
DESIGN AND IMPLEMENTATION OF A MOBILE

WIRELESS SENSOR NETWORK TESTBED

by

David Michael Johnson

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2010

Copyright c© David Michael Johnson 2010

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

David Michael Johnson

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Jay Lepreau (signed by: Martin Berzins)

John B. Carter

Sneha Kumar Kasera

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of David Michael Johnson in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Jay Lepreau (signed by: Martin Berzins)
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

Charles A. Wight
Dean of The Graduate School

ABSTRACT

Network simulation continues to be the dominant method of experimental evaluation

in wireless networking. However, much research has established the failure of simulator

models to adequately express wireless signal propagation. These shortcomings can lead

to incomplete evaluation of wireless protocols and applications. When wireless research

includes mobility, real evaluation becomes still more difficult due to the difficulty of

creating and controlling mobile nodes in a real environment.

The primary goal of Mobile Emulab, the testbed presented in this thesis, is to en-

courage real mobile wireless research in the wireless community and provide a sound,

usable testbed platform for experimentation. Mobile Emulab is both software designed

to control and monitor a mobile wireless testbed, and a testbed providing access to mobile

wireless resources. The testbed consists of several robots, each with a small computer and

small wireless devices called motes, manueverable in an area surrounded by fixed motes.

Through a variety of interfaces, remote researchers can control these robots interactively

over the Web. Mobile Emulab provides an overhead tracking system that localizes

the robots to within 1 cm, providing repeatable positioning and valuable knowledge

to researchers studying how signal propagation affects their experiments. Additional

software tools that were developed to ease the evaluation process for wireless sensor

network researchers can be used by Mobile Emulab experimenters. Finally, the testbed

extends Emulab, which provides researchers with well-known experimental interfaces and

automation capabilities.

This thesis presents Mobile Emulab’s design and implementation, and establishes its

usability and utility through several experiments.

For my parents

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . x

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Goals . 3
1.3 Contributions . 4
1.4 Structure . 4

2. BACKGROUND AND RELATED WORK . 6

2.1 Emulab . 6
2.2 Mobile and Fixed Wireless Testbeds . 7

3. SYSTEM OVERVIEW . 9

3.1 Software Design . 10
3.1.1 Component Initialization and Dataflow . 10
3.1.2 Communication: mtp . 12
3.1.3 Robot Control: robotd . 12
3.1.4 Robot Localization: visiond . 13
3.1.5 Motion Models . 13
3.1.6 User Interfaces . 14

3.2 Environment . 14
3.3 Hardware . 15

4. LOCALIZATION . 17

4.1 Possible Localization Methods . 18
4.2 Design Issues . 19

4.2.1 Recognition Software . 19
4.2.2 Fiducial Patterns . 20
4.2.3 Vision Hardware . 20
4.2.4 Deployment . 21

4.3 Localization Software . 21
4.3.1 Mezzanine . 21
4.3.2 vmc-client . 22

4.3.3 visiond . 22
4.3.3.1 Unique Identification . 23
4.3.3.2 Track Maintenance . 24
4.3.3.3 Scalability . 24
4.3.3.4 Jitter Reduction . 25

4.4 Dewarping Improvements . 26
4.5 Validation . 27

4.5.1 Location Estimate Precision . 27
4.5.2 Jitter Analysis . 28

5. USABILITY TOOLS . 36

5.1 Wireless Characteristics . 36
5.1.1 Connectivity . 36
5.1.2 Active Frequency Detection . 37

5.2 Sensor Network Application Management . 38
5.2.1 Mote Management and Interaction . 39
5.2.2 Key Interfaces . 40
5.2.3 Message Handling . 41
5.2.4 Stock Plugins . 42

5.2.4.1 EmulabMoteControl Plugin . 42
5.2.4.2 PacketHistory Plugin . 43
5.2.4.3 PacketDispatch Plugin . 43
5.2.4.4 Location Plugin . 44

5.3 Mote Data Logging . 45
5.4 User-available Location Information . 47

6. CASE STUDIES . 49

6.1 Environment Analysis . 49
6.1.1 Experiment Basis and Methodology . 49
6.1.2 Results . 50

6.2 Mobility-enhanced Sensor Network Quality . 55
6.2.1 The Rationale for Mobility . 56
6.2.2 Design and Implementation . 56
6.2.3 Assumptions . 58
6.2.4 Evaluation . 59
6.2.5 Lessons for Mobile Testbeds . 60

6.3 Heterogeneous Sensor Network Experimentation . 61
6.3.1 Scenario . 61
6.3.2 Analysis . 63

7. CONCLUSION . 65

7.1 Users . 65
7.2 Analysis of Component Modularity . 66

7.2.1 mtp . 67
7.2.2 robotd and pilot . 67
7.2.3 visiond and vmc-client . 67
7.2.4 embroker . 68

7.3 Future Work . 68

vii

7.3.1 Localization . 68
7.3.2 Mobile Control . 69
7.3.3 Mote Application Management . 70

REFERENCES . 71

viii

LIST OF FIGURES

3.1 Mobile Emulab software architecture. 11

3.2 Garcia robot with two-circle, two-color fiducial and antenna extender. 16

4.1 Location errors with cosine dewarping. 28

4.2 Location errors with cosine dewarping and error interpolation. 29

4.3 Average jitter (error bars show minimum and maximum) in x component. . 30

4.4 Average jitter (error bars show minimum and maximum) in y component. . 30

4.5 Average jitter (error bars show minimum and maximum) in θ component. . 31

5.1 Screenshot of wireless connectivity applet showing received packet statistics. 38

5.2 Screenshot of wireless connectivity applet showing RSSI statistics. 39

5.3 Screenshot of the EmulabMoteManager application. 40

5.4 Screenshot of logged data in a MySQL database. 46

6.1 ns-2 code that moves a robot through a grid and logs output. 50

6.2 Packet reception at power level 0xff. 51

6.3 Packet reception at power level 0x03. 52

6.4 Average RSSI at power level 0x03. 53

6.5 Packet reception ranges at two power levels. 54

6.6 Average RSSI ranges at two power levels. 54

6.7 Routing messages sent by each mote. 60

6.8 Visualization of the heterogeneous topology generated by Emulab. 64

LIST OF TABLES

4.1 Location error measurements. 27

4.2 Location estimate jitter, x coordinate. 32

4.3 Location estimate jitter, y coordinate. 32

4.4 Location estimate jitter, θ coordinate. 33

4.5 Jitter in location estimate message interarrival times. 34

4.6 Jitter for linear motion location estimates and message interarrival times. . . 35

6.1 Packet reception range statistics. 55

6.2 Average RSSI range statistics. 55

ACKNOWLEDGEMENTS

I’d like to thank my advisor, Jay Lepreau, for giving me an interesting research project

and a chance to build a real collection of systems software, and valuable advice, friendship,

and support. By including me in his research group, Jay altered the direction of my career

and life. He provided wonderful opportunities to learn about and experience systems

software design and development, and I am very thankful to have been part of his life. I

also thank Sneha Kumar Kasera and John Carter, members of my committee, for their

advice, time, and patience!

I owe Karen Feinauer, who wears the Graduate Coordinator hat in the School of

Computing, a massive debt. She has patiently steered me through requirements, answered

questions, and prodded and encouraged me to completion of my degree. In another

department, or in another university, I might not have graduated.

I am grateful for the significant contributions, ideas, and support from many members

of the Flux Research Group—especially Dan Flickinger, Tim Stack, Russ Fish, Leigh

Stoller, Mike Hibler, Robert Ricci, Eric Eide, Kirk Webb, and Mark Minor. More

generally, the opportunity to work with the members of the Flux Group has helped me

increase my knowledge of the computer systems field and given me the ability to partipate

in its research community. Most importantly, my experiences in the Flux Group have

taught me how to build better systems software!

Finally, I thank my parents for the direction they gave to my life, the encouragement

and expectation they provided for my path through higher education, and the care and

love with which they have blessed me. This thesis is dedicated to them.

This material is based upon work supported by the National Science Foundation under

Grant Nos. 0520311, 0321350, and 0335296. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

CHAPTER 1

INTRODUCTION

Researchers experimenting with mobility in wireless sensor networks face a range of

evaluation methods to test their work. The choice of simulation, emulation, or testing

on live networks (or a combination thereof) heavily influences evaluation time, cost, and

quality. Each type of evaluation method is useful at different times during research

and development. For instance, a simulator can be an excellent debugging aid for early

development and helpful for testing application scalability beyond what is possible on

limited research hardware. Emulated networks provide experimenters with access to

real hardware, generally under controlled conditions. Emulated environments provide a

measure of repeatability while still allowing researchers to test on real hardware. Finally,

evaluation on live networks is an important prerequisite to declaring that an application

or protocol really works “in the real world,” but it is hard or impossible to control the

conditions in a live network.

1.1 Motivation

In the mobile and wireless research community, many research evaluations are per-

formed only in simulation. An increasing number of papers also provide experimental

data from live or emulated network tests, but the majority evaluate most thoroughly

in simulation. There are many reasons that simulation dominates. First and foremost,

it tends to be the easiest way to evaluate a protocol or application. Simulations may

be as complex or as simple as the researcher deems necessary. Many simulators come

prepackaged with different models of wireless signal propagation, basic environment

effects, and mobility models. Furthermore, judging by the preponderance of papers that

evaluate only by simulation, results from simulation alone is still an accepted means of

establishing system quality in the wireless research community.

Simulation tends to be a simpler alternative to real-world experimentation, but it

can lack fidelity that real devices and environments provide, especially when considering

2

wireless and mobile systems. Sometimes this loss of real-world modeling accuracy can

significantly affect the evaluation of the protocol or application. Judging from personal in-

teraction with researchers from around the world, the mobile wireless research community

generally agrees that simulation is insufficient for many kinds of network experimentation.

Simulation simply cannot model effectively many of the physical intricacies of wireless

signal propagation [2, 18, 28, 32, 33]. Wireless communication is often inhibited by

obstacles or nonuniformities in an environment, which produce multipath and fading

effects, or even simple interference, that can be difficult to model in simulation. Slight

defects in manufacturing processes or different antennae placement may influence trans-

mission characteristics. For instance, these real world effects can significantly impact the

behavior of wireless routing and MAC protocols [33]. Simulation can mask these effects

from experimenters, leading to incomplete or even flawed evaluation. When researchers

add mobility to their wireless applications and protocols, the situation can only become

worse. If simulation cannot accurately model signal propagation in a static environment,

how can anyone reasonably expect it to model propagation under motion? Motion simply

increases the difficulty of modeling all signal propagation effects in simulation.

There is a clear, strong need for inclusion of evaluation based on emulated or real

hardware in real wireless signal propagation environments. Unfortunately, experimenta-

tion in these environments presents many difficulties not found in simulation. Researchers

should prefer to deploy a dedicated experimental network (a testbed) rather than experi-

ment on production networks since this can avoid external interference that may disrupt

experimentation. However, designing and implementing a testbed is difficult and reduces

the time available for research and evaluation. If software systems are not in place to

maintain and quickly reconfigure basic properties of the testbed, the testbed quickly

degenerates into a single use system, lacking flexibility and means to easily extract data

from the network.

Wireless testbeds present additional difficulties for researchers. External wireless

sources may disrupt experimentation in ways that are hard to observe and understand;

removing external sources of wireless interference is not always possible. Repeatability

is much more difficult to obtain in wireless testbeds, due to the complex nature of the

physical media. There may also be limited channel availability and external wireless

sources that interfere with ongoing experiments.

The introduction of sensor network devices to a wireless testbed further increases

3

the burden on the researcher. Because sensor networks are relatively immature, espe-

cially when compared to IP networks, they lack the variety of standard toolchains and

application interface software that has existed for many years for IP networks. Many

tools, such as netcat [13], nmap [10], and tcpdump [11], exist for IP networks and are

invaluable to researchers trying to understand or capture behavior of network protocols.

The software that is currently available for use in sensor networks is still maturing, and

when combined with the difficulties inherent in dealing with small, resource-constrained

embedded devices, protocol and application development and debugging can easily be-

come a nightmare.

Experimentation with real mobile wireless devices presents a final set of issues. Pre-

cise, repeatable control and placement of mobile devices (in both time and position)

is difficult to achieve. If the experimenter is unconcerned with repeatability, it may

be easy to place devices on mobile objects such as people or automobiles. However,

if positioning itself, or if relative positioning with respect to time, is important, these

methods are insufficient. On the other end of the spectrum are systems that emulate

mobility by routing packets through the real device nearest the emulated sending location;

however, this does not provide exposure to the effects of real motion and will lack location

precision. To achieve repeatable motion, the researcher must develop software and

hardware infrastructure (including location and guidance services) to track and control

the mobile nodes.

Despite the difficulties inherent in real, mobile wireless experimentation, such ex-

perimentation is a valuable part of demonstrating claimed and proper functionality of

new network protocols and applications. In this thesis, we demonstrate that real, mobile

wireless sensor network experimentation can be made both practical and useful by creation

of an emulation testbed, Mobile Emulab, that provides real wireless devices and mobility.

1.2 Goals

Several important goals influenced the design of Mobile Emulab. First, it must provide

simple, expressive, and precise motion to experimenters. Precise motion enables fine-

grained experimental analysis and is a prerequisite for repeatability. The combination

of real world motion and wireless devices provides researchers with a useful platform

for experimentation. Second, Mobile Emulab’s design should keep both hardware and

software costs low. This will enable other research groups to more easily create their own

4

mobile testbeds, although the software must also be easily adapted to different hardware.

By fostering easy testbed creation, we can encourage many groups to place testbeds in

radically different radio environments. The testbed must be remotely accessible from the

Internet and should provide interfaces for controlling and observing motion and collecting

experimental data. Finally, it should specifically ease sensor network application testing.

Interactive sensor network control interfaces provide experimenters with much greater

control, debugging, and exploration capabilities, which already exist for older network

environments, such as TCP/IP.

1.3 Contributions

The focus of the research described in this work is the design and implementation

of Mobile Emulab, a mobile wireless network testbed for use by remote researchers.

Mobile Emulab extends the Emulab [30] network testbed, allowing it to leverage Emulab’s

powerful capabilities and well-known interfaces. We added wireless devices attached to

small computers, in turn mounted atop mobile robotic nodes. To allow researchers to

control and dynamically position these nodes from remote sites, we developed control and

tracking software for the robots. The control software includes simple path planning and

obstacle avoidance algorithms; this support allows us to present simple motion models

to researchers and abstracts details of low-level motion control. We track the robots

via a computer vision-based localization system. This allows precise positioning and

motion, and provides researchers with detailed location information for use in evaluation.

Finally, we implemented several applications that enable experimenters to easily explore

the wireless characteristics of our environment, and manage and interact with sensor

network devices.

In this thesis, I present my contributions to the Emulab mobile sensor network testbed.

I contributed substantially to the overall system design, localization subsystem, and wrote

application software and libraries to improve testbed utility for experimenters. I made

only minor contributions to robot control and monitoring software, although I discuss

key aspects of their implementation for clarity.

1.4 Structure

Chapter 2 provides background information about Emulab and discusses several testbeds

that relate to this work. Chapter 3 presents the design of the Mobile Emulab software

5

system and implementation of key services and network protocols. Chapter 4 details

the design and development of a computer vision-based localization system. Chapter 5

discusses additional software designed to provide experimenters with more information,

control, and logging facilities. Chapter 6 presents several case studies demonstrating

experiment interaction with testbed facilities and evaluation of various sensor network

applications, which demonstrates that the testbed is a viable and valuable tool for

researchers. Finally, Chapter 7 discusses the testbed’s impact on the research community

and suggests future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

First, this section provides a brief introduction to the Emulab network testbed soft-

ware, on which Mobile Emulab is based, and highlights its important and useful features.

We then discuss a variety of related testbeds.

2.1 Emulab

Emulab is itself a well-known and widely-used network testbed, but more generally

is a software framework for controlling testbeds. Emulab enables remote researchers to

develop and evaluate network protocols and applications on real hardware. The software

automatically instantiates custom network topologies on physical resources present in

the testbed, with none of the pain associated with configuration of a single-use testbed

in a lab. Emulab software enables full space sharing so that many researchers can run

concurrent, but separate, experiments. The capability of the software framework to

handle a variety of hardware platforms with slight modification, and the experiment

paradigm, coupled to a web interface, provide a strong base platform for supporting the

mobile extensions.

Emulab provides an intuitive methodology and interface for researchers. They create

experiments interactively or via the well-known network simulation language, ns-2. When

an experiment is “swapped in,” Emulab software reserves the requested resources and

sets up the network topology along with any custom network parameters. Once the

experiment is fully configured, Emulab’s event system begins processing any scheduled

events, such as running user programs, tweaking link (or other network) parameters,

reporting results, etc. Emulab’s web interface provides the researcher with current

status of nodes and other general information about the experiment. When finished, the

researcher may “swap out” the experiment, perhaps saving state for later experimentation

via disk imaging.

7

2.2 Mobile and Fixed Wireless Testbeds

Significant research and development effort has been invested in wireless network

testbeds, but few have attempted to add mobility to static nodes. One that has is

MiNT [6], a testbed designed to be deployed in small environments. For its wireless

platform, MiNT uses desktop PCs containing 802.11 wireless cards with external antennae

and attenuation. The antennae extend to mobile robots running on a table. However,

the mobile nodes are each confined to a sector in which they can move, lest the wires

connecting to the PCs entangle. Finally, MiNT does not provide a localization system,

other than presumably the onboard robot odometry. In comparison, our testbed provides

experimenters with the ability to move robots anywhere in the experimental area, and to

receive ground truth location information.

The ORBIT testbed [26] provides emulated mobility in a multihop network of several

hundred 802.11 wireless nodes. Experimenters can run code on PCs that binds to network

interfaces on the wireless nodes. Thus, the testbed can emulate mobility by changing the

program-interface bindings and provide a rough approximation of motion. In our testbed,

we provide real node mobility and thus have no need for proxying packet streams through

various emulated devices. We also provide wireless sensor network devices instead of

802.11 nodes.

TWINE [34] is a software framework that provides hybrid simulation, emulation,

and live network support for wireless networks. However, TWINE differs from other

approaches in that their emulation does not route packets to real interfaces. Instead,

the MAC and PHY layers are simulated at a very detailed level so as to provide better

modeling realism while retaining repeatability. Both emulation and simulation facilities

provide several different mobility simulation models including random, group, and trace-

based models.

Finally, there are several fixed wireless sensor network testbeds. MoteLab [29] is a

software framework providing access to a building-scale sensor network testbed. Ex-

perimenters may request time-slotted reservations over the Internet. MoteLab provides

automatic mote programming at experiment swapin and logging of packets sent out

of the serial port to a MySQL database. The mote logger application in our testbed

(described later in Section 5.3) is inspired by Motelab’s mechanism in that they both

use the information stored in TinyOS-generated Java Active Message wrapper classes to

extract information from packets and store them in a MySQL database. However, our

8

method also presents this information in multiple, human-readable ways in the database,

instead of as a data byte array.

EmStar [14] is a software framework that provides hybrid emulation on real motes,

potentially combined with simulation. In emulated mode, code runs on PCs, but physical

radios provide real communication effects. EmStar also provides a hybrid mode of

operation in which some motes may run the code natively, while others operate in

emulation mode. Although the software is not strictly designed for testbed management,

it can manage hybrid networks of simulated and emulated motes. The Emulabtestbed,

on which our software is based, provides numerous tools for controlling and managing

testbed resources.

The Re-Mote Testbed [9] provides novel logging into a MySQL database from motes

attached to a control network. The TWIST [16] sensor network testbed provides mote

reprogramming and data logging over a control network, and also includes remote power

control selection between battery and wall power.

CHAPTER 3

SYSTEM OVERVIEW

Creating a testbed for real, mobile wireless experimentation as discussed in Chapter 1

requires solutions to several subproblems. First, in order to control and maneuver the

mobile nodes precisely, the testbed must provide a powerful localization service capable

of providing fast, high-precision position information for each robot. Precise localization

data may often aid experimenters in development of applications or protocols that require

an input node location, or in evaluation of location services themselves.

Second, to provide usable and accessible motion to users, the testbed must provide

algorithms in place to aid in control of the mobile nodes. These algorithms must,

at minimum, perform obstacle avoidance and rudimentary following of user-specified

paths so that experimenters can work without monitoring all details of motion. In

mobility simulation, the most often used models are derivatives of simple waypoint

models. However, support for full path-based mobility models is also valuable since

providing conformity to specific paths may increase experiment repeatability.

Finally, there are several aspects of hardware and environmental control that must

be considered when building a system for mobile wireless experimentation. In Mobile

Emulab, mobile nodes are surrounded with fixed wireless nodes, since hybrid systems are

often of interest in wireless research. Adding fixed nodes also increases testbed scalability

and requires fewer mobile nodes. Since this testbed was deployed in a small, public

space, it was necessary to choose fixed node placement and mobile node physical radio

and antenna setup with care. To create interesting multihop topologies in such a small

environment, experimenters will need to use low-power transmissions. At low power,

antenna position has greater effect on signal reception.

To ease the transition to real-world mobile experimentation, we designed and built

our system as an extension to the Emulab network testbed. By extending Emulab, we

provide researchers with a well-known network experimentation interface. This effort

10

involved building a backend that translates motion requests from users and acts as an

information broker.

We discuss the system architecture and several of the important design aspects of

these subproblems below.

3.1 Software Design

Emulab provides researchers quick access to automatically-instantiated custom net-

work topologies. Researchers access Emulab primarily through a web interface, through

which they can configure and run experiments. The core of Emulab is a large database

that maintains state for current experiments, both those currently running on physical

resources, and others that have been created in the past but are not running. A large

number of configuration programs, scripts, and management daemons perform experi-

ment swapin and swapout and aid the researcher in experiment control, primarily using

information stored in this database.

To leverage Emulab’s extensive testbed management services, we link Mobile Emulab

subcomponents to the database and the web interface. This largely happens in the

embroker daemon, which functions as an information broker, through which user motion

requests and status data flow. Other subcomponents of the mobile testbed are robotd ,

which executes requested robot motion commands through instances of the pilot program

running on each robot, and visiond , which tracks all robots using information gathered

by per-camera instances of the vmc-client program through computer vision localization

techniques. Several new Java applets and other enhancements to the web interface expose

new mobile and sensor network functionality to Emulab experimenters. The software

architecture of our system appears in Figure 3.1.

3.1.1 Component Initialization and Dataflow

When an experiment swaps in a mobile Emulab experiment, the swapin process spawns

off instances of embroker , robotd , and visiond . embroker reads in a simple configuration

file, generated from the Emulab database, which specifies robots the experimenter has

requested, static obstacles in the area of motion, and the bounds in which the robot can

move, and listens on a Unix socket for connections. visiond and robotd both immediately

connect to this socket and receive configuration information. Once these three daemons

have successfully initialized, visiond identifies the robots and begins tracking and sending

11

Users

periodic real−time position data

"wiggle" requests

Mezzanine

position requests

telemetry data

robotd

robot motion requests

"wiggle" requests

position data

robot motion requests

event requests

System

pilot pilot pilot

event replies

position data
telemetry data

Emulab−based

Mobile Emulab

visiond

embroker

Internet

Mezzanine Mezzanine

Figure 3.1. Mobile Emulab software architecture.

location information to embroker . Once the system has reached this point, it is available

to accept user motion requests.

As mentioned above, embroker is responsible for passing data between Emulab (and

by extension, the users) and the other components that comprise the mobile testbed

extensions. embroker is connected to Emulab through the event system. The Emulab

event system is a publish-subscribe service that supports event generation and reception

by testbedobjects (i.e., nodes, shaped links). embroker communicates with Emulab

primarily through this system, and transforms events into commands for robotd and

visiond . Communication between embroker , robotd , and visiond (and also pilot and

vmc-client) takes place over mtp, the Mobile Testbed Protocol.

When an experimenter sends a motion request to Emulab, either through the web

interface or from a script, it is passed to embroker , which performs bounds-checking on

12

the destination to ensure the robots do not leave the area in which they can be localized.

The request is then passed to robotd , which requests the latest location data for the robot

to be moved, and then plans a path to the specified destination. robotd breaks this path

up in the manner required by the motion model being employed, and passes incremental,

relative motion requests to pilot . Throughout this process, visiond tracks each robot

and reports positions when requested or streams position data, depending on the motion

model in use.

3.1.2 Communication: mtp

Communication between the components comprising the mobile extension to Emulab

takes place over mtp. mtp is a message-based protocol that defines a set of messages

that testbed components require. For instance, all components must understand robot

location updates. Each mobile subcomponent responds appropriately to commands that

it supports. Originally, mtp used a custom packed data format that was interpreted in a

platform-independent manner; it was later wrapped with XDR routines by a colleague.

3.1.3 Robot Control: robotd

The two primary components that implement motion control and guidance are robotd ,

which runs on a central control computer, and pilot , an instance of which runs on each

robot. robotd handles motion requests at a high level, while pilot implements low-level

motion directly on the robot. If the waypoint motion model is used, robotd plans a

path to the destination consisting of linear segments that efficiently avoids known, static

obstacles. robotd sends pilot relative motion commands, which pilot executes through

a robot platform-specific API that translates requests to commands understood by the

microcontrollers governing the drive wheels. Due to limitations in this API, pilot calls

back to robotd after the robot has traveled a single segment to ensure its heading is

correct. Heading may become incorrect due to slippage between the drive wheels and

the floor, or unreliable wheel odometry-based methods for calculating distance covered.

When pilot estimates that it has reached the destination position, it refines the position

to correct for potential drift error as instructed by robotd , which requests location data

from visiond to obtain the most recent “ground truth” robot position.

By using the continuous path motion model, the cumbersome nature of the segment-

based approach is eliminated. In this model, robotd will generate a velocity profile for the

path computed from waypoints, or specified directly by the experimenter. This “profile”

13

consists of wheel speeds that ensure the robot stays on the path. By sending low-level

wheel speed commands to pilot instead of high-level straight-line moves and pivots,

execution times for lengthy moves are reduced. embroker streams robot location data

directly to robotd so that any deviations from the path will be discovered and corrected

immediately by modifying wheel speed commands based on the original velocity profile.

Flickinger, the implementer of this subsystem, provides significantly more detail about

continuous motion in Mobile Emulab in [8] and [22].

3.1.4 Robot Localization: visiond

Mobile Emulab identifies and tracks the robots through a computer vision-based

tracking system called visiond , using ceiling-mounted video cameras aimed directly down

at the plane of robot motion. As described in greater detail in Chapter 4, we improved

Mezzanine [21], an open source object tracking software package, to transform the over-

head camera video into x, y coordinates and orientation for detected objects. The system

consists of six cameras covering an approximately 60 m2 area. An instance of Mezzanine

processes video from each camera, translating pixel locations of objects to x, y coordinates

in meters.

An instance of vmc-client connects to the shared IPC segment used by a Mezzanine

instance and extracts object position and orientation for each object, and converts the

local coordinates to globally-understood coordinates. Each vmc-client forwards individual

robot location data to visiond for global processing.

Individual robot locations from vmc-client instances are aggregated by visiond into a

single, canonical set of tracks that can be used by the other components. These tracks are

reported at 30 frames per second to embroker since queries from robotd require low-latency

replies and high precision. embroker in turn reports snapshots of the data (one frame per

second) to the Emulab database, for use by the user interfaces. This reduction in data

rate is an engineering tradeoff intended to reduce the communication bandwidth with,

and resulting database load on, the Emulab core.

3.1.5 Motion Models

Mobile Emulab’s initial design supported only a simple waypoint motion model. In

this model, experimenters can specify lists of destination points for each robot, but the

path to these positions is nondeterministic from the experimenter’s point of view; even the

straight-line path between waypoints is not guaranteed, since the area of motion is open

14

to people, work carts, etc. These dynamic obstacles may force a path that is different

than expected. Finally, the waypoint model is implemented using a primitive API that

supports straight-line motion and pivots. Consequently, the robot must stop and reorient

itself to move to the next waypoint, which leads to slower motion execution times.

To improve the execution time of a user-supplied path, and to provide much more

expressive motion, we designed a continuous motion model that generates a velocity

profile containing wheel speeds that are then sent to and set on each moving robot. This

model can take as input a B-spline with enforced motion constraints, or more simply a

set of waypoints. Flickinger describes the theory and implementation behind this model

in [8]. This model allows the robots to continuously move along a specified path to

their destination, significantly enhancing motion request execution times and providing

advanced experimenters with much greater potential for motion control.

3.1.6 User Interfaces

Mobile Emulab inherits many useful features of Emulab’s web interface. However,

many more are necessary to allow experimenters to make full use of both mobile and

wireless sensor network aspects of the testbed. For instance, a Java-based motion con-

trol applet allows experimenters to interactively position robots and monitor motion in

real-time. Another Java applet displays connectivity information for all static motes

at different power levels, aiding experimenters in choosing which motes to include in

experiments to create topologies with different connectivity properties, without inspecting

the space themselves. Finally, we developed an application called SNAP-M that is specifi-

cally designed to support mobile, wireless sensor device experimentation. Although this

application is useful in a standalone manner apart from Emulab, some of its subcomponent

features rely heavily on Emulab. These interfaces and others are described in Chapter 5.

3.2 Environment

Currently, the mobile testbed is deployed in an L-shaped area of approximately 60 m2

and 2.5-2.7m high. This area is “live”; people and work carts may move through the area

at any time. This adds a definite aspect of realism to wireless experiments. However,

it potentially reduces repeatability. Uncontrolled movement by objects in the area of

robot motion can force robots to halt, both by physically impeding their progress, or by

preventing visiond from maintaining a track by obscuring line of sight between a robot

and one or more videocameras.

15

This deployment environment also contains potentially damaging wireless interference

across the 900MHz spectrum in which the mote radios communicate. While the physical

properties of the environment may help experimenters enhance quality of application eval-

uation, external wireless sources may interfere enough with testbed node communication

to ruin analysis. Section 6.1 provides a characterization of our environment.

3.3 Hardware

To increase the types of experimentation we can support, we deployed 25 Crossbow

Mica2 motes [3] in fixed locations surrounding the area of motion. All motes are attached

to serial programming boards, and each serial line is attached to a console machine. As is

the case for most other Emulab node types, each mote’s serial port can be exported over

a network, or accessed on an Emulab PC functioning as a proxy for direct, programmatic

access to several mote serial devices. Testbed software fosters easy mote reprogramming.

The fixed motes are deployed in a partial (subject to the “L”-shaped constraint) grid,

spaced approximately 2m apart. Several motes with attached Crossbow MTS310 sensor

boards [4] are distributed evenly around the area of motion and are placed at the height of

the robots. Since the robot-mounted motes also have attached sensor boards, the sensors

are all in the same horizontal plane. We hope that some applications may be tested by

using the robots as emulated, sensor-detectable devices. Other motes, without sensors,

cover the ceiling. The overall deployment is such that it is possible to create a variety of

different multihop networks. However, since the area is small, experimenters will need to

reduce radio power to enable multiple hops. We have found this to work reasonably well

in practice, although the maximum number of hops is not large.

Mobile Emulab uses Acroname Garcia robots [1] (pictured in Figure 3.2) as courier

devices. Each Garcia has an Intel Stargate with a 400Mhz XScale processor [5], and

attached to one of the Stargate’s serial ports is a Mica2 mote. Thus, experimenters can

remotely login to the robot and run programs that connect directly to the mote’s serial

port, or they can access the serial devices at an Emulab PC or over the network. Sensor

boards are attached to all robot-mounted motes. The robots are controlled remotely via

an 802.11 card plugged into the Stargate.

We have also added antenna extenders that place the mote’s antenna approximately

1m above the ground. We hope that these devices will allow experimenters to emulate

human-carried wireless devices. However, in our environment, this lowers the number of

16

Figure 3.2. Garcia robot with two-circle, two-color fiducial and antenna extender.

static motes that the mobile can communicate. When the antenna is lower to the ground

(i.e., closer to the mote itself), a ground-capture effect increases reception capability from

ceiling-mounted motes. When the antenna is raised, this effect is lessened and the robot

has more difficulty communicating with the ceiling motes. At the same time, many mobile

sensor devices have much more power than static motes, so increasing power for mobile

radios may be permissible for many applications.

CHAPTER 4

LOCALIZATION

To enable accurate and repeatable experiments, Mobile Emulab must guarantee that

all mobile devices and associated antennae are at the specified positions and orientations

within a small tolerance. To do this, we need to accurately determine the location

(position and orientation), or localize, each robot. The system is designed to achieve

subcentimeter localization accuracy to ensure that wireless experimenters can clearly

understand environmental effects on radio signals.

Although clearly important for positioning guarantees, precise localization is also

important for efficient robot motion. An incorrect location estimate at the beginning of a

motion can subtly alter the robot’s initial trajectory and thereby increase time required

to correct during execution, and when homing in on the final destination. When dealing

with advanced kinematic controllers that require stable and on-time data, this precision

becomes even more important. Any amount of localization data jitter will adversely affect

controller performance.

Another important design goal is that the localization system should be flexible over

a variety of quality and cost specifications. Because we wanted to create a mobile testbed

that other universities would duplicate to create their own mobile wireless testbeds,

the localization software should deliver acceptable levels of quality depending largely

on available hardware. In this implementation, we attempted to minimize cost while

still meeting the goal of precise localization. This was necessary to ensure scalability

for future expansions of the testbed motion area. A scalable system is also necessary

so robots may be localized across a sufficiently large area to enable interesting multihop

wireless experiments. While this implementation of the localization system lowers costs,

other adopters of this testbed could use either higher or lower price hardware to obtain

desired location precision.

Finally, the localization system must not interfere with user experiments. Although

the initial system was primarily designed with specific robots and sensor network gear

18

attached, we eventually added external antenna risers and contemplated additional sensor

attachments. The system we have implemented enables expansion and adjustment to the

mobile platform and devices that it carries.

As is typically the case in robotic systems, the robots’ on-board odometry could not

localize the robots with sufficient accuracy for our purposes. Consequently, we developed

a computer vision-based localization system to track devices throughout our experimental

area. Vision algorithms process image data from video cameras mounted above the plane

of robot motion. These algorithms recognize markers with specific patterns of colors and

shapes, called fiducials, on each robot, and then extract position and orientation data.

This chapter discusses many of the decisions made while designing the mobile testbed’s

localization system, describes aspects of its implementation, and presents an analysis of

its effectiveness.

4.1 Possible Localization Methods

Because we must have precise, low-cost localization for motion control and exper-

imenter data analysis, we considered several different methods of localization. First,

precision requirements almost immediately rule out any form of GPS, since ordinary GPS

provides accuracy only to within 1-3m [15]. Differential GPS [7] raises this accuracy to

the centimeter level, but may be difficult to use indoors due to multipath effects. Finally,

GPS does not provide target orientation. One could use GPS to find this by placing

multiple devices onboard a single tracked object, but the tracked object would need to

be fairly large to prevent orientation estimates from being lost in the error of the GPS

system itself.

Many schemes have been devised for localization in wireless sensor networks using

motes and sensorboards, such as Cricket [25] and the Active BAT system [17]. Primarily,

these methods use acoustic or ultrasonic ranging in TDOA (Time Distance Of Arrival)

techniques to find intranode ranges. Nodes send wireless signals at the same time as

they generated sonic or ultrasonic waves, and receiver nodes can determine range based

on how far apart these signals were received. However, since we must keep each mote’s

sensor and radio free for experimentation, we cannot use these techniques without causing

potential experiment disruption. The system could avoid radio usage conflicts by adding

a second mote and sensorboard to each robot, but would still need to require that the

experimenter avoid the resulting radio and sensor interference.

19

There are many different robot self-localization schemes. Meltzer et al. present a

SLAM (Simultaneous Location and Mapping) algorithm [24] in which a video camera

mounted on a mobile robot records environment features, and the robot can localize itself

when it sees these features again. Other methods such as [23] use an omnidirectional video

camera to recognize specific landmarks, and estimate their positions given current line

of sight to these known landmarks. Computer vision-based robot self-localization, while

desirable for some applications, is inappropriate for our system because it often requires

large amounts of onboard image processing to localize the robot. We would be forced to

use low-resolution camera models to reduce CPU processing. Such cameras cannot be

used onboard because we cannot extract high-precision data from them. Additional

hardware and processing on the robots also increases the required power and hence

decreases the amount of time an experiment can run uninterrupted.

After studying these and other systems, we chose to use a computer vision-based

localization technique that does not interfere with robot and mote experiments. The

resulting system utilizes open-source computer vision software, makes use of a number

of simplifying design assumptions that improve quality, and permits the use of higher or

lower quality hardware to adapt to other testbed implementers’ needs.

4.2 Design Issues

To obtain high-precision data while limiting hardware costs, we made a number of

design choices that tend to simplify the system and reduce cost while still attaining desired

scalability and localization precision. These design points are discussed further below.

4.2.1 Recognition Software

One of the design goals for this localization system was low development time. Con-

sequently, we investigated a variety of software packages ranging from computer vision

libraries to object tracking products. Few libraries that we found provided enough high-

level functionality to quickly build a highly-accurate localization system. Furthermore,

many commercially-available object recognition and video processing tools and libraries

cost several thousands of dollars to license. Due to these prohibitive costs and time

constraints, we attempted to find a relatively complete open-source tool that would

provide most of the functionality we needed. We eventually used an open-source tool,

called Mezzanine, that provides basic object recognition from live video streams and

complies with our other design choices.

20

4.2.2 Fiducial Patterns

Since Mobile Emulab’s localization system does not use self-localization or wireless

identification techniques, it must identify each robot uniquely by using a family of patterns

or by other means. Complex fiducial patterns may be more difficult to detect with

low-quality videocameras, which may have lower resolution and produce noisier image

data. Furthermore, more complex software is needed to detect anything more basic

than a simple system of lines (i.e., a bar code). Also, there is no guarantee that there

is enough physical space atop the robot hardware to mount a pattern family that can

support enough patterns to uniquely identify all robots in the testbed. Since we originally

planned to support 50 to 100 robots in a large empty room, we were forced to choose a

much more simple pattern. Finally, pattern selection also impacts future flexibility for

hardware and sensor modifications to the robots. By using a simple pattern, many future

modifications remain possible.

Mezzanine’s default pattern is compatible with these constraints and we use the simple

two-circle fiducial it supports. The circles are colored by two different colors widely

separated in color space. By using a two-color circle pair, Mezzanine can determine both

position and orientation of the object bearing the fiducial. By placing the fiducial on

a raised platform, behind the robot’s pivot axis, we can add numerous sensors near the

front of the robot in the future. This placement, combined with the simple nature of the

fiducial, simplified the addition of antenna extenders to the robot. The antenna extenders

only slightly worsen the precision of the localization data because they obscure primarily

a small portion of one of the circles at any one time. Refer to Figure 3.2 for an illustration

of a testbed robot with antenna extender and fiducial.

Mezzanine does not support multiple fiducial color pairs by default, and there is little

reason to extend it to create this capability. Due to light variance, the number of unique

fiducial pairs is not large enough to support a large number of robots as might be desired

in the future. Consequently, each robot bears the same fiducial and is uniquely identified

through motion algorithms (see Section 4.3.3).

4.2.3 Vision Hardware

We use video cameras and lenses that combine to produce high-precision localization,

yet are not prohibitively expensive. However, digital cameras with resolutions higher than

640×480 pixels all exceeded our cost constraints. We evaluated standard analog security

cameras, and found that the analog resolution produced is too low to extract sharp fiducial

21

outlines. Standard security cameras also lack manual controls for light and color settings,

which are needed in our environment to combat the effects of lighting variability. After

extensive evaluation, we chose the Hitachi KP-D20A analog CCD camera [20], which

provides sufficient analog resolution and good, manual control of light and color settings.

The camera cost was $460.

To cover the testbed with as few cameras as possible, we used wide-angle lenses.

Such lenses produce barrel distortion, which can be partially accounted for in software,

but which decreases our system’s precision. Since low-distortion wide-angle lenses can

cost many thousands of dollars, we used inexpensive lenses and corrected for distortion in

software, using better camera geometry models and interpolative error correction. We are

using Computar 2.8–6.0mm varifocal lenses set at focal lengths of 2.8mm, each costing

approximately $60.

4.2.4 Deployment

Mobile Emulab’s localization software utilizes video cameras mounted above the plane

of robot movement, looking down, instead of installing one on each robot. This solution

scales better than robot self-localization for dense deployments when there will be at least

a one-to-one robot-to-camera ratio, since each overhead camera can track many robots.

This method also removes processing requirements from the robots.

Futhermore, since the video cameras are pointed straight down, perpendicular to the

plane of robot movement, the geometry of the system is greatly simplified. We describe

the resulting improvements to precision in Section 4.4.

4.3 Localization Software

4.3.1 Mezzanine

We use Mezzanine [21], an open-source computer vision software that recognizes

colored fiducials on objects and extracts position and orientation data for each recognized

fiducial. Each fiducial consists of two 2.7 in circles that are widely separated in color space,

placed next to each other on top of a robot. Mezzanine’s key functionality includes a

video image processing phase, a “dewarping” phase, which attempts to eliminate barrel

distortion in wide-angle images, and an object identification phase.

During the image processing phase, Mezzanine reads an image from the frame grabber

and classifies each matching pixel into user-specified color classes. Each color class must

be specified by the user so that all of the pixels in one of the circles in a fiducial

22

can be classified into that class. This can be problematic because observed color can

be distorted by environmental lighting conditions. To operate in an environment with

nonuniform and/or variable lighting conditions, the user must specify a wider range of

colors to match a single circle on a fiducial. This obviously limits the total number

of colors that can be recognized, and consequently, we cannot uniquely identify robots

through different fiducials. We obtain unique identification by commanding and detecting

movement patterns for each robot (the “wiggle” algorithm), and thereafter maintain an

association between a robot’s identification and its current location as observed by the

camera network. Mezzanine then combines adjacent pixels, all of which are in the same

color class, into color blobs. Finally, each blob’s centroid is computed in image coordinates

for later processing (i.e., object identification).

4.3.2 vmc-client

As specified in Chapter 3, an instance of vmc-client runs for each videocamera.

vmc-client connects to the shared memory segment in which Mezzanine writes extracted

location data, and registers itself to be notified whenever Mezzanine has processed a new

video frame. When notified, vmc-client reads the shared memory and passes the location

data for any detected objects to any connected visiond daemons.

Each vmc-client obtains location data for objects in Mezzanine’s local x, y coordinates,

in which 0, 0 is approximately at the center of the camera’s focal axis. vmc-client converts

these locations to global coordinates that cover all instances of vmc-clients in the testbed.

Furthermore, since the robot fiducials are raised off the ground by approximately 20 cm

and are offset from the robot’s pivot axis, vmc-client modifies the global location data to

account for these factors. vmc-client accepts parameters for these values, but since robots

are not uniquely identified, using different types of robots would necessitate multiple

vmc-client and Mezzanine instances.

4.3.3 visiond

An instance of visiond is spawned for each mobile experiment. visiond connects to

all vmc-clients provided by embroker ’s configuration messages, and immediately begins

the identification process for all robots reserved in this experiment (see “Unique Identifi-

cation” below). As soon as a robot is matched to an object location forwarded by one or

more vmc-clients, visiond constructs a track for it and updates the track on subsequent

location data from a vmc-client .

23

4.3.3.1 Unique Identification

Because we use the same fiducial on each robot, visiond must perform robot iden-

tification; that is, it must map objects identified by Mezzanine to robots controlled

by the testbed. When visiond is initialized by embroker , or loses track of a robot, it

must re-identify any unidentified robots. Since the testbed design must account for the

possibility that robots will be moving in an area in which they may be briefly obscured

from the videocameras, visiond must also re-identify a robot if such obscuration continues

for too long a time.

When a per-experiment visiond is launched by embroker , embroker configures it with

the node identifiers that the user has reserved in the experiment. visiond immediately

begins a serialized identification process. For each robot, visiond sends a “wiggle request”

message to embroker , where it is forwarded to robotd , and then to the appropriate pilot

for motion execution. A “wiggle request” typically pivots the robot by 180◦. This motion

is easily detectable, and very unlikely to create tracking confusion, since at no time can

a user request a motion resulting in a stationary pivot of more than 180◦. This occurs

because robotd always minimizes the arc through which it must turn to execute a pivot.

visiond saves the current state of all tracked objects and waits for robotd to signal that

the wiggle has finished. When signaled, visiond compares the current set of tracks with

the saved set. Whichever track has remained nearly stationary, and has an orientation of

180◦ difference, is matched to the robot that was commanded to wiggle.

There are a number of cases in which, strictly speaking, Emulab does not need to

re-identify a robot. For instance, at the end of each experiment, each robot returns to a

parked location that is stored in the database. Consequently, Emulab could assume that

each robot is at its parked location at the beginning of each experiment. However, if a

robot is obscured at experiment swapin, is at a location slightly different than that stored

in the database, or has been mistakenly switched to another robot’s parked location by

a testbed operator, the wiggle algorithm will prove invaluable to avoid mistaking robots.

Such mistakes could potentially result in user motion request execution errors. Finally,

if a robot’s fiducial is ever obscured during experiment runtime, visiond will need to

reacquire the robot again through the wiggle process. Therefore, it is in the best interests

of the system as a whole to always wiggle to discover true robot-to-object mappings.

24

4.3.3.2 Track Maintenance

Once visiond constructs tracks for all recognized robots, object location updates from

all vmc-client instances are matched against the current set of known tracks. New object

locations match a track if the new location is within a small distance of the latest location

in the track, and if the heading is likewise similar. If a track remains unmatched for three

subsequent updates, it is cleared and visiond no longer associates the robot with the

track. Generally, this occurs due to extended obscuration of line of sight from one or more

cameras to a tracked robot. Once visiond loses track of a robot, it immediately attempts

to re-identify the lost robot. If the first re-identification fails, subsequent attempts are

spaced at approximately 20 seconds.

Since we require a multicamera localization system, visiond also performs track ag-

gregration across multiple cameras. Since the fiducial atop the robots is larger and

more complex than a simple, single LED dot, wherever a robot can cross a videocamera

boundary, there must be an overlap zone in the cameras’ coverage. This is unfortunate

and leads to a reduction of system scalability, but it is necessary to maintain stability of

data and reduce jitter. For instance, when a robot moves into another camera, visiond

only begins using the position reported by that camera once the robot has left the original

camera. This reduces jitter because even the adjacent cameras and their vmc-clients may

have slightly different parameterizations and offsets for calculating global coordinates of

objects. Were a robot to move back and forth on the camera boundary, the jitter could

increase significantly if visiond constantly selected the other camera’s reported location.

4.3.3.3 Scalability

The visiond process for each experiment connects directly to each video camera’s vmc-

client process. To properly eliminate duplicate objects seen by multiple videocameras,

visiond waits until it has a full frame’s worth of object locations from each vmc-client .

Consequently, visiond will very likely not scale well beyond an estimated 30 to 50 cameras.

System phase lag will begin to increase, harming advanced robotic motion controllers.

Although bandwidth used should not become a problem on high-speed networks, it scales

poorly. Due to the small size of the initial implementation of the testbed and time

constraints, a permanent localization system scalability increase was beyond the scope

of this thesis. However, we have considered how to modify visiond and vmc-client to

increase system scalability, and provide suggestions below.

As stated, the scalability problems arise due to the need to remove duplicate object

25

locations from adjacent cameras. One simple way to solve this problem is to use a

processing hierarchy in which an aggregator instance is allocated to eachm×n grid of vmc-

client processes. The aggregator would remove duplicates discovered in this grid, and pass

on the resulting set of object positions to another aggregator instance. By constructing

an aggregation hierarchy in this manner, we can remove duplicates, but also reduce the

amount of network bandwidth required since each visiond instance will now only need to

connect to the aggregator root. Furthermore, by running the aggregator instances on as

few machines as possible, we can limit the extra latency caused by network communication

with aggregators higher up in the hierarchy. Unfortunately, every additional processing

and communication step adds lag to the system. It is possible that when scaling to

hundreds or thousands of cameras, phase lag would begin causing more severe problems

to robotic controllers.

4.3.3.4 Jitter Reduction

Due to light variance (fluorescent lights, combined with outdoor light), ceiling vibra-

tion, etc., there is an amount of jitter in the data reported by visiond . We discussed

designing a Kalman filter for our system, but a Kalman filter would require significant

tuning (perhaps in each environment in which the testbed would be used) and implemen-

tation time. Consequently, we implement two different types of smoothing functions.

We first implemented a simple moving window smoothing function. This alleviated

difficulties in the initial system, where embroker would be deceived by a large enough

difference in the reported orientation (± several degrees), decide that the robot had moved

from its currently assigned position, and attempt to generate motion commands to drive

it back. In certain, isolated areas of particularly variable lighting conditions, this resulted

in system-generated motion loops, thus acting as a denial of service to the user. When

using the moving window estimator with a window size of five, we found that these loops

did not appear. Furthermore, since the initial motion control implementation in robotd

did not require constant vision data at 30Hz and stopped every 1.5m, the resulting phase

lag introduced into the data did not harm motion.

Unfortunately, the moving window average proved incompatible with the later re-

implementation of robotd with continuous, path-based motion. robotd required data

at as fast a rate as possible (only 30Hz with the testbed video cameras, without any

interpolation or predictive filtering). The phase lag introduced by the moving window

26

average, coupled with relatively (relative to the newer robotd controller’s needs) noisy

data, made it much more difficult for the controller to operate successfully. Thus, we

implemented an EWMA filter that we hoped would reduce jitter at least as well as the

SMA filter, but with a smaller impact on localization data phase lag. All aspects of

smoothing are configurable by the user; however, if the user does not provide a specific

α parameter for the EWMA filter, we calculate it using α = 2/(N + 1), where N is the

window size.

4.4 Dewarping Improvements

The original Mezzanine detected blobs quickly and effectively, but the supplied de-

warping transform did not provide nearly enough precision to position robots as exactly as

we required. The dewarping transform is computed by a calibration phase in which grid

points in the plane of motion are provided to the application. The supplied dewarping

algorithm is a global function approximation. An approximating function does not need

to match the provided data points exactly, whereas an interpolating function must.

Although Mezzanine’s approximation method worked well for us with slightly wide-angle

angles, it began to exhibit strange data discontinuities in reported position estimates

as angle of view increased. For instance, moving a fiducial 1-2 cm resulted in position

estimate jumps of 10-20 cm.

We enhanced Mezzanine with a different dewarping transformation that takes ad-

vantage of the fact that our overhead cameras point directly downwards. My colleague,

Russ Fish, noticed that the barrel distortion pattern could be very closely modeled by a

cosine and developed a mathematical basis for our model. Thus, we can transform image

position estimates to real-world coordinates by dividing the image coordinate vector by

the cosine of the angle between the vertical camera optical axis and a line from the optical

center of the camera to the fiducial. An additional multiplier inside the cosine, the “warp

factor,” corresponds to the amount of distortion in the image.

Results indicate that these improvements have removed the strange discontinuities and

jumps observed under Mezzanine’s original approximation transform. Furthermore, the

vision system with these changes reduces error to 1-2 cm. With additional interpolative

error correction modifications from Russ Fish, error is reduced to subcentimeter levels.

27

4.5 Validation

In this section, we validate our localization system by comparing location estimates

generated by it for over two hundred grid points, spaced at half-meter intervals around

the area of motion. We also examine location estimate jitter, or how much estimates vary

at the 30Hz camera rate.

4.5.1 Location Estimate Precision

To obtain as much precision as possible, before modifying Mezzanine’s dewarping

algorithm, we measured a half-meter grid over the mobile area. Consequently, we could

calibrate the algorithm and measure its effectiveness with high precision. Using simple

measuring tools and surveying techniques, we set up a grid accurate to 2mm.

Table 4.1 shows the results of applying these algorithms to a fiducial located by a

pin at each of the 211 measured grid points and comparing the result to the surveyed

world coordinates of these points. (Points in the overlap between cameras are gathered

twice.) The original column contains statistics from the original approximate dewarping

function, gathered from only one camera. Data for the cosine dewarping, and cosine

dewarping + error interpolation columns were gathered from all six cameras.

Figures 4.1 and 4.2 graphically compare location errors at grid points before and after

applying the error interpolation algorithm. Figure 4.1 shows measurements of the cosine

dewarped grid points and remaining error vectors across all cameras. The circles are the

grid points, and the error vectors magnified by a factor of 50 are shown as “tails.” Since

the half-meter grid points are 50 cm apart, a tail one grid-point distance long represents a

1 cm error vector. Points with two tails are in the overlap zones covered by two cameras.

Figure 4.2 shows the location errors after applying the error correction and interpolation

algorithm.

Table 4.1. Location error measurements.

Algorithm
Metric original cosine dewarp + error interp

Max error 11.36 cm 2.40 cm 1.02 cm
RMS error 4.65 cm 1.03 cm 0.34 cm
Mean error 5.17 cm 0.93 cm 0.28 cm
Std dev 2.27 cm 0.44 cm 0.32 cm

28

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 6 7 8 9 10 11 12 13 14 15

Grid points
Error lines

Figure 4.1. Location errors with cosine dewarping.

4.5.2 Jitter Analysis

Although the basic linear waypoint motion controller is unaffected by location estimate

jitter, the advanced kinematic controller discussed briefly in Section 3.1.3 is extremely

sensitive to noise in location estimates. Even slight amounts of jitter as shown in our

data could result in controller instability, leading to stale wheel speed commands sent to

the robot.

We collected location estimates generated by visiond for a single robot by capturing,

timestamping, and logging the messages at embroker . In this section, we analyze deltas

between subsequent location estimates for x, y, and θ components of location. In addition,

we analyze message interarrival times (the time in between reception of two subsequent

messages). The advanced controller requires both smooth, timely data.

Although we are primarily interested in jitter behavior while a tracked robot is moving,

29

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 6 7 8 9 10 11 12 13 14 15

Grid points
Error lines

Figure 4.2. Location errors with cosine dewarping and error interpolation.

we first present jitter results from monitoring a single, unmoving robot. This provides

a baseline estimate of system noise (at least at the time we monitored—recall that the

localization system is sensitive to different and varying lighting conditions, and these are

nearly uncontrollable in our deployment), which is helpful in analyzing filter performance.

Figures 4.3, 4.4, and 4.5 show jitter data (the figures show the x, y, and θ components,

respectively) collected from logged location estimates for a nonmoving robot in one

location (location “P3” in subsequent data tables) in the motion area.

Tables 4.2, 4.3, and 4.4 provide statistical data for location estimates for a nonmoving

robot in three different locations. For each location, the data are parameterized by filter

window size and type (“—” if no filter was applied). Filters were only applied to real data

streams; we did not filter the logged unfiltered data stream after collecting it to specifically

analyze filter performance alone. It is important to measure end-to-end system jitter to

30

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 2 3 4 5 6 7 8 9 10 11

Ji
tte

r

Smoothing Window Size

None
SMA

EWMA

Figure 4.3. Average jitter (error bars show minimum and maximum) in x component.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 2 3 4 5 6 7 8 9 10 11

Ji
tte

r

Smoothing Window Size

None
SMA

EWMA

Figure 4.4. Average jitter (error bars show minimum and maximum) in y component.

31

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2 3 4 5 6 7 8 9 10 11

Ji
tte

r

Smoothing Window Size

None
SMA

EWMA

Figure 4.5. Average jitter (error bars show minimum and maximum) in θ component.

analyze data timeliness as well as location component jitter—since the location estimate

messages must cross at least one network link, there is a chance for the network or OS

to add message delivery latency, in addition to any jitter introduced by Mobile Emulab

software.

Obviously, it would be ideal if the location estimates exhibited no jitter, but this was

not possible in the Mobile Emulab deployment due to variable lighting conditions and

low-cost equipment, among other factors. Aside from the θ component, the figures for

location P3 are representative of smoothing trends for positions P1 and P2. Somewhat

surprisingly, the SMA filter performs very slightly better than the EWMA filter. However,

we still suspect that the SMA filter, while providing slightly less noisy data, is introducing

more phase lag. The choice of which filter to use may then be based on real-world testing

and requirements of the particular kinematic controller driving the robot wheels—perhaps

the controller requires very smooth data so that it does not make radical and sudden

course corrections, or perhaps it requires very precise data and can cope with slightly

more noise.

The smoothing results for the θ component indicate that the EWMA filter performs

slightly better at low window sizes than the SMA filter. This is likely occuring because

32

Table 4.2. Location estimate jitter, x coordinate.

Position Window Filter Mean Stddev Variance Min Max

P1

— — 0.001382 0.001751 0.000003 0.000000 0.013400

3
sma 0.000568 0.000493 0.000000 0.000000 0.003300
ewma 0.001034 0.000802 0.000001 0.000000 0.006400

5
sma 0.000339 0.000304 0.000000 0.000000 0.002300
ewma 0.000587 0.000453 0.000000 0.000000 0.003000

10
sma 0.000203 0.000179 0.000000 0.000000 0.001200
ewma 0.000378 0.000300 0.000000 0.000000 0.001900

P2

— — 0.001048 0.000897 0.000001 0.000000 0.007000

3
sma 0.000498 0.000382 0.000000 0.000000 0.002000
ewma 0.000633 0.000507 0.000000 0.000000 0.003800

5
sma 0.000219 0.000182 0.000000 0.000000 0.001200
ewma 0.000308 0.000262 0.000000 0.000000 0.002500

10
sma 0.000102 0.000096 0.000000 0.000000 0.000700
ewma 0.000210 0.000170 0.000000 0.000000 0.001100

P3

— — 0.001158 0.000928 0.000001 0.000000 0.007200

3
sma 0.000436 0.000335 0.000000 0.000000 0.002100
ewma 0.000549 0.000400 0.000000 0.000000 0.002200

5
sma 0.000216 0.000171 0.000000 0.000000 0.001100
ewma 0.000338 0.000260 0.000000 0.000000 0.001200

10
sma 0.000114 0.000100 0.000000 0.000000 0.000600
ewma 0.000178 0.000143 0.000000 0.000000 0.000700

Table 4.3. Location estimate jitter, y coordinate.

Position Window Filter Mean Stddev Variance Min Max

P1

— — 0.004007 0.004497 0.000020 0.000000 0.033800

3
sma 0.001548 0.001312 0.000002 0.000000 0.010600
ewma 0.003042 0.002334 0.000005 0.000000 0.022800

5
sma 0.000972 0.000799 0.000001 0.000000 0.006700
ewma 0.001644 0.001310 0.000002 0.000000 0.009600

10
sma 0.000557 0.000483 0.000000 0.000000 0.002700
ewma 0.001043 0.000869 0.000001 0.000000 0.005800

P2

— — 0.003002 0.002422 0.000006 0.000000 0.016000

3
sma 0.001427 0.001071 0.000001 0.000000 0.005900
ewma 0.001944 0.001555 0.000002 0.000000 0.011300

5
sma 0.000673 0.000571 0.000000 0.000000 0.003400
ewma 0.000944 0.000793 0.000001 0.000000 0.006500

10
sma 0.000328 0.000264 0.000000 0.000000 0.002500
ewma 0.000631 0.000489 0.000000 0.000000 0.003100

P3

— — 0.003610 0.002682 0.000007 0.000000 0.013400

3
sma 0.001453 0.001140 0.000001 0.000000 0.007100
ewma 0.001828 0.001323 0.000002 0.000000 0.007700

5
sma 0.000656 0.000521 0.000000 0.000000 0.002900
ewma 0.001124 0.000802 0.000001 0.000000 0.004700

10
sma 0.000359 0.000285 0.000000 0.000000 0.001600
ewma 0.000560 0.000428 0.000000 0.000000 0.002500

33

Table 4.4. Location estimate jitter, θ coordinate.

Position Window Filter Mean Stddev Variance Min Max

P1

— — 0.033818 0.039660 0.001573 0.000000 0.278100

3
sma 0.012940 0.010670 0.000114 0.000000 0.085000
ewma 0.017922 0.014358 0.000206 0.000000 0.101300

5
sma 0.008314 0.006775 0.000046 0.000000 0.054500
ewma 0.009132 0.007144 0.000051 0.000100 0.043100

10
sma 0.004745 0.004075 0.000017 0.000000 0.024400
ewma 0.006000 0.004656 0.000022 0.000000 0.028500

P2

— — 0.048632 0.042012 0.001765 0.000000 0.313200

3
sma 0.023737 0.017557 0.000308 0.000000 0.091000
ewma 0.023599 0.018493 0.000342 0.000100 0.116500

5
sma 0.010949 0.009655 0.000093 0.000000 0.055000
ewma 0.010076 0.008860 0.000079 0.000000 0.066300

10
sma 0.005188 0.004273 0.000018 0.000000 0.043100
ewma 0.006823 0.005423 0.000029 0.000000 0.027600

P3

— — 0.030757 0.023086 0.000533 0.000100 0.114000

3
sma 0.012566 0.009948 0.000099 0.000000 0.060700
ewma 0.011506 0.008169 0.000067 0.000000 0.044900

5
sma 0.005536 0.004317 0.000019 0.000000 0.026300
ewma 0.006425 0.004861 0.000024 0.000000 0.027000

10
sma 0.003044 0.002439 0.000006 0.000000 0.014400
ewma 0.003085 0.002283 0.000005 0.000000 0.011500

the θ component is so much noisier than the x and y components—so the exponential

weighting of the EWMA filter of the early window data does not appear to “add” more

noise than the SMA filter. Consequently, if the kinematic controller is sensitive to θ jitter,

the EWMA filter will be more appropriate to use in visiond .

Table 4.5 shows jitter statistics for message interarrival times for a nonmoving robot.

Naturally, interarrival times are not affected by filter, since filter computation runtime

should be a very tiny portion of wall clock interarrival time. However, the minimum,

maximum, and standard deviation statistics are of particular interest. First, the standard

deviations suggest that the messages typically arrive approximately 0.33 seconds after

the preceding message. However, the minimum and maximum interarrival times can vary

from almost 0 seconds to around 0.66 seconds. The maxima could occur if the robot is

not tracked in a single frame, but is found again in the next frame (the tracking code

allows this to occur). Clearly the code could be extended with an option to always send

the latest position for a robot even if it was not found in one frame, as long as it had

been found in a recent frame.

There are two potential solutions to reducing message interarrival times. First, the

tracking code in visiond could produce updates according to a nearly real-time schedule,

34

Table 4.5. Jitter in location estimate message interarrival times.

Position Window Filter Mean Stddev Variance Min Max

P1

— — 0.033404 0.001188 0.000001 0.026700 0.065800

3
sma 0.033378 0.000563 0.000000 0.030200 0.046500
ewma 0.033382 0.001080 0.000001 0.019900 0.060900

5
sma 0.033377 0.000507 0.000000 0.030900 0.044800
ewma 0.033404 0.001792 0.000003 0.028500 0.068100

10
sma 0.033379 0.000520 0.000000 0.028400 0.042100
ewma 0.033404 0.001448 0.000002 0.024400 0.075700

P2

— — 0.033367 0.000431 0.000000 0.027600 0.039400

3
sma 0.033367 0.000329 0.000000 0.026800 0.040000
ewma 0.033368 0.000813 0.000001 0.025000 0.046200

5
sma 0.033401 0.000890 0.000001 0.026000 0.053000
ewma 0.033366 0.000351 0.000000 0.032500 0.034500

10
sma 0.033429 0.001922 0.000004 0.031800 0.090900
ewma 0.033367 0.000378 0.000000 0.025000 0.039100

P3

— — 0.033375 0.001025 0.000001 0.028500 0.045000

3
sma 0.033404 0.001122 0.000001 0.031400 0.066700
ewma 0.033381 0.000464 0.000000 0.032300 0.046300

5
sma 0.033376 0.000949 0.000001 0.018800 0.051600
ewma 0.033367 0.001594 0.000003 0.000400 0.066000

10
sma 0.033367 0.001495 0.000002 0.002300 0.064000
ewma 0.033367 0.001132 0.000001 0.026700 0.039700

always sending an update for each tracked robot at every time quantum. This may well

require a real-time OS underneath the Mezzanine and vmc-client instances. Alternatively,

robotd or pilot could be enhanced with a predictive filter, such as an EKF, that predicts

based on the real estimates from visiond (and perhaps wheel odometry as well, or

any other location data that can be gathered). This filter could certainly operate at

speeds much greater than 30Hz—perhaps matching the execution speed of the algorithm

producing the drive wheel speeds for the robot. The best solution is clearly the real-time

solution, if possible given available hardware and the number of camera frames to process

per quanta, since it nearly eliminates the issue of visiond -caused phase lag in the data

(except for the case when a robot is temporarily lost for one or more frames).

Table 4.6 provides statistical data for location estimates during a 1m linear move.

For each location, the data are parameterized by filter window size and type (“—” if no

filter was applied).

35

Table 4.6. Jitter for linear motion location estimates and message interarrival times.

Data Type Window Filter Mean Stddev Variance Min Max

x

— — 0.004431 0.003850 0.000015 0.000000 0.023400

3
sma 0.001660 0.001288 0.000002 0.000000 0.006700
ewma 0.002269 0.001888 0.000004 0.000000 0.013600

5
sma 0.000923 0.000734 0.000001 0.000000 0.005000
ewma 0.001231 0.000896 0.000001 0.000000 0.004200

10
sma 0.001066 0.000619 0.000000 0.000000 0.002900
ewma 0.001326 0.000756 0.000001 0.000000 0.003600

y

— — 0.005880 0.002511 0.000006 0.000400 0.015200

3
sma 0.005751 0.001953 0.000004 0.000900 0.009800
ewma 0.005868 0.002083 0.000004 0.000700 0.010500

5
sma 0.005894 0.001907 0.000004 0.002200 0.009400
ewma 0.005819 0.001968 0.000004 0.001500 0.009500

10
sma 0.005796 0.001860 0.000003 0.002200 0.009100
ewma 0.006016 0.001782 0.000003 0.002700 0.009200

θ

— — 0.035807 0.034841 0.001214 0.000500 0.234800

3
sma 0.011703 0.010182 0.000104 0.000000 0.064800
ewma 0.013115 0.011207 0.000126 0.000000 0.061300

5
sma 0.007475 0.007330 0.000054 0.000000 0.056800
ewma 0.006677 0.005165 0.000027 0.000100 0.027200

10
sma 0.003800 0.003179 0.000010 0.000100 0.018400
ewma 0.003672 0.002829 0.000008 0.000000 0.015800

time

— — 0.033349 0.001006 0.000001 0.030300 0.036800

3
sma 0.033367 0.000093 0.000000 0.033200 0.033600
ewma 0.033373 0.000362 0.000000 0.032300 0.034400

5
sma 0.033365 0.000438 0.000000 0.032400 0.034600
ewma 0.033367 0.000366 0.000000 0.032300 0.034400

10
sma 0.033367 0.000109 0.000000 0.032900 0.033700
ewma 0.033365 0.000346 0.000000 0.032200 0.034400

CHAPTER 5

USABILITY TOOLS

Because of its dynamic nature, a mobile wireless testbed must present researchers with

more control options and data interfaces. Users must be able to control and script motion

easily. The addition of sensor network motes to experiments necessitates new kinds of

monitoring interfaces to motes, since few such tools already exist for mote applications.

Whereas users of Emulab’s classic wired network testbed can employ a whole host of

tools, such as netcat [13], iperf [27], nmap [10], tcpdump [11], and the like, to control

and monitor their experiments, as well as many custom Emulab tools, motes simply

do not support the same experiment paradigms. Emulab’s wired network testbed also

makes guarantees to users with respect to link bandwidth, loss rate, and many other

characteristics, but a live wireless testbed can make no such guarantees and must also

cope with the problem of external interference. Additional tools can significantly ease

the pain of real-world experimentation with sensor network devices.

5.1 Wireless Characteristics

5.1.1 Connectivity

We provide wireless connectivity information for different radio power levels so that

experimenters can quickly choose which motes in our testbed to use for experimentation,

and also for later use in results analysis. For instance, one could imagine evaluating the

effectiveness of a link estimation routing protocol by comparing generated routes with

testbed maps of link quality measurements taken at an earlier time. We developed a Java

applet that displays wireless connectivity between wireless nodes in a geographic manner.

We run a simple TinyOS program on selected groups of motes (generally, all the fixed

motes in the testbed) to collect this data. For each power level, and for each mote, the

mote will broadcast 100 packets at a rate of 8 pps. All other motes listen and record the

number of packets heard and their RSSI values. This information is analyzed and stored

for later use, and recent data can be sent to the web interface for display in an interactive

37

Java applet. The applet uses a loosely-defined data file, allowing easy display of any link

characteristic required in the future. The data format can also associate a set of statistics

with each link characteristic value so that experimenters can better ascertain how links

change over time.

In the applet itself, using our default data set, experimenters can select different

power levels, view statistics by selecting source or destination mote sets, and filter out

links below a certain threshold or by a best neighbor limit.

Figures 5.1 and 5.2 show this application with packet reception percentage and RSSI

values, respectively. (These figures show only the three best-connected neighbors for each

node, at power level 0x8.) Figure 5.1 shows that at power level 0x8, most motes in the

testbed can communicate with at least three other motes with relatively low packet loss

rates. However, many of the “links” shown do not have a bidirectional component. This

is due to the fact that many of these links are assymetric, and when combined with the

k-best neighbor filter, both directions may not be part of both nodes’ k-best neighbor

sets. Figure 5.2 provides insight to the degree with which the best three neighbors (in

terms of RSSI) correlate with the best three packet reception neighbors, for each node.

Some correlation is evident; for instance, mote114 and mote115, at the bottom of the

topology shown, exhibit almost 100% packet delivery rates, and rather high RSSI values.

However, comparative inspection of the figures reveals that many packet reception links

do not have corresponding RSSI links. Much additional information may be quickly

obtained by inspecting the testbed’s sensor network topology using this application.

5.1.2 Active Frequency Detection

Although robot resources cannot currently be space-shared, the static motes may be

used by multiple experimenters at once. Consequently, we need to do our best to pre-

vent frequency overlap between experiments. We developed a TinyOS-based frequency-

hopping radio sniffer for motes. This program listens for packets on channels for a few

seconds and sends information to the serial port including the frequency, received packet

count, and number of valid packet CRCs. This program receives not only transmissions

generated from our system, but from external sources as well, making it a valuable tool

with which to periodically scan for many types of interference.

Unfortunately, since we expect experimenters to reduce radio power to create inter-

esting multihop topologies, this application must run from several different observation

points to ensure that all transmissions are monitored. Although this application is not

38

Figure 5.1. Screenshot of wireless connectivity applet showing received packet statistics.

currently integrated into Emulab, users can install the application binaries on their motes

before beginning experimentation, as well as during runtime, to find an appropriate

frequency for their experiments. By installing it on their motes, they can determine

which frequencies their motes can overhear, and adapt their applications accordingly.

5.2 Sensor Network Application Management

A debilitating problem in sensor network research is the lack of readily-available tools

for interfacing with mote devices. From a quick survey of the TinyOS contributors de-

velopment tree, one can conclude that researchers generally construct their own interface

programs for sensor network applications.

Developers may often wish to manually interact with a running application by sending

command messages to alter program state or to dump a set of debugging data. Beyond

manual interaction, real-time data display about the state of the network at large may

be useful. One may imagine wanting access to the current routing and sensing states on

39

Figure 5.2. Screenshot of wireless connectivity applet showing RSSI statistics.

each node, for instance. When nodes can move, current information about their location

and intended destination will also be useful. The following sections describe a set of

useful applications and tools that enable sensor network developers (and Mobile Emulab

users) to more easily communicate with their applications, explore data, and automate

command tasks.

5.2.1 Mote Management and Interaction

EmulabMoteManager is an application that provides users with a basic set of function-

ality for communicating and otherwise interacting with sets of motes. This functionality

is provided by the main application, as well as a set of stock modules that use the APIs

provided by EmulabMoteManager. Figure 5.3 shows a screenshot of EmulabMoteManager

and several plugins, including one application-specific plugin for the MobiQ application,

which we discuss in Section 6.2. EmulabMoteManager also allows users to load new

modules conforming with its API, and create multiple instances of them. Modules can

40

Figure 5.3. Screenshot of the EmulabMoteManager application.

save state to a session file, which is read when the module is next loaded. Finally,

EmulabMoteManager provides two different APIs for additional module loads via the

ManagerModule and AppModule interfaces; we discuss these interfaces in Section 5.2.2.

5.2.2 Key Interfaces

The ManagerModule interface should be implemented by modules that are capable of

managing connections to motes and anything deemed related to that function. It requires

implementation of several functions, such as commands to retrieve available motes and to

connect or disconnect from motes. Several subscription methods enable interface users to

easily listen to a subset of motes and be notified when they send messages. Subscriptions

are parameterized by message type, source mote, or a combination. In order to support

41

users who may require more than just the message bytes, one can use similar subscription

methods to receive message metadata (timestamp, source mote name, and a boolean

representing the result of the CRC check on the received bytes) in addition to the message

itself.

The AppModule interface should be implemented by modules that provide generally-

useful functionality that can interoperate with any valid ManagerModule and its motes,

or more simply, extra application-specific functionality not already supplied by existing

modules. Through this interface, users may export sets of GUI menu and icon items

that are added to the top of the GUI to streamline ease of use. More importantly,

AppModules must implement an initModule method that notifies them of the parent

module container, any MoteManager interfaces already created, and any previous session

state saved by this module. The parent module container interface, MoteAppContainer,

contains a simple method to save session state at any time. However, state is only written

to the filesystem if the user has enabled the auto-save option, or specifically requests that

the session be saved. Finally, any loaded module may be multiply instantiated in the

GUI.

5.2.3 Message Handling

EmulabMoteManager makes use of lower-level abstractions provided by the TinyOS

distribution. When writing TinyOS applications, users are encouraged to communicate

using “Active Messages”, which use a standard format and are supported by modules

in the TinyOS kernel. Generally, each message is defined by a packed C structure, and

associated with an “Active Message ID”. The TinyOS distribution supplies a tool named

mig that converts these Active Message C structures into Java classes. Each message

wrapper class has accessor methods for each variable in the original structure, as well as

private methods for packing the data to the mote platform specified to mig.

EmulabMoteManager and MoteLogger both derive much of their usefulness from these

Java wrapper classes. Using Java’s reflection mechanism, a library included in both

applications parses messages classes and extracts the original variable names and types.

With this information, the library can print full details contained in a message for which

the class is available, and also construct messages from user-supplied field values, which

it parses as appropriate for the original message type.

Unfortunately, mig does not maintain the original structure of complex data types. For

instance, members of a member that is itself a structure appear as members with under-

42

scores in the accessor method name in the resulting Java class. Since EmulabMoteManager

makes use of the way in which field accessor methods are named in the Java message class

wrappers, it cannot reconstruct the exact original message structure. This has severe

implications for proper display of data when logging or displaying messages to users. To

work around this loss of information, an EmulabMoteManager user must supply a spec

file in addition to the Java message wrapper class. mig produces a specification of the

structure that contains the missing nesting information, although most users typically

ignore it. With the nesting information, the message handling libraries can display

arbitrary messages with complex types.

5.2.4 Stock Plugins

This section describes several of the stock plugins available for use with this application

and discusses their general usefulness apart from Emulab.

5.2.4.1 EmulabMoteControl Plugin

This plugin implements the ManagerModule interface for motes in the Emulab testbed

and also provides a GUI interface for managing them. Figure 5.3 shows an instance of

the EmulabMoteControl plugin near the upper left corner. Users can add motes to

this manager either by directly connecting to the network-exported serial device, or

by connecting to an instance of the TinyOS SerialForwarder utility, which in turn

attaches to the Emulab network-exported serial device. Other TinyOS Java libraries

allow users to write messages (in TinyOS’s Java message class wrapper abstraction) to

SerialForwarder instances. By using the second interface, we provide experimenters

with the same abstraction that they may already use in their existing data collection

or monitoring programs. This can ease the pain of transforming all or part of their

applications into plugins for the EmulabMoteManager. The plugin creates a simple GUI

interface for adding motes, connecting to and disconnecting from motes, and displaying

detailed statistics on packet transfer.

In addition to connection management facilities, the plugin integrates the arbitrary

TinyOS Java message-parsing libraries described in the previous section. Users may

load Java classes representing TinyOS messages and they will be recognized by the mote

connections. Packet creation and display methods are also then made available to any

AppModule plugin instances that are utilizing this manager, as soon as a new message

class is loaded.

43

By loading multiple instances of the EmulabMoteControl plugin, users will be able to

communicate with multiple mote subsets at once, if their plugins can support multiple

ManagerModule interfaces, or selection of the appropriate interface to use.

5.2.4.2 PacketHistory Plugin

The PacketHistory plugin implements the AppModule interface, and creates a GUI for

displaying packets in a series of tables. The plugin subscribes to a ManagerModule for all

message types and mote sources. In the first table, it displays received packet metadata

including source mote name, message type (numeric ID if matching Java message class

not loaded; otherwise message name) reception timestamp, a boolean representing success

of the CRC calculation, and message length. When messages received have a matching,

loaded Java message class, it creates a new table for all subsequent messages of that type.

Users can double-click on packets in any of the tables to see the packet metadata and

interpreted message fields. Figure 5.3 shows an instance of the PacketHistory plugin with

several different message types (the message table shown is displaying messages from the

MobiQ application discussed in Section 6.2) in the lower right corner.

5.2.4.3 PacketDispatch Plugin

The PacketDispatch plugin enables users to send messages to subsets of motes, and

also to script actions involving sending. Using a GUI interface, users can create packets

for Java message classes that they have loaded by filling in desired field values in a form.

Once a packet is created, the user can associate it with one or more motes known to this

plugin through the manager, and a simple click will dispatch it to the selected motes.

These target associations with motes are dynamic and can be easily modified.

Since the goal of this software is to aid sensor network application designers by

reducing the amount of application-dependent interface programs they must write, this

plugin also allows users to script packet dispatching. Scripts can take the place of

hand-tooled packet sending code, and can be easily reused in other applications without

recompiling a new interface.

Using a GUI interface, users can create scripts and add action items. The most

important type of action item is a packet send, which users can add to scripts in different

ways. First, users can append already created packets and their target mote associations

to a preexisting script. Alternatively, they may manually add a new packet and new mote

44

targets by editing the script. In addition to packet sending, another function that pauses

script execution is supported.

The ScriptEditor allows users to add, remove, and change positions of action items in

the sequence. Individual script action items may also be edited in a similar GUI manner.

The data format used to store scripts is very intuitive, allowing scripts to be hand-edited

easily. This plugin is completely independent from the Emulab sensor network testbed,

and could just as easily be used inside the EmulabMoteManager to interface to another

testbed.

Figure 5.3 shows an instance of the PacketDispatch plugin with a created packet and

several scripts in the upper middle portion of the application.

5.2.4.4 Location Plugin

The location plugin provides methods for users to monitor mobile mote motion.

By connecting to a LocationSource, the Location plugin monitors the current location,

intended destination, and state of motion execution.

Currently, the GUI implementation of this plugin allows users to connect to a network-

based LocationSource. Once connected to the source, mote locations (x, y coordinates in

centimeters, and orientation in degrees) read from the LocationSource are placed into

a table and updated when subsequent notifications arrive. In addition, a graphical

representation of location status is also displayed. A map showing the current location

and straight-line path to the intended destination is updated when location updates arrive

at the source. Users may then monitor mote-controlled motion, or control it themselves

with the PacketDispatch plugin.

Some aspects of this plugin are closely tied to the Emulab testbed, although the plugin

could be used by another mobile testbed with only slight modification of either the other

testbed, or the plugin itself. For instance, the GUI currently accepts only a network data

source. The message classes by which the location plugin communicates with the motes

themselves are also closely related to Emulab’s needs, and may need to be adapted to

suit other users or testbeds.

Figure 5.3 shows an instance of the Location plugin in the lower left portion of the

application. The motes displayed are located in the corner of the “L”-shaped testbed

deployment, and the lines indicate a multihop routing topology.

45

5.3 Mote Data Logging

In addition to using EmulabMoteManager to monitor and manage their mote networks

in real-time, experimenters may also want to record all packets sent from the motes on

their serial lines. Mobile Emulab provides this functionality by logging packets to a

MySQL database. Figure 5.4 shows an example of logged packet data within a MySQL

database via the database command-line interface; the packets are of type ABPacket, a

simple message with two integer fields.

As previously described in Section 5.2.3, I have written a set of Java libraries to

process arbitrary TinyOS Active Messages that have been transformed into Java message

wrappers with mig. These libraries extract structure and type information describing the

original C structures that each message originated as on the mote from the Java message

wrappers. These libraries provide the basis for mote message logging in Emulab.

First, any user wishing to use mote logging must upload Java message classfiles

through extensions to the Emulab web interface. If they desire more structure in the

database so that the schema more greatly resembles any complex types existing in the

messages, they may upload the associated spec data produced by mig as well. Once

the user has uploaded these files, they may create an experiment with any necessary

motes, robots, PCs, and any other necessary resources; in addition, they must reserve

a single PC running a specific OS that provides a recent MySQL database version for

use by the mote logger. When the user swaps out their experiment, or when the user

requests a restart of the mote logger, the database is restarted, allowing the software

to synchronize the database files with the permanent experiment storage on centralized

Emulab servers. Users may restart the mote logger during experiment runtime by using

Emulab’s XML-RPC command interface. When restarting the mote logger, the user may

specify a new name for the dataset, recorded in a master metadata table. Since all mote

logging associated with each experiment is kept in a single database, users may associate

notes with this name to easily recall which tables in the database correspond to each run

of the logger.

The mote logger application creates tables as necessary in the database, and records

name and associated notes for each logging run in the metadata table. It records a

timestamp, source mote name, message type, CRC check value, length, and raw data

in a single table for each message received. When the logger matches a Java message

wrapper with the message type and length of an inbound message, it creates a number

46

Figure 5.4. Screenshot of logged data in a MySQL database.

of tables in the database if they do not already exist, and inserts data from the message

into each of these tables. Several different tables are created so that the user can see

the message data for each recognized message type in a format resembling its original

C structure definition. For instance, for messages with a field that is either a simple

or multidimensional array, an auxiliary table containing rows of array indices and their

matching value, in which each row is tagged with the source packet ID, is created. Data

from each packet are inserted each time a recognized message is logged. Then, users can

select over this table and view the data in an array format, such as [0,1,1,2,3,...,N]. This

enables simple viewing, and later, offline parsing of data by analysis applications. Users

see the data just as they would have if they themselves called the functions in the Java

message wrapper class to extract the data. (Unfortunately, although the logger supports

multidimensional array views in the database schema, it does not yet support viewing of

C structs—structure members are flattened into individual fields.) For more complex

data structures such as multidimensional arrays, more complex auxiliary data tables are

47

created. However, the user essentially only needs to select from one of two tables: either

the table containing the metadata with the raw message byte array data, or another table

containing the metadata and the data extracted from the messages in human-readable

form.

5.4 User-available Location Information

To properly correlate application or protocol events with location, experimenters must

be able to access the ground truth mote location generated by the localization system.

We have implemented an application, placeholder, that provides this information via a

network source, as well as to a mote application through custom TinyOS components.

placeholder functions as a proxy between the Emulab event system and either mote

or PC-based applications. When run by an experimenter on an Emulab PC, it subscribes

to the MODIFY, SETDEST, and COMPLETE events for all nodes in the experiment.

The MODIFY event is generated by embroker whenever a node tracked by our localization

system changes position (however, recall that these events are generated at approximately

1Hz instead of the 30Hz speed of the localization system). The SETDEST event is

generated whenever a robot is commanded to move through a variety of interfaces. The

COMPLETE event represents the completion of the SETDEST event.

Once subscribed to the event stream, placeholder listens for client connections to

a network socket, and relays information contained in the events listed above to all

connected clients using a simple text format. placeholder accepts motion requests

from clients, and converts these requests into appropriate motion commands in the

Emulab event system, where they are executed. This provides experimenters with another

scriptable location source that can easily be accessed by a number of different languages.

Because robots and the motes they carry are separate node entities in Emulab, this

program also accepts a list of aliases for nodes. This is important since all localization

estimates and motion commands are reported for and excutable only by robots, but

not for motes. Thus, if the experimenter wishes to write an application that sees the

robot-mounted motes as mobile, they can simply alias the names of each robot node to

the associated robot mote name, or any other renaming scheme.

Many mote experimenters who design mobile applications may actually wish to drive

the robots from their onboard motes, or in some other way, abstract the mobility platform

into a mobile interface that the mote applications may themselves access. We have written

48

TinyOS components that implement such an interface. These components communicate

with an instance of placeholder through the Location Plugin to SNAP-M. Consequently,

mote applications can drive their robot couriers themselves and be notified of current

location, status, and completion events. The interface implemented by these components

supports three-dimensional motion, but may require modification for nontraditional mo-

tion platforms in other testbeds, such as underwater sensor robots.

CHAPTER 6

CASE STUDIES

An important part of validation of a new testbed is to show that it supports the needs

of experimenters. This chapter demonstrates the usefulness of the testbed through three

very different case studies and analyzes some of its strengths and weaknesses.

6.1 Environment Analysis

In order to characterize the wireless properties of the mobile arena, we have run

experiments in which several robots move across the floor at regularly-spaced intervals,

and while stopped at each interval, record packets broadcast by a single fixed mote.

This experiment demonstrates how users may programmatically script motion, but also

illustrates the irregular nature of the signal propagation environment and also provides

insight into the nature of repeatability in our testbed.

6.1.1 Experiment Basis and Methodology

The experiment is entirely automated from within a single ns file, and makes heavy

use of the Emulab event system. In particular, the scriptable nature of motion events

is provided by event system components such as program agents and event groups and

sequences. The following portion from an ns file originally written by a colleague, shown

in Figure 6.1, illustrates the manner in which users can programmatically script motion.

In the first few lines, this code reserves a robot named $walker, constructs a program

agent named $logger to run a logging utility, and creates an event sequence named

$rowwalk. The code is parameterized by maximum height and width of an area, and

the step size for each move ($XINCR and $YINCR). The variable $ltor controls the

direction of motion of the robot down each row. Rows are oriented parallel to the X axis.

The main body of the loop chooses an x, y position and checks that it is inside the bounds

of the motion arena and that it does not lie in any of the known obstacles in the Emulab

database. For each valid position, a node SETDEST event is appended to the sequence

50

1: set walker [$ns node]

2: set logger [$walker program-agent \

3: -command ‘‘/proj/tbres/johnsond/pkt_listen’’]

4: set rowwalk [$ns event-sequence {}]

5: set ltor 1

6: for {set y 0} {$y <= $HEIGHT} {set y [expr $y + $YINCR]} {

7: set row($rowcount) [$ns event-sequence {}]

8: for {set x 0} {$x <= $WIDTH} {set x [expr $x + $XINCR]} {

9: if {$ltor} {

10: set newx [expr $XSTART + $x]

11: set newy [expr [$walker set Y_] + $y]

12: } else {

13: set newx [expr $XSTART + $WIDTH - $x]

14: set newy [expr [$walker set Y_] + $y]

15: }

16: if {[$topo checkdest $walker $newx $newy]} {

17: $row($rowcount) append \

18: ‘‘$walker setdest $newx $newy 0.2’’

19: $row($rowcount) append \

20: ‘‘$logger run -tag $newx-$newy’’

21: }

22: }

23: $rowwalk append ‘‘$row($rowcount) run’’

24: incr rowcount

25: set ltor [expr !$ltor]

26: }

Figure 6.1. ns-2 code that moves a robot through a grid and logs output.

for this row. An event that runs the $logger program-agent and records its output in

a file labeled with the appropriate x, y position is appended following the motion event.

Finally, each row event sequence is itself appended to the main rowwalk event sequence.

By running this event sequence, either automatically from later sections of the ns file, or

by hand using the Emulab tevc event injector, users can start a run of this experiment.

Since events in a sequence are not fired until their predecessor has completed, logging

only occurs when the robot is at a stop.

6.1.2 Results

We ran a modified version of this experiment with three robots, using repeated

runs with two different fixed transmitter motes and several transmit radio power levels.

The experiments were conducted from approximately 0630 until 1710, which provides

conditions similar to those that experimenters would face. Both fixed transmitter motes

have excellent line of sight to most portions of the L-shaped experimental area, except

where obscured by the pillar. The three robots divide the L-shaped area so that the first is

assigned all area left of the pillar; the second, all area to the right of the pillar and slightly

into the lower portion of the L-shaped area; the third, all remaining area. They move

51

independently of each other, so one robot may be moving while another is measuring. The

fixed transmitter mote antennae are positioned approximately 18 cm above ground, while

the robot antenna are extended to approximately 1m of height. Each run requires 18–21

minutes, largely depending on time required to re-identify the robots if they are ever

obscured from localization system view when people move through the area. No attempt

was made to stop people from walking through the area during these experiments.

First, Figures 6.2(a) and 6.2(b) show maps of packet reception across the mobile

area from the first two runs at transmit power level 0xff, with the transmitter situated

left of the area. Immediately obvious is that the first robot is generally too near the

transmitter, and that the onmidirectional antennae on the transmitter is lobed so that it

cannot transmit at such large angles as well as to the other robots, which have a much

smaller angle to the transmitter. The two figures appear to be much the same.

Figures 6.3(a) and 6.3(b) show maps of packet reception at transmit power level 0x03.

Once again, many areas appear to have similar packet reception. However, areas of

poorer reception are not distributed according to range from the transmitter, as would

be expected in an open, flat area. There are remnants of this distribution, as many areas

farther away from the transmitter exhibit increasingly poor reception. However, even

these areas are interspersed with areas of medium-quality reception.

0

2

4

6

8

10

11

9

7

5

3

1

100 +

90 - 99

80 - 89

70 - 79

60 - 69

50 - 59

40 - 49

30 - 39

20 - 29

10 - 19

0 - 9

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

(a) First run.

100 +

90 - 99

80 - 89

70 - 79

60 - 69

50 - 59

40 - 49

30 - 39

20 - 29

10 - 19

0 - 9

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

(b) Second run.

Figure 6.2. Packet reception at power level 0xff; two runs.

52

100 +

90 - 99

80 - 89

70 - 79

60 - 69

50 - 59

40 - 49

30 - 39

20 - 29

10 - 19

0 - 9

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

(a) First run.

100 +

90 - 99

80 - 89

70 - 79

60 - 69

50 - 59

40 - 49

30 - 39

20 - 29

10 - 19

0 - 9

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

(b) Second run.

Figure 6.3. Packet reception at power level 0x03; two runs.

Figure 6.4 shows a plot of average RSSI values for the first run at power level

0x03. When compared with Figures 6.3(a), this figure demonstrates a partial correlation

between packet reception and RSSI. Locations with 0-9 packets received often exhibit the

highest average RSSI values. However, there are also areas (especially near the crux of

the L) in which RSSI values are quite low, but reception is quite high. These disparities

are possibly caused by multipath effects.

To demonstrate similarity over only a few runs, we chose to use a metric of maximum

range (i.e., the highest number of received packets less the lowest, at each location).

This reflects the worst possible packet reception disparity at each location. Figure 6.5(a)

shows a map of these ranges calculated over three runs. Generally, most locations show

a maximum packet reception range of less than 6-8 packets. There are a few extreme

outliers; however, one can be discounted due to the presence of the pillar, others by

nearness to the transmitter, and even by the presence of people walking through at

random times. Since each run requires approximately 20 minutes and there are 3 runs,

people will generally walk through the area several times, and only one such interference

at any location is required to increase the range significantly. Figure 6.5(b) shows packet

reception range at power level 0x03. The ranges in this figure tend to fluctuate more

than for the case of power level 0xff. This may occur if in a complex signal environment

53

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

0 +

-52 - -1

-53

-54

-55

-56

-57

-58

-59

-60

-61

-62 - -64

Figure 6.4. Average RSSI at power level 0x03.

exhibiting multipath effects, low-power transmissions are more likely to be garbled than

at higher power.

An interesting and unexpected result is that RSSI value ranges are very consistent

across multiple runs across an area. This further demonstrates the lack of association

of packet reception with RSSI, and perhaps indicates the strong presence of disruptive

multipath effects in our environment. We would expect RSSI to be more uniform with

multipath effects; however, they may cause more bit errors in packet transmission. Fig-

ures 6.6(a) and 6.6(b) show observed average RSSI ranges across power levels 0xff and

0x03, respectively.

Although we did not show plots for all runs, we also experimented with a second trans-

mitter mote placed at approximately X=1.0,Y=3.5. Tables 6.1 and 6.2 show statistics

for packet reception and average RSSI maximum ranges for each set of runs at various

power levels and with multiple fixed transmitters.

54

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

30 +

27 - 29

24 - 26

21 - 23

18 - 20

15 - 17

12 - 14

9 - 11

6 - 8

3 - 5

0 - 2

(a) Power level 0xff.

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

30 +

27 - 29

24 - 26

21 - 23

18 - 20

15 - 17

12 - 14

9 - 11

6 - 8

3 - 5

0 - 2

(b) Power level 0x03.

Figure 6.5. Packet reception ranges at two power levels.

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

30 +

27 - 29

24 - 26

21 - 23

18 - 20

15 - 17

12 - 14

9 - 11

6 - 8

3 - 5

0 - 2

(a) Power level 0xff.

0 2 4 6 8 97531
0

2

4

6

8

10

11

9

7

5

3

1 Transmitter

Steel

Pillar

30 +

27 - 29

24 - 26

21 - 23

18 - 20

15 - 17

12 - 14

9 - 11

6 - 8

3 - 5

0 - 2

(b) Power level 0x03.

Figure 6.6. Average RSSI ranges at two power levels.

55

Table 6.1. Packet reception range statistics.

Transmitter Power Level min max mean stddev variance
mote104 0xff 1 19 5.461 3.358 11.275
mote104 0x0a 0 95 14.304 16.863 284.351
mote104 0x08 0 66 9.487 10.412 108.406
mote104 0x03 0 71 11.252 13.714 188.084
mote102 0xff 0 73 8.609 8.854 78.395
mote102 0x08 0 62 11.374 12.673 160.599
mote102 0x03 0 64 4.391 10.131 102.638

Table 6.2. Average RSSI range statistics.

Transmitter Power Level min max mean stddev variance
mote104 0xff 0 5 1.000 0.978 0.957
mote104 0x0a 0 62 2.574 9.730 94.679
mote104 0x08 0 63 2.765 11.222 125.936
mote104 0x03 0 65 12.878 24.896 619.829
mote102 0xff 0 3 0.704 0.710 0.504
mote102 0x08 0 65 10.200 22.542 508.143
mote102 0x03 0 64 3.991 14.995 224.843

6.2 Mobility-enhanced Sensor Network Quality

Certain problems arise in static deployments of wireless sensor networks that can

potentially be improved by introducing mobile sensor nodes into the network. This

section describes MobiQ, an application we designed that uses mobile devices as a means

of improving the quality of sensor networks. MobiQ employs mobile data sinks to collect

sensed network data, instead of the traditional approach in which a single, static base

station is used. In the MobiQ design, mobile sinks may not only collect data, but

could also increase the overall quality of the sensor network by strategically alleviating

common sensor network concerns of connectivity, congestion, and sensed data quality.

However, the implementation does not yet fully realize the design, and focuses primarily

on improving sensor network lifetime by amortizing sensor data tranmission costs across

all the nodes in the network.

We present the design of the application and evaluate it in Mobile Emulab. We also

discuss how the development of the application drove codevelopment of tools for sensor

testbeds, and highlight shortcomings of Mobile Emulab and present potential solutions.

56

6.2.1 The Rationale for Mobility

The “quality” of a sensor network can be established by several metrics, and is likely

to be determined by the deployment goal for any specific network. For instance, the

deployment may prioritize one or more of data quality, data timeliness, deployment

coverage, and network lifetime (alternatively, power usage) as the overall goal; it could

then adjust goals based on sensed data, very temporarily or longer-term. These different

goals are very much related to each other. For instance, maximizing lifetime will almost

certainly require minimal sensing and collection rates. If nodes in the network die

(especially bottleneck nodes in a tree-based routing protocol, where a “funnel” effect

results in nodes closest to the base station expending more power more quickly than

nodes further from it), the overall coverage and sensing capability of the network will be

degraded.

The ideas in MobiQ spring from the bottleneck effect—the primary goal is to amortize

the energy cost of forwarding data messages to a base station across static nodes in the

network (in other words, moving the bottlenecks around periodically over the lifetime of

the network). However, since MobiQ postulates one or more mobile sinks as the solution, it

then becomes natural to use them to enhance the quality of the network in other ways as

well. For instance, a mobile sensor could move to hotspots if the static nodes implied that

one existed, and investigate further. Alternatively, they could move to poorly covered

areas at certain times, or supplement failed nodes. If all mobile nodes function as sinks,

static sensors may report to those sinks, which without loss of generality may report to a

single base station. However, by making base station location dynamic, we may be able

to extend lifetime and increase quality.

These goals cannot be fully satisfied at the same time. For instance, a mobile node

cannot be acting as a relay, alleviating congestion, and then also try to physically move

and discover why a sensor failure happened. Consequently, we need an impact estimator

to determine what motions are effective for each mobile sink. The goal of such an

estimator is to maximize quality of the network. Our goal is to build a framework in

which mobility can aid in solving the quality problem based on a prioritization of the

goals discussed above.

6.2.2 Design and Implementation

MobiQ is implemented in NesC [12], a C-like language that supports building ap-

plications in an event-based programming paradigm, by wiring together well-defined

57

component interfaces. It is built to work within the TinyOS 1.x sensor network operating

system [19] environment, which supports several well-known sensor network devices and

provides a number of useful libraries and interfaces.

MobiQ itself is composed of several primary components: a routing protocol (based on

our own mobile-aware extensions to the MintRoute protocol [31]), interfaces and modules

for obtaining location updates and commanding motion to occur, and a congestion-based

estimator that determines where to move mobile base stations. Other code generates

emulated sensor data messages into the network.

Developing a hybrid routing protocol that better suits a sensor deployment composed

of both static and mobile devices is a worthwhile goal, but its complexity places it beyond

the scope of this thesis. (For instance, one might imagine a dynamic tree-based model,

since the goal is still to route sensed data to base stations—but since they are mobile,

the static nodes should know this and adjust their routes with intelligence with respect

to base station motion, taking advantage of temporarily close mobile nodes, but always

ready to fall back to a good, known static route. Such an approach must avoid the cost

of reassembling the tree every time a mobile base station changes location.)

Instead, we extended the MintRoute reliable multihop routing protocol, with exten-

sions to support multiple mobile base stations. MintRoute builds an inverted tree-like

forwarding structure terminating at the base station, based on link quality estimates.

With the MobiQ extensions, mobile nodes broadcast while moving, and fixed nodes in-

crease route calculation and the rate at which they notify neighbors of new routes. Thus,

the tree can more quickly adjust during and after times of movement. However, these

modifications are simplistic and unlikely to function nearly as well as a new design that

supports mobility from the beginning.

We implemented a simple estimator that periodically moves a mobile base station

to areas in the network that appear congested based on known routing statistics. The

estimator supports multiple base stations, so there will likely be multiple inverted routing

trees, one rooted at each base station. Fixed motes are free to route to any base station—

we assume that base stations are powerful, and could all communicate with a gateway

device to upload or aggregate data. Each mobile base station is restricted to a distinct area

in which only it can move. This will likely prove difficult to enforce in a real deployment,

but it could be approximated by dividing the deployment area into spheres of equal radius,

and loosely restricting each base station’s movement within its own sphere.

58

Since this estimator attempts to equalize forwarding cost across all fixed nodes in the

network over its full lifetime, it must track the amount of messages that pass through

each mote. We maintain these totals at the base stations, and thus, to support multiple

mobile base stations, the estimator in the base station must handle fixed mote handoff

from one base station to another by migrating statistics. When a child moves to another

sink, the new sink will query all others to see who has the current total. If none reply, it

is a new child. If one replies, that total is added to whatever the new parent has heard.

Unlike the sampling application described in Section 6.1, base station motion in MobiQ

is conditional on the behavior of the application itself. Thus, it is natural to integrate

motion requests and status notifications into the application running on the mote itself,

even if the actual motion control is implemented away from the mote (as in Mobile

Emulab, where it is implemented in robotd and pilot). We wrote a TinyOS component

that communicates motion requests from robot-mounted motes for their robots to Emulab

via the placeholder service described in Section 5.4. This component also supports

location change updates, which are propagated from embroker through the Emulab event

system to placeholder and SNAP-M, to which the motes are connected.

Finally, we developed a simple component that emulates a location service. Appli-

cations that use this component can get and set locations for mote IDs for which the

component has been given locations. This can easily happen from SNAP-M over mote

serial lines in Mobile Emulab.

6.2.3 Assumptions

In MobiQ, we make the following assumptions about the nature of mobile and fixed

devices and their knowledge of their environment. Here, we comment briefly on their

feasibility in a real deployment.

Location knowledge. All nodes know their location. This assumption is reasonable

due to the large number of localization services for sensor networks. All mobile

sinks can obtain the location of any node in the network. In a real deployment, this

would probably be obtained once after the localization algorithm was run and the

routing protocol had been given time to initialize.

Location stability. We assume for evaluation purposes that after initial deployment,

only mobile node locations change. This seems likely to be true in many real-world

sensor deployments.

59

Powerful mobile sinks. Mobile sinks have essentially infinitely more power than static

motes. Even if the mobile platform carrying the mote cannot carry “infinitely”

more energy capacity, one might imagine deploying charging substations. At any

rate, if power is more limited, it is more important for the motion estimator to

quickly direct the robots to survey the deployment area, and pre-select a few target

locations to move to during network lifetime.

Connectivity between mobile sinks. All mobile sinks can communicate directly with

each other. Powerful mobile sinks could certainly have more powerful radios (or use

the same radios with which they upload data out of the network location). In a

large deployment with many mobile base stations, however, this will not suffice—a

better solution could be to modify the estimator to query other base stations during

child handoff using a distinct multihop routing topology used by sinks only.

6.2.4 Evaluation

We compared the number of routing messages required for each nonbase station mote

in the network in two cases: a single, static base station, and a case with two mobile

base stations; this is shown in Figure 6.7. In each case, the static motes sent sensor

data messages containing fake data every 5 seconds. Both runs lasted for approximately

45 minutes, although the mobile run lasted for 90 seconds longer. Each mote dumped

periodic routing statistics out of its serial port, which we collected and processed offline

to analyze.

It is immediately obvious that MobiQ with mobile base stations actually increased

per-mote message overhead. However, this is to be expected—our test runs examined

how well the simple estimator could target areas of congestion, and was allowed to move

the base station as much as once every minute. Such a motion rate is perhaps an order of

magnitude higher than necessary during a real deployment. Moreover, since our extended

protocol must operate during base station motion, and adjust the routing topology to

account for changing locations, it requires more routing messages to be exchanged. Thus,

we are more interested to see if in the mobile case, this estimator distributed the message

load across more motes than in the single base station case. Unfortunately, it proved

less effective than hoped for—Figure 6.7 shows hints of wider distribution, especially for

motes 116, 117, and 122, but a clear trend cannot be discerned. We would expect our

simple radius-based method of moving to a location “close” to congested motes would

60

Figure 6.7. Routing messages sent by each mote.

function much better in an outdoor environment, but may not work nearly as well in the

small indoor Mobile Emulab deployment.

6.2.5 Lessons for Mobile Testbeds

Many parts of SNAP-M were specifically codeveloped with MobiQ, or to support it in

some way. It is natural, then, that we found them extremely useful as a tool to understand

MobiQ’s behavior—we could visualize motion, routing topology changes, see live routing

protocol statistics dumped from each mote’s serial interface, and change parameters of

some components via messages sent to mote serial interfaces. MobiQ required significant

preruntime configuration after Emulab had flashed the motes with the application binary;

for instance, the mobile motes had to be informed of the locations of all fixed motes,

configured with their motion bounds parameters, and other things. Since MobiQ relies

on TinyOS Active Messages to perform these configuration tasks, as well as subsequent

motion requests and status notifications, SNAP-M’s ability to create messages based on

user input for message fields and send them to a subset of motes under its control, as

well as to script this behavior, was extremely useful. Initializing a mobile application was

61

then simply a matter of running a script from SNAP-M.

By interfacing Mobile Emulab’s location and motion control services to MobiQ through

placeholder and the TinyOS location and motion components discussed above, it was

possible to build an entire mobile application inside the motes. Some mobile sensor

applications might not be built this way, and could involve other, more powerful comput-

ers, but it is nevertheless valuable to expose visiond ’s ground truth location data to the

sensor network. A useful feature we did not implement in the location modules (nor in

placeholder) is the ability to alter the ground truth location estimates based on error

models; in real deployments, localization services will almost certainly produce more error

than visiond .

Finally, we believe that Mobile Emulab needs a larger environment with more op-

portunities for uniformity (i.e., sections of the environment should be more open in an

omnidirectional sense). We were able to successfully build multihop topologies and test

applications that required them, but it would have been useful to analyze how MobiQ’s

simple estimator behaved in a setting more similar to an open, outdoor field, in addition

to the Mobile Emulab deployment.

6.3 Heterogeneous Sensor Network Experimentation

An important part of demonstrating the utility of the mobile testbed is to show

the ease with which mobile and fixed motes can be integrated into our testbed. I have

constructed a large, heterogeneous emulation experiment that utilizes the original Emulab

core as well as the mobile and sensor network extensions. In this section, I discuss this

emulation in more detail and provide a subjective analysis that evaluates the ease with

which mobility and sensor network devices may be integrated with other types of network

devices.

6.3.1 Scenario

To demonstrate how Emulab enables experimentation with many diverse node types

and software, we created an experiment to emulate the following scenario. Companies that

require large amounts of compute power or maintain a large Internet presence typically

manage their own data centers, often at several remote sites. Temperature monitoring

and automatic response to heightened temperatures, such as partial or complete cluster

shutdown, is a necessity.

62

We have constructed an emulation of this scenario in Emulab. The included NS file

creates several cluster server networks, emulating remote data or service centers, and sev-

eral diverse client networks that access the service clusters. In the default configuration,

there are two service clusters. The first cluster contains 3 PCs, where each PC is actually

an Emulab virtual node, running in a FreeBSD jail on a single physical PC. The second

consists of several physical PCs running FreeBSD or Linux. Each cluster node runs an

iperf [27] server that listens for incoming connections and acts as a data sink.

There are several client networks whose members all attempt to access the service

cluster nodes. Each node runs an iperf source that sends tcp data as quickly as possible

to a server chosen randomly in any of the clusters. First, there is a single cable network,

emulating cable modem clients. All clients in the network are in a single LAN with 100Mb

bandwidth and 90ms latency. Connected to the first cable modem node is a small SDR

network. A single SDR node acts as an access point for two more SDR nodes, which are

connected to a single wired PC. In this way, they emulate “wireless backhauls” or even

neighborhood wireless access points, providing access to another wired PC network. The

cable LAN nodes run a mix of FreeBSD, Linux, and Windows XP.

Second, there is a DSL network composed of multiplexed links (each client in the

network contacts a router over an unshared link; thus, only upstream bandwidth is

shared). Each link is rated at 6Mb bandwidth and 25ms latency, and the upstream

connection from the router is 100Mb and 0ms. Connected to the first DSL node is an

802.11g wireless access point. Several other wireless clients are connected to this access

point, emulating a neighborhood wireless LAN sharing a single DSL connection.

Finally, to emulate temperature monitoring in the several service clusters (the “data

centers”), we employ static sensor motes and mobile sensor motes mounted on robots.

Several static motes and a single robot are associated with each service cluster. Each

forward the data they sense to the cluster manager. If the cluster manager detects

temperatures exceeding a preset threshold from both a static mote and a robot associated

with a single cluster, it shuts down the cluster (in the emulation, it shuts down the iperf

sinks on each server in the cluster). All client nodes previously connected to this cluster

are disconnected, and then connect to new cluster servers in another cluster.

Once the temperatures go back down (again, with robot confirmation if desired), the

iperf servers that were killed are restarted, and the clients are restarted to emulate a

load-balanced cluster.

63

Figure 6.8 shows a visualization of this heterogeneous network, produced by Emulab.

Motes, robots, and PlanetLab nodes remain free-floating in the visualization since they

do not have wired links to the experimental, emulated networks.

6.3.2 Analysis

This experiment demonstrates the powerful opportunity that Mobile Emulab provides

to experimenters. Robots, motes, and wired and wireless PCs can be combined in the

same experiment under the common Emulab interface, even though methods of user

interaction with specific devices may differ. Although the ns file that generates this

experiment is complex, it is only complex because it is a programmed experiment designed

to be parameterized across a large number of variables. Normally, integrating sensor

network motes and robots with other Emulab device types is easy because motes and

robots are simply different node types, with different software requirements. As small,

embedded sensor devices come into more widespread use, it may benefit researchers to

already have a testbed that provides a framework for heterogeneous network research and

experimentation.

Since sensor devices are still a developing technology, it may not be useful to add

Mobile Emulab support to preconfigure a group of motes into a network topology in the

same way Emulab automatically configures wired PCs into IPv4 networks. Applications

may be a single custom binary provided by the user containing custom protocols and net-

work software that Emulab cannot configure automatically, or may utilize new addressing

schemes.

Finally, as we ran this experiment, we experimented with a real heat source to trigger

alarms based on the amount of heat detected. We had primarily focused on the network

aspects of Mobile Emulab, since we realized the difficulty in providing real data sources

that the sensors could detect that were also controllable by experimenters. It is difficult

to solve this problem with real emulation in a testbed without building devices that are

essentially opposites of common sensor boards (i.e., can generate heat, light, sound, and

other events), and colocating them with sensors. However, one solution is to develop

TinyOS components that function as parameterizeable data sources, atop which a user

could model data events to drive the application. Clearly, this is a capability that Mobile

Emulab needs.

64

Figure 6.8. Visualization of the heterogeneous topology generated by Emulab.

CHAPTER 7

CONCLUSION

In this document, I have described the design and implementation of Mobile Emulab,

a mobile sensor network testbed. Mobile Emulab employs precise localization techniques

and dynamic motion control to create an environment for real mobile sensor network

experimentation. The testbed provides accessible and precise motion to experimenters,

yet is cost-effective to implement and duplicate. Our experiments demonstrate the

precision of the location system, yet reveal areas that will require improvement to support

larger testbeds and more advanced motion controllers. The case studies we presented

establish the power of Mobile Emulab in the context of three very different experiments,

and we believe our experiences could be valuable to other implementors of new mobile

testbeds. By providing a large body of tools supporting experimentation in Mobile

Emulab, we have greatly eased the processes of mote control, application development

and debugging, and data storage and inspection.

In this chapter, I discuss the status of our testbed within the research community and

describe a large body of potential future work.

7.1 Users

Despite aggressive advertisement in the sensor network community, Mobile Emulab

has no real external users. I personally presented and demonstrated this system at five

conferences, and talked to many potential users, some of whom seemed quite keen to

begin using the system. Furthermore, our testbed extends Emulab and thereby presents

a familiar user interface to the network research community. However, no external users

have used Mobile Emulab to conduct experiments, although a few research groups have

applied for accounts. There are a number of possible reasons why this has occurred, and

I discuss several of them below.

First, the initial deployment was constrained to a small area and had only a few mobile

nodes. While some mobile sensor network research may only require several mobile nodes,

66

many fixed nodes are generally assumed to exist. More importantly, there is not a large

body of mobile sensor network research. If our testbed supplied 802.11a/b/g wireless

devices, or software-defined radios, we would immediately have a much larger pool of

researchers from which to draw. Due to technical limitations, this is impossible with our

current robotic platform; moreover, a mobile 802.11 testbed would require a significantly

larger area of motion.

As with any testbed, Mobile Emulab presents users with a learning curve. To an over-

worked researcher (the status quo), learning how to use a new system for experimentation

may seem impractical. Mobile Emulab is different than ns mobility simulation in many

ways, for instance. It is simply beyond the scope of this work to implement an interface

by which users can easily run existing simulations on our real hardware.

Wireless simulation appears to continue to remain a respectable alternative to real

experimentation. Judging from publishing trends at major conferences, and my own

knowledge, researchers acknowledge that simulation modeling inaccuracies represent a

real problem. However, it is also possible that there is too much “simulation inertia” in

the mobile and wireless research community that prevents a speedy inclusion of real eval-

uation. There are doubtlessly many people who still believe simulation is the appropriate

and preferred method for evaluation, and that modeling capability can be increased to

match real circumstances. Finally, even if researchers recognize abstractly that simulation

is bad, if the community at large does not act upon the knowledge, simulation-only

publications will continue to persist for some time.

7.2 Analysis of Component Modularity

One of the minor design goals in creation of this testbed is easy adoption and adapta-

tion to new hardware by prospective testbed owners, and replacement of key components

by other software. Due to unexpected, hardware-specific requirements on some of the

modules, satisfying these goals was not always possible. However, some components

may be replaced by others providing similar functionality, and others may be used

with different hardware types. In this section, we analyze code modularity and discuss

component requirements and overall system adaptability to both hardware and software

changes.

67

7.2.1 mtp

This application protocol is used for all communication between the components in

our testbed. If any component is modified so that it has a communication need (i.e., more

or new data, different configuration) different than currently supported, the protocol will

also require modification. A more abstract protocol would be required to further reduce

the number of modifications.

7.2.2 robotd and pilot

robotd implements several different motion controllers, some of which are strongly

linked to our chosen robot platform. The basic, waypoint motion model controller is

simple and makes use of basic robotic motion (straight line motion and pivots) that

COTS robots may already support, as does our. The more advanced controllers depend

on the kinematic properties of the robot. Theoretically, they could be used with other

robotics platforms without modification, although the gains in the control state equations

would likely require modification. The software container does not provide an easy means

to add and trigger new controllers, although it would not be difficult to add. However, the

advanced controllers are completely dependent on a robot that can execute a two-wheeled

pivot, and would not work with a robot that cannot.

pilot is highly dependent on the C++ libraries provided by our robot manufacturer.

Our current set of controller functionality requires support by these libraries to perform

basic manuevers, such as straight line motion parameterized by length and speed and pivot

parameterized by arc angle. The high-level controllers require an interface to set the drive

wheel speeds as well. We could easily reduce this dependency by adding a high-level layer

exposing this functionality that could call into submodules that implement the high-level

functionality with platfom-specific methods.

7.2.3 visiond and vmc-client

Our localization system was specifically designed to permit a range of hardware so

that other implementors could obtain a level of precision best fitting their needs. The

only specific hardware requirement is the use of color video cameras, since Mezzanine

depends on color to recognize fiducials. Of course, the use of video cameras similar to

those we used will likely result in similar performance.

visiond implements high-level algorithms for object tracking and identification. Its

purposes are to aggregate object locations, remove duplicates, and smooth data as nec-

68

essary. Although the architecture does not specifically support smoothing modules, it

is quite easy to add them. For instance, the addition of a basic Kalman filter would

be quite easy. An advanced Kalman filter that used additional inputs, such as current

wheelspeeds of each robot, would require only additional mtp modifications. Different

aggregation mechanisms would be slightly more difficult to integrate.

7.2.4 embroker

The least modular component in our mobile control subsystem is embroker , since its

purpose is to connect all other key mobile subcomponents to Emulab facilities. Thus,

if implementing this testbed on an Emulabsystem, no modifications should be required.

However, if not, embroker would require a completely new implementation. For instance,

one could envision a simple implementation that communicates with the robot subcom-

ponents in the same manner as the current implementation, but provides a much simpler

motion command and monitoring interface.

7.3 Future Work

I now turn to a discussion of several areas in which the mobile testbed should be

extended and improved. There are many different areas in which increased functionality

can benefit, including localization, mobile control, and mote application management.

7.3.1 Localization

There remain two primary outstanding concerns in our current localization system.

First, the problems previously discussed concerning jitter in data caused primarily by

inexpensive hardware, combined with the low rate of data possible to extract from such

hardware, can seriously inhibit the performance of advanced kinematic motion controllers.

By using more expensive hardware that produces higher data rates, such as cameras

rated at 60 or 120 fps, we could possibly alleviate these concerns. However, since variable

lighting is present in our current environment, and perhaps any subsequent environment

we could foresee utilitizing, we would still need to somehow smooth the data.

One option to perform smoothing operations that reduce jitter while keeping phase lag

low is the Extended Kalman Filter. While such a customized filter is beyond the scope of

this work, the predictive elements provided by the filter would greatly enhance possibilities

for smoothing. However, from discussions with members of the Mechanical Engineering

69

Department, jitter being produced by light variability or low-quality hardware may be

difficult to resolve well with an Extended Kalman Filter.

The other primary concern that remains with our current localization system is setup

cost. Significant time must be spent in manual calibration in order to achieve the levels

of precision described in this document. To make it easier for outside entities to create

their own testbeds, we would probably want to supply a simplified calibration procedure.

7.3.2 Mobile Control

To ease the difficulty of the remote motion control experience for remote researchers,

my colleague Leigh Stoller implemented an interactive, real-time Java motion control

applet. Experimenters may drag and drop robots to new destinations on a map of the

area, and watch as they move toward their final positions. The applet displays interaction

with obstacles. Embedded webcam streams allow experimenters to visualize motion and

inspect the environment. The applet also provides rudimentary boundary and obstacle

checks to ensure that an experimenter does not maneuver the robot out of our localization

system’s coverage or into an obstacle.

Originally, this applet only supported a waypoint motion model. We had planned

to extend the applet to provide continuous path generation from waypoints and user-

constructed continuous motion paths. In this mode, the experimenter would choose a set

of waypoints. The applet then constructs a continuous curve by trimming the ends of

each line between waypoints, and inserting a circular arc between trimmed ends where a

waypoint originally was. The length of the trim will be determined by the desired rate of

curvature in the arg segments, but will have a minimum trim length to ensure that the

robot can attain the necessary curvature while remaining on the path.

To allow experimenters to construct their own continuous motion curves, I prototyped

a path editing mechanism similar to Bezier path editors in common vector drawing

software, such as Adobe Illustrator or the open-source Inkscape. While the interface

is similar, the underlying representation is slightly different. Our paths are interpolated

6th-order Bezier curves, with four control points in addition to the knots at the beginning

and end of each segment. Adjacent segments share knots.

By interpolating at the knots and enforcing that the control point nearest to the knot

be collinear with the appropriate middle control handle, we can enforce the C2 continuity

constraint. A curve that is C2 continuous is continuously second-order differentiable, and

thus provides us with the assurance that there will be no discontinuities in the acceleration

70

profile that the robot must maintain to remain on the path. In other words, the robot

cannot sustain instantaneous changes in acceleration; the C2 continuity constraint allows

the system to avoid them entirely.

When integration of this protoype into the current interactive motion control interface

is complete, potential testbed users will gain faster motion execution times as well as

guaranteed robot trajectories.

7.3.3 Mote Application Management

There are nearly endless opportunities to improve interfaces for controlling and manag-

ing sensor network applications. For instance, one could write testbed interface modules

not only for Emulab, but also for other testbeds like Motelab. Users could run their

applications from a common application, perhaps even running instances of an application

on multiple testbeds at the same time.

Many of the modules I wrote for the sensor network application manager could be

enhanced. A fully-featured message scripting language could provide valuable features

such as waiting for messages or responses to sent messages from testbed motes. This

could be generalized even further into stored subscripts called in response to an incoming

message. In addition, one could allow modules to publish standardized interfaces that

would then allow other modules to easily interoperate with them. For instance, the

Location module I described earlier could be extended to provide an Overlay interface,

so that users could display their own custom statistics on the Location map, associated

with links and nodes as necessary. Features like these would greatly reduce the amount

of time needed to develop interface applications.

Finally, better integration with existing tools is important. For instance, one could

write a ManagerModule to support easy integration with Emstar [14], which could po-

tentially increase scalability in evaluation for testbeds with fewer numbers of real motes.

Users could assign real motes to more important evaluation points in the network, and

use simulated Emstar motes to increase raw numbers of motes. Such a hybrid scheme

could be of great value to sensor network experimenters.

REFERENCES

[1] Acroname, Inc. Garcia custom robot, Apr. 2009. http://www.acroname.com/

garcia/garcia.html.

[2] Aguayo, D., Bicket, J., Biswas, S., Judd, G., and Morris, R. Link-level
measurements from an 802.11b mesh network. In Proceedings of SIGCOMM ’04
(Portland, OR, Aug. 2004).

[3] Crossbow Corp. MPR400/410/420 MICA2 mote — Crossbow Technology, Apr.
2010. http://www.xbow.com/Products/productsdetails.aspx?sid=72.

[4] Crossbow Corp. MTS sensor boards – Crossbow Technology, Apr. 2010. http:

//www.xbow.com/Products/productsdetails.aspx?sid=177.

[5] Crossbow Corp. Stargate datasheet, Apr. 2010. http://www.xbow.com/

Products/Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf.

[6] De, P., Raniwala, A., Sharma, S., and Chiueh, T. MiNT: A miniaturized
network testbed for mobile wireless research. In Proceedings of IEEE INFOCOM
(Mar. 2005).

[7] DGPS general information – USCG navigation center, Apr. 2010. http://www.

navcenter.org/dgps.

[8] Flickinger, D. M. Motion planning and coordination of mobile robot behavior for
medium scale distributed wireless network experiments. Master’s thesis, University
of Utah, Dec. 2007. 169 pages.

[9] Fonseca, J. remote-testbed – Re-Mote testbed framework, Jan. 2010. http://

code.google.com/p/remote-testbed.

[10] Fyodor. Nmap — free security scanner for network exploration & security audits,
Apr. 2010. http://insecure.org/nmap.

[11] Garcia, L. M. TCPDUMP/LIBPCAP public repository, Apr. 2010. http://www.
tcpdump.org.

[12] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., and Culler,

D. The nesC language: A holistic approach to networked embedded systems.
In Proc. of the ACM SIGPLAN ’03 Conf. on Programming Language Design and
Implementation (PLDI) (San Diego, CA, 2003), pp. 1–11.

[13] Giacobbi, G. The GNU Netcat — Official Homepage, Jan. 2004. http://netcat.
sourceforge.net.

72

[14] Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D.,

Osterweil, E., and Schoellhammer, T. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In SenSys ’04: Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems (Baltimore,
MD, 2004), pp. 201–213.

[15] GPS general information – USCG navigation center, Apr. 2010. http://www.

navcenter.org/gps.

[16] Handziski, V., Kopke, A., Willig, A., and Wolisz, A. Twist: A scalable and
reconfigurable wireless sensor network testbed for indoor deployments. Tech. Rep.
TKN-05-008, Telecommunication Networks Group, Technical University Berlin, Nov.
2005.

[17] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P. The
anatomy of a context-aware application. In Proceedings of 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (Seattle, WA, Aug.
1999), pp. 59–68.

[18] Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat, C., chan Lan, K.,

Xu, Y., Ye, W., Estrin, D., and Govindan, R. Effects of detail in wireless
network simulation. In Proceedings of the SCS Multiconference on Distributed
Simulation (Phoenix, AZ, Jan. 2001), pp. 3–11.

[19] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister,

K. System architecture directions for networked sensors. In Proc. of the Ninth
Symposium on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Cambridge, MA, Nov. 2000), pp. 93–104.

[20] Hitachi Kokusai Electric Inc. KP-D20A specifications, Jan. 2006.
http://www.hitachikokusai.com/supportingdocs/products/industrial_

video_systems/interlace_scan/KPD20A.pdf.

[21] Howard, A. Mezzanine: An overhead visual object tracker, June 2005. http:

//playerstage.sourceforge.net/mezzanine/mezzanine.html.

[22] Johnson, D., Stack, T., Fish, R., Flickinger, D. M., Stoller, L., Ricci, R.,

and Lepreau, J. Mobile Emulab: A robotic wireless and sensor network testbed.
In Proceedings of IEEE INFOCOM 2006 (Barcelona, Spain, Apr. 2006).

[23] Kang, H.-D., and Jo, K.-H. Self-localization of autonomous mobile robot from
the multiple candidates of landmarks. SPIE – The International Society for Optical
Engineering 4902 (2002), 428–435.

[24] Meltzer, J., Gupta, R., Yang, M.-H., and Soatto, S. Simultaneous local-
ization and mapping using multiple view feature descriptors. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Sendai, Japan,
2004), pp. 1550–1555.

[25] Priyantha, N. B., Miu, A. K., Balakrishnan, H., and Teller, S. The cricket
compass for context-aware mobile applications. In Proceedings of the Annual Inter-
national Conference on Mobile Computing and Networking (MOBICOM) (Rome,
Italy, 2001), pp. 1–14.

73

[26] Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K.,

Kremo, H., Siracusa, R., Liu, H., and Singh, M. Overview of the ORBIT
radio grid testbed for evaluation of next-generation wireless network protocols.
In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC) (Mar. 2005).

[27] Richasse, N. Iperf, Mar. 2008. http://iperf.sourceforge.net.

[28] Takai, M., Martin, J., and Bagrodia, R. Effects of wireless physical layer
modeling in mobile ad hoc networks. In Proceedings of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc ’01) (Long Beach,
CA, Oct. 2001), pp. 87–94.

[29] Werner-Allen, G., Swieskowski, P., and Welsh, M. Motelab: a wireless
sensor network testbed. In Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks (IPSN’05), Special Track on Platform
Tools and Design Methods for Network Embedded Sensors (SPOTS) (Los Angeles,
California, Apr. 2005).

[30] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold,

M., Hibler, M., Barb, C., and Joglekar, A. An integrated experimental
environment for distributed systems and networks. In Proc. of the Fifth Symposium
on Operating Systems Design and Implementation (Boston, MA, Dec. 2002), pp. 255–
270.

[31] Woo, A., Tong, T., and Culler, D. Taming the underlying challenges of
reliable multihop routing in sensor networks. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems (SenSys ’03) (Los Angeles, CA,
Nov. 2003), pp. 14–27.

[32] Zhao, J., and Govindan, R. Understanding packet delivery performance in dense
wireless sensor networks. In Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems (SenSys ’03) (Los Angeles, CA, Nov. 2003),
pp. 1–13.

[33] Zhou, G., He, T., Krishnamurthy, S., and Stankovic, J. A. Impact of radio
irregularity on wireless sensor networks. In Proceedings of the 2nd International
Conference on Mobile Systems, Applications, and Services (MobiSys ’04) (Boston,
MA, June 2004), pp. 125–138.

[34] Zhou, J., Ji, Z., and Bagrodia, R. Twine: A hybrid emulation testbed
for wireless networks and applications. In Proceedings of IEEE INFOCOM 2006
(Barcelona, Spain, Apr. 2006).

