.
is similar to Emulab’s, with 120 nodes divided evenly Figure 10 shows error for the same test set. The low
among three switches. The majority of tests are ruerror up to 40 nodes reflects the fact that these topolo-
using this test set, as the randomized natugessfgn gies can be fit into the nodes on a single switch, and
makes it necessary to run a large number of tests &ssign usually finds this optimal solution. For larger,
distinguish real overall trends from random effects, andhore difficult, topologies, assign still performs well,
the lower runtimes of this test set make this feasibleyith an average of only 5% error.
each topology in this test case was run 100 times. Figures 11 and 12 show, respectively, the runtimes

The second test set, brite500, is similar to thend error for the brite500 test set. Again, we see linear
brite100 test set, but has virtual topologies rangingcaling of runtimes. The slope of the line is somewhat
from 50 to 500 nodes, which are mapped onto a physteeper than that of the brite100 set. This is due to the
ical topology containing 525 nodes divided evenlylarger physical topology onto which these test cases are
across 7 switches. mapped.

5.2.1 Scaling 5.2.2 Physical Equivalence Classes

Figure 9 shows runtimes for the brite100 test set. Herdo evaluate the effect thatlasses have onassign

we can see that the mean runtime goes up in an approxe ran it withpclasses disabled. Runtimes increased
imately linear fashion, and that, for most test casedyy two orders of magnitude, as shown in Figure 13,
the worst-case performance is not much worse than tte which the runtime withpclasses enabled is barely
mean performance. While there is significant variatiowisible at the bottom of the graph. This is primarily due
in the mean runtime, due, we believe, to the relativéo the fact that the physical topology used for this set of

13

100

T T T T T T
Without pclasses —+— Median Runtime Without Features —+—
With pelasses ---x--- Median Runtime With Features ---x---

Average Runtime (seconds)
Time (s)

L L L L L L
10 20 30 40 50 60 70 80 90 100

Number of Virtual Nodes Number of Virtual Nodes

Figure 13: Runtimes for the brite100 test with andrigure 15: Runtimes for the brite100 test set when
without pclasses avoiding undesirable features

0.06 T T T T T T
Error With pclasses —+— Error Without Features —+—

Error Without pclasses ---x--- Error With Features ---x---

Error
o
9
@

Error
o
Q
@

0 * * i 1 1 1 0) , , A A
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of Virtual Nodes Number of Virtual Nodes

Figure 14: Solution quality for the brite100 test withFigure 16: Solution quality for the brite100 test set
and without pclasses when avoiding undesirable features

tests has 120 physical nodes that reducejidlésses, node more severely than using an extra inter-switch

a 95% reduction. link. This feature was given to all nodes on one of
Error in the solution found went down significantly the three switches, so it does not introduce additional

due to the longer runtimes, as shown in Figure 14. Thgclasses, which would have lengthened the runtime.

decrease suggests that some tuning may be possiblene found that, in all runsassign properly avoided

to improve solution quality in the version agsign usingundesirable nodes. Up to 80, the number of

that haspclasses. However, the magnitude of the run- nodes without thaindesirable feature,assign

time increase clearly does not justify the extra reducavoided usingundesirable nodes entirely. At 90

tion of error, which was already at an acceptable levehodes, all solutions found used only the minimum of 10

Though error is lower, the minimum-scored solutionundesirable nodes, and at 100 nodes, all solutions

found both with and withougclasses is the same. used only 2Qundesirable nodes.
. Figure 15 shows runtimes for this test. As we can
5.2.3 Features and Desires see, features used in this manner do not adversely affect

For our first test of features and desires, we examingaintime. Figure 16 compares error for this test case to
assign 's performance in avoiding nodes with unde-the cases without features, which is quite similar.

sired features. For this test, we gave 40, or one-third, of To examine how welhssign does at finding de-
the physical nodes in the brite100 physical topology aired features, we again modified the physical topol-
feature, calledindesirable , which was not desired ogy from the brite100 set, giving 10% of the nodes
by any nodes in the virtual topology. We gave this feafeature A, and another 10% featu®. These nodes
ture a weight that penalizes using andesirable were spread evenly across all three switches in the

14

! Vediah Rumime Vit Featnds Test Case Nodes selected with featuBe
Median Runtime Without Features ---x--- M I n I m u m | M ed I an
10 0 0
20 0 0
30 0 0
40 4 4
50 3 4
60 3 4
70 3 4
80 4 4
90 4 4
010 2‘0 3‘0 4‘0 Num;‘:r of \/\rlua?‘z odes 7‘0 B‘O 9‘0 1 1 O O 4 4

Figure 17: Runtimes for the brite100 test set, when atlable 2:assign s performance in avoiding featuf

tempting to satisfy desires

oo ‘ ‘ ‘ ‘ ‘ o Wit Featrss —— gave to featurdB, .5, plays a role in the optimal solu-
tion. This weight places the feature as being more valu-
able than two inter-switch links, but less valuable than
three. Thus, depending on the virtual topology, it may
be desirable foassign to conserve inter-switch links
rather than these nodes. Table 2 shows the number of
nodes with featur® in the minimally-scored solution,
and the median number chosen. If we placed more
value on featurdB, we could give it a higher weight,
so that its cost is higher than a larger number of inter-

Error
o
=
@

switch links.
pumbereraitedes 5.3 Distributed Simulation
Figure 18: Solution quality for the brite100 test set,TO test mapping of distributed simulation witrs-
when attempting to satisfy desires sign , we first mapped the 500-node topology from

the brite500 test set as a simulated topology. To do this,

we multiplexed 50 virtual nodes on each of 10 physical
physical topology. This results in a larger number ohodes. The mapping typically took 46 seconds, with an
pclasses (specifically, three times as many) than theerror of .023.
base brite100 physical topology, and thus longer run- Second, we appliedssign to a large topology
times. Then, 10% of nodes in the virtual topology wergyenerated by the specialized topology generator pro-
given the desire for featur&, and none given the de- vided with PDNS. This topology consists of 416 nodes
sire for featureB. Thus,assign will attempt to map divided into 8 trees of equal height, with the roots of
certain virtual nodes to the physical nodes with featurell trees connected in a mesh. In total, this topology
A, and will try to avoid the nodes with featuBe contains 436 links. Since the topology generated is of

Figures 17 and 18 show the results from this test. Aa very restricted nature, the script that generated it is
expected, the slope of the runtime line is steeper withble to optimally partition it to use only 56 links be-
these features than without them, due to the fact thaétveen nodes. Because of its generalitysign does
they introduce newclasses. In nearly all tests runs, not find the same solution. It does, however, typically
assign was able to satisfy all desires for featbrén find a very good solution: the median number of cross-
the 100-node test case, however, failure to satisfy theode links found in our test runs was 60. For com-
desire led to a 4% failure rate. parison, a random mapping of this topology typically
For topologies of size 30 or smaller, which allow aresults in 385 cross-node links.

mapping that remains on a single switch without us- The ideal test of the mappings found bgsign
ing nodes with featur8, avoiding these nodes is sim- for PDNS is to measure the runtime of the distributed
ple, andassign found such a solution in all of our simulation, both when mapped lagsign , and when
test runs. For larger topologies, the weight that weising the optimal mapping. However, limitations of

15

PDNS at the time of writing make it unable to accep Cores| Runtime (s)| Bandwidth (Mbps)| Error |

arbitrary network partitions, such as those generated By1 0.184 0 0
assign . Newer versions of PDNS, however, may re-| 2 4.81 1332 0.27
move these limitations and allow us to do this comparf 3 10.5 1183 0.36
ison. 4 16.61 947.5 0.28
Running these tests, we encountered unexpected hes 26.0 807.6 0.24

havior in assign ; it performed very poorly when
mapping these topologies as exact-fits. By slightlyfable 3: Performance adssign when mapping a
increasing the number of virtual nodes allowed to b&lodelNet topology. The bandwidth shown is the aver-
multiplexed on each physical node, we were able tage bandwidth used by each core node to communicate
dramatically increasassign 's solution quality. For with other cores.
example, with the PDNS topology, when each physi-
cal node was allowed to host exactly 52 virtual nodes
(416/8), the error exceeded 0.4. By allowing each T sl Rl e ——
physical node to host 55 virtual nodes, we lowered this *°[
error to .05. wr
It remains an interesting problem for us, then, to =0t
analyze this phenomenon and improassign ac- _ a0
cordingly. In the case of simulation, it appears Weg 250 |
can easily adapt by providing excess “virtual capac< ,,| X
ity.” For physical resources, we would need to im- |
prove exact-fit matches. Since simulated annealing haslDO |
fundamental problems dealing with tightly constrained
problems [19], this is likely best attacked by improving [.7

assign ’s generation function. & 10 1o w0 0 a0 w0 a0 a0 50

Number of Virtual Nodes

5.4 ModelNet Figure 19: Runtimes for the brite500 test set &sr
To apply assign to mapping ModelNet, we devel- sign and our genetic algorithm
oped tools to convert ModelNet’s topology represen-
tation into assign 's. We then mapped the topol-
ogy used in [18] to evaluate ACDC, an application-tions, and compare the details of their performance and
layer overlay. This topology is a transit-stub networkoehavior.
containing 576 nodes to be mapped onto the Mod-
elNet core. Transit-transit links have a bandwidttb.5 Comparison to Genetic Algorithm
of 155Mbps, transit-stub links have a bandwidth ofFinally, we compared our simulated annealing ap-
45Mbps, and stub-stub links are 100Mbps. The resulisroach to the testbed mapping problem to another
of mapping this topology to differing numbers of coregeneral-purpose and randomized heuristic approach, a
nodes is shown in Table 3. Though the error is siggenetic algorithm (GA) [7]. For this test, we indepen-
nificantly higher than for the Emulab topologies thaidently implemented another mapper. This mapper uses
assign has been tuned for, the average bandwidth standard generational GA, with tournament selection
to each core node stays near 1000Mbps, which is trend a specialized crossover operator. The population
speed of the core nodes’ links. size is 32, the mutation rate 25%, and the crossover
The ModelNet goal of balancing virtual nodes be+ate 50%. We took care to ensure that the cost func-
tween core nodes can be met in two different waysons of the two mappers are identical, so that we can
with assign . First, the type system can be used taccompare scores and errors of returned solutions.
enforce limits on the number of virtual nodes that can Except for small numbers of nodes, where it was
be mapped onto a single ModelNet core. Second, weorse, the quality of solutions found by the GA map-
have implemented experimental load-balancing code iper, shown in Figure 20, is close &ssign 's. Perfor-
assign that attempts to spread virtual nodes evenlynance is a different story. For the brite100 topologies
between physical nodes. (not shown), the GA was faster when mapping 40 or
Because they use different scoring functions, difewer virtual nodes. However, as shown in Figure 19,
rect comparison between the solutions frassign the GA exhibited much worse scalability than simu-
and ModelNet's mapper is problematic. The best tedated annealing; for all of the brite500 test cases, the
would be to run both mappers and the resulting emulaA was slower, on average. At 500 virtual nodes, the

16

025 ‘ ‘ ‘ ‘ T T experimentation environments.

We know of ongoing work on ModelNet's mapper,

02 1 with the goal of allowing re-mapping in real-time based
' on observed network load. It seems likely that this
work will be complementary to ours, and that some
of the lessons learned in each mapper will be appli-
x cable to the other. Results examining the scalability of
: | partitioning topologies across multiple core nodes and
comparing algorithms for doing this partitioning can be
o 1 found in [24] and [23].

Error

01 F

L L L L L
50 100 150 200 250 300 350 400 450 500

7 Ongoing and Future Work

r7.1 Ongoing Work

This paper describes the stateasfsign in Decem-
ber 2002. Since that time, new challenges have arisen
on Netbed and Emulab that make the network testbed
GA mapper took nearly five times as longassign . mapping problem more difficult, and even require us to
The key reason for this disparity in performance apexpand its definition. We have evolvedsign sub-
pears to be incremental scoring, which cannot be dorsantially in order to meet them, but there is still more
in GA's with crossover. When a new configurationwork to do.
is generatedassign incrementally alters the score. The biggest change is the addition of support in
However, the GA relies on a crossover operator th&Emulab, at the operating system level, to transpar-
blends two parents to produce two children. Hereently multiplex multiple virtual nodes from the ex-
incremental scoring is not feasible; childrens’ scoreperimenter’s topology onto physical nodes. Since, as
must be entirely re-evaluated. The linearly increasinghentioned in Section 4.b¢lasses are not appropriate
cost of evaluation is somewhat offset by the GA rewhen using high degrees of multiplexing, this leaves us
quiring fewer evaluations, on average, than simulatedith a problem: mapping these very large topologies
annealing; this accounts for its good performance oonto Emulab’s full physical topology takes a very long
small topologies. However, the GA exhibits supertime without pclasses. After a number of optimiza-
linear scaling as both the cost of evaluations and thiions and bugfixes, we have arrived at runtimes of 5-10
number of evaluations required increase. minutes to map a 1000-node virtual topology onto Em-
ulab. Since we hope to scale into the tens of thousands
of virtual nodes, this performance clearly needs to be
6 Related Work improved further. In Sarticular, since Emulab is very
Simulated annealing was first proposed for use in VLSbusy and the set of available resources tends to change
design [11]. Much literature is available on aspects obn the order of minutes, long-running mappings may
it[1, 21, 20]. The key problem it was intended to solvecomplete only to find that some physical nodes chosen
was the placement of circuits, which are arranged in are no longer available. Locking experiment creation
connectivity graph, onto chips. The goal of the mapfor hours while large experiments map is not a reason-
ping is to minimize inter-chip dependencies, which reable solution to this problem.
quire communication over expensive pins and busses.One of the ways we are combating the increasing
In this way, this problem is similar to ours, but doescomplexity is the introduction oflynamic pclasses.
not have the unique challenges described in Section B this schemeassign starts by buildingpclasses
Simulated annealing is also used in combinatorial omormally. However, when a physical node is partially
timization in various Operations Research fields. filled, the fact that it is no longer equivalent to other
Similar partitioning problems arise on parallel multi-physical nodes is reflected by splitting it off into its
processor computers [8]. Some network mapping algewn pclass; conversely, if it goes empty, it is merged
rithms can also be found in the literature. For exampldyack into its originapclass. This helps accommodate
[4] discusses partitioning of distributed simulation usthe special issues of multiplexed nodes, without the full
ing simulated annealing. [12] discusses algorithms fogperformance impact of disabling:lasses. While this
network resources when providing bandwidth guararhelps, it is not, by itself, sufficient. Very large vir-
tees for VPNs. None of these, however, meet our goalial topologies tend to use most or all of the available
of being more generally applicable across a range gfhysical topology, meaning that they tend to degener-

Figure 20: Solution quality for the brite500 test set fo
assign and our genetic algorithm

17

ate into a state where most physical nodes are in the®C in which it physically resides. Thus, we have intro-
own pclasses, resulting in performance similar to sim- duced, in both the virtual and physical topologies, the
ply disablingpclasses. notion of asubnode. A subnode declaration associates
We think that the best way to handle these larger vira child node with a parent node; a virtual parent-child
tual topologies will be to apply methods to reduce theipair must then be mapped to a pair of physical nodes
complexity. Methods for this reduction could includethat are likewise a parent-child pair, or a violation is
performing clustering analysis on the virtual graphflagged.
and treating small highly-connected clusters as a sin-
gle node in the mapping process. There will clearly’.2 Wide-Area Assignment
be a tradeoff between the size of such clusters (anks network testbeds expand into the wide-area, such
hence the runtime) and how close to optimal the fias Netbed's wide-area nodes [22] and PlanetLab [16],
nal mapping is, since the clustering pass may makesource allocation faces a new challenge. When re-
choices that are good from a local perspective, but posources are distributed across the public Internet, an
from a global one. ModelNet has shown [24] goodexperimenter’s desired topology must be chosen from
results from mapping with METIS [10], which doesthe paths available, which are not controllable by the
graph-coarsening to simplify graph partitioning probtestbed’s maintainers. Since the number of links be-
lems. Thus, this seems to be a promising approactweenn nodes isn(n — 1), this problem has similar
Another possibility we are exploring is to allow ex- complexity characteristics to the one we describe in
ternal programs to informssign of changes in the this paper.
physical topology while it is running, to increase the Netbed currently uses a separate program for map-
chances that it can be successful even if it takes a longng wide-area resources, which picks from among
time to complete. them using a genetic algorithm. Thus, two passes
Another special challenge of virtual-node multiplex-are used when mapping both wide-area and local re-
ing, not generally seen in simulations or ModelNet, issources. In general, we think that this two-phase strat-
thatassign ’s special treatment of LAN nodes, which egy is appropriate, since doing both phases at once
assumes that LAN nodes will be attached to switchegomplicates the solution space, and the choice of each
is no longer appropriate. If however, there is a LANset of resources in each phase does not depend on
in the virtual topology whose members are all mappedhoices made in the other phase. However, we plan to
to the same physical node, there is no need for traffinvestigate whether it appropriate to use the same pro-
in the LAN to leave the physical node. Thus, puttinggram, or at least, the same approach, for both phases.
the LAN node “out” on a switch is not an accurate Another approach to wide-area mapping, which is
representation of how traffic will flow. Therefore, we currently supported on Netbed usiagsign , is the
have extendedssign 's type system to allow physical simplification of the problem into mapping “last-mile”
nodes to have a set of “global” types that they can fuleharacteristics of network links. For some types of net-
fill, regardless of what regular type they have currentlyork experimentation, the primary concern is whether,
been assigned. This allows LAN nodes to co-exist ofor example, a node is connected to a DSL line, a cable
physical nodes with virtual hosts. modem, or Internet2. Though it fails to capture all of
There are also limits to the hardware and softwarghe global behavior characteristics of the node, this ap-
that instantiate these multiplexed virtual nodes, whiclproach makes mapping considerably easier, and eases
assign has to respect. For example, there is a limit tdhe specification burden on the experimenter.
the speed at which traffic can be transferred over loop-
back interfaces for intra-node links. So, a maximunv.3 Resource Descriptions
amount of bandwidth available to intra-node links carOne potential avenue for further work @assign is
now be set for each physical node; if not given, it ishe introduction of arbitrary resource descriptions for
assumed to be infinite. virtual and physical nodes. For example, a given virtual
Another challenge arises from physical nodes thatode may specify that it will require approximately
have a hierarchical physical dependency. For examplamount of memory andf” amount of processor cycles
we have recently added Intel IXP [9] network procesper second. When multiplexing onto a physical node
sors into Emulab. These nodes are hosted inside a Pfie resource requirements of the assigned virtual nodes
but both IXP and host can have their own distinct set ofvould be subtracted from the resources available on the
types, network links, features, etc. Thus, they need tphysical node.
appear as two separate nodes in the physical topology,assign ’'s current method for representing such
but we must take care to assure that, whssign things involves its type system. For example, we de-
picks these two separate nodes, it picks an IXP and thermine empirically how many simulated nodes can be

18

handled on a physical node, to get a “packing factorall nodes are connected using 100Mbps Ethernet, it is
X. Then, we declare the simulated virtual nodes tpossible to determine the necessity of traffic-shaping
be of typesim , and allow physical nodes to satisy nodes before mapping is done; all links that are not
sim nodes. This works reasonably well, but can mak&00Mbps require them. However, in an environment
sub-optimal choices, since all simulated nodes must beith mixed link speeds, which Emulab will have with
assumed to consume the same resources. Alternatelye addition of gigabit Ethernet, this can not effec-
simulated nodes can be classified by their resource cotively be done outside the mapper. For example, if
sumption, say into “heavyweight” and “lightweight” only gigabit links are available, but an experimenter
nodes, but these cannot be mixed on a single physicdésires a 100Mbps link, a delay node may need to be
node, since a physical node is only permitted to act @sserted where it would not if a 100Mbps link were
one type at a time. available. Since these decisions about which links to
The main problem with modifyingssign to han- use are known only tassign , it becomes necessary
dle more general resource descriptions will be in it§or assign to be able to introduce delay nodes when
generation function. Currently it is able to avoid certairappropriate. This dynamic addition of nodes to the
types of violations, such as multiplexing too many vir-virtual topology, however, presents challenges for the
tual nodes on to a physical node, with minimal processgeneration and cost functions. We have an initial im-
ing cost. This is simple, because the type system carlementation of dynamic delay nodes, but more work
know that no virtual node consumes more than a singlie needed.
“slot” on a physical node. With arbitrary resource costs
on virtual nodes, however, maintaining a structure that 5 | ocal Search
2 giveniualnode 15" becomes much more compr/\ POSSIIE waY o improvassign ' performance
cated. This could make the generation function sIoweWOUId be to cgmbm_e it WIFh I_oca_l search, another st_rat-
or red.uce the quality of solutions as more time is spe 9y for combmatqnal o_ptlmlzauon. One.can combine
e ! : . "Cimulated annealing with local search, in such a way
exploring invalid solutions. In essence this adds a blnt-

Ki ; ther NP let bl ¢ hat simulated annealing is performed on local min-
packing aspect, another INF-complete problem, 10 af,, rather than on all states [13]. The basic algorithm
already complicated solution space. It remains to b

. § to apply a “kick” to a potential solution, which, in
seen Whe‘hef the better packing allpwed by _these r((%E)ntrast to the neighborhood structure typically used
source descriptions can be done with a minimum o

performance degradation with simulated annealing, is designed to move to a very

A related. but simol . db h different area of the solution space. dssign , this
related, but simpler, extension would be to changg,q ;g likely be best accomplished by re-assigning a
the way thatassign scores multiplexed nodesgs-

.) X . o connected subset of the virtual topology, rather than a
sign was designed with the assumption that it is de poody

irable t inimize the phvsical nod d H single virtual node. A local search is then done from
sirable fo minimize the pnysical nodes used. HOWy,o qy configuration, attempting to find its local min-

ever, when doing simulation, for example, it may qua. Then, the same acceptance criteria for standard

the case tha_t it imcceptableto pla_ce up to a certain g jateqd annealing are applied, to decide whether or
number of virtual nodes onto a single physical nOdenot to move to the new minima

but it is preferableto place fewer, if enough resources

are available. We expect to explore modifications to

assign s scoring function to allow the user to pro- 8 Conclusion

vide more information about how multiplexed nodes

are scored, such as giving an ideal number of virtuaiVe have presented the network testbed mapping prob-
nodes on each physical node, as well as a maximurl@m, formulating it in such a way that it is applicable
This change is substantially simpler than accepting af0 @ range of experimental environments. We have pre-
bitrary resource descriptions, because it changes t§ented our solver for this problem, discussing its de-
scoring function, not the generation function; it doe$ign, implementation, and lessons learned in the pro-
not, in itself, require the generation function to do moréess. Through evaluation on real and synthetic work-
complicated bookkeeping in order to determine whichoads, we have shown its effectiveness on a range of

physical nodes have sufficient available capacity for 8roblems. Finally, we have identified interesting prob-
given virtual node. lems that are the subjects of ongoing and future work.

7.4 Dynamic Delay Nodes Availability

Emulab’s delay nodes present an interesting mappiragsign is planned for open source release as part of
challenge. In the current Emulab environment, wherthe Netbed/Emulab software, @ww.netbed.org

19

Acknowledgments

We thank Dave Andersen for his early work on formu-

lating the testbed mapping problem, and his work on

early versions ofissign . We are also very grateful

to several who helped with this paper. Chad Barb imH3]
plemented the genetic algorithm mapper used for com-

parison withassign
initial framework to transfer topologies from Model- [14]

Mac Newbold worked on an

Net’s input format intaassign 's, and ran the utiliza-

tion tests. Shashi Guruprasad worked on modifications

to PDNS necessary to test it. Mike Hibler provided

valuable feedback.
This research was sponsored by many, especially

NSF under grants ANI-0082493 and ANI-0205702,
Cisco Systems, and DARPA/AIr Force under grant

F30602-99-1-0503.

References

[1] E. H. L. Aarts and J. KorstSimulated Annealing and [17]

(2]

(3]

Boltzmann Machineslohn Wiley & Sons, 1989.

D. G. Andersen. Theoretical Approaches To Node As-
signment, December 2002. Unpublished Manuscript.
http://nms.lcs.mit.edu/papers/andersen-assign.ps.

Boost C++ Libraries. http://www.boost.org/.

[4] A.Boukerche and C. Tropper. A Static Partitioning and

(5]

(6]

(7]

(8]

El

[10]

[11]

Mapping Algorithm for Conservative Parallel Simula-
tions. InProc. of the Eighth Workshop on Parallel and
Distributed SimulationACM Press, 1994.

L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,

A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,[zo]

and H. Yu. Advances in Network SimulationEEE
Computer 33(5):59—-67, May 2000. (An expanded ver-
sion is available as USC CSD TR 99-702b.).

(15]

(16]

(19]

[12] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener.

Algorithms for Provisioning Virtual Private Networks
in the Hose Model. IProc. of SIGCOMM 2001ACM
Press, August 2001.

O. C. Martin and S. W. Otto. Combining Simulated
Annealing with Local Search HeuristicAnnals of Op-
erations Researcl63:57-75, 1996.

A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE:
An Approach to Universal Topology Generation. In
Proc. of MASCOTS 2001Cincinnati, Ohio, August
2001.

B. Monien and H. SudboroughEmbedding One In-
terconnection Network in Anothempages 257-282.
Springer-Verlag/Wien, 1990. Computing Supplemen-
tum 7: Computational Graph Theory.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. InProc. of HotNetssIPrinceton, NJ, Oct.
2002.

G. F. Riley, R. M. Fujimoto, and M. H. Ammar.
A Generic Framework for Parallelization of Network

Simulations. InProc. of MASCOTS 1999 ctober
1999.
8] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,

D. Kosti¢, J. Chase, and D. Becker. Scalability and Ac-
curacy in a Large-Scale Network Emulator. Pmoc.

of the Fifth Symposium on Operating Systems Design
and Implementatiarpages 271-284, Boston, MA, Dec.
2002.

P. van Hentenryck.
2001.

P. J. M. van Laarhoven.Theoretical and Computa-
tional Aspects of Simulated Annealin@entrum voor
Wiskunde en Informatica, 1988.

Personal communication, Nov.

[21] P. J. M. van Laarhoven and E. H. L. AartSimulated

K. Fall. Network Emulation in the Vint/NS Simulator.

In Proc. of the 4th IEEE Symposium on Computers an?zz]

Communications1999.

D. E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning Addison-Wesley,
1989.

B. Hendrickson and R. Leland. An Improved Spec-

tral Graph Partitioning Algorithm for Mapping Parallel [23]

Computations SIAM Journal on Scientific Computing
16(2):452-469, 1995.

E. Johnson and A. Kunz&{P1200 Programmingintel
Press, 2002.

G. Karypis and V. Kumar. A Fast and High Qual-
ity Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal on Scientific Computing0(1):359-392,
1998.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vec-
chi. Optimization by Simulated AnnealingScience
220(4598):671-680, 1983.

20

(24]

Annealing: Theory and Application®. Reidel, 1987.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. Rmoc. of the
Fifth Symposium on Operating Systems Design and Im-
plementationpages 255-270, Boston, MA, Dec. 2002.

K. Yocum, E. Eade, J. Degesys, D. Becker, J. Chase,
and A. Vahdat. Scaling Network Emulation using
Topology Partitioning. Technical Report TR CS-2003-
01, Duke University, February 2003.

K. Yocum, E. Eade, J. Degesys, D. Becker, J. Chase,
and A. Vahdat. Toward Scaling Network Emulation us-
ing Topology Partitioning. IfProc. of MASCOTS 2003
October 2003.

