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Abstract

Resource allocation is a key aspect of shared testbed infras-
tructures such as PlanetLab and Emulab. Despite their many
differences, both types of testbed have many resource alloca-
tion issues in common. In this paper we explore issues re-
lated to designing a general resource allocation interface that
is sufficient for a wide variety of testbeds, current and fu-
ture. Our explorations are informed by our experience devel-
oping and running Emulab’s “assign” resource allocator and
the “SWORD” resource discoverer, our experience with the
PlanetLab and Emulab testbeds, and our projection of future
testbed needs.

1 Introduction

PlanetLab’s [4] principles include “unbundled manage-
ment,” [18] where key functionality for creating, configuring,
and managing experiments and services is provided not by
PlanetLab itself, but by Infrastructure Services. Each Infras-
tructure Service has responsibility for a different part of the
application life cycle, and the goal is to design the interface
for each type of Infrastructure Service to allow a variety of
designs and implementations. Different services can then be
built with different features and goals, and these can coexist
and compete in an open environment.

The Infrastructure Service we concentrate on is the Re-
source Allocator. As shown in Figure 1, this service takes
as input an abstract description of desired resources from a
user and a description of resource status from a Resource Dis-
coverer. It produces an allocation of concrete resources to be
instantiated by a Service Deployment service.

In this proposed model, a Resource Discovery service col-
lects and maintains information about the state of nodes (i.e.,
location, CPU and memory usage) and the paths between them
(such as latency, bandwidth, and packet loss.) Resource Allo-
cation services will use this information to control access to
and scheduling of those resources.

Currently, the dominant way of choosing nodes on Plan-
etLab is ad-hoc. Users choose from all available PlanetLab
nodes a subset to host their application. While resource mon-
itoring services [15] are available to guide this decision pro-
cess, many users assign nodes to their applications in an ar-

Figure 1: The Resource Allocator’s relationship to other In-
frastructure Services

bitrary and static manner. Slices created this way have lease
times of eight weeks, but studies have shown [17] that condi-
tions on PlanetLab are very likely to change over time peri-
ods as small as half an hour, leaving users with mappings that
no longer meet their requirements. Because picking the right
nodes is a major factor in the success of an experiment, a better
way to select nodes is needed.

This better way is a Resource Allocator. Its goal is to let
users specify characteristics of their slice in higher-level terms
and find resources that match their requirements. For exam-
ple, a user might request three nodes that are within 15 mil-
liseconds network latency of one another, but are at different
sites. In response to this request, the allocator may give the
user nodes at MIT, Harvard, and Boston University. Or, the
user may ask for a set of “server” nodes that have high band-
width between them, and a set of “client” nodes on slower
links. The allocator will have to take into account the current
status of candidate nodes, such as the availability of CPU time,
memory, and disk space, as well as whether or not the user is
allowed access to the node.

While conceptually simple, there are many imaginable
types of resource allocators. Some might attempt to pro-
vide users hard guarantees about their allocations, while oth-
ers might give best-effort service. Some may implement “first
come, first serve” scheduling, while others may support pre-
emption and reservations. Some may support priorities among
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users, while others might use complex models such as an eco-
nomic marketplace where users pay for resources with some
abstract credits or real currency [3]. Some may allocate re-
sources immediately or not at all, while others may support
some sort of scheduling. Allocators with access to historical
data about path characteristics may choose to schedule an ex-
periment to run at a time of day or day of the week at which
it predicts the desired conditions will be present. Through all
of this, the Resource Allocator should attempt to make effi-
cient use of the resources it controls, to maximize the utility
delivered to end users and applications.

Obviously, the Resource Allocator encapsulates not just
mechanism, like some Infrastructure Services, but potentially
complex policies. These policies are visible and crucial to the
individual user and to PlanetLab as a whole. These are among
the reasons that designing a general Resource Allocator inter-
face is especially challenging.

In this paper, we draw on our combined experience with
two very different resource allocators and discoverers, both of
which have been used on PlanetLab. We outline them in Sec-
tion 2. We do not claim that either can satisfy all of the needs
of PlanetLab users—instead, we use our experience to sug-
gest features that may be present in the next generation of re-
source allocators. In doing so, we define some common needs
of resource allocators, and in Section 3, suggest some features
that should be present in an interface that can accommodate a
reasonably diverse set of allocators. We discuss the interac-
tion between the Resource Discovery and Resource Allocator
services in Section 4, and between multiple allocators in Sec-
tion 5. We finish by making a call to the designers of Resource
Allocation services to promote responsible resource use.

2 Relevant Work

2.1 Emulab

Emulab [23] is software that runs shared testbeds for devel-
opment, debugging, and evaluation of networked systems and
applications. It began as a facility for emulating Internet-like
conditions in predictable, repeatable environments, but has
now expanded to encompass other types of experimental re-
sources, such as static and mobile wireless nodes, simulation,
and real-Internet resources including PlanetLab and the RON
testbed [2]. Emulab uses the exported PlanetLab API [7] as a
backend, and performs the role of all Infrastructure Services in
a tightly-coupled manner.

Emulab offers an interface to PlanetLab and RON resources
that allows users to ask for basic constraints on nodes, such
as available CPU, memory, and disk space. It allows users to
ask for nodes that are all at one site, or that are spread across
as many sites as possible. On the RON testbed, it also allows
users to ask for latency, packet loss, and bandwidth constraints
on wide-area links; it should be fairly simple to adapt link con-
straints to PlanetLab once we have good path measurements,
a problem which we and others [9] are working on. Emu-
lab’s node-constrained and link-constrained mappings are per-
formed by different mappers, so it is not currently possible to

do both in the same experiment.

2.1.1 What Emulab Has Today

Emulab’s resource allocation is currently tied to its resource
discovery phase. That is, it is the discoverer/assigner (called
assign) [20] that both tracks currently available resources
and solves the combinatorial optimization/constraint satisfac-
tion problem of giving users resources that match their request.
In practice, this works well, because we have a single goal
(maximum throughput), and a single program attempting to
achieve that goal.

For scheduling, assign does only admission control—
either the submitted experiment is allocated resources imme-
diately, or it is rejected. This works well for the dominant type
of experiment on Emulab, interactive experiments. Emulab’s
fast instantiation allows users to use their resources within a
few minutes. Interactive experiments can be seen as part of a
larger class of experiments, immediate experiments, in which
the user is not scheduling the experiment for some future time,
but instead requesting that instantiation begin as soon as pos-
sible.

Emulab also allows queued experiments. If the queue flag
is set for an experiment, then the experiment is placed in a
scheduling queue, and is periodically run through assign to
discover when sufficient resources are available for it. At this
point, the experiment is instantiated and the user is notified via
email. This is a best-effort service—no guarantee is made as
to when the experiment will be instantiated.

When Emulab experiments are submitted, they are given
a duration—a time bound after which the resources used for
that experiment will be revoked. Users may change or re-
move this duration, but they must justify any change. Thus,
experimenters are encouraged not to hold resources for longer
than necessary. This procedure promotes fair sharing among
users, which is important since Emulab resources are in high
demand.

2.1.2 What Emulab is Building Now

Emulab has had, up to this point, a first-come-first-serve pol-
icy. We have started designing a hybrid system that allows:

• Immediate experiments

• Queued experiments

• Resource reservations

The first two types of experiments are described above. The
third is straightforward in its semantics—a user will get some
level of guarantee from Emulab that their experiment will be
able to run during a given window in the future. However, it
will likely require changes to the semantics of the other types
of experiments, particularly immediate ones. For example,
when a user tries to instantiate an immediate experiment, if
some of the nodes they are given are reserved in the near fu-
ture, then the duration of the experiment may have to be re-
duced with the user’s consent (the alternative would be to not
instantiate).
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Emulab’s way of dealing with scheduling during periods of
high use in the past has relied on non-technical methods. Here,
Emulab operators manually design a schedule or encourage the
affected experimenters to contact each other directly to work
out a schedule. The resulting schedule has been enforced only
by nagging those who go over their allotted time. This method
has worked surprisingly well. However, it seems clear that it
will not scale to many users or long time periods, and more
technical means will have to be employed to enforce sched-
ules. Thus, the Emulab project is working to support resource
reservations with automatic scheduling. However, this adds a
new dimension, time, to an already NP-hard allocation prob-
lem, so it will be the subject of future research.

Emulab will also introduce pre-emption of experiments, in
which a higher priority experiment may take resources from a
lower-priority job. This pre-emption will likely be able to take
three forms:

• Revoking in-use resources immediately

• Shortening the duration of an instantiated experiment (the
first is a special case of this)

• Revoking or postponing a future reservation

In all cases, the resource allocator must inform affected
users of the change.

The current Emulab “swapout” process does not preserve
nodes’ disk or memory state, so Emulab experiments have a
“swappable” bit that indicates if they will lose critical state
if pre-empted. Non-swappable experiments cannot be pre-
empted; policy determines which experimenters are allowed
to set this bit. In the future, Emulab will have stateful swapout
so that all experiments can be pre-empted without data loss,
allowing more aggressive pre-emption.

2.2 SWORD

SWORD is a resource discovery infrastructure for shared
wide-area platforms such as PlanetLab. It has been running
on PlanetLab for approximately one year. A user wishing to
find nodes for their application submits to SWORD a resource
request expressed as a topology of interconnected groups. A
group is an equivalence class of nodes with the same per-
node requirements (e.g., free physical memory) and the same
inter-node requirements (e.g., inter-node latency) within each
group. Supported topological constraints within and among
groups include required bandwidth and latency. For example,
a user might request one group of two nodes, each with load
less than some value and that are at a particular site; and a sec-
ond group of two nodes, each with load less than some value
and that are within a required network latency of a particular
reference node. The user might further request that there be at
least one cross-group network link with at least 1 Mb/s band-
width. An example of a SWORD resource request is shown in
Figure 2.

In addition to specifying absolute requirements, users can
supply SWORD with per-attribute “penalty functions” that
map values of an attribute within the required range but outside

Figure 2: An example SWORD abstract specification. Three
groups, A, B, and C are given constraints on maximum intra-
group latency and constraints for the latencies between groups.

an “ideal” range to an abstract penalty value. This capability
allows SWORD to rank the quality of the configurations that
meet the application’s requirements, according to the relative
importance of each attribute to that application.

Architecturally, SWORD consists of a distributed query
processor and an optimizer. The distributed query processor
uses multi-attribute range search built on top of a peer-to-
peer network to retrieve the names and attribute values of the
nodes that meet the requirements specified in the user’s query.
SWORD’s optimizer then attempts to find the lowest-penalty
assignment of platform nodes (that were retrieved by the dis-
tributed query processor) to groups in the user’s query—that
is, the lowest-penalty embedding of the requested topology in
the PlanetLab node topology, where the penalty of an embed-
ding is defined as the sum of the per-node, inter-node, and
inter-group penalties associated with that selection of nodes.

SWORD is an advisory service: it provides resource discov-
ery, but not resource allocation. In particular, because Planet-
Lab does not currently support resource guarantees, a set of
resources that SWORD returns to a user may (and probably
will) no longer best meet the resource request at some future
point in time. In light of this fact, SWORD supports a “con-
tinuous query” mechanism where a user’s resource request is
continuously re-matched to the characteristics of available re-
sources, and a new set of nodes returned to the user. The user
can then choose to migrate one or more instances of their ap-
plication away from nodes that have become unsuitable.

2.3 Other Related Work

Researchers have developed, and in some cases deployed, a
number of systems for resource discovery and resource allo-
cation in wide-area distributed systems. Virtual Grids [11],
Condor [12], Redline [13], and Network Sensitive Service
Selection (NSSS) [10] provide resource discovery through a
centralized architecture, while Ganglia [15] and MDS-2 [24]
use a hierarchical architecture, and XenoSearch [22] and
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SWORD [16] employ a decentralized architecture. All of
these systems allow users to find nodes meeting per-node con-
straints, while Virtual Grids, NSSS, SWORD, and assign
also consider network topology.

Resource allocation for wide-area platforms has also re-
ceived recent attention. Such systems include SHARP [8] and
Sirius [21]. Bellagio [3] is modeled after a virtual marketplace
where users spend virtual currency in exchange for combina-
tions of system resources.

3 Requirements for an Allocator
Interface

We now apply our experiences to the interface for the Resource
Allocator service. Rather than trying to define an API, we
sketch the general shape of the interface, identifying proper-
ties we believe are essential.

3.1 Asynchronous Interface

We can describe the resource allocator as taking a set of jobs
and returning a schedule of allocations. In practice, since the
set of all jobs is not known in advance, the allocator must pro-
duce allocations for jobs as they are submitted. An allocator
must consider the current state of PlanetLab, the resources it
has allocated to other jobs, and the job or jobs it is attempting
to schedule. We will call a scheduling for a particular job an
“offer,” and we suggest that the allocator should return zero or
more offers for each job. Returning no offers is equivalent to
refusing the job; we will discuss later why it might be advan-
tageous to return more than one offer.

We require a callback mechanism between the submitter of
the job and the resource allocator to support some of the job
types we have defined: Queued jobs require notification when
the job is ready to be instantiated, and pre-emption requires
notification when a reservation changes.

Thus, we suggest an asynchronous interface to the alloca-
tor. Rather than returning an allocation immediately, the allo-
cator may promise to call back the user within some specified
amount of time with its decision. This allows Emulab-type
scheduling where reservations are short and answers need to be
quick. It accommodates scheduling more in line with the cur-
rent PlanetLab model where applications may be long-lived,
and thus the scheduler has longer to answer. It gives the allo-
cator the option of considering more than one job at a time—it
may accumulate requests over some period of time, then con-
sider them simultaneously.

3.2 Resource Requests

A resource request is the specification submitted to the re-
source allocator by the user or an agent acting on a user’s be-
half. Here, we discuss some of the required content:

• An abstract specification of the user’s requested re-
sources

• A resource specification of the resources discovered by
the Resource Discoverer

• A time specification from the user, indicating when they
need the requested resources

3.2.1 Abstract Specification

The Abstract Specification is the representation submitted by
the user, describing the desired resources. Our experience with
Emulab and SWORD shows that relatively simple primitives
are powerful enough to express a wide variety of constraints.

On Emulab, the user defines virtual nodes and links, and
places constraints on them. Emulab has a simple type system,
which allows the user to place a type constraint on any node
or link, and each concrete resource to have a list of types that
it can satisfy. This enables flexible specifications, allowing
the user to request, for example, a generic PC, a class of PCs
(such as those with 64-bit AMD processors), or a specific type
of PC (say, a Dell PowerEdge 2850). This type system also al-
lows Emulab to represent non-PC hardware such as routers and
wireless sensor nodes. Links can also be typed (wired, Eth-
ernet, wireless, 802.11, etc.), and constraints placed on their
delay, bandwidth, and packet loss rate.

Emulab represents special node properties with what it calls
features and desires. Desires are properties of nodes in the
abstract specification, which are matched up to features in the
concrete specification. Some examples of desires are:

• Generic node resources such as a specified threshold of
available CPU or memory.

• Special node hardware such as SSL accelerators, extra
processors, extra disks.

• Node software features such as operating system or
available libraries.

• Other node attributes such as location (site, city, coun-
try, continent) or last-hop connectivity (Internet2, DSL,
etc.).

In SWORD, the abstract specification takes the form of a
topology of groups, with constraints on the intra-group and
inter-group path properties. Per-node attributes such as CPU
load and free memory can also be specified, in a similar man-
ner to Emulab features and desires. These constraints can be
both hard and soft, and users can supply utility functions that
SWORD uses to rank alternative configurations that meet the
soft requirements.

The units of specification of resources will be largely deter-
mined by the units that the underlying PlanetLab substrate sup-
ports. For example, PlanetLab’s “shares” map roughly to pro-
cess priorities. It is difficult to abstract this—if a user wishes
to ask for, say x CPU cycles per second and y MB of mem-
ory, we cannot map this onto shares because the quantity of
resources that a share represents varies across nodes and over
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time. PlanetLab is in the process of supporting CPU and mem-
ory guarantees. Once the transition is complete, Resource Al-
locators will be able to export higher-level abstractions to their
users.

If a particular allocator requires the user to expend cred-
its, real dollars, etc., the user’s corresponding supply will be
known internally in the allocator, or can be passed along with
the authorization tokens. If it turns out that credit-based allo-
cators become dominant, then it may be appropriate to include
a maximum budget in the request that the user is willing to
spend.

3.2.2 Resource Specification

A resource specification should list, unambiguously, the re-
sources found by the resource discoverer. Identity of nodes in
Emulab is straightforward; in PlanetLab, there are questions
about how nodes should be identified (i.e., hostname, IP ad-
dress, some GUID, etc.) We think that any sufficiently stable
identifier should be sufficient for this purpose. The identifier
should be tied to the allocation state for that node—as long
as it has the same identifier, PlanetLab should attempt to pre-
serve slivers on it. If a node is assigned a new identifier, then it
should start with no slivers. This will help Resource Allocators
keep track of their allocations.

Links should be specified at least in terms of type (i.e., wired
vs. wireless), bandwidth, latency, and packet loss. Emulab
uses all three of these. Other metrics such as jitter may also
be valuable. All link metrics should be specified in each direc-
tion to support asymmetric link properties.

3.2.3 Time Specification

We suggest a time specification that consists of three parts:
The start time, the end time, and a duration. Obviously, there
is redundancy if all three are specified, but we think that in-
cluding all of them gives flexibility, allowing for specification
of all job types that we have identified.

An “immediate job” could be requested by giving only a
start time, now, but no end time or duration. Or, it could in-
clude a duration or end time if the user knows how long they
need the resources.

A “queued job” could be requested by giving no start time,
but giving a duration and/or an end time. The duration would
be taken to mean the amount of time the job is to run for, and
the end time would be taken to mean the time at which failure
should be reported to the user if the job has not been able to be
instantiated.

Finally, a “reserved job” can be fully specified with a start
time in the future. This also enables implementing “fuzzy
ranges,” where the user specifies all three criteria. In this case,
if the interval between the start and end times is greater than
the duration, the assigner is free to give resources at any point
during the interval, with the specified duration.

If any fields are left empty, the allocator may choose to sup-
ply values for them in its return value to the user. For example,
consider the case where the user did not specify an end time,

but the allocator knows of future reservations for the same re-
sources. In that case, we want the allocator to inform users that
they may have the resources starting at the time they requested,
but that those resources will later be revoked to satisfy another
reservation.

3.3 Handling Multiple Potential Offers

We suggest that the interface allow allocators to return mul-
tiple offers for a job. The rationale behind this suggestion is
that in complicated allocators, such as the ones based on eco-
nomic models, there are value judgments that must be made.
For example, is it worth x extra credits to the user to get their
resources during the daytime rather than overnight? Is it worth
y extra dollars to get within 2% of the desired latency instead
of within 5%? An allocator might find multiple ways to sched-
ule a job that fit the user’s requirements, and in many cases, it
makes sense to let the user choose between them.

We suggest three different ways that an allocator can handle
multiple possible offers. The simplest, and perhaps the default
behavior, would be for the allocator to choose a single alloca-
tion on behalf of the user.

Some allocators, however, might want to offer a chance
for the user to be “in the loop” regarding which allocation is
chosen. Such an allocator could make multiple offers to the
user, who could choose from among them—interactive envi-
ronments such as PluSH [1] and Emulab could easily present
possible offers to the user.

More complex allocators might choose to let the user be “in
the loop” by supplying an optimization function to the allo-
cator to choose between multiple offers. While some work
has already been done in this area (such as Condor’s Clas-
sAds [19], and SWORD’s penalty function), it is clearly an
open area for future work. Thus, we believe that for the time
being, it is best to leave the language for optimization func-
tions unspecified, allowing each allocator to pick its own.

4 Relationship to Resource Discoverers

A Resource Allocator’s ability to make effective and efficient
use of the available resources will be governed in part by how
much information is available to it. Thus, its interaction with
Resource Discoverers is key. An important factor in this in-
teraction is how much data must be passed back and forth be-
tween the two. While node information should be manageable,
path information is O(n2) in the number of nodes, and so pass-
ing information about all paths will scale poorly. It may be
feasible to pass around simple measurements of latency, band-
width, etc., for a testbed of up to thousands of nodes, but the
problem becomes much worse when one considers allocators
that wish to take into account more path metrics, or even time-
series data about these metrics.

SWORD’s current strategy for dealing with this wealth of
information is to query for resources in two stages. First, it
performs a query to select a set of candidate nodes which have
attributes that satisfy the user’s request. This may, for exam-
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ple, filter out overloaded nodes or those with full disks. Then,
SWORD queries for the properties of paths only between pairs
of candidate nodes. This means that it must consider much less
data than if it were looking at all pairs of nodes.

While the discoverer can filter the data supplied to the allo-
cator, ultimately it is still the allocator’s job to decide which re-
sources to use. As PlanetLab and the experiments and services
that run on it grow large, complicated allocators will require
more data than can easily be passed back and forth.

It seems inevitable, then, that one of two outcomes will oc-
cur. First, the resource discoverers may have to choose only
to provide allocators with some subset of the available data.
We believe this is problematic, for reasons discussed below.
The alternative is to couple allocators more tightly with dis-
coverers. We see this as an attractive option, for two reasons.
First, resource discovery is an inherently decentralized pro-
cess. As the work required of an allocator grows, so too will
its need for processing power. One way of addressing this is
to distribute at least some of the processing to the nodes that
are collecting data. Second, all-pairs data collection simply
does not scale, so resource discoverers of the future [14, 5] will
have to use techniques to reduce the number of measurements
required. This reduced set of measurements could be commu-
nicated efficiently to the assigner, but will require discoverer-
specific knowledge to expand. Since the best way of taking
these measurements is still an open research question, it is un-
likely we will come to a consensus regarding the best way to
represent them. In the meantime, we are left keeping resource
discoverers and resource allocators tightly coupled.

If a discoverer chooses to give only some subset of its data
to an allocator, that set must be chosen carefully, because the
allocator will have specific goals in mind, and to get efficient
and effective resource usage, the subsetting process must have
at least some knowledge of the allocator’s goals. If the Re-
source Discoverer and Resource Allocator are working at cross
purposes, inefficiencies are virtually guaranteed.

While two nodes may be roughly equivalent in the view of
the discoverer, the allocator may know that it has already re-
served one of them, or that the user has not been granted per-
mission to use another. When we consider large topologies,
the chances that the discoverer happens to pick a set of free
nodes goes down when resources are tight, leading to a high
false negative rate. The problem is in fact worse than this—
the resource discoverer and the resource allocator may be con-
sidering entirely different data (i.e., CPU load and economic
cost), making the chances that the two decide on the same sets
of nodes and times very small. Since one of the largest prob-
lems on PlanetLab today is resource usage during periods of
contention, it is important to maximize the effectiveness of the
discovery/allocation combination.

Thus, it seems valuable not to enforce a separation between
these two components, allowing implementations that encap-
sulate both in a single component. Emulab, for example, may
choose this approach, as it does currently. In the interests of ef-
ficient resource use, the community may eventually find that it
is rarely if ever desirable to separate discovery and allocation.
Hopefully, experience with a first version of this interface will

be able to inform our decision about this in future versions.
We also suggest giving allocators the option of exporting

some version of their current schedule. Before submitting re-
source requests, users prefer to have some idea of what re-
sources are available, so that they know if they are likely to
be scheduled soon. It also gives them a chance to consider
revising their request if resources are tight.

5 Coexisting Allocators

A challenging issue for resource allocation on PlanetLab is
how multiple resource allocators can operate simultaneously
without interfering with one another. Except for PlanetLab re-
sources, this issue does not currently arise for Emulab. It has a
single resource allocation system with exclusive control over
all non-PlanetLab resources. The allocator can perform admis-
sion control by refusing to schedule a user’s job. In contrast,
PlanetLab’s design philosophy advocates “unbundled manage-
ment” where multiple platform management services can co-
exist. In the current proportional-share model in PlanetLab,
allocators do not have guaranteed control over any resources.
Under this system, admission control is impossible, and each
resource allocator can only make scheduling decisions based
on the jobs submitted to it and the measured platform resource
usage characteristics (which are induced by the jobs scheduled
both by all resource allocators attempting to control the same
set of underlying resources).

Thus PlanetLab currently supports only “best effort” re-
source allocators. SWORD, although billing itself as only a re-
source discovery system, is an example of such a system. Such
best-effort techniques are also subject to oscillations. Lightly
loaded nodes will tend to be noticed by many allocators, all
of which may assign work to them, causing the nodes to be-
come overloaded. Once the allocators notice the overload, all
may migrate jobs off of nodes, causing them to become lightly
loaded again. Coordination between allocators can reduce, but
not totally eliminate, this effect.

PlanetLab is in the process of augmenting the base platform
with a single platform-wide reservation system that will allow
users or resource allocation systems to pre-reserve guaranteed
fractions of a node’s CPU cycles and physical memory). Al-
though providing a single reservation mechanism “bundles” a
small amount of management functionality into the PlanetLab
platform, such a reservation system will allow resource allo-
cators to offer better than best-effort service. In the absence of
such a base allocator, there is a disincentive for people to use
resource allocators that exercise admission control. For exam-
ple if one allocator decides PlanetLab is too full, and as a result
does not provide sufficient resources, then the user is likely to
simply use a different allocator or deploy their experiment di-
rectly, even if this serves to overload PlanetLab. Users thus
have a disincentive to using allocators that attempt to achieve
the global good of not overloading PlanetLab.

Once resource guarantees are technically feasible, the policy
decision of how the capacity they represent should be divided
between allocators must be addressed. One model that has
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been suggested is that each allocator would receive some frac-
tion of the total PlanetLab capacity, and allocators that prove
to be more popular could have their fraction increased. When
making this decision, it will be important to look not only at
how “full” the allocator’s allotment is, but also at how effi-
ciently it is allocating resources. If an allocator has given out
all of its guarantees, but users are not actually using them, it
is not in the interest of the global good to give that allocator
more resources. Instead, resources should be given to allo-
cators that will use them efficiently. We think that one major
point of competition between allocators will be how efficiently
they allocate resources during peak times of contention; users
will tend to prefer allocators able to deliver the highest level
of utility. During times of peak demand, this will be allocators
that are either efficient or sufficiently over-provisioned.

6 Responsible Resource Use

As PlanetLab moves to a scheme that guarantees some level of
performance, it will be important for the allocators to provide a
disincentive to holding resources that a user does not currently
need. For example, while a user is learning the PlanetLab en-
vironment, or doing initial measurements, it is often unneces-
sary to hold resources around the clock or on many nodes. In
another common usage mode, jobs that are “experiments” and
not long-running services can often gather their data within a
few days or a week, and then should be terminated.

The PlanetLab share semantics do not “charge” users for the
number of nodes they allocate or the length of time nodes are
held. Thus, this resource management solution has a funda-
mental problem in that it does not discourage users from grab-
bing shares on all nodes and holding them for months at a time,
even if the user only needs a few nodes for a few days. Since
shares do not represent guarantees, PlanetLab can hand out as
many as it likes, and idle shares consume few node resources.
However, as PlanetLab begins offering guarantees, every idle
slice represents capacity that cannot be promised to new jobs
that wish to use it.

This is a problem that Emulab has witnessed in practice. Be-
fore we implemented appropriate countermeasures to resource
hogs, use of the Emulab cluster resources was inefficient. The
testbed was often too full to admit new experiments. What was
required were incentives for users to use resources responsibly,
or disincentives for irresponsible use.

Our current solution to this is twofold. First, Emulab mon-
itors nodes for “idleness,” and reclaims resources after an ex-
periment has been idle for a predefined period. Second, all
submitted experiments contain a default expiration time, after
which the experiment’s resources will be reclaimed whether
or not idle. It is easy for a user to disable or override both of
these timeouts—both are presented on the job submission and
modification interfaces. But, to do so, they must offer an ex-
planation, usually a single sentence. If either timeout is about
to expire, the user is notified to give them a chance to request
the resources for longer. Occasionally adjusted in response to
resource pressure, the inactivity timeout is set to a few hours,

and the expiration timeout is set to approximate a workday. In
our experience, this works reasonably well, as requiring a user
to justify their node use discourages abuse of the system, and
resources tend to be reclaimed quickly even if users forget to
release them.

Allocators with an economic model, such as Bellagio [3],
provide a different kind of incentive for responsible resource
use. Through the use of abstract credits, a user budget throt-
tles resource usage. To run a large experiment over a long time
period, users carefully manage their budget. After completing
the experiment, the user budget is likely to be sufficiently de-
pleted to discourage unduly holding resources.

PlanetLab has an advantage over Emulab when it comes to
reclaiming resources—it is easier to reclaim CPU guarantees
than it is to reclaim whole nodes. An allocator could tem-
porarily revoke a slice’s CPU or memory guarantees without
tearing down that slice’s slivers. The allocator could change
those guarantees to the minimal levels, or even move the slice
to share-based scheduling. Thus, when the user is ready to use
them again, it is a simple operation to restore previous guar-
antees (assuming there is capacity to hold them). Of course,
the virtual machine that constitutes a sliver itself uses up some
disk space, so slices that are expected to be idle for extended
periods of time should be torn down, unless disk space is never
an issue. There are “sensors” running on PlanetLab that track
sliver use, such as CoMon [6], to assist in this process.

The high-level lesson we take from these experiences is that
resources will not be used efficiently unless there is some in-
centive for users to use them responsibly. In our experience,
the easier it is for a user to gain access to resources, the less
of a sense they have that the available resource pool is finite
across both space and time, and the less aware they are that
their holding resources prevents others from using them. Sim-
ple mechanisms, even those that rely on social rather than tech-
nical means, can encourage responsible use, and need not be
onerous for users who have a legitimate need for large, long-
running jobs. We strongly recommend that all allocators con-
tain some provisions to promote responsible use; doing so is
in the allocator’s best interest as well as the global interest of
any shared computing infrastructure.

7 Conclusions

We take from our experiences with Resource Allocators and
Resource Discoverers for PlanetLab five main lessons:
• The Resource Allocator interface should be asyn-

chronous.
• The interface should allow for allocators supporting the

immediate, queued, and reserved styles.
• Resource guarantees are necessary, both to allow new

types of allocators, and to share fairly among allocators.
• Allocators should offer incentives for responsible re-

source use.
• Separation of Resource Allocators and Resource Discov-

erers may not be desirable. This separation should be
optional.
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